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Abstract
A high concentration of potentially toxic elements (PTEs) can affect ecosystem health in many ways. It is therefore essential 
that spatial trends in pollutants are assessed and monitored. Two questions must be addressed when quantifying pollution: how 
to define a non-polluted sample and how to reduce the problem’s dimensionality. A geochemical dataset is a composition of 
variables (chemical elements), where the components represent the relative importance of each part of the whole. Therefore, 
to comply with the compositional constraints, a compositional approach was used. A novel compositional pollution indicator 
(CPI) based on compositional data (CoDa) principles such as the properties of sparsity and simplicity was computed. A 
dataset of 12 chemical elements in 33 stream-sediment samples were collected from depths of 0–10 cm in a grid of 1 km × 
1 km and analyzed. Maximum concentrations of 3.8% Pb, 750 µg g−1 As, and 340 µg g–1 Hg were obtained near the mine 
tailings. The methodological approach involved geological background selection in terms of a trimmed subsample that 
could be assumed to contain only non-pollutants (Al and Fe) and the selection of a list of pollutants (As, Zn, Pb, and Hg) 
based on expert knowledge criteria and previous studies. Finally, a stochastic sequential Gaussian simulation of the new 
CPI was performed. The results of the hundred simulations performed were summarized through the mean image map and 
maps of the probability of exceeding a given statistical threshold, allowing the characterization of the spatial distribution 
and the associated variability of the CPI. A high risk of contamination along the Grândola River was observed. As the main 
economic activities in this area are agricultural and involve animal stocks, it is crucial to establish two lines of intervention: 
the installation of a surveillance network for continuous control in all areas and the definition of mitigation actions for the 
northern area with high levels of contamination.
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Introduction

The presence of potentially toxic elements (PTEs) 
poses a significant risk in various environmental sectors 
(Papamichaela et  al. 2023), Boumaza et  al. 2023, Ebru 
Yeşim Özkan et  al. 2024, Hadzi et  al. 2024). Over the 
last few decades, the cumulative impact of these elements 
on the environment has been considerable. During 
that time, there has been an exponential increase in the 
concentrations of PTEs, thus enhancing the risk to humans 
and the environment (Antoniadis et al. 2017; Kumudunis 
et al. 2020). Mining and heavy industrial activities may 
potentiate these high observed levels of PTEs and may be 
the origin of numerous sources of contamination (Boente 
et al. 2022, 2018; Carvalho et al. 2022). Thus, in recent 
decades, researchers have invested in the development of 
new techniques that offer accurate scenarios of the spatial 
distribution of PETs (Özkan et al. 2024, Sulemana et al. 
2024, Petryshen 2023, Zhang et al. 2023). The definition 
of geochemical backgrounds and the identification of 
enrichment sources are key to the accomplishment of this 
objective (Wang et al. 2021; McKinley et al. 2016). The 
visualization and depiction of pollutants requires the use of 
simulated maps to visualize spatial–temporal distribution 
models. The definition of vulnerability and risk hot clusters 

may provide a basis for environmental policy-making 
in complex scenarios (Boente et al. 2020; Albuquerque 
et  al. 2017; McKinley et  al. 2016). In soil and stream-
sediment science, mapping a new variable called an index 
or an indicator is a common technique for describing the 
distribution of PTEs. The use of classical characterization 
methods like statistics and soil/stream sediment pollution 
indexes (SPIs) can help identify potentially polluted areas. A 
review by Joanna et al. (2018) provides a detailed and critical 
assessment of heavy metal soil pollution using various 
indicators. Unfortunately, however, the compositional 
nature (Pawlowsky-Glahn et al. 2015; Filzmoser et al. 2009) 
of the geochemical data is usually not considered. In most 
cases, the indicators are related to the study of individual 
elements without considering the interdependence of 
the concentrations of all the elements in the same set. 
Non-compositional indices that are often used to study 
geochemical data include the geoaccumulation index (Muller 
1969), the enrichment factor (Sucharova et al. 2012), and the 
single pollution index (SPI) (Hakanson 1980), as reviewed 
in Kowalska et al. (2018). Nevertheless, it is well known 
that a traditional statistical approach using direct raw data 
can be misleading (Chayes 1962, 1971). Aitchison (1982, 
1986) answered these questions in his fundamental work on 
the logarithmic ratio method. Theories of composition data 
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(CoDa) have enhanced our understanding of the sampling 
space of composition data and their corresponding structure 
(Pawlowsky-Glahn and Egozcue 2001). Representations of 
data that consider pairwise log ratios (pwlr), isometric log-
ratio coordinates (ilr), centered log-ratio coordinates (clr), 
and additive log-ratio coordinates (alr) are statistically 
robust approaches to deal with the compositional nature of 
chemical concentration data (Pawlowsky-Glahn and Egozcue 
2001; Egozcue et al. 2003; Buccianti and Grunsky 2014). 
The compositional approach (CoDa) is well represented in 
various fields of research in environmental science, such 
as ecotoxicology (Mullineaux et al. 2021), urban impacts 
(Cicchella et al. 2020), water quality management (Wei 
et al. 2018), and human health (Tepanosyan et al. 2020, 
Pawlowsky-Glahn and Buccianti 2011; Filzmoser et  al. 
2021). Recently, the adoption of compositional indicators 
for characterizing PTE pollution of soil has been increasing 
(Boente et  al. 2022; Petrik et  al. 2018). Compositional 
indicators involving the definition of geochemical baselines 
offer a valuable contribution as they are scale invariant and 
sub-compositionally coherent, meaning that a change in the 
concentration unit used will not modify the study’s results 
(Pawlowsky-Glahn et al. 2015).

Compositional indicators are commonly used to measure 
water and air contamination. In stream sediments and 
soils, the use of compositional indexes or indicators to 
address pollution has only recently been explored (Boente 
et al. 2022). The primary challenge is the highly varied 
geochemical background, which hinders the distinction 
between what is polluted and what is natural. In addition, to 
assess stream-sediment pollution, the compositional baseline 
needs to account for a set of key issues: (1) the compositional 
nature of data; (2) spatial changes in the background; (3) the 
definition of pollution; (4) the indicator as a log-contrast; 
and (5) that an indicator should be provided for every type 
of pollution. This research introduces a new compositional 
pollution indicator (CPI) of riverine sediments, based on 
expert criteria, to characterize pollution in the Caveira mine 
in southern Portugal. This indicator corresponds to a balance 
of elements that respect the CoDa principles (Aitchison 
1982).

Material and methods

Characteristics of the study area and the dataset

The studied sector is part of the Portuguese Iberian Pyrite 
Belt and is an example of a European post-mining area 
that dates back to the 1990s. Mining activity ceased there 
mainly because of ore exhaustion and more profitable meth-
ods worldwide, which resulted in an ore price reduction and 
made local mining activities infeasible (Martins and Oliveira 

2000). Therefore, major pollution problems related to metal 
dispersion and mine waste management are present there. 
The geological sequence at Caveira mine, which closed back 
in the 1980s, corresponds to (from bottom to top) phyllites 
and quartzites (PQG) followed by a volcanic sedimentary 
complex sequence (VSC) unit (Late Famennian) represented 
by pyroclastics, rhyolitic lavas, tuffs, dark gray and siliceous 
shales, and rare jaspers. Intruding diabase rocks can be seen 
in the northern sector (Fig. 1). The massive sulfide deposits 
that were exploited in the region occurred in the vicinity 
of felsic volcanic rocks. The Mértola formation, from the 
Visean age, overlays the CVS and corresponds to a flysch 
sequence consisting of sandstones alternating with shales 
and thin-bedded siltstones. From a structural point of view, 
the whole sequence is part of the South Portuguese Zone, 
a thin-skinned fold and thrust belt from the Variscan age. 
Tailings and associated waste rock resulting from 129 years 
of pyrite and Cu mining are scattered along Grândola Creek. 
The semi-arid climatic conditions result in high erosion of 
residues by surface water, primarily during rainfall, causing 
serious contamination of Grândola Stream and its tributar-
ies due to the degradation of sediments (Ferreira da Silva 
et al. 2015).

A dataset of 33 bottom-sediment samples distributed 
across small and narrow creeks—two of them flowing by the 
mine tailings pile and the larger Grândola Stream, of which 
they are tributaries—was obtained. These streams belong 
to the Sado River basin, the second-largest hydrographical 
basin in Southern Portugal. Samples were collected at 0 to 
10 cm depth with an environmental hand soil sampling kit 
(#209.55, AMS) from within a grid of 1 km × 1 km. These 
samples were preserved at about 4 °C and later analyzed for 
12 chemical elements, including PTEs of variable toxicity 
(As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn, V) and major elements 
from lithogenic sources (Fe, Al). The most extractable 
forms of the metals (except for Hg) were obtained by 
partial digestion with aqua regia (HCl and HNO3) in a high-
pressure microwave digestion unit (Anton Paar Multiwave 
PRO) following US EPA (2007) method 3051A. The metals 
and As were analyzed by optical emission spectroscopy with 
an inductive plasma source (ICP-OES, PerkinElmer Optima 
8300), using yttrium as an internal standard. The accuracy 
and analytical precision of all the analyses were checked 
through the analysis of reference materials and duplicate 
samples in each analytical set.

Mercury (Hg) was analyzed by a mercury analyzer 
(NIC MA-3000) based on thermal decomposition, 
gold amalgamation, and cold vapor atomic absorption 
spectroscopy detection. Sampling was followed by 
immediate readings of pH and redox potential values in wet 
samples using a portable multi-parameter analyzer (Consort 
C5020—the SP10T model for pH and the SP50X model 
for redox potential). In samples with insufficient moisture 
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for direct pH readings, this parameter was measured in 
a water–sediment suspension (2.5:1) in the laboratory. 
Concerning to samples’ chemistry, the dataset included 
PTEs of variable toxicity (Fabian et al. 2014). The set of 12 
elements was reported for each of the 33 sampling points, 
resulting in a 12-part composition that was assumed to 
represent the stream sediments.

Compositional pollution indicator (CPI) construction

The first fundamental principles of composition data are to 
be found in the founding work of Aitchison (1986). These 
initial contributions were explained and expanded into 
general-purpose works such as those of Pawlowsky-Glahn 
et  al. (2015), Boogaart van den and Tolosana-Delgado 
(2013), Filzmoser and Hron (2011), Pawlowsky-Glahn and 
Buccianti (2011), and Pawlowsky-Glahn and Serra (2019).

The analysis of a stream-sediment sample based on 
its chemical composition should be conducted under the 
assumption that the data are compositional. As a result, when 
performing data analysis, the functions used to describe the 
composition should be invariant under multiplication by a 
positive constant (Boente et al. 2022). Also, any composition 
can be expressed in proportions (where the components sum 
to 1) without adding or losing any information, irrespective 
of the units in which the data were initially represented.

Analysis of the chemical composition of a sample 
of riverine sediments in units such as mg/kg should be 
performed assuming that the data are compositional. 
Moreover, the conversion of units from mg/kg to g/kg, as 
an example, must not change the information about the 
sample. This is summed up by one of the principles of 
CoDa analysis, named the principle of scale invariance. 
Thus, when analyzing the data, the functions used to 
describe the composition should be invariantly multiplied 
by a positive constant. Consequently, any composition can 
be expressed as proportions (where the components add to 
1) without adding or losing information, regardless of the 
units in which the data were originally reported. A second 
assumption is known as the sub-compositional coherence 
principle. The whole periodic table is never presented; 
only a subset of elements is measured, and this subset 
may change over time and across the field. The elements 
observed form a composition, and any subassembly of them 
is a sub-composition that is again subject to the principle of 
scale invariance. Analyses of the initial composition or sub-
composition should lead to coherent conclusions describing 
the roles of common elements (Aitchison 1986).

The CPI balance was obtained based on expert criteria 
attending a selection of elements (Boente et al. 2022), of 
which some are considered pollutants while others are not. 
In the case of the Caveira mine, the main contaminants were 

Fig. 1   Study area and the sample collection locations
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selected from typical pollutants, namely As, Zn, Pb, and Hg, 
while Al and Fe were selected as the main natural-source 
elements (or non-pollutants). Based on this previous study, 
the selected balance, the CPI, was constructed as follows:

Spatial modeling—a geostatistical approach

The computed compositional pollution indicator (CPI) is 
unbounded—a real random variable. Therefore, it fulfills 
the assumptions underlying a conventional geostatistical 
approach. Its spatial probability maps were computed by 
following a two-step geostatistical modeling method: (1) 
a structural analysis and a computation of experimental 
variograms (Journel and Huijbregts 1978) were performed, 
followed by (2) sequential Gaussian simulation (SGS), 
which was used as a stochastic simulation algorithm over a 
100 × 100 km grid mesh.

The new CPI can be considered a regionalized 
variable (Matheron 1971), as it depends on the spatial 
location determined by the coordinates and is additive by 
construction. Indeed, the mean value within a given observed 
support is equal to the arithmetic average of the sample 
values independently of the associated statistical distribution 
(Albuquerque et al. 2017; Rivoirard 2005). Thus, the vector 
function used to calculate the spatial variation structure was 
the semi-variogram (Journel and Huijbregts 1978).

The arguments taken into consideration are h (the 
distance) where Z(xi) and Z(xi + h) are the numerical values 
of the variables assigned to xi and xi +  h. The total number 
of couples at a specified distance of h is N(h). Therefore, it is 
the average value of the square of the differences between all 
couples of points in the geometric field spaced at a distance 
h (Journel and Huijbregts 1978). Plotting the behavior of 
the variogram gives an overall view of the spatial structure 
of the variable. One of the parameters that provide this 
information is the nugget effect (Co), which supplies the 
behavior at the origin. The two other parameters are the sill 
(C1) and the amplitude (a), which define the inertia used in 
the subsequent interpolation process and the influence radius 
of the variable, respectively.

The SGS starts by computing the univariate experimental 
distribution of values and performing a normal score 
transformation of the original values to a standard normal 
distribution (Goovaerts 1997). Normal scores at grid node 
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locations are then simulated sequentially with simple 
kriging (SK) using the normal score data and a zero mean. 
Once all normal scores have been simulated, they are 
back-transformed to their original units. The outcome of 
a simulation is always a random version of the estimation 
process that reproduces the statistics of the known data 
and builds a realistic picture of reality. The associated 
spatial uncertainty is visualized through the construction 
of probability maps. If multiple sequences of simulation 
are computed, it is possible to obtain reliable probabilistic 
maps. The mean image map and maps of the probability of 
exceeding the third quartile (Q3) and the probability of not 
exceeding the first quartile (Q1) were computed.

Results and discussion

Geochemical data

The analyses of physicochemical parameters and the 
determination of the levels of PTEs of variable toxicity (As, 
Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn, V) as well as the selected 
elements from lithogenic sources (Fe, Al), accounting 
for their capacity for solubilization and mobilization, 
were performed with the aim of achieving contamination 
mapping. The evaluation of each metal’s mobility was based 
on partial digestion analysis (using aqua regia), considering 
the pH values. The element concentrations and pH values 
in the stream sediment samples are reported in Table 1. The 
values of the physical–chemical parameter that most affects 
the solubility, mobility, and precipitation of potentially toxic 
metals in the sediments from shallow streams, i.e., the pH, 
range from 2.06 and 7.39. The lower values (2.06–4.57) 
are found for the sediments from the two creeks that flow 
through the mine tailings pile. As would be expected, those 
sediments (Cv1, Cv2, Cv3, Cv26, Cv33, Cv34) contain the 
highest values of Pb, As, and Hg—the main contaminants 
in the mine tailings: the levels of those contaminants rise 
above the critical levels that require immediate intervention 
according to European regulations (based on the Netherlands 
legislation—Soil Quality Regulation, 2006). Zn, another 
element with levels of concern, and one which presents high 
contents in the massive sulfides that have been exploited 
in this mine, shows slight contamination levels in all the 
streams flowing from the tailings pile—mostly in locations 
that do not coincide with those where the other elements 
exceed critical levels. The highest values of this element 
also do not coincide with the most acidic conditions in the 
environment. Although the ores that were exploited in this 
mining area contained all of these elements, Zn has a high 
chemical mobility that is mostly influenced by the oxidation 
conditions that occur in all the sediments (240–650 mV), so 
its distribution is more diffuse.
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Descriptive statistical analysis

A preliminary descriptive analysis was conducted to gain 
a comprehensive overview of the dataset in terms of the 
statistical distribution of the elements chosen for the CPI 
balance. This crucial step offers a preliminary glimpse into 
the central tendencies, dispersion, and distribution of the 
variables under scrutiny and at the same time provides a 
succinct summary of the main features of the studied dataset 
(Table 2).

Pollution assessment relies heavily on the presence of 
severe outliers for Pb, which clearly demonstrates a consist-
ently high concentration of this element (Fig. 2).

Descriptive statistics of the main selected contaminants, 
As, Zn, Pb, and Hg as pollutants and Al and Fe as the main 
natural-source elements or non-pollutants. Furthermore, a 
heat map was used for exploratory data analysis of the geo-
chemical composition and sample clustering simultaneously 
in a synthetic way (Fig. 3) (Wilkinson and Friendly 2009; 
Langella et al. 2013). The heat map shows that the elements 
are divided into two groups (upper dendrogram). The first 
group corresponds to Al and Fe (non-pollutants) and the sec-
ond group corresponds to As, Cd, Co, Cr, Mn, Ni, V, Zn, Hg, 
and Pb. However, Pb is significantly separated from the other 
covariates in the major group. Based on an expert-driven 
approach, As, Zn, Pb, and Hg were selected as pollutants. 

Table 1   Element concentrations (mg/kg) in the stream sediment samples (spring season) from Grândola and its tributary streams. These water-
ways belong to the Sado watershed

*Sample Cv22 was eliminated

Sample* As Co Cr Mn Ni V Zn Al Fe Pb Hg pH (H2O)

CV1 234.9 0.4 2.3 16.9 1.6 3.3 94.2 1441.6 10,217.0 38,458.7 127.9 2.30
CV2 238.6 0.4 1.6 24.5 1.0 2.0 96.4 2168.4 17,815.8 29,837.2 78.2 2.06
CV3 517.6 0.8 1.5 99.6 0.9 2.9 122.3 16,128.4 65,825.8 13,775.3 125.8 4.57
CV4  < 1.5 3.9 13.3 172.7 10.3 14.3 36.4 18,321.3 31,828.4 51.2 1.7 6.61
CV5 14.7 3.5 15.6 261.9 12.7 15.5 47.2 13,099.4 27,183.4 2881.5 13.7 6.00
CV6  < 1.5 3.4 17.6 208.4 9.3 24.3 30.0 26,272.6 21,172.3 221.4 0.2 6.54
CV7  < 1.5 4.2 18.6 399.1 11.2 29.2 36.4 29,376.6 28,193.2 97.2 0.6 6.64
CV8  < 1.5 4.6 19.5 455.6 12.3 25.7 37.5 24,811.4 28,361.9 15.0 0.3 7.17
CV9  < 1.5 5.8 13.4 414.1 12.4 13.8 34.7 13,007.8 27,207.6 16.4 0.2 4.99
CV10  < 1.5 5.6 15 315 21.6 22.9 46.3 23,727.5 23,919.7 18.2 0.6 5.12
CV11 3.4 1.0 1.4 148 1.2 2.6 15.8 8807.1 12,058.1 21.5 0.3 5.05
CV12 31.2 4.2 9.6 138.6 10.6 15.9 140.4 11,176.5 29,630.2 92.7 2.6 5.30
CV13 1.6 34.4 23.8 903 21.8 36.4 165.8 44,359.5 42,371.5 36.3 1.6 7.29
CV14 1.6 4.1 16.1 434.9 15.9 24.3 47.5 18,683.1 21,463.1 36.6 0.6 6.03
CV15 1.7 0.5 1.9 82.2 0.6 3.6 5.3 8882.1 3720.9 2.5 0.2 5.48
CV16  < 1.5 0.6 2.1 198.2 1.3 4.6 17.5 4821.9 5337.6 25.9 0.2 5.98
CV17 4.0 1.6 4.3 412.9 4.0 5.2 15.8 10,396.1 16,746.8 27.1 0.1 6.35
CV18  < 1.5 0.6 2.5 117.3 1.5 2.7 8.9 3475.2 3540.5 8.1 0.3 5.51
CV19 1.8 0.5 1.4 66.3 0.7 2.3 8.1 3044.8 3855.6 7.6 0.1 5.55
CV20 2.1 1.0 4.5 169.6 1.5 6.8 10.6 3677 5856.6 9.8 0.2 5.82
CV21  < 1.5 0.8 2.0 194.6 0.5 3.6 9.9 3574.9 3936.7 7.9 0.1 6.04
CV23 1.9 1.3 11.9 98.5 6.2 14.1 136.3 9503.4 9550.3 38.1 3.0 7.39
CV24 44.2 1.5 7.0 79.2 5.8 12.1 122.4 9728.8 13,370.1 585.3 5.7 6.74
CV25  < 1.5 0.4 1.5 84.8 0 3.7 6.3 14,787.2 7836.1 4.4 0.1 6.63
CV26 140.3 0.4 1.6 34.4 2.0 2.6 123.4 1193.7 10,730.9 44,540.5 46.8 2.34
CV27 32.3 3.6 11.6 177.5 12.5 17.9 129.0 13,208.0 25,540.5 82.8 7.3 6.39
CV28  < 1.5 3.7 16 385.5 10.1 24.6 36.0 22,281.1 17,596.5 29.1 1.3 5.34
CV29  < 1.5 3.9 18.4 394.6 10.7 25.6 36.2 22,665.1 18,556.6 14.5 0.2 6.82
CV30  < 1.5 4.1 13.8 258.4 11.8 15.9 39.8 11,984.7 19,370.5 21.5 0.1 6.16
CV31 9.0 2.1 14.2 106.4 10.5 15.7 30.2 6909.5 23,545.1 31.0 0.2 6.21
CV32 30.8 3.4 15.7 291.3 8.9 24.6 88.6 24,220.0 19,152.6 107.7 2.3 6.57
CV33 265.2 3.9 9.3 422.5 8.6 11.6 108.2 11,998.7 30,136.3 88.8 1.6 4.26
CV34 748.2 0.4 8.3 77.6 3.9 10.8 161.8 6854.4 44,363.4 23,162.4 381.4 2.13
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The dendrogram of samples (the left dendrogram) is divided 
into three groups. The central group corresponds to sam-
ples Cv6, Cv8, Cv10, Cv13, C14, Cv16, Cv17, Cv18, Cv21, 
Cv23, Cv25, Cv28, Cv29, CV7 and Cv32; the left group 
corresponds to samples Cv1, Cv2, Cv15, and Cv26; and the 
right group corresponds to samples Cv3, Cv4, Cv5, Cv9, 
Cv11, Cv12, Cv19, Cv20, Cv24, Cv27, Cv30, Cv31, Cv33, 
and Cv34. The map presents values in the dataset rearranged 
according to the dendrograms. Focusing on the rectangle/
square patterns (note that the level of significance increases 
from red to blue through white) in the map, in particular 
those for the bottom group of samples Cv1, Cv2, Cv15, and 
Cv26 together with samples Cv34 and Cv3 of the upper 
group, it is possible to discern a lower-significance cluster 

Table 2   Descriptive statistics of 
the main selected contaminants: 
As, Zn, Pb, and Hg (pollutants) 
as well as Al and Fe (the main 
natural-source elements or non-
pollutants)

*Non-pollutant element
**Pollutant element

Descriptive statistic Al (mg/L)* Fe (mg/L)* Pb (mg/L)** Zn (mg/L)** Hg (mg/L)** As (mg/L)**

Mean 13,407.283 20,465.320 4398.473 61.898 0.024 69.377
Median 11,386.020 20,718.660 36.558 37.255 0.001 1.815
Standard deviation 9754.315 13,372.587 11,032.719 51.415 0.072 160.541
Kurtosis 1.996 1.831 6.473 −0.970 19.616 10.037
Asymmetry 1.185 1.048 2.654 0.702 4.203 3.075
Min 1228.151 3441.193 2.235 5.254 0.000 1.500
Max 45,202.780 62,891.626 45,480.308 163.293 0.381 739.024

Fig. 2   Box-plot diagrams of the CPI’s elements

Fig. 3   Heat map and simultaneous sample/geochemical print dendrograms
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for Al and a higher-significance cluster for Pb relative to the 
other samples. In future work, the relationship between the 
samples’ geochemical print and the associated geology will 
be explored.

The compositional pollution indicator

The compositional balance of the CPI was obtained 
according to expert criteria. These criteria account for a 
selection of factors, some of which are considered pollut-
ants while others are not. In the case of the Caveira mine, 
the identification of the main pollutants was addressed in 
previous studies (e.g., Ferreira da Silva et al. 2015), where 
typical pollutants such as As, Zn, Pb, and Hg were iden-
tified as being related to the activities of the old Iberian 
Pyrite Belt mines. The main natural-source elements (or 

non-pollutants) were two major elements (i.e., Al and Fe). 
Spatial modeling of the CPI was performed to identify 
hazardous clusters. A two-step geostatistical approach was 
used. As no clear evidence of anisotropy was found, the 
experimental isotropic variogram was computed, and the 
corresponding fitted model is shown in Fig. 4. The cross-
validation correlation index for the observed and estimated 
CPI values is 0.70 and is therefore considered satisfactory 
for the selected models. Furthermore, a hundred simula-
tions were performed using SGS as a conditional stochas-
tic simulation of the CPI value distribution, and a hundred 
equiprobable scenarios were computed.

Probability maps corresponding to different thresholds 
allowed the visualization of spatial variability while setting 
aside the discussion of local accuracy, and they allowed the 
identification of hotspot clusters of pollution in the sub-
ject area. Realization numbers 1, 15, 32, 52, 67, and 99 are 
shown in Fig. 5.

The problem is that all representations (scenarios) have 
the same reliability, which means that a single achievement 
cannot be seen as a better representation of reality. There-
fore, the mean spatial image (MI)—the average map—was 
computed and used as the CPI spatial distribution (Fig. 6a). 
The presentation of the probability of exceeding the third 
quartile (Q3) and the probability of not exceeding the first 
quartile (Q1) allows broad discussion of the CPI spatial dis-
tribution and the identification of hazard clustering (Fig. 6b, 

Fig. 4   Experimental spherical omnidirectional variogram and the fit 
to it

Fig. 5   Six different scenarios obtained by sequential Gaussian simulation (SGS)
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c). To create distinct classes by reducing the within-class 
variance and maximizing the between-class variance, the 
Jenks natural break classification (Jenks 1967) was used, 
which allowed the determination of the best arrangement of 
values. The software Space-Stat v.4.0.18 (BioMedware) was 
used for the computation (Boente et al. 2022; Albuquerque 
et al. 2017).

The compositional pollution indicator (CPI) provides a 
fair representation of hotspots, especially along Grândola 
Stream and its tributaries, thereby confirming the high 
pollution detected around the old mine tailings and 
associated waste rock.

Conclusions

Geochemical data are compositional data, as the 
concentrations of the elements in any environmental matrix 
are commonly expressed as parts of the whole and vary 
together. Once this feature is accepted, compositional data 
procedures can be applied to obtain indicators that address 
pollution in, for example, stream sediment. The method 
was tested with up to 11 chemical elements in 33 sediment 
samples from the old Caveira mine in Portugal.

A high risk of contamination is observed along the 
Grândola River and in the vicinity of the mine tailings. It 
is important to consider agricultural and organic stocks as 
the main economic activities when establishing two lines of 
intervention: (1) the installation of a surveillance network 
for continuous control in all areas and (2) the definition of 
mitigation actions for the northern area, where high levels 
of contamination are observed.
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