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Abstract The land use and land cover (LULC) classifi-

cation has great potential to contribute to the monitoring of

land degradation and climatic disasters. The purpose of this

study was to assess the performance of parametric and non-

parametric classification methods using remotely sensed

Landsat satellite data of arid and semiarid areas, based on

the computed producer’s accuracy, user’s accuracy, overall

accuracy, and Cohen’s kappa coefficient. Three LULC

classes were identified, and supervised classifications were

applied to Landsat 8 imagery. The results show that the

support vector machines (SVM) classification method

produced more accurate results, using two different kernel

functions, compared with the maximum likelihood classi-

fication (MLC) and the minimum distance classification

(MDC). The basis radial function affords the highest

overall classification accuracy of 91.20% and a mean kappa

coefficient of 0.87. This classification method is very well

suited to accurately map LULC in arid and semiarid

regions where the main vegetation type is oasis or steppes.

Keywords Land use � Land cover � Classification � Landsat
imagery � Arid areas

Introduction

Optical remote sensing data are an attractive source to

generate land cover thematic maps, providing valuable

information to determine extent of land cover classes as

well as for performing temporal land cover change and risk

analysis at different scales (Kavzoglu and Colkesen 2009).

Land use and land cover (LULC) mapping is also relevant

for the monitoring of desertification and land degradation.

It is considered as key environmental parameter in arid

areas such as the Mediterranean basin (Castillejo-González

et al. 2009). Machine learning algorithms are used in

remote sensing to generate and explore the LULC classi-

fication from multi-source remote sensing data. They are

currently widely used in remote sensing classification

(Wang et al. 2006).

Traditional approaches for automated land cover map-

ping using remotely sensed data have employed pattern

recognition techniques including supervised and unsuper-

vised approaches (Richards 1992). Both parametric and

non-parametric classification techniques have been devel-

oped and applied for different remote sensing applications.

A parametric classifier is based on the statistical probability

distribution of each class (Kumar and Sahoo 2012), the

most widely used parametric classifier is the maximum

likelihood classification (MLC) (Guermazi et al. 2016).

Non-parametric classifiers are used to estimate the proba-

bility density function when it is unknown (Kumar and

Sahoo 2012) such as support vector machines (SVM) and

artificial neural networks (ANN). Statistical classifiers

depend on some predefined data model and the perfor-

mance of these classifiers depends on how well the data

match the predefined model (Pal and Mather 2004). Adam

et al. (2014) confirmed the performance of machine-

learning random forest (RF) and SVM classifiers to map
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heterogeneous land in South Africa using RapidEye high

resolution imagery. The same classifiers were applied to

generate a global land cover using medium spatial resolu-

tion data of Landsat TM and ETM? sensors (Gong et al.

2013). Senf et al. (2015) combined multi-seasonal images

of MODerate-resolution Imaging Spectroradiometer

(MODIS) and Landsat to produce a land cover map in

Southern Portugal using the Spatial and Temporal Adap-

tive Reflectance Fusion Model (STARFM).

Paneque-Gálvez et al. (2013) demonstrated the high

performance of SVM by classifying heterogeneous land-

scapes using Landsat TM images. A previous study by Pal

and Mather (2005) showed that the SVM attains a higher

classification accuracy than either the MLC or the ANN

classifier applied for Landsat ETM? and hyperspectral

imagery, and that the SVM can be used with small training

data sets and high-dimensional data. Previous work shows

that SVM are not sensitive to training sample size. SVM

have been improved to successfully work with limited

quantity and quality of training samples (Mantero et al.

2005; Mountrakis et al. 2011).

The classification accuracy assessment is an essential

application of the thematic mapping. Previously, accuracy

assessment was based on a visual interpretation of the

derived map (Foody 2002). Currently, researchers use the

confusion or error matrix by comparing class in the pre-

dicted thematic map and ground truth data. Several clas-

sification accuracies may be derived from the information

content of the confusion matrix. The most popular are user

and producer accuracy and overall accuracy (Yuan et al.

2005; Myint et al. 2011; Jia et al. 2014). Nevertheless,

Smits et al. (1999) define Cohen’s kappa coefficient as a

standard measure of classification accuracy.

This research has focused on the application and

assessment of different classification algorithms of LULC

in Southern Tunisia. It was conducted to test the potential

of machine learning algorithms to classify LULC in arid

regions.

Data and methodology

Study area and data sets

The area investigated was located in southeastern Tunisia

between Jeffara plain and the Gulf of Gabes. The study

area was chosen because of the important agriculture

interests in this region and also the environmental problems

related to soil such as salinization and polluted soils due to

the chemical industries in this region. The geographic

locations correspond to 33.92�N and 33.78�N and 10.01�E
and 10.10�E (Fig. 1). The study area is characterized by an

arid to semiarid climate. The rainfall is irregular and ranges

between 150 and 240 mm per year with 6 months dry

season (April–September), when the rain does not exceed

4 mm per month.

The Landsat 8 imagery used in this study was acquired

from https://earthexplorer.usgs.gov on 24 May 2013 with

1.75% cloud cover. The Landsat 8 satellite includes two

sensors: the Operational Land Imager (OLI), which pro-

vides nine spectral bands, and the Thermal Infrared Sensor

(TIRS), which consists of two thermal bands. The product

Level 1T was used, which refers to orthorectified data. OLI

data is converted into radiance and subsequently into

atmospherically corrected surface reflectance using the fast

line-of-sight atmospheric analysis of spectral hypercubes

(FLAASH), a MODTRAN4-based algorithm (Felde et al.

2003).

Classification algorithms

A methodological framework in the context of remote

sensing and geographic information system (GIS) tech-

niques was considered to classify Landsat 8 imagery into

three different LULC classes identified in this study area,

namely bare soil, vegetation, and urban area.

Training areas were selected on the basis of knowledge

and information available from the region that were

acquired during fieldwork and then combined with avail-

able information from Landsat.

For better discrimination in selecting training samples

from image classes, we used the results of unsupervised

algorithms to help define the training features. The k-means

clustering method was selected to obtain probable clusters.

In addition, visual interpretations from RGB composition

and reference maps were considered for a better selection

of the training sets.

The access to the sites in the field was in some places

limited and therefore we could not obtain specific spatial

structure of the sampling network. The 68 sites were visited

in the field and recognized in the Landsat 8 image.

The spectral plots and ground observations were used to

define the regions of interest (ROIs) (105 pixels for each

class).

A brief description of maximum likelihood classification,

SVM, and minimum distance classification are given below.

Support vector machines

In universal learning machines, SVM are supervised

learning models, used for pattern recognition and originally

designed to solve binary classification problems (Wijaya

et al. 2008).

The SVM technique uses hyperplanes to separate data

points into several classes. In doing so, support vectors

ensure that the margin width will be maximized (Fig. 2). A
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single supplementary data point can notably effect the

location of the hyperplane. In its original conception the

method is presented with a set of labeled data and the SVM

training algorithm objective is to find a hyperplane that

separates the data set into a discrete predefined number of

classes in a fashion consistent with the training examples

(Vapnik 1982). Figure 2 illustrates a simple scenario of a

two-class separable classification problem in a two-di-

mensional input space.

SVM aim to determine the optimal separating hyper-

plane (OSH) among all the possible hyperplanes (Srivas-

tava et al. 2012) and this is done through an optimization

problem using Lagrange multipliers and quadratic pro-

gramming methods (Pal and Mather 2004).

The SVM classification requires a proper selection of

kernel function to establish accurate hyperplanes that

minimize misclassification error (Wijaya et al. 2008). The

kernel function allows the training data to project the

training data in a larger space where it may be increasingly

possible to discover a superior separating margin for the

OSH.

An important aspect of the SVM technique is the type of

kernel that is used. Two SVM kernels were selected for the

classification cases in this study: the radial basis function

and a polynomial function, which are given in Eqs. (1) and

(2), respectively:

Kðxi; xjÞ ¼ e�cðxi;xjÞ2 ; c[ 0; ð1Þ

Kðxi; xjÞ ¼ ðcxci xj þ rÞd; c[ 0; ð2Þ

where xi and xj, represent feature vectors in some input

space, c is the width of the kernel function, d is the

Fig. 1 Location of the study area: Landsat 8 false colors (left); Google earth imagery of the Gulf of Gabes (right)

Fig. 2 Linear support vector machine example presenting a simple

scenario of a two-class separable case; optimal hyperplane separates

the data set into two classes by a defined margin width. Adapted from

Burges (1998)

Euro-Mediterr J Environ Integr (2017) 2:24 Page 3 of 7 24

123



polynomial degree term, and r is the bias term in the kernel

function (Srivastava et al. 2012).

Linear spectral unmixing

Every image pixel is always a mixture of different com-

ponents (Tompkins et al. 1986). The idea behind the linear

spectral unmixing (LSU) method is to decompose the pixel

spectra into a collection of constituent spectra, or spectral

signatures, and their corresponding fractional abundances

that quantify the proportion of end-members present in the

pixel. The technique is useful for extracting information

from data with low spatial resolution.

Minimum distance classification

Supervised minimum distance classification (MDC) was

also applied in this study. It is a non-parametric classifier,

which uses the mean vectors of each end-member and

calculates the Euclidean distance from each unknown pixel

to the mean vector for each class (Richards and Jia 1999).

All pixels are classified to the nearest class unless a stan-

dard deviation or distance threshold is specified, in which

case some pixels may be unclassified if they do not meet

the selected criteria. The MD algorithm is fast and one of

the more commonly used algorithms because of its math-

ematic simplicity, only requiring the mean vectors for each

band from the training data. This method does not consider

class variability; thus, large differences in the variance of

the classes often lead to misclassification (Lu et al. 2004).

Maximum likelihood classification

Maximum likelihood classification (MLC) is the most

widely adopted parametric classification algorithm (Jensen

2005). The MLC algorithm is based on probability distri-

butions and decision rules, which assume the data values to

be a set of multivariate normal distributions (Manandhar

et al. 2009). The algorithm classification assigns a partic-

ular class to each pixel on the basis of the shortest modified

distance of the pixel from the class mean. It also considers

shape, size, and orientation of the training samples.

MDC, MLC, and classification by SVM was applied to

the Landsat 8 imagery. In this study the standard deviation

was varied to find out the optimal MDC for the selected

Landsat 8 imagery. In one case LSU was applied to the

data before MDC. Table 1 shows the different LULC

classifications applied and the input parameters tested for

each method.

Accuracy assessment

Classification accuracies were assessed using confusion

matrices. Sample data of salt-affected soils were initially

selected from the satellite image and confirmed with the

information collected during fieldwork, which was then

used to run the classification.

A confusion matrix was used to calculate the producer’s

accuracy, user’s accuracy, and overall accuracy. Also the

kappa coefficient was assessed.

The producer’s accuracy is calculated by dividing the

amount of pixels in a particular class classified correctly by

the total of ground truth pixels of this class. The user’s

accuracy indicates the percentage of probability that the

class in which a pixel is classified to on an image actually

represents that class on the ground. It is the ratio between

the number of correctly classified pixels of a class and the

number of pixels the classifier labeled into this class. The

overall accuracy is the total percentage of pixels correctly

classified.

The measurements of user’s and producer’s accuracies

are related to commission and omission errors (Gupta and

Srivastava 2010).

Cohen’s kappa coefficient (K), which considers all of the

elements of the error matrix, is computed as given by

Eq. (3) (Bishop et al. 1977):

K ¼ N
Pr

i¼1 Xii �
Pr

i¼1ðxiþÞðxþiÞ
N2 �

Pr
i¼1ðxiþÞðxþiÞ

; ð3Þ

where N is the number of observations, Xii is the number of

observations in row i and column i (the major diagonal in

the confusion matrix), x?i and xi? are the marginal totals of

row r and column i, respectively, and r is the number of

rows in the matrix.

Results and discussion

To compare the SVM, MLC, and MD classifications,

producer’s accuracy, user’s accuracy, overall accuracy, and

kappa coefficient were computed (Fig. 3). The results show

better performances of SVM (with two different kernel

functions; radial basis and polynomial functions) to clas-

sify the soil than the other classifiers. The use of the radial

basis as the kernel function in the SVM classifier affords

the most accurate results with 91% overall accuracy. The

MD classifier shows the lowest accuracy with 78% overall

accuracy and kappa coefficient of 0.68. The literature does

not provide an obvious explanation of this behavior and

mainly links the observations to the components of the

algorithms (Bouaziz et al. 2011).
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Overall accuracy is highest for SVM1 with 91.20%,

closely followed by SVM2 with 90.01%. The lowest value

is for MDC2 with 78.75%. MDC6 and MLC have values in

the middle range with circa 86%. MDC1 is represented

with 88.19% and therefore more like the results of the

SVM classifications.

The kappa coefficient has its lowest value for MDC2

with 0.68. SVM1 and SVM2 achieved the highest results

Fig. 3 Producer’s accuracy, user’s accuracy, overall accuracy, and kappa statistics of LULC classifications

Table 1 Algorithm and input

parameters for the different

LULC classifications

Algorithm Parameters Input parameters

SVM1 SVM Kernel function Radial basis function

SVM2 SVM Kernel function Polynomial function

MDC1 LSU/MDC – –

MDC2 MDC Max Std for each class of ROIs Bare soil 30

Urban 2.3

Vegetation 10

MDC3 MDC Max Std for each class of ROIs Bare soil 40

Urban 4.5

Vegetation 15

MLC MLC Probability thresholds Soil 0.01

Urban 0.99

Vegetation 0.01

Max Std maximum standard deviation
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with 0.87 and 0.85. The remaining values fluctuate around

0.80 with a maximal variance of 0.20.

All classification results of the producer’s accuracy

show lowest results for the classification of pixels in the

bare soil class. MDC2 has the lowest value with 49.83%.

SVM1 and SVM2 have the best results with 80.61% each.

The vegetation class has higher values with a minimum of

86.38% for MDC1 and a maximum of 94.62% for SVM1.

The urban class has best results with a minimum of 94.74%

for MDC1 and a maximum of 100% for MDC2.

The highest values of user’s accuracy were obtained for

the urban class. MDC2, MDC3, and MLC show 100%,

followed by 99.16% for SVM2, 98.75% for SVM1, and

93.89% for MDC1. The results for the vegetation class

show only values over 99%. The bare soil class has the

lowest values for user’s accuracy with a maximum of

91.13% for MLC and a minimum of 60.05% for MDC2.

The SVM algorithm using the radial basis as kernel

function (SVM1) seems to produce the most stable results.

Overall accuracy and kappa coefficient are the highest from

all classification results. Also SVM1 not only produced the

highest values for all classes, it has a minimum of 79.88%.

Other classifications afford better results in some classes,

but the values fluctuating more. For example, MLC has

very high values for all classes except for producer’s

accuracy for the urban class. Also overall accuracy and

kappa coefficient are not as high as in the SVM results.

A chief advantage of the SVM technique is the reduced

necessity, compared to others used techniques, for obtaining

a complete training data set. Even with sparse sampling the

SVM technique permits informative classification. This was

a benefit to the present study as training samples were not

easily obtained. This is in part the reason why the SVM

technique produced the best LULC classification. As high-

lighted by Mantero et al. (2005), SVM are particularly

appealing in the remote sensing field owing to their ability to

successfully handle small training data sets, often producing

higher classification accuracy than the traditional methods.

Conclusion

The conducted research shows the high potential of

machine learning algorithms applied on Landsat data to

classify and discern patterns of different land cover.

Computed accuracy from the classification results gave

different but encouraging accuracy results varying between

78.75 and 91.20%. Therefore, SVM was more efficient

than maximum likelihood (ML) and minimum distance

(MD) classifications in this study. The SVM classifier with

the radial basis function showed the best performance in

extracting patterns and features of LULC classes over an

arid region. Thus, we have demonstrated that the SVM

classifiers based on carefully selected input variables are

suitable for classifying land.
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