Skip to main content
Log in

Synthesis of ZnO nanoparticles on carbon graphite and its application as a highly efficient electrochemical nano-sensor for the detection of amoxicillin:analytical application: milk, human urine, and tap water

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Amoxicillin is an antimicrobial of the penicillin class discovered in 1928. The objective of this paper is to construct a simple platform for electrocatalytic detection of amoxicillin using a ZnO@CPE nano-sensor constructed using simple and inexpensive processes using hydrothermal methods. Our results show that the constructed ZnO@CPE electrode exhibits excellent electrocatalytic activity compared to the unmodified electrode, with consistent, reproducible, and stable behavior. The electrochemical behavior of the amoxicillin oxidation reaction is diffusion controlled and fully reversible. The effect of the pH of the phosphate buffer solution on the antibacterial behavior of amoxicillin shows that the number of protons and electrons were equal. The morphology and chemical composition of the constructed nanoparticles were characterized by scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope, X-ray diffractometer, and infrared spectroscopy. Suggest the formation of zinc oxide nanocrystals on the carbon sheets with an order size of 22.957 nm. The diffusion coefficient and catalytic rate constant were 1.135 × 10–4 cm2/s and 8.314 × 103 mol.l−1/s, respectively. The proposed nano-sensor demonstrated a wide linearity range from 10–4 M to 10–6 M with LOD = 1.21 × 10–7 M and LOQ = 3.32 × 10–7 M according to the square-wave voltammetry method. The ZnO@CPE nano-sensor was examined for the detection of amoxicillin in real samples.

Graphic abstract

Schematic concept of amoxicillin detection on the electrocatalytic surface of the nano-sensor fabricated with ZnO@CPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. de Marco BA, Natori JSH, Fanelli S et al (2017) Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach. Crit Rev Anal Chem 47:267–277. https://doi.org/10.1080/10408347.2017.1281097

    Article  Google Scholar 

  2. Li Z, Su K, Cheng B, Deng Y (2010) Organically modified MCM-type material preparation and its usage in controlled amoxicillin delivery. J Colloid Interface Sci 342:607–613. https://doi.org/10.1016/j.jcis.2009.10.073

    Article  Google Scholar 

  3. Squella JA, Benavente G, Gallo B et al (1988) Polarogaphic and microcalorimetric study of the interaction between glutathione and amoxycillin. Bioelectrochem Bioenerg 20:125–131. https://doi.org/10.1016/S0302-4598(98)80010-X

    Article  Google Scholar 

  4. Mitchell JM, Griffiths MW, McEWEN SA et al (1998) Antimicrobial Drug Residues in Milk and Meat: Causes, Concerns, Prevalence, Regulations, Tests, and Test Performance. J Food Prot 61:742–756. https://doi.org/10.4315/0362-028X-61.6.742

    Article  Google Scholar 

  5. Kümmerer K (2009) Antibiotics in the aquatic environment – A review – Part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  Google Scholar 

  6. Martindale WH, Reynolds JEF, Prasad AB (1982) The extra pharmacopoeia, 28th edn. Pharmaceutical Press, London

    Google Scholar 

  7. Singh V, Pandey B, Suthar S (2018) Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere 201:492–502. https://doi.org/10.1016/j.chemosphere.2018.03.010

    Article  Google Scholar 

  8. Wibawa JID, Fowkes D, Shaw PN, Barrett DA (2002) Measurement of amoxicillin in plasma and gastric samples using high-performance liquid chromatography with fluorimetric detection. J Chromatogr B 774:141–148. https://doi.org/10.1016/S1570-0232(02)00179-4

    Article  Google Scholar 

  9. Hoizey G, Lamiable D, Frances C et al (2002) Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. J Pharm Biomed Anal 30:661–666. https://doi.org/10.1016/S0731-7085(02)00289-3

    Article  Google Scholar 

  10. Yoon K, Lee S, Kim W et al (2004) Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC–ESI mass spectrometry. J Chromatogr B 813:121–127. https://doi.org/10.1016/j.jchromb.2004.09.018

    Article  Google Scholar 

  11. Foroutan SM, Zarghi A, Shafaati A et al (2007) Simultaneous determination of amoxicillin and clavulanic acid in human plasma by isocratic reversed-phase HPLC using UV detection. J Pharm Biomed Anal 45:531–534. https://doi.org/10.1016/j.jpba.2007.06.019

    Article  Google Scholar 

  12. Garciareiriz A, Damiani P, Olivieri A (2007) Different strategies for the direct determination of amoxicillin in human urine by second-order multivariate analysis of kinetic–spectrophotometric data. Talanta 71:806–815. https://doi.org/10.1016/j.talanta.2006.05.050

    Article  Google Scholar 

  13. Salem H (2004) Selective spectrophotometric determination of phenolic β-lactam antibiotics in pure forms and in their pharmaceutical formulations. Anal Chim Acta 515:333–341. https://doi.org/10.1016/j.aca.2004.03.056

    Article  Google Scholar 

  14. Salem H, Saleh GA (2002) Selective spectrophotometric determination of phenolic β-lactam antibiotics. J Pharm Biomed Anal 28:1205–1213. https://doi.org/10.1016/S0731-7085(02)00027-4

    Article  Google Scholar 

  15. Ball A (1980) CLAVULANIC ACID AND AMOXYCILLIN: A CLINICAL, BACTERIOLOGICAL, AND PHARMACOLOGICAL STUDY. The Lancet 315:620–623. https://doi.org/10.1016/S0140-6736(80)91118-6

    Article  Google Scholar 

  16. De Baere S, Cherlet M, Baert K, De Backer P (2002) Quantitative Analysis of Amoxycillin and Its Major Metabolites in Animal Tissues by Liquid Chromatography Combined with Electrospray Ionization Tandem Mass Spectrometry. Anal Chem 74:1393–1401. https://doi.org/10.1021/ac010918o

    Article  Google Scholar 

  17. Barghash S, Elmansi H, Abd El-Razeq S, Belal F (2021) Novel spectrofluorimetric technique for determination of amoxicillin and ethopabate in chicken tissues, liver, kidney, eggs, and feed premix. Luminescence 36:875–884. https://doi.org/10.1002/bio.3999

    Article  Google Scholar 

  18. Chen C, Lv X, Lei W et al (2019) Amoxicillin on polyglutamic acid composite three-dimensional graphene modified electrode: Reaction mechanism of amoxicillin insights by computational simulations. Anal Chim Acta 1073:22–29. https://doi.org/10.1016/j.aca.2019.04.052

    Article  Google Scholar 

  19. Pollap A, Knihnicki P, Kuśtrowski P et al (2018) Sensitive Voltammetric Amoxicillin Sensor Based on TiO 2 Sol Modified by CMK-3-type Mesoporous Carbon and Gold Ganoparticles. Electroanalysis 30:2386–2396. https://doi.org/10.1002/elan.201800203

    Article  Google Scholar 

  20. Prado TM, Cincotto FH, Moraes FC, Machado SAS (2017) Electrochemical Sensor-Based Ruthenium Nanoparticles on Reduced Graphene Oxide for the Simultaneous Determination of Ethinylestradiol and Amoxicillin. Electroanalysis 29:1278–1285. https://doi.org/10.1002/elan.201700014

    Article  Google Scholar 

  21. Karimi-Maleh H, Tahernejad-Javazmi F, Gupta VK et al (2014) A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J Mol Liq 196:258–263. https://doi.org/10.1016/j.molliq.2014.03.049

    Article  Google Scholar 

  22. Smith DM, Eischens RP (1967) Infrared study of oxygen adsorption on impure zinc oxide. J Phys Chem Solids 28:2135–2142. https://doi.org/10.1016/0022-3697(67)90237-5

    Article  Google Scholar 

  23. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2d edn. Wiley, New York

    Google Scholar 

  24. Zhang X, Pan J, Zhu C et al (2015) The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites. J Mater Sci: Mater Electron 26:2861–2866. https://doi.org/10.1007/s10854-015-2769-x

    Article  Google Scholar 

  25. Zhao C, Sun X, Wang X, Yang Y, Zhang C, Wang Y, Ma Y, Cui Y, Wang L, Dong Y, Wang Y (2020) High temperature microstructure evolution and thermal shock resistance of plasma sprayed Al2O3 -ZrO2 -CeO2 coatings. J Vacuum Sci Technol A 38:023206. https://doi.org/10.1116/1.5131578

    Article  Google Scholar 

  26. Zoubir J, Radaa C, Bougdour N, Idlahcen A, Bakas I, Assabbane A (2021) Electro-detection of the antibacterial metronidazole using zinc oxide nanoparticles formed on graphitic carbon sheets. Analytical application: Human serum and urine. Mater Sci Energy Technol 4:177–188. https://doi.org/10.1016/j.mset.2021.06.001

    Article  Google Scholar 

  27. Donaruma G (1984) Organic electrochemistry—an introduction and a guide, 2nd ed., edited by Manuel M. Baizer, and Henning Lund, Marcel Dekker, New York, 1983, 1166 pp. Price: $155.50. J Polym Sci B Polym Lett Ed 22:459–459. https://doi.org/10.1002/pol.1984.130220809

  28. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  Google Scholar 

  29. Harrison JA, Khan ZA (1970) The oxidation of hydrazine on platinum in acid solution. J Electroanal Chem Interfacial Electrochem 28:131–138. https://doi.org/10.1016/S0022-0728(70)80288-1

    Article  Google Scholar 

  30. Patrícia B. Deroco, Romeu C. Rocha-Filho, Orlando Fatibello-Filho (2018) A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Journal of Talanta 179:115–123. https://doi.org/10.1016/j.talanta.2017.10.048.

  31. Luo C, Lü D, Zheng L et al (2021) Hepatic differentiation of human embryonic stem cells by coupling substrate stiffness and microtopography. Biomater Sci 9:3776–3790. https://doi.org/10.1039/D1BM00174D

    Article  Google Scholar 

  32. Rezaei B, Damiri S (2009) Electrochemistry and Adsorptive Stripping Voltammetric Determination of Amoxicillin on a Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode. Electroanalysis 21:1577–1586. https://doi.org/10.1002/elan.200804571

    Article  Google Scholar 

  33. Nosuhi M, Nezamzadeh-Ejhieh A (2017) Comprehensive study on the electrocatalytic effect of copper – doped nano-clinoptilolite towards amoxicillin at the modified carbon paste electrode – solution interface. J Colloid Interface Sci 497:66–72. https://doi.org/10.1016/j.jcis.2017.02.055

    Article  Google Scholar 

  34. Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB (2017) Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Microchim Acta 184:2131–2140. https://doi.org/10.1007/s00604-017-2161-z

    Article  Google Scholar 

  35. Ranjani B, Kalaiyarasi J, Pavithra L et al (2018) Amperometric determination of nitrite using natural fibers as template for titanium dioxide nanotubes with immobilized hemin as electron transfer mediator. Microchim Acta 185:194. https://doi.org/10.1007/s00604-018-2715-8

    Article  Google Scholar 

  36. Hatamie A, Echresh A, Zargar B et al (2015) Fabrication and characterization of highly-ordered Zinc Oxide nanorods on gold/glass electrode, and its application as a voltammetric sensor. Electrochim Acta 174:1261–1267. https://doi.org/10.1016/j.electacta.2015.06.083

    Article  Google Scholar 

  37. Li S, Ma X, Pang C et al (2020) Novel molecularly imprinted amoxicillin sensor based on a dual recognition and dual detection strategy. Anal Chim Acta 1127:69–78. https://doi.org/10.1016/j.aca.2020.06.034

    Article  Google Scholar 

  38. Kumar N, Rosy GRN (2017) Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin. Sens Actuators, B Chem 243:658–668. https://doi.org/10.1016/j.snb.2016.12.025

    Article  Google Scholar 

  39. Wong A, Santos AM, Cincotto FH et al (2020) A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 206:120252. https://doi.org/10.1016/j.talanta.2019.120252

    Article  Google Scholar 

  40. Švorc Ľ, Sochr J, Rievaj M et al (2012) Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochemistry 88:36–41. https://doi.org/10.1016/j.bioelechem.2012.04.004

    Article  Google Scholar 

  41. Unutkan T, Bakırdere S, Keyf S (2018) Development of an Analytical Method for the Determination of Amoxicillin in Commercial Drugs and Wastewater Samples, and Assessing its Stability in Simulated Gastric Digestion. J Chromatogr Sci 56:36–40. https://doi.org/10.1093/chromsci/bmx078

    Article  Google Scholar 

  42. Ensafi AA, Allafchian AR, Rezaei B (2012) Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination. J Nanopart Res 14:1244. https://doi.org/10.1007/s11051-012-1244-3

    Article  Google Scholar 

  43. Abdel-Galeil MM, El-Desoky HS, Ghoneim EM, Matsuda A (2017) Application of Montmorillonite Clay and Mesoporous Carbon as Modifiers to Carbon Paste Electrode for Determination of Amoxicillin Drug. J Electrochem Soc 164:H1003–H1012. https://doi.org/10.1149/2.0361714jes

    Article  Google Scholar 

  44. Ağın F (2016) Electrochemical Determination of Amoxicillin on a Poly(Acridine Orange) Modified Glassy Carbon Electrode. Anal Lett 49:1366–1378. https://doi.org/10.1080/00032719.2015.1101602

    Article  Google Scholar 

  45. Farshadinia A, Kolahdoozan M (2019) A new porous copolymer electrocatalyst: the optimal synthesis, characterization, and application for the measurement of amoxicillin. J Appl Electrochem 49:291–304. https://doi.org/10.1007/s10800-018-01282-y

    Article  Google Scholar 

  46. Essousi H, Barhoumi H, Karastogianni S, Girousi ST (2020) An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over-oxidized Polypyrrole for Amoxicillin Determination. Electroanalysis 32:1546–1558. https://doi.org/10.1002/elan.201900751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zoubir.

Ethics declarations

Conflict of Interest

All authors have participated in conception and design, or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content; and approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoubir, J., Bakas, I. & Assabbane, A. Synthesis of ZnO nanoparticles on carbon graphite and its application as a highly efficient electrochemical nano-sensor for the detection of amoxicillin:analytical application: milk, human urine, and tap water. Nanotechnol. Environ. Eng. 6, 54 (2021). https://doi.org/10.1007/s41204-021-00146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00146-9

Keywords

Navigation