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Abstract
A sensitive method for diagnosing coronavirus disease 2019 (COVID-19) is highly required to fight the current and future 
global health threats due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). However, most of the cur-
rent methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanopar-
ticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time 
and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. 
Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. 
They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and 
shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at 
home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated 
samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for 
designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned 
from handling this outbreak to prepare ourself for future  pandemic.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV 2) is associated with a pandemic of the acute respira-
tory disease called coronavirus disease 2019 (COVID-19) 
[1–7]. To date (March 2021), there are more than 118 mil-
lion reported infections and over 2.6 million deaths. Most 
countries faced mandatory quarantines and lockdowns fight-
ing this threat, leading to an economic crisis [8]. An infected 
person suffers from fever or chilis, dry cough, sore throat, 
diarrhea, headache, nausea or vomiting, fatigue, and breath-
ing difficulty. All these symptoms or some of them can be 
observed. The infection of SARS-COV was also related to 
the cardiovascular system (CVS) [9], central nervous system 

(CNS), gastrointestinal tract (GIT) [10], and female repro-
ductive strategies [11]. To date, there is no medicine/drug 
that has been proved to be effective in treating COVID-19. 
The only hope now is in the success of the emergency-
approved vaccines [12, 13]. The early diagnosis of COVID-
19 may help control the spread of the pandemic [14–16].

Nanotechnology describes the technology for using par-
ticles (nanoparticles) with at least one dimension in the 
nanometer range (1 nm =  10−9 m, Fig. 1). Nanoparticles 
exhibit distinct properties such as large surfaces, many active 
sites, and high adsorption capacities compared to bulk mate-
rials. Thus, they have been applied for several applications 
such as analytical chemistry [17–26], proteomics [27], sens-
ing/biosensing [28–35], biotechnology [36–45], nanomedi-
cine [46–53], drug delivery [54–56], gene transfer [57–60], 
wound healing [61], energy-based applications [62–67], and 
environmental applications [68–75]. Nanoparticles improved 
these applications by showing high performance [76–84] 
with a great potential for implementation into a miniatur-
ized device, including wearable electronics [85–87]. Thus, 
they exhibit the great potential to improve the quality of 
life via controlling the viral spread through early detection 
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of infection. Therefore, this review article summarized the 
current findings and future prospective of nanotechnology 
for the diagnosis of COVID-19.

Corona virus: structure and infection

Coronavirus (CoVs) refers to virus strain with club-shaped 
protein spikes on their surface, i.e., crown-like appearance. 
There are four classes of CoVs, such as alpha, beta, gamma, 
and delta. All these classes consist of a single-stranded 
positive-sense ribonucleic acid (RNA) genome. There are 
two types of alpha-coronaviruses (229E and NL63) and two 
types of beta-corona viruses (OC43 and HKU1), which can 
circulate in humans, causing common cold [88]. The human 
infection by beta coronavirus class (β-CoVs) was previously 
reported for the severe acute respiratory syndrome (SARS) 
and the Middle East respiratory syndrome (MERS) [89]. 
The new coronavirus, i.e., SARS-CoV 2, belongs to the beta 
class [90]. The infection with SARS-CoV 2 showed human-
to-human transmission leading to the spread of infection in 
more than 122 countries worldwide [91–94]. The World 
Health Organization (WHO) and the Centers for Disease 
Control and Prevention (CDC) warned the people from the 
spread of the infection via cough and touch [91–93].

SARS-CoV 2 virus is an enveloped and non-segmented 
viruses of a single-stranded RNA genome (4 kilobases) with 
a nucleocapsid (Fig. 2). It contains two main compartments; 
protein and non-protein structures [95]. The nucleotide 

genome of COVID-19 is 80% and 96% identical to the 
SARS-CoV and the BatCoV RaTG13, respectively [96, 97]. 
SARS-CoV 2 contains four proteins: (i) S-protein (Spike 
glycoprotein, PDB: 5XL3), (ii) M-protein (Membrane or 
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Matrix), (iii) E-protein (Envelope), and N- protein (Nucle-
ocapsid phosphoprotein) [98–103]. These proteins play a 
vital role for the infection.

S-protein enables the attachment of the virus to host cells. 
M-protein promotes the entry of the SARS-CoV 2 virus into 
the host cells and maintains SARS-CoV 2 viral particles’ 
membrane integrity. The E-protein is the smallest protein 
and plays a structural role in the assembly of the virus. The 
N-protein binds to the RNA and supports nucleocapsid for-
mation [98–103]. Thus, they can be classified into core pro-
tein, e.g., N-protein, and (ii) envelope protein, e.g., S, M, and 
E proteins. The assembly of these constituents produces a 
particle size of 100 nm (Fig. 2).

SARS-CoV 2 infects the respiratory system and then 
spreads systemically to the heart, liver, and kidney [104]. 
A significant number of patients with SARS-CoV 2 suf-
fers from mild to moderate symptoms. However, 15% of 
patients with SARS-CoV 2 exhibit severe pneumonia and 
approximately 5% progress acute respiratory distress syn-
drome (ARDS), leading to septic shock and multiple organ 
failure [105, 106]. A study showed that patients with severe 
SARS-CoV 2 exhibited substantially elevated serum levels 
of pro-inflammatory cytokines including Interleukin 6 (IL-6) 
and IL-1β, as well as IL-2, IL-8, IL-17, Granulocyte col-
ony-stimulating factor (G-CSF), Granulocyte–macrophage 
colony-stimulating factor (GM-CSF), Interferon gamma-
induced protein 10 (IP-10), monocyte chemoattractant pro-
tein 1 (MCP1), macrophage inflammatory protein (MIP1 α), 
and tumor necrosis factors (TNF), characterized as cytokine 
storm [107]. The infected person’s analysis showed high 
expression of angiotensin-converting enzyme 2 (ACE2) in 
the respiratory tract and other organs [108, 109].

Data analysis (245 surface samples) and air places from 
hospital rooms of COVID-19 patients for SARS-CoV 2 RNA 
were reported [110]. The study revealed that 56.7% of the 
investigated rooms had at least one environmental surface 
contaminated with the virus (Fig. 3). Air sampling (from 
airborne infection isolation rooms (AIIRs) in the intensive 
care unit (ICU) and the general ward) is performed in three 
of the 27 AIIRs in the general ward. It detects SARS-CoV 2 
PCR-positive aerosol particles of sizes > 4 µm and 1–4 µm 
in two rooms [110]. The analysis of wastewater is critical to 
monitor the emergence and spread of infectious COVID-19 
disease at a population level [111]. There are several pro-
tocols for the extraction of the virus or its antigens from 
wastewater. The detection of SARS-CoV 2 in wastewater is 
paramount for monitoring public health [112].

Nanotechnology

Nanotechnology is the technology of nanoparticles with a 
size of 1–200 nm (Fig. 2). Nanoparticles can be classified to:

1. Metallic nanoparticles, e.g., gold nanoparticles (Au 
NPs), silver nanoparticles (Ag NPs);

2. Metal oxide nanoparticles, e.g., iron oxide magnetic 
nanoparticle  (Fe3O4 NPs);

3. Carbon nanomaterials including 0-dimensional (0D, 
e.g., fullerenes  (C60), carbon dots (C-dots)), 1D (carbon 
nanotunes (CNTs), 2D (e.g., graphene (G), graphene 
oxide (GO), and 3D (e.g., graphite);

4. Quantum dots (QDs): CdS QDs, CdTe QDs, carbon 
QDs.

5. Porous materials: metal–organic frameworks (MOFs), 
covalent organic frameworks (COFs)[113], silica;

6. Polymers: natural polymers (e.g., chitosan, cellulose), 
and synthetic (e.g., polythiophene, polypyrrole);

7. Lipid nanoparticles (LNPs): triglycerides, fatty acids, 
steroids, and waxes.

Nanoparticles exhibit several unique properties such 
as large surface area and simple modification with inor-
ganic [114, 115], organic [116], and biomolecules such as 
enzymes and protein [117]. They exhibit properties such 
as catalytic activity [118–123], nanozyme [124–126], and 
antimicrobial [127, 128]. The large surface areas of nano-
particles ensure simple modification of their surface via 
chemical engineering. The particle size of nanomaterials 

Fig. 3  Percentage of contaminated swabs from surface samples in 
hospital rooms. The figure was reprinted from Ref. [110]. This is an 
Open Access article distributed under the terms of the Creative Com-
mons CC BY license
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(1–200 nm) is close to the viral particle size of SARS-
CoV 2 (Fig. 2). Thus, they interact strongly, leading to 
significant changes in the electronic properties of nano-
particles. These interactions offer high selectivity and 
better sensitivity. They can be used for diagnosis, protec-
tion, and prevention [129–132].

Nanoparticles offer distinct properties compared to 
bulk materials. Metallic nanoparticles such as Au NPs, 
Ag NPs provide unique optical and electronic properties 
such as surface plasmonic resonance (SPR) [133–135], 
and localized surface plasmon resonance (LSPR) [136]. 
Thus, they can be used as a probe for conventional SPR, 
nanoplasmonic sensors, surface-enhanced Raman spec-
troscopy (SERS), plasmonic-enhanced fluorescence, and 
colorimetric method. Some metal oxides or chalcogenides 
such as molybdenum oxide  (MoO3−x) [71] and molyb-
denum disulfide  (MoS2)[137] also exhibited plasmonic 
properties. Carbon nanomaterials such as graphene show 
unique electronic, optical, and electrochemical properties 
[138]. They are promising for point-of-care tests (POCT).

Laboratory diagnosis of COVID‑19

The early detection of SARS-COV-2 is necessary to con-
trol the widespread infection [139–160]. Several methods 
can be used for the diagnosis of COVID-19 [161–183]. 
The diagnosis of COVID-19 depends on the analysis of 
the patient’s response due to the infection or the analy-
sis of virus contents, e.g., RNA or their protein (Fig. 4). 
The patient’s temperature (elevated temperature), feeling 
fatigued, and difficulty in breathing indicate infection 
(Fig. 4). However, these symptoms are lack specificity and 
may be observed due to the infection with other pathogens. 
The patient’s pathological changes in organs such as the 
chest can be monitored via computerized tomography (CT) 
scan (Fig. 4). Like other pneumonia types, a CT scan may 
be a reliable test for screening SARS-COV 2 cases [184, 
185]. However, the analysis required specialized equip-
ment and failed to meet a large scale of requirement, and it 
may not provide benefit for point-of-care (POC) diagnosis 
of COVID-19. COVID-19 can be diagnosed via laboratory 
measurements [106] such as (1) hematologic (the increase 
in lymphocyte and white cell counts); (2) biochemical 
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change due to the rise of liver function damage biomarker 
(Lactate dehydrogenase (LDH), α-hydroxybutyric dehy-
drogenase (α-HBDH), creatine phosphokinase (CPK), 
AST/ALT ratio (the concentration ratio between enzymes 
aspirate transaminase (AST) and aka alanine transami-
nase (ALT)); (3) kidney dysfunction (Creatinine levels in 
the blood); (4) increase in the inflammation biomarkers 
(Erythrocyte sedimentation rate (ESR), C-reactive protein 
(CRP), Procalcitonin (PCT)); (5) changes in the blood 
properties such as the increase in the time blood takes 
to clot (Prothrombin time, PT), fibrin degradation frag-
ment (D-dimer) and plasma viscosity (PV). The analysis 
of markers such as pro-inflammatory cytokines [107] and 
ACE2 [90, 186] can also be used. These methods are usu-
ally used for the analysis of patients. They cannot be used 
for the analysis of contaminated samples such as surface 
and air. They are universal and can only be used as an 
indicator for any infection, i.e., lack of specificity. The 
laboratory screening is a qualitative analysis method and 
an indication of an illness related to COVID-19 or other 
diseases.

Several analytical methods can be used for the diagnosis 
of COVID-19. There are three main tests called molecular 
tests (e.g., genetic-based tests or nucleic acid tests (NATs)), 
antigen tests, and antibodies tests (e.g., serological tests). 
These methods can be classified to:-

 I. Genetic tests (viral nucleic acid tests): analysis of 
viral genome using techniques such as real-time-
quantitative reverse transcription-polymerase chain 
reaction (RT-qPCR), isothermal amplification (e.g., 
Loop-mediated isothermal amplification (LAMP), 
nucleic acid sequence-based amplification (NASBA), 
transcription-mediated amplification (TMA), roll-
ing circle amplification (RCA), Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR)), 
and nanopore targeted sequencing (NTS) [187].

 II. Antigen tests: analysis of the viral proteins (mem-
brane-bound spike proteins or the nucleocapsid 
proteins) using techniques such as colorimetric, 
field-effect transistor (FET), enzyme-linked immuno-
sorbent assay (ELISA), and mass spectrometry (MS).

 III. Serological tests: analysis of the antibodies (Immu-
noglobulin M (IgM) and Immunoglobulin G (IgG)) 
against the virus [188–190]. The study of patient’s 
antibodies can be achieved using methods such as 
electrical (EC) biosensors, localized surface plasmon 
resonance (LSPR), surface-enhanced Raman scat-
tering (SERS), quartz crystal microbalance (QCM), 
fluorescence-based biosensor, colorimetric biosensor, 
gold immunochromatography, ELISA, chemilumi-
nescence immunoassay, and piezoelectric microcan-
tilever sensors (PEMS).

SARS-CoV 2 can be detected in various samples such as 
feces (1 ×  107 copies/mL)[191], urine (1 ×  102 copies/mL) 
[192, 193], saliva (5 ×  104 copies/mL) [194], and respiratory 
tract  (103–107 copies/mL)) [195–197]. The commonplace 
for sample collection is respiratory tract (upper part (phar-
yngeal swabs, nasal swabs, and nasal discharges), and lower 
part samples (sputum, airway secretions, and bronchoalveo-
lar lavage fluid)). Nasopharyngeal samples are widely used 
due to the ease of collection, high viral load  (103–107 cop-
ies/mL), and high stability during transportation or storage 
[198]. Sample can be self-collected at home via anterior 
nares swabs. However, the sample collection is painful 
because it requires the deep insertion of cotton-tipped plas-
tic swabs. Other invasive places such as saliva, feces, and 
urine can also be used [199–201]. However, they contain 
low viral load and contain interfering species make the use 
of this specimen challenging for the diagnosis of COVID-19. 
The concentration of antibodies (IgG and IgM) generated in 
response to infection is found in blood with a concentration 
of 0.43–187.82 and 0.26–24.02 (chemiluminescence values 
divided by the cutoff), respectively.

Nanoparticles offer several advantages for bioanalytical 
methods that can be applied for the diagnosis of COVID-19. 
The large surface area of nanoparticles offers high sensitiv-
ity. Nanoparticles can be used for the preconcentration and 
enrichment of the low SARS-COV2 load. The surface can 
be modified to ensure high specificity.

Thermal scanning

Measuring a patient’s body temperature using a thermometer 
or thermal scanner has been vastly used as one of the detec-
tion techniques for monitoring the infection of COVID-19 in 
public places such as airports, schools, and universities. This 
method can only detect elevated skin temperatures, which 
is different from the core body’s temperature. Therefore, it 
lacks high precision to determine whether the individual 
possesses a fever or not. The body temperature can also be 
elevated due to other reasons such as exercise, walking, etc. 
Furthermore, fever is not one of the common symptoms in 
almost 75% of COVID-19’s patients. Nanoparticles are use-
ful for wearable electronic temperature sensors temperature‐
sensitive artificial skin [202].

Genetic‑based analysis: PCR, RT‑qPCR, LAMP, 
and CRISPR

The virus analysis, including SARS-CoV 2 using their 
genetic materials, is based on their nucleic acid analysis via 
amplification tests (NAATs). However, the content of the 
gene is usually low. Thus, there are several amplification 
methods, including PCR, strand displacement assay (SDA), 
or transcription-mediated assay (TMA). All these methods 
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are based on Watson–Crick base pairing based on a primer 
molecule (single-stranded probe) capture DNA/ RNA target 
molecules.

Polymerase chain reaction (PCR) is a standard method 
for gene analysis. It aims to amplify DNA samples to several 
million to billions of copies using a tiny DNA sample. The 
technique uses three reagents: (1) primers (a short single-
strand DNA fragments (oligonucleotides) that are a com-
plementary sequence to the target DNA region), (2) a DNA 
polymerase (heat-stable DNA polymerase, such as Taq pol-
ymerase), and (3) deoxynucleoside triphosphates (dNTPs, 
the building blocks from which the DNA polymerase syn-
thesizes a new DNA strand). The first step of the process 
includes: (1) denaturation (physical separation of DNA), (2) 
annealing (the primers attach to each of the single-stranded 
DNA templates), (3) extension/elongation in which DNA 
polymerase synthesizes a new DNA strand via adding free 
dNTPs in the 5′-to-3′ direction. The process is repeated nth 
cycles to produce  2n copies. The whole process uses 10–200 
μL in small reaction tubes (0.2–0.5 mL volumes) in a ther-
mal cycler based on the Peltier effect. It requires a series of 
20–40 repeated temperature changes, with each cycle com-
monly consisting of 2–3 discrete temperature steps.

Real-time quantitative reverse transcription-polymerase 
chain reaction (RT-qPCR) is a genetic-based method for 
detecting and quantifying the virus. The procedure is based 
on converting viral RNA to complementary DNA (cDNA) 
using the reverse transcription method. In real-time RT-
PCR, DNA amplification is monitored in real time as the 
PCR progresses using a fluorescent dye, a specific DNA 
probe labeled with a fluorescent molecule, and a quencher 
molecule (such as TaqMan assays). The process is a repeated 
amplification process for about 40 cycles until the viral 
cDNA can be detected, usually by a fluorescent or electrical 
signal.

The diagnosis of SARS-CoV 2 using RT-qPCR involved 
several steps: (1) Nasopharyngeal swab (15 min): cotton 
swab is inserted into the nostril to absorb secretions; (2) 
Collecting specimen is stored at 2–8 °C for up to 72 h or 
proceed to; (3) RNA extraction (requires 45 min); (5) The 
purified RNA is reverse transcribed to cDNA and amplified 
by qPCR. Positive SARS-CoV 2 patients cross the threshold 
line within 40 cycles. The specimen for diagnosis of early 
infection is usually collected via a nasopharyngeal (NP) 
swab or an oropharyngeal (OP) swab [203, 204]. Collect-
ing combined NP and OP specimens seems to be the most 
effective approach [204]. A cotton swab must be inserted 
deeply into the nasal cavity for 10 s. This procedure is pain-
ful. RT-qPCR was also used for the detection of SARS-COV 
2 in wastewater [205].

Isothermal amplification methods (e.g., recombinase 
polymerase amplification (RPA) and loop-mediated iso-
thermal amplification (LAMP) were used for a nucleic acid 

amplification technique. The procedure takes place at one 
temperature, i.e., isothermal (no need of a thermocycler), 
and the amplification is continuous. The sample preparation 
is simple and requires no complicated steps. The method 
offers high specificity, efficiency, and rapidity under iso-
thermal conditions. Several point-of-care RNA detection 
technologies that do not require special instruments exist, 
including reverse transcription–RPA (RT–RPA) and reverse 
transcription-LAMP (RT-LAMP). The stringency of detec-
tion by these isothermal amplification methods can be 
improved by incorporating an additional sequence-specific 
detection module, such as hybridization-based fluorescent 
oligonucleotide probes [206].

A rapid POC diagnostic test (< 20 min) based on RT-
LAMP was reported using semiconductor technology 
(Fig. 5) [207]. The method depends on the detection of 
SARS-CoV 2 from an extracted RNA samples. The devel-
oped LAMP assay was tested on a real-time benchtop instru-
ment (RT-qLAMP), showing a lower limit of detection of 
10 RNA copies per reaction [207]. The results showed sen-
sitivity and specificity of 91% and 100%, respectively, com-
pared to RT-qPCR and average positive detection times of 
15.45 ± 4.43 min (Fig. 5) [207]. Another POC diagnostic 
test based on microfluidic platforms was reported to detect 
viruses using the rolling circle amplification (RCA) method 
[208]. Viral samples can be detected via DNA hydrogel for-
mation utilizing a platform of isothermal amplification of 
complementary targets (DhITACT) in microfluidic channels 
[208]. Self-assembled DNA hydrogel was briefly formed on 
the surface of microfluidic channels using single-stranded 
RCA via the isothermal amplification process [208]. These 
methods are promising for POC diagnosis. They can be used 
for public services in places such as airports, universities, 
and shops.

Clustered regularly interspaced short palindromic 
repeats (CRISPR)-based diagnostic systems were also pro-
posed for COVID-19 diagnosis. CRISPR is a family of DNA 
sequences found in the genomes of prokaryotic organisms 
such as bacteria [209–211]. They are used to detect and 
destroy DNA similarly to bacteriophages during infections. 
Hence, these sequences play a vital role in the antiviral (i.e., 
anti-phage) defense system of prokaryotes. The CRISPR-
Cas system is a prokaryotic immune system that confers 
resistance to foreign genetic elements. The CRISPR-Cas9 
(CRISPR-associated) genome editing technique awards 
Nobel Prize in Chemistry 2020. It uses collateral cleavage 
activity of bystander nucleic acid probes of RNA-guided 
CRISPR-associated 12/13 (Cas12/13) nucleases [212]. A 
report incorporated RT-LAMP with CRISPR-Cas12a to 
detect SARS-CoV 2 in respiratory swab RNA extracts in a 
colorimetric lateral flow assay [213]. This method is prom-
ising and can be conjugated with well-established methods 
such as the colorimetric method.
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Genetic-based methods exhibit several advantages. It 
offers high specificity. The technique is the standard proto-
col for the diagnosis of COVID-19. A single-tube assay RT-
LAMP, CRISPRs, and the CRISPR-associated (Cas) enzyme 
Cas12a was recently proposed [214]. The method is simple 
and can be developed for POC. The technique offered high 
specificity, although sensitivity depends on the timing of 
disease presentation, sampling location, and severity of ill-
ness [203]. It usually takes about 4–24 h.

The genetic-based method is the standard method for 
virus analysis. However, it was reported that 20–50% of 
patients with SARS could not be confirmed by RT-PCR 
diagnostic [215]. The technique shows only sensitivities of 
61–68%, 65–72%, 50–54%, and 58–63% for nasopharyngeal 
aspirate specimens, throat swab specimens, urine specimens, 
and stool specimens, respectively [215]. qPCR assay did 
not produce a detectable target signal in samples containing 
less than five copies of its amplified DNA target. Real-time 

Fig. 5  Diagnosis workflow of COVID-19. Figure reprinted with permission Ref. [207]. Copyright belongs to the American Chemical Society 
(ACS)
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RT-PCR may lead to false-negative results due to variations 
in several possible factors, such as the quality of the col-
lected specimen, the viral load, the source of the reagents, 
and RNA preparation steps, and fluctuations in the viral load 
during different phases of the process. RT-qPCR requires 
sample concentration and preparation. It requires thermal 
cycling and multiple heating and cooling. It requires various 
protocols with labor work. The testing procedure requires 
special laboratory equipment that is often located at a central 
laboratory. However, portable approaches based on nanopore 
sequencers are promising for POC detection. The analysis 
requires at least up to 3 days. Thus, it is a time-consuming 
method. The sampling is painful. However, other sample 
places such as tears [216] and saliva [217] were reported. 
The genetic-based process requires a well-known target 
sequence to generate the primers that will allow its selec-
tive amplification. The small amount of contaminating DNA 
can also be amplified, resulting in misleading or ambiguous 
results. The PCR amplification can also be inhibited due to 
environmental samples such as humic acids. RT–RPA and 
RT-LAMP methods suffer from nonspecific amplification 
under isothermal conditions, leading to false-positive results. 
The false-positive results are exacerbated in the presence 
of non-sequence-specific probes, such as pH-sensitive dyes 
[218].

Lateral flow assay based on CRISPR-based diagnostic 
systems was reported [209]. The method is rapid (< 40 min), 
easy to implement, and showed high accuracy for the detec-
tion of SARS-CoV 2 from respiratory swab RNA extracts 
[213]. The process extracted the patient’s sample RNA 
via DNA endonuclease-targeted CRISPR trans reporter 
(DETECTR) [219]. It depends on simultaneous extraction 
of RNA and detection of predefined coronavirus sequences. 
This method relies on a custom CRISPR Cas12a/gRNA com-
plex that can be detected via a fluorescent probe (CRISPR-
based fluorescent detection system, CRISPR-FDS) [220]. 
This assay showed a limit of detection (LOD) of 2 copies 
per sample [220]. Another method using specific high-sen-
sitivity enzymatic reporter unlocking (SHERLOCK) assay 
was reported [221]. The process showed a LOD of 42 RNA 
copies per reaction with high specificity and sensitivity of 
100% with a fluorescence readout, and 100% specific and 
97% sensitive with a lateral flow readout [221].

Analysis based on nucleic acid sequencing such as nano-
pore sequencing was implemented for the detection of 
COVID-19. These techniques provide base-pair level infor-
mation essential to mutation tracing and COVID-19 strain 
recognition [222, 223]. The method relies on electropho-
retic force to translocate DNA, RNA, or protein molecules 
through an orifice. Nanopore sequencing is commercially 
available through the Oxford MiniION sequencer [224]. The 
two-dimensional gold nanoislands (Au NIs) functionalized 
with complementary DNA receptors can perform a sensitive 

detection of the selected sequences from SARS-CoV 2 
through nucleic acid hybridization. The thermoplasmonic 
heat is generated on the same Au NIs chip for better sensing 
performance when illuminated at their plasmonic resonance 
frequency. The localized PPT heat is capable of elevating the 
in situ hybridization temperature and facilitating the accu-
rate discrimination of two similar gene sequences. Our dual-
functional LSPR biosensor exhibits a high sensitivity toward 
the selected SARS-CoV 2 sequences with a lower detection 
limit down to the concentration of 0.22 pM. It allows precise 
detection of the specific target in a multi-gene mixture [225].

Analysis of nucleic acid using other bioanalytical meth-
ods was also reported. Nucleic acid-based electrochemical 
biosensors were developed to detect the SARS-CoV 2 via 
the N protein gene’s detection using gold nanoparticle-mod-
ified electrodes [226]. This method showed good sensitivity. 
However, it requires sample preparation, such as the RNA 
extraction step. The plasmonic photothermal (PPT) effect 
and LSPR were integrated into a dual-functional plasmonic 
biosensor to detect nucleic acid from SARS-CoV 2 [225]. 
The device is a chip-based application. The method is based 
on the use of two-dimensional gold nanoislands (Au NIs) 
that can form Au–S bonds with the thiol-cDNA receptor 
of RdRp, ORF1ab, or the E gene sequence. The plasmonic 
Au NIs generated local PPT heat that promoted fast and 
sensitive detection of nucleic acids. Au NIs improved the 
hybridization kinetics of fully matching strands. The dual-
functional LSPR sensing system offered selective hybridi-
zation detection toward SARS-CoV 2 and SARS-CoV 1. 
The method provided sensitive detection of SARS-CoV 2 
sequences with a LOD of 0.22 pM [225].

An electrochemical-based method using gold nanoparti-
cles (Au NPs) was reported for the analysis of viral nucle-
ocapsid phosphoprotein (N-gene, Fig. 6) [226]. The surface 
of Au NPs was capped with highly specific antisense oli-
gonucleotides (ssDNA) targeting to ensure high selectiv-
ity toward N-gene. The sensing probes, e.g., ssDNA@Au 
NPs, were immobilized on a graphene paper-based electro-
chemical platform. The output signals can be recorded with 
a simple handheld reader [226]. This method offered rapid 
analysis (< 5 min), showed low cost, and can be easy to 
implement. It provided quantitative analysis with a broad 
linear detection range of 585.4–5.854 ×  107 copies/μL and 
sensitivity of 231 copies/μL. It exhibited a LOD of 6.9 cop-
ies/μL without the need for nucleic acid amplification [226].

An electrochemical biosensor based on RNA amplifica-
tion using isothermal RCA and differential pulse voltamme-
try (DPV) was reported (Fig. 7) [227]. It involves 4 simple 
steps: (1) sample collection, (2) extraction of RNA/DNA, (3) 
hybridization using RCA reaction, and (4) detection (Fig. 7) 
[227]. The extracted RNA/DNA was purified and separated 
using magnetic beads coated with streptavidin. Silica nano-
particles (SiNPs) were coated with two dyes redox system 
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of methylene blue (MB) and acridine orange (AO), produc-
ing silica-methylene blue (SiMB) and silica-acridine orange 
(SiAO). SiMB and SiAO were used for the electrochemical 
measurements using a portable potentiostat called Palm-
Sens4 connected to a laptop. This assay offers a LOD of 1 

copy/μL of N and S genes (Fig. 7) [227]. This method is a 
one-step sandwich hybridization assay, rapid (2 h), sensi-
tive, and accurate (100% concordance result with qRT-PCR). 
Furthermore, the potentiostat (PalmSen4) is portable, offer-
ing on-site, real-time diagnostic tests for COVID-19 [227].

Fig. 6  Operation steps for the 
COVID-19 electrochemical 
sensing platform: (A) sample 
collection via the nasal swab or 
saliva, (B) RNA extraction, (C) 
immobilization of RNA extract 
on the top of the graphene-
ssDNA-AuNP platform, (D) 
incubation of 5 min, and (E) 
record the digital electrochemi-
cal output. Figure reprinted with 
permission from Ref. [226]

Fig. 7  a Schematic represen-
tation showing the detection 
workflow of SARS-CoV2 and 
b the detection setup using a 
portable PalmSens4 poten-
tiostat device connected to a 
laptop. Figure reprinted with 
permission from Ref. [227]. 
This article is licensed under a 
Creative Commons Attribution 
4.0 International License
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Nucleic acid analysis using the colorimetric method was 
also reported. The plasmonic properties of nanoparticles 
such as Au NPs offer a simple colorimetric analysis of E 
gene of SARS-CoV 2 [228]. The method depends on the 
change of the plasmonic peak of Au NPs coated with nucleic 
acids for visual detection of PCR products of SARS-CoV 
2 template [228]. The changes can also be observed via 
naked eyes [228]. This method is simple, sensitive, and can 
be implemented into strip-based technologies.

Antigen‑bases methods

The SARS-CoV 2 antigen analysis, such as S-protein, N-pro-
tein, has been reported using different bioanalytical methods 
such as electrochemical bases sensors, field-effect transistors 
(FET). These types of procedures are well stabilized in the 
literature. They offered high sensitivity and selectivity. They 
can be easily implemented into portable devices. They did 
not require high experience for operation.

Electrochemical immunosensor (EC) can be used for 
viral analysis [229]. An electrochemical immunosensor 
based on an array of carbon electrodes (DEP)/Au NPs was 
reported to detect the recombinant on the surface of micro-
fluidic channels [230]. Au NPs were electrodeposited into 
the glass carbon electrode. The layer of Au NPs immobi-
lized S1 protein for a fixed concentration of antibody (10 µg/
mL) that recognized the MERS-CoV antigen. The detection 
method of MERSA-CoV was based on measuring the cur-
rent changes for the reduction peak of the Ferro/ferricya-
nide redox. The reduction in the peak current was due to the 
electron transfer efficiency reduction due to antibody–anti-
gen binding. The immunosensor required 20 min for the 
analysis and offered a LOD of 1.0 pg/mL for MERS-CoV 
protein with a high selectivity degree. The LOD resulted 
lower than the LOD of ELISA (1 ng/mL). It was successfully 
applied to spiked nasal samples. Electrochemical sensors 
offered high sensitivity compared to commercial biosen-
sors such as SPR-based chip (BIAcore systems) for viral 
analysis such as Influenza virus H1N1 and Dengue virus 
with LOD of 1 µg/mL, and 2.125 pM, respectively [231, 
232]. An electrochemical-based method using electrode-
tethered sensors bearing an analyte-binding antibody was 
reported (Fig. 8) [233]. The surface of the electrode was 
modified with a negatively charged DNA linker containing a 
redox system (ferrocene) and antibody (anti-spike) (Fig. 8). 
The antibody moiety binds to the virus’s S-protein, caus-
ing changes in the kinetic of transport for a DNA–antibody 
complex (Fig. 8). This method is reagent-free viral sensing 
within 5 min (Fig. 8) [233].

A cotton-tipped electrochemical immunosensor was 
reported for the detection of SARS-CoV 2 virus antigen 
(Fig. 9) [234]. The carbon nanofiber (CNF) screen-printed 
electrode was fabricated via diazonium electrografting 

(Fig. 9). The electrode was further modified with virus 
nucleocapsid (N) protein using cross-linking chemistry. 
The changes in square wave voltammetric (SWV) tech-
nique before and after interaction can be correlated with the 
SARS-CoV 2 load. This method offered a LOD of 0.8 pg/
mL for SARS-CoV 2 (Fig. 9) [234]. It is a sensitive, selec-
tive, and fast analysis procedure. It can also be further modi-
fied to ensure high producibility and throughput analysis. 
The portable PalmSen4 potentiostat was used for S-protein 
or N-protein detection using magnetic beads to support 
immunological chain and secondary antibody with alkaline 
phosphatase [235]. A screen-printed electrode modified 
with carbon black nanomaterial was used for monitoring 
the enzymatic byproduct 1-naphthol. This method offered 
LODs of 19 ng/mL and 8 ng/mL for S and N-protein, respec-
tively [235]. This method is sensitive and required a short 
analysis time (30 min).

Antigen analysis can be achieved using graphene [236], 
and gold (Au) nanoparticles [237] via FET, and Terahertz 
plasmonic metasensors, respectively. A novel antibody-
based biosensor using FET was reported to detect the 
S-protein from SARS-CoV 2 (Fig. 10) [236]. The method is 
based on graphene sheets coated with a specific SARS-CoV 
2 antibody (Fig. 10). The technique offered a LOD of 1 fg/
mL, 100 fg/mL, and 16 pfu/mL (pfu refers to plaque-forming 
unit) in phosphate buffer saline, universal transport medium, 
and culture medium, respectively. The SARS-CoV 2 FET 
sensor discriminated between infected and non-infected indi-
viduals with a LOD of 242 copies/mL [236]. Terahertz plas-
monic metasensors using Au NPs were used for the quantita-
tive and qualitative detection of S-protein from SARS-CoV 
2 [237]. It offered a LOD of 4.2 fM [237].

Serological‑based tests (SB‑T)

Serological-based tests (SB-T) measure the body’s immune 
response to the infection. They aim to the analysis of anti-
bodies and proteins in the blood caused due to the infection 
by pathogens such as SARS-CoV 2. The SB-T measure-
ments aren’t related to the virus itself [238]. It is reliable 
to study the immune response and can be used to identify 
the recovery or post-infected people. It is also an invalu-
able test to determine the level of immunity reached in the 
population. The Food and Drug Administration (FDA) has 
approved several hundred tests, and most of them are based 
on molecular technology of immunoglobulin M (IgM) and 
IgG (Table 1) [239].

The detection of IgG and IgM in serum or whole blood 
has been demonstrated to be a reliable method for diagnos-
ing COVID-19 with high specificity and sensitivity [240]. 
A point‐of‐care lateral flow immunoassay (LFIA) test using 
Au nanoparticles was used for the detection of IgM and IgG 
antibodies simultaneously against SARS‐CoV 2 virus in 
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Fig. 8  An electrochemical approach for monitoring the kinetics of transport for a DNA–antibody complex. The figure was reprinted with per-
mission from Ref. [233]. Copyrights belong to ACS, 2020

Fig. 9  Schematic of the Cotton-
Tipped Electrochemical Immu-
nosensor for COVID-19 virus. 
Figure reprinted with permis-
sion from Ref. [234]. Copyright 
belongs to ACS, 2020
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Fig. 10  (a) Detection of SARS-CoV 2 virus from clinical samples 
using FET sensor for detection of SAR-CoV-2 virus from COVID-19 
patients, (b) Real-time response of COVID-19 FET toward COVID-
19 clinical sample and (c) scatter plot and error bar graph of normal-

ized response, (d) Real-time response of FET toward the clinical sam-
ple and (e) related dose-dependent response curve. Figure reprinted 
with permission from Ref. [236]. Copyrights belong to ACS, 2020

Table 1  Examples of approving methods based on serological and immunological tests for SARS-CoV 2 virus

Test name Company Type Sample source Analyte Time (min)

m2000 SARS-CoV-2 assay Abbott Core Laboratory Chemiluminescent micro-
particle immunoassay

Serum
Plasma
Whole blood

IgG

COVID-19 IgG/IgM LF Advagen Biotech Lateral flow immunoassay IgG
IgM

10
COVID-19 IgM/IgG rapid 

test
BioMedomics 15

COVID-19 IgG/IgM Point 
of Care Rapid test

Aytu Biosciences/Orient 
Gene Biotech

2–10

One-Step COVID-2019 test Celer Biotechnologia 15
qSARS-CoV-2 IgG/IgM 

rapid test
Cellex Inc 15–20

DPP COVID-19 IgM/IgG 
system

Chembio Diagnostics 15

VivaDiag COVID-19 IgM/
IgG rapid test

Everest Links Pte Ltd 15

COVID-19 IgG/IgM rapid 
test cassette

Hangzhou Biotest Biotech 
Co. Ltd

15–20

SARS-CoV-2 rapid test PharmACT 20
Standard Q COVID-19 

IgM/IgG Duo
SD Biosensor 10

COVID-19 Ag Respi-Strip Coris Bioconcept Nasal mucus swabs Viral antigen 15
iFLASH-SARS-CoV-2-

IgG/IgM
Shenzhen Yhlo Biotech 

Company
Immunoassay Serum/plasma/ whole 

blood
IgG/IgM

MAGLUMI IgG/IgM de 
2019-nCoV (CLIA)

Snibe Diagnostic (China) Chemiluminescence immu-
noassay

Serum/ plasma 30



Nanotechnology for Environmental Engineering (2021) 6:19 

1 3

Page 13 of 26 19

human blood (Fig. 11) [241]. The test strip’s main body 
consists of five parts, including plastic backing, sample pad, 
conjugate pad, absorbent pad, and NC membrane (Fig. 11). 
The analysis using this method can be achieved within 
15 min at 88.66% with a specificity of 90.63% [241]. A col-
orimetric method using Au NPs was also reported [242]. 
The analysis takes place in a solution. Au NPs were func-
tionalized with antibodies for targeting three surface proteins 
of SARS-CoV 2, e.g., spike, envelope, and membrane. The 
detection of these proteins depends on the red-shifted SPR 
peak of Au NPs. The analysis requires few minutes [242]. 
These methods offer high sensitivity, selectivity and needed 
short analysis time (Table 1).

Magnetic chemiluminescence enzyme immunoassay 
(MCLIA) was reported for the detection of SARS-COV 2 
via the analysis of IgG and IgM [240]. MCLIA showed 
high specificity and sensitivity in detecting serum IgG and 
IgM [240]. The positive rate of IgG and IgM was 71.4% 
and 57.2%, respectively [240]. The method exhibited high 
specificity compared to other respiratory pathogens, includ-
ing influenza A virus, influenza B virus, parainfluenza virus, 
with high stability (coefficient of variation (CV) was below 
6%) [240]. The serological testing using MCLIA may be 
helpful for the diagnosis of suspected patients with negative 
RT–PCR results and for the identification of asymptomatic 
infections [243].

A portable microfluidic immunoassay system was pro-
posed to detect SARS-CoV 2 (Fig. 12) [244]. This method 
was easy to use, sensitive, rapid (< 15 min) and offered on-
site detection of IgG/IgM/Antigen of SARS-CoV 2 simul-
taneously [244]. This method’s cost is only about 5 yuan 
(0.71 dollars) and required only 10 min for analysis. The 

analysis required a spot of 10 μL of the specimen (blood, 
serum, plasma, pharyngeal swabs, alveolar lavage fluid, or 
fecal suspension) into the loading chamber of the micro-
chip (Fig. 12). This was followed by the addition of sample 
dilution buffer (70 μL). The biomarkers of SARS-CoV 2 
(IgG/IgM/antigen) are specifically bound to the fluorescent 
microspheres (FMS) labeled capture antibody [244]. The 
method showed the detection of the virus on different days 
for patients. It was also approved by the Center for Medical 
Device Evaluation (CMDE) in China and obtained Euro-
pean CE certification (Fig. 12) [244]. Groltex and Sanford 
Burnham Prebys Medical Discovery Institute developed a 
graphene-based biosensor platform consisting of deposited 
gold nanoislands, handheld reader units, and disposable 
plastic testing chips [245]. The "graphene sensor chip on 
plastic" platform required a small biological sample and can 
perform up to 4 to 12 viral tests [245]. Gold nanospikes were 
fabricated using electrodeposition and applied for pto-micro-
fluidic sensing platform (localized surface plasmon reso-
nance (LSPR) and microfluidic device)[246]. The antibody 
concentration was correlated with the LSPR wavelength 
peak shift of Au nanospikes caused due to the local refrac-
tive index change because of the antigen–antibody binding 
[246]. This method is a label-free microfluidic platform with 
a LOD of 0.08 ng/mL (0.5 pM) [246].

Other methods

A functionalized magnetic nanoparticle (MNPs) using 
S-protein was proposed for the detection of SARS-CoV 2 
using a mimic SARS-CoV 2 consisting of spike proteins 
and polystyrene beads (Fig. 13) [247]. The method depends 

Fig. 11  a Schematic illustra-
tion of a point‐of‐care lateral 
flow immunoassay (LFIA) for 
SARS‐CoV 2 IgM‐IgG com-
bined antibody test, and b an 
illustration of different testing 
results; C refers to control line; 
G refers to IgG line; M refers to 
IgM line. Figure reprinted with 
permission from Ref. [241]. 
Reference [241] is an Open 
Access article distributed under 
the terms of the Creative Com-
mons CC BY license
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on measuring the magnetic response of MNPs in an ac mag-
netic field with and without the virus (Fig. 13). This method 
offered rapid and sensitive detection of SARS-CoV 2 with a 
LOD of 0.084 nM (5.9 fmoles) [247].

Mass spectrometry (MS) has advanced the analysis of 
virus [248]. MS depends on the ionization of the viral con-
tents, e.g., protein or RNA. Soft ionization techniques such 
as matrix-assisted laser desorption/ionization mass spec-
trometry (MALDI-MS) are promising for direct detection 
of the intact virus [25, 41, 76, 249–256]. Nanoparticles are 
essential as the surface for MALDI-MS, i.e., surface-assisted 
laser desorption/ionization mass spectrometry (SALDI-
MS). The method is label-free, offering high sensitivity. 

The presence of proteins such as S, E, N, and M enables 
simple analysis for SARS-CoV 2 using mass spectrometry 
[257]. Blood analysis using advanced MS-based proteomics 
approaches will help identify the essential protein patterns 
of COVID-19′s patients [258].

Concluding remarks

The past investments to discover viruses, detection, and 
antiviral treatment have rarely been made in the past, 
except for very few viruses. Thus, coronavirus has sev-
eral accessory proteins that seem to be essential for the 

Fig. 12  (A) Photograph of the portable home-made fluorescence 
detection equipment; (B) photograph of the immunoassay microchip 
ready to use; (C) schematic illustration of the microfluidic fluores-

cence immunoassay for IgG/IgM/antigen detection of SARS CoV 2. 
Figure reprinted with permission from Ref. [244]. Copyright belongs 
to ACS, 2020
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virus [100]; however, their functions aren’t entirely char-
acterized. Our knowledge about this novel virus remains 
very limited [94]. There are not enough nanotechnology 
approaches being explored to tackle the current outbreak 
using a sensitive diagnostic method. This task requires 
network coordination among pharmaceutical companies, 
scientists, governments, and WHO. The virus’s analysis 
inside the body via analytical techniques such as imaging 
and tracking their places is highly required and essential 
for future threats.

The surface contamination by SARS-CoV 2 has been 
found to be more significant in the spread of COVID-19. 
The contamination of latex/nitrile gloves, N95 respirators, 
hospital scrubs, overshoes, and floors in a nosocomial envi-
ronment has been considered a severe issue [259, 260]. It 
causes uncontrolled spreading of the disease and passes 
the infection to other patients and their families [261]. The 
detection of SARS-CoV 2 contamination using a simple 
bioanalytical method for these necessary tools is essential 
for protecting people in contact with infected persons. It is 

supposed to control the virus’s spread and alert people by 
the infected places and surfaces.

Serological-based tests may help diagnose suspected 
patients with negative RT–PCR results and identify 
asymptomatic infections [243]. The test is susceptible, 
specific, and required a short time. However, the results 
of these methods may be varied significantly with inter-
ferences [262]. These methods lack high accuracy for the 
analysis within the first days after the onset of disease 
[263]. Computed tomography imaging, whole-genome 
sequencing, and electron microscopy are more precise 
[264]. A study  indicated that an initial chest CT has a 
higher detection rate (98%) compared to reverse tran-
scriptase‐polymerase chain reaction (RT‐PCR) (70%) in 
infected patients. Analysis using genetic-based methods 
such as PCR demonstrated that about 3% of patients have 
no primary positive RT‐PCR but have a positive chest 
CT; therefore, both tests are recommended for COVID‐19 
patients [265]. Electrochemical-based methods conjugated 
nanotechnology is promising for several reasons [266]. 

Fig. 13  Principle of magnetic 
field changes using (a) function-
alized MNPs with and without 
(b) mimic SARS-CoV 2, and (c) 
the MPS signals response with 
and without mimic virus. Figure 
reprinted with permission from 
Ref. [247]. Copyright belongs 
to ACS, 2020
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They can be used for gene detection of (1) gene such as 
nucleocapsid phosphoprotein (N-gene) [226], RdRp gene 
[267]; (2) antigen [234]; and (3) antibodies. The method 

can be easily implemented into portable devices offering 
simple operation and on-site detection [227].

Table 2  Examples for FDA-approved handheld tests for COVID-19

cp: copies; rxn: reaction; NPS: nasopharyngeal swabs; TS: throat swabs; OPS: oropharyngeal swab; NS: nasal swabs; NW: nasal wash/aspirate; 
BAL: bronchoalveolar lavage; Sp: sputum

Device Company Sample Collection Biomarker LOD References

PerkinElmer New Coro-
navirus Nucleic Acid 
Detection Kit

PerkinElmer, Inc OPS, NPS Nucleic acid 3 cp/rxn (50 cp/mL) [273]

Quest SARSCoV-2 
rRTPCR

Quest Diagnostics Infec-
tious Disease, Inc

NPS, NS, NW, BAL 3.4 cp/rxn (136 cp/mL) [274]

1copy™ COVID-19 
qPCR Multi Kit

1drop Inc NPS, OPS 4 cp/rxn (200 cp/mL) [275]

COVID-19 Genesig 
RealTime PCR Assay

Primerdesign Ltd NPS, OPS, BAL 6.6 cp/rxn (330 cp/ mL) [276]

Xpert® Xpress SARS-
CoV-2

Cepheid NPS NW 75 cp/rxn (250 cp/mL) [277]

BioFire® COVID-19 
Test FilmArray

Biofire defense, LLC NPS NW 1155–1815 cp/rxn (330 
cp/mL)

[278]

AvellinoCoV2 Test Avellino Lab USA, Inc NPS, OPS 275 cp/rxn (55,000 cp/
mL)

[279]

Simplexa COVID-19 
Direct Assay

DiaSorin Molecular 
LLC

NPS, NS, NW, BAL 25 cp/rxn (500 cp/mL 
(NPS)), 12.1 cp/rxn 
(242 cp/mL (NS)), 25 
cp/rxn (500 cp/mL 
(NW)), 60.4 cp/rxn 
(1208 cp/mL (BAL))

[280]

Abbott Real Time SAR-
SCoV-2 Assay

Abbott Diagnostics Inc OPS, NPS 100 cp/mL [281]

NeoPlex COVID-19 
Detection Kit

GeneMatrix NS, NPS, OPS 50 cp/rxn (2500 cp/ mL) [282]

COVID-19- RT-qPCR 
Detection Kit

Gnomegen LLC NPS, OPS 10 cp/rxn (666 cp/mL) [283]

Quick SARSCoV-2rRT-
PCR Kit

Zymo Research Co NS, NPS, OPS 15 cp/rxn(250 cp/mL) [284]

OPTI SARSCoV-2 RT 
PCR Test

OPTI Medical Systems, 
Inc

NPS, Sp 17.5 cp/rxn (700 cp/mL 
(sputum) 22.5 cp/rxn 
(900 cp/mL (NP)

[285]

FTD SARSCoV-2 Siemens Healthineers NS, NPS, OPS 0.0023 TCID50/mL [286]
ePlex SARSCoV-2 Test GenMark Dx NS, NPS, OPS 200 cp/rxn (1000 cp/ 

mL)
[287]

Panther Fusion SAR-
SCoV-2 Assay

Hologic, Inc NS, OS, NW 1 ×  10–2 TCID50/mL [288]

Aptima SARS-CoV-2 
Assay

Hologic, Inc NP, OP 324 cp/rxn (83 cp/mL) [289]

ID NOW COVID-19 Abbott Diagnostics Inc NS, NPS, TS 25 cp/rxn (125 cp/mL) [290]
Accula™ SARS-Cov-2 

Test
Mesa Biotech Inc NS, TS 200 cp/rxn (3300 cp/

mL),
[291]

Sherlock CRISPR 
SARS-CoV-2

Sherlock Biosciences BAL NS, NPS, OPS, 
NW

ORF1ab and N genes 17.5 cp/rxn (700 cp/mL 
(sputum) 22.5 cp/rxn 
(900 cp/mL (NP)

[291]

Sofia SARS Antigen FIA Quidel Corp NS, NPS Nucleocapsid protein 
antigen

113 TCID50 / mL [292]

Elecsys IL-6 Immuno-
assay

Roche Diagnostics Plasma or serum IL-6 1.5 pg/mL [293]
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Nanotechnology may help to improve diagnosis [268, 
269] using techniques  such as advanced POCT (point of 
care tests) approaches [139]. The future development of 
portable microfluidic-based cartridges and lyophilized 
reagents to run the assay could enable POCT outside of 
the clinical diagnostic laboratory, such as airports, local 
emergency departments, and other clinic locations [270]. 
US Food and Drug Administration (FDA) approved sev-
eral handheld methods for detecting COVID-19 (Table 2). 
The approved devices depend on the analysis of nucleic 
acid [271], biomarker IL-6 and CRP [272]. However, they 
are still costly and lack to quantify the total viral load in 
the infected person. There is no standard value to represent 
the viral load.

The sample collection and data analysis require care-
ful investigation. There is no test with complete accuracy 
(100%) all of the time. Several things may affect the test’s 
accuracy. A person may have the virus infection, but the 
swab might not collect the virus from the nose or throat 
due to short contact time or low viral load. The virus may 
be present due to accidental contamination during sample 
collection, storage, or analysis. The storage conditions 
may also destroy the virus due to incorrect temperature 
or contamination with a disinfectant such as alcohol. The 
process and chemicals used during the analysis or sample 
preparation, such as RNA extraction, may affect the test 
result. These points should be considered during sample 
collection, storage, and analysis.

Nanotechnology can advance the diagnosis of COVID-
19 and offer an advanced diagnostic approach based on a 
POC sensing technology [294]. It can be interfaced with 
the Internet of things artificial intelligence (AI) techniques, 
[295], and internet of medical things (IoMT)-integrated 
biosensors [296] for investigating practical informatics via 
data storage, sharing, and analytics. They can circumvent 
conventional techniques such as low sensitivity, low selec-
tivity, high cost, and long diagnostic time [297]. They can 
be used for no pain sample analysis, such as the analysis 
of patient’s saliva using graphene oxide (GO)/Au/Fiber 
Bragg grating (FBG) probe [298]. Nanotechnology can 
be used to advance technologies such as paper lateral flow 
assays [299], label-free biosensors [300–302], optical 
technologies [160, 303], and digital technologies [304].
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