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Abstract Chromium contamination in water has become a

major concern worldwide due to its adverse health effects.

Chitosan oligosaccharide-coated iron oxide nanoparticles

(CSO-INPs) were used in the present study for the mag-

netic separation of chromium from a chromium spiked

water samples. Transmission electron microscope–energy-

dispersive X-ray spectroscopy elemental mapping and

scanning electron microscope–energy-dispersive X-ray

spectroscopy elemental analysis were carried out to con-

firm the successful removal of the contaminant (total Cr)

from the spiked water samples. A feedforward artificial

neural network (ANN) model has been developed to pre-

dict the optimum efficiency of chromium ions removal

from aqueous solution by CSO-INPs. Both the batch

experiments and the ANN have been applied to assess the

impact of various factors such as pH, nanoparticles dose,

temperature, and time influencing the Cr removal effi-

ciency of CSO-INPs. Removal efficiency has been found to

be higher at low pH, with higher dose of nanoparticles at

higher temperature. The ANN simulation further gives us a

set of desired conditions (pH 3, CSO-INPs dose 0.7 mg/ml,

temperature 28–30 �C, time 60 min) to achieve an opti-

mum Cr removal efficiency of CSO-INPs.
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Introduction

Chromium (Cr) is a hard, steel-grey metallic element that is

listed by the United States Environmental Protection

Agency (USEPA) as one of 129 priority pollutants [1]. The

corrosion resistance properties of chromium made it highly

useful in various industries, such as metal fabrication,

metal finishing, plating, corrosion control, pigments and

tanning compounds, and wood preservatives [2]. The

effluents from these industries contribute a significant

amount of chromium to soil, water bodies, and the ground

water. Although Cr oxidation states range from (-II) to

(?VI), however, only the Cr(?III) and Cr(?VI) states are

stable in the natural environment [3]. Chromium (III), the

most common form of chromium (Cr) in the natural

environment, is not very soluble under normal groundwater

conditions due to the formation of insoluble solid Cr(OH)3

and Cr2O3 form.

Chromium (VI) exists in the natural environment as part

of several compounds, and Cr(VI) is generally present in

solution as monomeric forms: H2CrO4, HCrO4- (hydrogen
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chromate), CrO4
2-, and CrO3 (chromium (III) oxide) or as

Cr2O7
2- (dichromate) [4]. The relative concentration of the

various Cr(VI) species depends on the pH and the total

Cr(VI) concentration within the normal pH range in natural

waters (i.e. 6–8), and the CrO4
2-, HCrO4- and Cr2O7

2-

ions are the forms expected [5]. Above a pH of about 6,

CrO4
2- generally dominates. Below pH of about 6,

HCrO4- dominates when the Cr(VI) concentrations are

relatively low, but Cr2O7
2- becomes more significant as

Cr(VI) concentrations increases. Due to its higher solubil-

ity, Cr(VI) can be transported to greater distance in

groundwater.

Cr(III) is an essential nutrient, but exposure to its higher

levels via inhalation, ingestion, or dermal contact may

cause adverse health effects [6]. Cr(VI) is a carcinogen and

a strong oxidizing agent. Exposure to higher doses of

Cr(VI) possibly can induce mutations in living cells by

damaging DNA–protein cross-linkages [7, 8]. Trace

amounts of Cr?3 (50–200 lg/day) are essential for the

maintenance of normal glucose metabolism in humans

[9, 10]. The EPA standard for total Cr (as Cr6?) in regu-

lated drinking water in public water system is 0.1 mg/L

(http://www.epa.gov/your-drinking-water/table-regulated-

drinking-water-contaminants). The WHO recommends a

limit of 0.05 mg/L total Cr (as Cr?6) in drinking water

[11], and the same has also been adopted by Bureau of

Indian Standards [12].

Remediation technologies for bringing chromium con-

centrations below the regulatory limits primarily aim at

reducing its oxidation state from Cr(IV) to Cr(III), and this

also determines the type and cost of the treatment [13].

Chromium is dominantly removed by surface reduction

of Cr(VI) to Cr(III) followed by adsorption of Cr(III) [14].

Recent advances in nanotechnology have suggested that

nanoparticles can be explored for applications in water and

wastewater treatment [15]. Nanomaterials (\100 nm),

owing to their high specific surface area, short intraparticle

diffusion distance, and tunable pore size and surface

chemistry exhibit properties such as fast dissolution, high

reactivity, and strong sorption. The surface of many

nanomaterials can be functionalized to target specific

contaminants, achieving high selectivity. Iron nanomate-

rials (INPs in their many oxidation states) have been

widely utilized for the removal of heavy metals (Cr, Cu,

Ni, Pb, Hgetc) from the various environmental matrices

[13, 16–19]. The iron nanoparticles were also found to be

effective for the detoxification of chlorinated compounds

(chlorinated organic solvents, organochlorine pesticides,

trinitrotoluenes, phenols, herbicide molinateetc [20, 21].

Surface modification of INPs with biopolymers such as

chitosan not only increases the stability of the bare INPs in

the aqueous environment [22–24], but also increases its

adsorption potential against the heavy metal pollutants

[25–27]. Application of chitosan as oligosaccharide may

solve the solubility issue for environmental and biological

applications. Due to its low molecular weight, chitosan

oligosaccharide showed superior solubility in water and

physiological solutions [28].

The nanomaterials-based chemical adsorption process is

governed by several factors such as pH, temperature,

concentration of pollutants, time of exposure, dose of

nanomaterial, and others. Since there is large variation in

adsorption efficiency (pollutant removal efficiency) with

the variations in these factors, therefore, it is pertinent to

optimize the combinations of different factors in a way so

as to get the maximum removal efficiency. In order to

achieve this objective, we need to set up a large number of

experiments, which leads to a higher cost of the experi-

mental procedures. However, a good model simulation of

these processes can give insight into the dependence of

removal efficiency on these factors and also gives us a set

of conditions under which optimum removal efficiency can

be achieved. Since using model simulation along with

experiments provides more insight into the processes, this

also helps us to reduce the number of experiments and

hence reduction in cost of experiments as well [29–35].

Application of artificial neural network (ANN)-based

model simulation has emerged as an effective tool for the

same because of its well adaptability in linear/nonlinear

simple/complex systems. Earlier published works corrob-

orate the mileages of the ANN-based simulations for the

optimization of adsorption of the heavy metal pollutants

like Cr, Pb, Cu, and As [36–39]. Prakash et al. [28] have

applied five-layer ANN neural network for the prediction

of biosorption efficiency of the sawdust for the removal of

copper(II) from the wastewater samples. They reported that

the outcome of ANN-based model was found to be very

close to the experimental values. Ranjan et al. [39] have

compared two optimization techniques, response surface

methodology (RSM) and artificial neural network (ANN)

to evaluate the biosorptive remediation of arsenic (As)

from batch samples. They have reported the outperfor-

mance of the ANN over the RSM for the prediction of the

nonlinear behaviour of the system. Yetilmezsoy and

Demirel [27] have utilized three-layer artificial neural

network (ANN) model to predict the Pb ion removal effi-

ciency of Antep pistachio (Pistacia vera) shells, from the

aqueous solution. They report that the ANN model exhib-

ited a good prediction of the experimental data.

In this study, experiments were conducted to estimate

the removal efficiency of CSO-INPs for the removal of

total Cr from the spiked water sample in simulated con-

dition. For model simulation of the process, artificial neural

network (ANN) has been used and applied to get a set of

conditions that led to the optimum efficiency. To the best

of our knowledge, the use of CSO-INPs along with ANN-
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based optimization has been carried for the first time to

remove total Cr from the aqueous system.

Materials and methods

Synthesis of CSO-INPs

CSO-INPs have been synthesized by chemical synthesis

method as reported in our previous published study [24].

Iron oxide nanoparticles have been synthesized as reported

by Jana et al. [40]. The oleic acid on the particle surface

was replaced with a –COOH containing silane [41].

Nanoparticles were further functionalized with chitosan

oligosaccharide via carbodiimide activation, using EDC

and NHS [22].

Sample preparation

The Cr stock solution of 1000 mg/l concentration was

prepared by dissolving 2.829 g K2Cr2O7 (analytical

reagent grade) in 1000 ml deionized–distilled water. Cr

solution (working concentration) was prepared from suit-

able serial dilution of the stock solution. Total chromium in

the control and treated sample was analysed by inductively

coupled plasma–atomic emission spectrometry (ICP–AES,

Horiba).

Removal of chromium in simulated conditions

After incubation, chitosan oligosaccharide-coated iron

oxide nanoparticles (CSO-INPs) with chromium (20 mg/L)

spiked water, a magnetic field by permanent magnet was

applied to separate out the nanoparticles/heavy metal

aggregates. SEM along with EDX studies of magnetically

deflected nanoparticles/heavy metal aggregate was carried

out to analyse the morphological and chemical character-

istic of the aggregate. TEM images were recorded on a

TEM, operated at an accelerating voltage of 20 kV. TEM

equipped with an energy-dispersive X-ray analyser (EDX)

(JEOL 2100F) was further used to characterize the ele-

mental composition of CSO-INPs and the presence of

metal pollutant (Cr ion) on the nanoparticles. Samples for

TEM analysis were prepared by adding 10 ll of the

nanoparticles-treated solution on 200-mesh carbon-coated

Cu grids. The presence of chromium on the surface of

CSO-INPs was further confirmed by the SEM equipped

with energy-dispersive X-ray analyser (EDX; Zeiss

EVO40).

Batch experiments for the estimation of Cr removal

efficiency of CSO-INPs

The 50 ml Cr solution of different concentration was

treated with different concentrations (0.1, 0.3, 0.5 and

1 mg/ml) of CSO-INPs at different temperatures (28 and

38 �C), in constant temperature shaker (300 rpm). Samples

were taken periodically from the mixture and subjected to

an external magnetic field. Simulated studies were carried

out at different pH, temperature, and the dose of

nanoparticles. The solution pH was adjusted to the desired

values including 2, 3, 5, 8, and 10 by using HCl and NaOH

solution to evaluate the effect of pH on adsorption of Cr.

The Cr removal efficiency of CSO-INPs has been calcu-

lated using the following formula.

% Metal Uptake ¼ C1 � C2ð Þ
C1

� 100

C1 = initial total chromium concentration (in solution)

and C2 = final total chromium concentration (in solution).

Artificial neural network (ANN)-based modelling

Like the linear and polynomial approximation (regression)

methods, a neural network relates a set of input variables

{xi}, i = 1, 2,…, k, to a set of one or more output vari-

ables,{yj}, j = 1, 2,…, k. The difference between a neural

network and the other regression methods is that the neural

network makes use of one or more hidden layers, in which

the input variables are squashed or transformed by a special

function, known as a logistic or sigmoid/log-sigmoid

transformation [42]. ANN explanation in this section and

the following section has directly been adapted from

McNelis [42].

Feedforward networks

Figure 1 illustrates the architecture on a neural network

with one hidden layer containing two neurons, three input

variables {xi}, i = 1, 2, 3,…, and one output y. We see

parallel processing. In addition to the sequential pro-

cessing of typical linear systems, in which only observedFig. 1 Feedforward neural network
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inputs are used to predict an observed output by

weighting the input neurons, the two neurons in the hid-

den layer process the inputs in a parallel fashion to

improve the predictions. The connectors between the

input variables, often called input neurons, and the neu-

rons in the hidden layer, as well as the connectors

between the hidden layer neurons and the output variable,

or output neuron, are called synapses. The following

equations describe this network

nk ¼ xk þ
Xi�

i¼0

xkxi

Nk ¼ L nkð Þ ¼ 1

1 þ e�nk

y ¼ c0 þ
Xk�

k¼1

ckNk

where L(nk) represents the log-sigmoid activation func-

tion. In this system, there are i* variables {x} and k*

neurons. A linear combination of these input variables

{xi}, i = 1, 2,…, i*, with the coefficient vector or set of

input weights xk,i, i = 1, 2,…, i*, as well as the constant

term, xk,0, forms the variable nk. This variable is squa-

shed by the logistic function and becomes a neuron Nk.

The set of k* neurons are combined in a linear way with

the coefficient vector fckg; k ¼ 1; 2; . . .; k� and taken with

a constant term c0, to form the output y. The feedforward

network coupled with the log-sigmoid activation functions

is also known as the multilayer perceptron or MLP net-

work. It is the basic workhorse of the neural network

approach. In the present study, i* = 5, in which, x1, x2, x3,

x4, and x5 are pH, temperature, dose of nanoparticles,

initial pollutant concentration, and time, respectively. The

number of neurons in the hidden layer has been taken as

n = 20.

For finding the set of coefficients or weights X ¼
xk;i; ck

� �
in a network with a single hidden layer, we

minimize the loss function W, defined as the sum of

squared differences between the actual observed output y

and ŷ, and the output predicted by the network:

minW Xð Þ ¼
XT

t¼1

yt � ŷtð Þ2

ŷt ¼ f xt;Xð Þ

where T is the number of observations of the output vector

y and f(xt; X) is a representation of the neural network.

Clearly, W(X) is a nonlinear function of X. All nonlinear

optimizations start with an initial gue of the solution, X0,

and search for better solutions, until finding the best pos-

sible solution within a reasonable amount of searching. In

this study, Levenberg–Marquardt back propagation tech-

nique has been used for searching the solutions [43].

Result and discussion

Magnetic removal of CSO-INPs/Cr aggregate

from the spiked water

The synthesized CSO-INPs were found to be homoge-

neously spherical in shape, having an average diameter of

9.1 ± 2.3 nm. CSO-INPs were found to be colloidally

stable at various pH, making them suitable for environ-

mental stable [23]. Figure 2a shows the deflected aggregate

of CSO-INPs/Cr under the influence of an external mag-

netic field. TEM image of the deflected aggregates in

Fig. 2b indicates that no morphological changes took place

in CSO-INPs due to the adsorption of the chromium ion on

the surface. Elemental mapping by TEM–EDX (JEOL

2100F) confirms the presence of Cr ion on the CSO-INPs

Fig. 2 a Nanoparticles–heavy metal aggregated mass deflected under magnetic field. b TEM image of deflected nanoparticles–heavy metal

aggregate. c Elemental mapping of CSO-INPs/chromium aggregate
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aggregate (shown with red dots in Fig. 2c). The analysis of

SEM–EDX (Zeiss EVO40; Fig. 3b) also confirms the

presence of chromium on the deflected aggregate of CSO-

INPs along with the spectral signatures of the constituent

elements of CSO-INPs. SEM–EDX spectra of the control

sample (untreated with chromium in Fig. 3a) show the

presence of the constituent elements of the CSO-INPs

having silane as a covalent linker (C, O, N, Si, and Fe).

Interaction of CSO-INPs with anionic chromium (exist

CrO4
2-, HCrO4-, and Cr2O7

2 form at pH 6–8) could be

attributed to the metal–nanoparticles complex formation

through protonated –NH2 and anionic metal through the

process of chelation, adsorption, ion exchange/electrostatic

attraction [44], by the formation of tertiary complex [45]

and adsorption

ANN modelling and validation

In ANN modelling, 60% of the experimental data have

been used for building up the ANN model, 20% data have

been kept for validation purpose, and rest 20% data have

been used purely for testing. Figure 4 shows the com-

parison between experimental and model simulated val-

ues. Figure 4a–c clearly indicates a strong correlation

(*0.99) between experimental and model simulated val-

ues of Cr removal efficiency for the training, validation as

well as the test data cases. The subsequent sections dis-

cuss the effect of various factors (pH, dose, temperature,

initial pollutant concentration, and time) on Cr removal

efficiency based on both the ANN model simulations and

experimental results.

Fig. 3 a SEM–EDX elemental

analysis of magnetically CSO-

INPs aggregate (control).

b SEM–EDX elemental analysis

of CSO-INPs/chromium

aggregate
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Batch experiments and ANN Model to evaluate Cr

removal efficiency of CSO-INPs

The batch experiments were performed to evaluate the Cr

removal efficiency of CSO-INPs at different pH (2, 3, 5, 8,

10), for different doses of CSO-INPs (0.1, 0.3, 0.5, 0.9,

1.0 mg/ml) at different temperatures (28, 38 �C) and for

different initial pollutant (Cr) concentrations (10, 20 ppm).

Once the ANN model has been prepared and validated as

discussed in ‘‘ANN modelling and validation’’ section, the

ANN simulation has been carried out to obtain the Cr

removal efficiency for varying inputs pH (2, 3, 4, 5, 6, 7, 8,

9, 10), CSO-INPs doses (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1 mg/ml), initial pollutant concentrations (10, 15, 20,

25, 30, 35 ppm), temperatures (20, 25, 28, 30, 35, 38, 40,

45 �C). The following sections discuss the effect of pH,

CSO-INPs doses, and temperature on Cr removal effi-

ciency of CSO-INPs on the basis of both the batch

experiments and the ANN simulation.

Effect of pH on percentage removal of total Cr

The effect of pH on the Cr removal efficiency has been

examined at various pH (2, 3, 5, 8, 10). Figure 5 shows the

experimental results of variation in percentage Cr removal

efficiency with different pH at 28 �C temperature,

nanoparticles dose of 0.5 mg/ml for initial Cr concentration

of 20 ppm after time 60 min. To get more insight into the

results, the ANN simulated values of Cr removal efficiency

are shown in Fig. 6.

Both the results clearly indicate that the pH plays an

important role to determine the Cr removal efficiency.

Figures 5 and 6 clearly show that, in general, with increase

in pH, Cr removal efficiency decreases. However, removal

efficiency at pH 3 was observed greater than at pH 2

(Fig. 5). ANN-based model simulation (Fig. 6) shows high

efficiency at pH 2 and 3; notably, at pH 3, higher efficiency

could be achieved at lower dose (0.6–0.7 mg/ml). Here,

ANN-based model outcomes provide additional insight

about the multifactor dependence of the CSO-INPs

removal potential. pH of solution not only determines the

surface charge of the nanoparticles, but also the oxidation

state of heavy metal pollutant. This may be attributed to

deprotonation of the amino group of chitosan coating on

iron oxide nanoparticles. Below the pKa value of chitosan,

the sorbent is positively charged, while the chromium

anions in solutions are negatively charged. This leads to an

electrostatic attraction between the two. Above the pKa,

the chitosan will be less protonated or neutral, and hence,

Cr removal is reduced at pH higher than the pKa. Results

corroborate maximum capture efficiency at pH 3, as below

this pH, Cr exists in solution in the form of H2CrO4 the

strong competition for adsorption sites between H2CrO4

and protons [27].

Effect of nanoparticles dose on Cr removal efficiency

Varying dose of CSO-INPs (0.1, 0.3, 0.5, and 1 mg/ml)

was treated for different time interval (10, 20, 30, 40, 50,

60 min) at different pH (2, 3, 5, 8, 10) and temperature (28,

38 �C), to illustrate the effect of CSO-INPs doses on the

adsorption of Cr ions from the aqueous solution. ANN

simulation has been done for CSO-INPs doses (0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 mg/ml) at different pH (2,

3, 4, 5, 6, 7, 8, 9, 10) and different initial Cr concentration

Fig. 4 ANN validation: from top left, top right to bottom left and

bottom right a training: experimental versus simulated output,

b validation experimental versus validation output, c testing: exper-

imental versus testing output, d all: experimental versus model output

Fig. 5 Percentage Cr removal efficiency of CSO-INP at various pH

(2, 3, 5, 8, 10) of chromium spiked water sample at temperature

28 �C, nanoparticles dose 0.5 mg/ml, initial pollutant conc 20 ppm,

and time 60 min
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(10, 15, 20, 25, 30, 35 ppm). Figure 7 shows the experi-

mental results of the dose-dependent Cr removal efficiency

at different CSO-INPs doses while Fig. 8 shows the ANN

simulated results of removal efficiency for different CSO-

INPs doses at temperature 28 �C after time 60 min.

Cr removal efficiency of CSO-INPs was found to be

increased with the increase in the concentration of adsor-

bent (CSO-INPs) dosage in Figs. 7 and 8. This may be

attributed to the increase in overall surface area of the

adsorbent (CSO-INPs) which, in turn, increases the number

of pollutant (Cr) binding sites. However, Fig. 7 also reveals

that after a fixed time there is no significant increase in

capture efficiency, which may be due to saturation of all

binding sites with the pollutant.

ANN model output shows a correlation trend with the

experimental values. Higher removal efficiency of CSO-

INPs could be observed at higher doses (0.9, 1 mg/ml) of

nanoparticles. However, for an economically efficient

remediation process, a minimum dose of adsorbent with

higher removal efficiency is desirable. ANN-based output

clearly indicates that the higher removal efficiency could

be obtained at low-dose condition (0.5 mg/ml) assisted by

low pH condition (2 and 3) and moderate temperature

(25–30 �C; Figs. 6, 8).

Effect of effective temperature on percentage adsorption

efficiency

Experiments were carried out to evaluate the impact of

different temperature conditions on the Cr removal effi-

ciency of CSO-INPs. The batch experiments were con-

ducted at 28 and 38 �C for the different doses of CSO-INPs

Fig. 6 ANN simulation: Cr removal efficiency versus initial Cr concentration and nanoparticles dose at a pH 2, b pH 3, c pH 6, and d pH 8

Fig. 7 Percentage Cr removal efficiency for different doses of CSO-

INPs (0., 1, 0.3, 0.5, 1 mg/ml) at temperature 28 �C and pH 3
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(0.1, 0.3 0.5, and 1 mg/ml) and different pH (2, 3, 5, 8, 10)

conditions for different time interval (10, 20, 30, 40, 50,

60 min). ANN simulation has been carried out to obtain the

Cr removal efficiency for different temperatures conditions

(20, 25, 28, 30, 35, 38, 40, 45 �C) at varying inputs pH (2,

3, 4, 5, 6, 7, 8, 9, 10), CSO-INPs doses (0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1 mg/ml), initial pollutant concen-

trations (10, 15, 20, 25, 30, 35 ppm). Figure 9 indicates

that an increase in temperature induces higher Cr removal

efficiency. Figure 10a–d shows the ANN simulation of Cr

removal efficiency for a wider range of temperatures (25,

28, 30, 38 �C). The ANN model outcome also shows the

similar trend. The increase in Cr removal efficiency with an

increase in temperature may be attributed to an increase in

colliding frequency between Cr with the CSO-INPs at

higher temperature [25] that ultimately results into an

increase in the value of rate constant leading to the higher

adsorption at active sites of CSO-INPs.

Effect of time of contact on percentage Cr removal

efficiency

The results in Figs. 7 and 9 indicate that the Cr removal

efficiency varies with time at a given pH, temperature,

CSO-INPs dose, and initial Cr concentration. It can be seen

that the rate of Cr uptake was initially quite slow, followed

by high removal rate then gradually attaining an equilib-

rium condition. Major amount of the Cr gets removed

during the first 50 min of the reaction attaining a saturation

by 60 min. It may be hypothesized that by 60 min, all

active sites of CSO-INPs get occupied by the heavy metals.

Fig. 8 ANN simulation: effect of CSO-INPs dose on Cr removal efficiency at different initial Cr concentration (10, 15, 20, 25, 30 ppm) and

different pH conditions a pH 2, b pH 3, c pH 6, and d pH 8

Fig. 9 Percentage Cr removal efficiency of CSO-INP at different

temperature (28 and 38 �C) of the sample
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Conclusion

The results of batch experiments reveal the potential

application of CSO-INPs for the magnetic removal of the

Cr from the contaminated aqueous system. The batch

experiments and the ANN simulation explain the effect of

various factors (pH, temperature, CSO-INPs dose, and

time) on the Cr removal efficiency of CSO-INPs. The

higher Cr removal efficiency has been observed at low pH,

higher dose of CSO-INPs. The ANN simulation further

gives us a set of desired conditions (pH 3, CSO-INPs

dose = 0.7 mg/ml, temperature = 28–30 �C, time = 60 -

min) to achieve an optimum Cr removal efficiency of CSO-

INPs. The present study suggests that the CSO-INPs can be

successfully used for the treatment of the Cr-contaminated

aqueous system. Further research should be carried out to

investigate the sorption of Cr in the presence of other

component of natural system for the application of CSO-

INPs for the removal of heavy metals in different envi-

ronmental matrices.
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