Skip to main content
Log in

Graphene and its derivatives as support system ingredient for bone fracture repair

  • Review Article
  • Published:
Graphene and 2D Materials Aims and scope Submit manuscript

Abstract

Among different strategies for the treatment of bone-related abnormalities, bone regeneration or replacement has been accepted as most successful. However, much attention is required for the creation of artificial bone implants. Although there are still many obstacles to overcome before safe and dependable clinical applications are realized, remarkable progress in tissue engineering has showed considerable promise in bone repair. This review explores the potential of graphene and its derivatives as superior scaffolds in the field of bone tissue engineering, highlighting their adaptable physical, chemical, and biological properties. A primer on the characteristics of graphene and its analogues is presented here with further fascinating advancement and challenges in bone tissue engineering with focus on their applicability in fabricating bone support system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  2. Habibovic P (2017) Strategic directions in osteoinduction and biomimetics. Tissue Eng Part A 23:1295–1296

    Article  Google Scholar 

  3. Perez JR, Kouroupis D, Li DJ, et al (2018) Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol 6

  4. Clynes MA, Harvey NC, Curtis EM et al (2020) The epidemiology of osteoporosis. Br Med Bull 133:105–117

    Google Scholar 

  5. Arvidson K, Abdallah BM, Applegate LA et al (2011) Bone regeneration and stem cells. J Cell Mol Med 15:718–746

    Article  CAS  Google Scholar 

  6. Wang P, Zhao L, Liu J et al (2014) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:1–13

    Article  Google Scholar 

  7. Willie BM, Petersen A, Schmidt-Bleek K et al (2010) Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach? Soft Matter 6:4976

    Article  CAS  Google Scholar 

  8. Killington K, Mafi R, Mafi P et al (2018) A systematic review of clinical studies investigating mesenchymal stem cells for fracture non-union and bone defects. Curr Stem Cell Res Ther 13:284–291

    Article  CAS  Google Scholar 

  9. Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72:577–591

    Article  CAS  Google Scholar 

  10. Saltzman WM, Saltzman WM (2004) Tissue engineering: engineering principles for the design of replacement organs and tissues. Oxford University Press, Oxford

    Book  Google Scholar 

  11. Fu Q, Saiz E, Rahaman MN et al (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256

    Article  CAS  Google Scholar 

  12. Asnaghi A, Macchiarini P, Mantero S (2009) Tissue engineering toward organ replacement: a promising approach in airway transplant. Int J Artif Organs 32:763–768

    Article  Google Scholar 

  13. Haas NP (2000) Callusmodulation – Fiktion oder Realität? Chir 71:987–988

    Article  CAS  Google Scholar 

  14. Minas T, Peterson L (1999) Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 18:13–44

    Article  CAS  Google Scholar 

  15. Wu G-H, Hsu S (2015) Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng 35:285–292

    Article  Google Scholar 

  16. Sah MK, Rath SN (2016) Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater Sci Eng C 67:807–821

    Article  CAS  Google Scholar 

  17. Aggarwal A, Sah MK (2021) Chapter Three: Electrospun materials as scaffolds in tissue engineering and regenerative medicine, In: Kasoju N, Ye H (eds), Biomedical applications of electrospinning and electrospraying, Woodhead Publishing, 83–121

  18. Spain Tl, Agrawal CM, Athanasiou KA (1998) New technique to extend the useful life of a biodegradable cartilage implant. Tissue Eng 4:343–352

  19. Ghorbel H, Guidara A, Guidara R et al (2020) Assessment of the addition of Fluorapatite-alumina coating for a durable adhesion of the interface prosthesis/bone cells: implementation in vivo. J Med Biol Eng 40:158–168

    Article  Google Scholar 

  20. Filippi M, Born G, Chaaban M, et al. (2020) Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 8

  21. Oladeji LO, Stannard JP, Cook CR et al (2017) Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med 45:2797–2803

    Article  Google Scholar 

  22. Du Z, Feng X, Cao G et al (2021) The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism. Bioact Mater 6:333–345

    CAS  Google Scholar 

  23. Wang Q, Yan J, Yang J et al (2016) Nanomaterials promise better bone repair. Mater Today 19:451–463

    Article  CAS  Google Scholar 

  24. Du Z, Wang C, Zhang R et al (2020) Applications of graphene and its derivatives in bone repair: advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int J Nanomed 15:7523–7551

    Article  CAS  Google Scholar 

  25. Eivazzadeh-Keihan R, Maleki A, de la Guardia M et al (2019) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201

    Article  CAS  Google Scholar 

  26. Li G, Zhou T, Lin S et al (2017) Nanomaterials for craniofacial and dental tissue engineering. J Dent Res 96:725–732

    Article  CAS  Google Scholar 

  27. Katz JL, Meunier A (1987) The elastic anisotropy of bone. J Biomech 20:1063–1070

    Article  CAS  Google Scholar 

  28. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  CAS  Google Scholar 

  29. Cheng J, Liu J, Wu B, et al. (2021) Graphene and its derivatives for bone tissue engineering: in vitro and in vivo evaluation of graphene-based scaffolds, membranes and coatings. Front Bioeng Biotechnol 9

  30. Ho-Shui-Ling A, Bolander J, Rustom LE et al (2018) Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180:143–162

    Article  CAS  Google Scholar 

  31. Iaquinta MR, Mazzoni E, Manfrini M et al (2019) Innovative biomaterials for bone regrowth. Int J Mol Sci 20:618

    Article  CAS  Google Scholar 

  32. Rahat Rahman M, Rashid MdM, Islam MdM et al (2019) Electrical and chemical properties of graphene over composite materials: a technical review. Mater Sci Res India 16:142–163

    Article  Google Scholar 

  33. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  34. Young RJ, Kinloch IA, Gong L et al (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476

    Article  CAS  Google Scholar 

  35. Gao C, Feng P, Peng S et al (2017) Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 61:1–20

    Article  CAS  Google Scholar 

  36. Trusek A, Kijak E, Granicka L (2020) Graphene oxide as a potential drug carrier: chemical carrier activation, drug attachment and its enzymatic controlled release. Mater Sci Eng C 116:111240

    Article  CAS  Google Scholar 

  37. Chung C, Kim Y-K, Shin D et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Article  CAS  Google Scholar 

  38. Loh KP, Bao Q, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  CAS  Google Scholar 

  39. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  40. Smith AT, LaChance AM, Zeng S et al (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1:31–47

    Article  Google Scholar 

  41. Priyadarsini S, Mohanty S, Mukherjee S et al (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem 8:123–137

    Article  CAS  Google Scholar 

  42. Dash BS, Jose G, Lu Y-J et al (2021) Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int J Mol Sci 22:2989

    Article  CAS  Google Scholar 

  43. Yuan Q, Lin C-T, Chee KWA (2019) All-carbon devices based on sp2-on-sp3 configuration. APL Mater 7:030901

    Article  Google Scholar 

  44. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  45. Rao CNR, Sood AK, Subrahmanyam KS et al (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  46. Shin YC, Bae J-H, Lee JH et al (2022) Enhanced osseointegration of dental implants with reduced graphene oxide coating. Biomater Res 26:11

    Article  CAS  Google Scholar 

  47. Du X, Skachko I, Barker A et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495

    Article  CAS  Google Scholar 

  48. Gómez-Navarro C, Weitz RT, Bittner AM et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  Google Scholar 

  49. Karki N, Tiwari H, Tewari C et al (2020) Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J Mater Chem B 8:8116–8148

    Article  CAS  Google Scholar 

  50. Hu M, Mi B (2014) Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Membr Sci C, 80–87

  51. Medhekar NV, Ramasubramaniam A, Ruoff RS et al (2010) Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4:2300–2306

    Article  CAS  Google Scholar 

  52. Zhang N, Cong X (2018) Enhanced nonlinear absorption performance of reduced graphene oxide nanohybrid covalently functionalized by porphyrin via 1,3-dipolar cycloaddition. Mater Sci Appl 9:972–984

    CAS  Google Scholar 

  53. Song P, Xu Z, Wu Y et al (2017) Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π–π stacking and hydrogen bonding. Carbon 111:807–812

    Article  CAS  Google Scholar 

  54. Cheng J, Liu J, Wu B et al (2021) Graphene and its derivatives for bone tissue engineering: In vitro and in vivo evaluation of graphene-based scaffolds, membranes and coatings. Front Bioeng Biotechnol 9:734688

    Article  Google Scholar 

  55. Shin SR, Li Y-C, Jang HL et al (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274

    Article  CAS  Google Scholar 

  56. Daneshmandi L, Barajaa M, Tahmasbi Rad A et al (2021) Graphene-based biomaterials for bone regenerative engineering: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation. Adv Healthc Mater 10:2001414

    Article  CAS  Google Scholar 

  57. Banerjee AN (2018) Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 8:20170056

    Article  Google Scholar 

  58. Cheng X, Wan Q, Pei X (2018) Graphene family materials in bone tissue regeneration: perspectives and challenges. Nanoscale Res Lett 13:289

    Article  Google Scholar 

  59. Hermenean A, Codreanu A, Herman H et al (2017) Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects. Sci Rep 7:16641

    Article  Google Scholar 

  60. Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678

    Article  CAS  Google Scholar 

  61. Shadjou N, Hasanzadeh M (2016) Graphene and its nanostructure derivatives for use in bone tissue engineering: recent advances. J Biomed Mater Res A 104:1250–1275

    Article  CAS  Google Scholar 

  62. Georgakilas V, Tiwari JN, Kemp KC et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  CAS  Google Scholar 

  63. Bahrami S, Baheiraei N, Shahrezaee M (2021) Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci Rep 11:16783

    Article  CAS  Google Scholar 

  64. Pei B, Wang W, Dunne N et al (2019) Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials 9:1501

    Article  CAS  Google Scholar 

  65. Bruschi A, Donati DM, Choong P et al (2021) Dielectric elastomer actuators, neuromuscular interfaces, and foreign body response in artificial neuromuscular prostheses: a review of the literature for an in vivo application. Adv Healthc Mater 10:2100041

    Article  CAS  Google Scholar 

  66. Driscoll J, Moirangthem A, Yan IK, et al (2021) Fabrication and characterization of a biomaterial based on extracellular-vesicle functionalized graphene oxide. Front Bioeng Biotechnol 9

  67. Gu M, Liu Y, Chen T et al (2014) Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng Part B Rev 20:477–491

    Article  CAS  Google Scholar 

  68. Pahlevanzadeh F, Ebrahimian-Hosseinabadi M (2019) Poly (methyl methacrylate)/biphasic calcium phosphate/nano graphene bone cement for orthopedic application. J Med Signals Sens 9:33–41

    Article  Google Scholar 

  69. Chen J, Zhang X, Cai H et al (2016) Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: preparation and in vitro evaluation. Colloids Surf B Biointerfaces 147:397–407

    Article  CAS  Google Scholar 

  70. Kaur T, Thirugnanam A, Pramanik K (2017) Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering. Mater Today Commun 12:34–42

    Article  CAS  Google Scholar 

  71. Tavafoghi M, Brodusch N, Gauvin R et al (2016) Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface 13:20150986

    Article  CAS  Google Scholar 

  72. Paz E, Ballesteros Y, Forriol F et al (2019) Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements. Mater Sci Eng C 104:109946

    Article  CAS  Google Scholar 

  73. Vuppaladadium SSR, Agarwal T, Kulanthaivel S et al (2020) Silanization improves biocompatibility of graphene oxide. Mater Sci Eng C 110:110647

    Article  CAS  Google Scholar 

  74. Sun J, Deng Y, Li J et al (2016) A new graphene derivative: hydroxylated graphene with excellent biocompatibility. ACS Appl Mater Interfaces 8:10226–10233

    Article  CAS  Google Scholar 

  75. Lu J, Cheng C, He Y-S et al (2016) Multilayered graphene hydrogel membranes for guided bone regeneration. Adv Mater Deerfield Beach Fla 28:4025–4031

    Article  CAS  Google Scholar 

  76. Cheng J, Liu H, Zhao B et al (2015) MC3T3-E1 preosteoblast cell-mediated mineralization of hydroxyapatite by poly-dopamine-functionalized graphene oxide. J Bioact Compat Polym 30:289–301

    Article  CAS  Google Scholar 

  77. Jia Z, Shi Y, Xiong P et al (2016) From solution to biointerface: graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation. ACS Appl Mater Interfaces 8:17151–17165

    Article  CAS  Google Scholar 

  78. Padmavathy N, Jaidev LR, Bose S et al (2017) Oligomer-grafted graphene in a soft nanocomposite augments mechanical properties and biological activity. Mater Des 126:238–249

    Article  CAS  Google Scholar 

  79. Sharma R, Kapusetti G, Bhong SY et al (2017) Osteoconductive amine-functionalized graphene–poly(methyl methacrylate) bone cement composite with controlled exothermic polymerization. Bioconjug Chem 28:2254–2265

    Article  CAS  Google Scholar 

  80. Liu X, Ma D, Tang H et al (2014) Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS Appl Mater Interfaces 6:8173–8183

    Article  CAS  Google Scholar 

  81. Dou C, Ding N, Luo F et al (2018) Graphene-based MicroRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci 5:1700578

    Article  Google Scholar 

  82. Eckhart KE, Holt BD, Laurencin MG et al (2019) Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater Sci 7:3876–3885

    Article  CAS  Google Scholar 

  83. Li K, Zhang Z, Li D et al (2018) Biomimetic ultralight, highly porous, shape-adjustable, and biocompatible 3D graphene minerals via incorporation of self-assembled peptide nanosheets. Adv Funct Mater 28:1801056

    Article  Google Scholar 

  84. Kang E-S, Kim D-S, Han Y et al (2018) Three-dimensional graphene–RGD peptide nanoisland composites that enhance the osteogenesis of human adipose-derived mesenchymal stem cells. Int J Mol Sci 19:669

    Article  Google Scholar 

  85. Kim K-H, No Y-S (2017) Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices. Nano Converg 4:32

    Article  Google Scholar 

  86. Zhang W, Yang G, Wang X et al (2017) Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration. Adv Mater 29:1703795

    Article  Google Scholar 

  87. Yao Q, Liu Y, Sun H (2018) Heparin–dopamine functionalized graphene foam for sustained release of bone morphogenetic protein-2. J Tissue Eng Regen Med 12:1519–1529

    Article  CAS  Google Scholar 

  88. Rajan Unnithan A, Ramachandra Kurup Sasikala A, Park CH et al (2017) A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J Ind Eng Chem 46:182–191

    Article  CAS  Google Scholar 

  89. Sun H, Zhang L, Xia W et al (2016) Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate. Appl Phys A 122:632

    Article  Google Scholar 

  90. Liang C, Luo Y, Yang G et al (2018) Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells. Nanoscale Res Lett 13:15

    Article  Google Scholar 

  91. Weng W, Nie W, Zhou Q et al (2017) Controlled release of vancomycin from 3D porous graphene-based composites for dual-purpose treatment of infected bone defects. RSC Adv 7:2753–2765

    Article  CAS  Google Scholar 

  92. Qiu J, Guo J, Geng H et al (2017) Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon 125:227–235

    Article  CAS  Google Scholar 

  93. Lyu H, He Z, Chan YK et al (2019) Hierarchical ZnO nanotube/graphene oxide nanostructures endow pure Zn implant with synergistic bactericidal activity and osteogenicity. Ind Eng Chem Res 58:19377–19385

    Article  CAS  Google Scholar 

  94. Shahin M, Munir K, Wen C et al (2020) Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J Alloys Compd 828:154461

    Article  CAS  Google Scholar 

  95. Zhao Y, Chen J, Zou L et al (2019) Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem Eng J 378:122174

    Article  CAS  Google Scholar 

  96. Oğuz ÖD, Ege D (2019) Preparation of graphene oxide-reinforced calcium phosphate/calcium sulfate/methylcellulose-based injectable bone substitutes. MRS Commun 9:1174–1180

    Article  Google Scholar 

  97. Dhavale VM, Singh SK, Nadeema A et al (2015) Nanocrystalline Fe–Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction. Nanoscale 7:20117–20125

    Article  CAS  Google Scholar 

  98. Li J, Jiang H, Ouyang X et al (2016) CaCO3/tetraethylenepentamine–graphene hollow microspheres as biocompatible bone drug carriers for controlled release. ACS Appl Mater Interfaces 8:30027–30036

    Article  CAS  Google Scholar 

  99. Tang J, Cao W, Zhang Y et al (2019) Properties of vaterite-containing tricalcium silicate composited graphene oxide for biomaterials. Biomed Mater 14:045004

    Article  CAS  Google Scholar 

  100. Dai C, Li Y, Pan W et al (2020) Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration. ACS Biomater Sci Eng 6:575–586

    Article  CAS  Google Scholar 

  101. Li J, Liu X, Tomaskovic-Crook E et al (2019) Smart graphene-cellulose paper for 2D or 3D “origami-inspired” human stem cell support and differentiation. Colloids Surf B Biointerfaces 176:87–95

    Article  CAS  Google Scholar 

  102. Liu S, Zhou C, Mou S et al (2019) Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater Sci Eng C 105:110137

    Article  CAS  Google Scholar 

  103. Zhang D, Wu X, Chen J et al (2018) The development of collagen based composite scaffolds for bone regeneration. Bioact Mater 3:129–138

    Google Scholar 

  104. Unagolla JM, Jayasuriya AC (2019) Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Mater Sci Eng C 102:1–11

    Article  CAS  Google Scholar 

  105. Bhusari SA, Sharma V, Bose S et al (2019) HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. J R Soc Interface 16:20180273

    Article  Google Scholar 

  106. Feng Z, Li Y, Hao L et al (2019) Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds. J Nanomater 2019:e9710264

    Article  Google Scholar 

  107. Liu C, Wong HM, Yeung KWK et al (2016) Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers 8:287

    Article  Google Scholar 

  108. Mahdavi R, Belgheisi G, Haghbin-Nazarpak M et al (2020) Bone tissue engineering gelatin–hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. J Mater Sci Mater Med 31:97

    Article  CAS  Google Scholar 

  109. Dalgic AD, Alshemary AZ, Tezcaner A et al (2018) Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. J Biomater Appl 32:1392–1405

    Article  CAS  Google Scholar 

  110. Lee JH, Shin YC, Lee S-M et al (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:18833

    Article  CAS  Google Scholar 

  111. Purohit SD, Bhaskar R, Singh H et al (2019) Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol 133:592–602

    Article  CAS  Google Scholar 

  112. Zhou K, Yu P, Shi X et al (2019) Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano 13:9595–9606

    Article  CAS  Google Scholar 

  113. Wang W, Caetano G, Ambler WS et al (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9:992

    Article  Google Scholar 

  114. Wang W, Junior JRP, Nalesso PRL et al (2019) Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Mater Sci Eng C 100:759–770

    Article  CAS  Google Scholar 

  115. Șelaru A, Herman H, Vlăsceanu GM et al (2022) Graphene-oxide porous biopolymer hybrids enhance in vitro osteogenic differentiation and promote ectopic osteogenesis in vivo. Int J Mol Sci 23:491

    Article  Google Scholar 

  116. Yang Z, Liu J, Liu J et al (2021) Investigation on physicochemical properties of graphene oxide/nano-hydroxyapatite composites and its biomedical applications. J Aust Ceram Soc 57:625–633

    Article  CAS  Google Scholar 

  117. Nosrati H, Le DQS, Emameh RZ, et al (2019) Characterization of the precipitated dicalcium phosphate dehydrate on the graphene oxide surface as a bone cement reinforcement

  118. Saravanan S, Chawla A, Vairamani M et al (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104:1975–1985

    Article  CAS  Google Scholar 

  119. Wu X, Zheng S, Ye Y et al (2018) Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit. Biomater Sci 6:1147–1158

    Article  CAS  Google Scholar 

  120. Kolanthai E, Sindu PA, Khajuria DK et al (2018) Graphene oxide—a tool for the preparation of chemically crosslinking free alginate–chitosan–collagen scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 10:12441–12452

    Article  CAS  Google Scholar 

  121. Chu J, Shi P, Yan W et al (2018) PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale 10:9547–9560

    Article  CAS  Google Scholar 

  122. Guo W, Wang S, Yu X et al (2016) Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 8:1897–1904

    Article  CAS  Google Scholar 

  123. Zhou C, Liu S, Li J et al (2018) Collagen functionalized with graphene oxide enhanced biomimetic mineralization and in situ bone defect repair. ACS Appl Mater Interfaces 10:44080–44091

    Article  CAS  Google Scholar 

  124. Yang K, Li Y, Tan X et al (2013) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492–1503

    Article  CAS  Google Scholar 

  125. Iannazzo D, Pistone A, Ziccarelli I et al (2018) Chapter 8: Graphene-based materials for application in pharmaceutical nanotechnology. In: Grumezescu AM (ed) Fullerens. William Andrew Publishing, Graphenes and Nanotubes, pp 297–329

    Google Scholar 

  126. Duch MC, Budinger GRS, Liang YT et al (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11:5201–5207

    Article  Google Scholar 

  127. Tahriri M, Del Monico M, Moghanian A et al (2019) Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C 102:171–185

    Article  CAS  Google Scholar 

  128. Liu Z, Davis C, Cai W et al (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 105:1410–1415

    Article  CAS  Google Scholar 

  129. Dasari Shareena TP, McShan D, Dasmahapatra AK et al (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett 10:53

    Article  Google Scholar 

  130. Geetha Bai R, Muthoosamy K, Manickam S et al (2019) Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 14:5753–5783

    Article  Google Scholar 

  131. Ruiz ON, Fernando KAS, Wang B et al (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Ministry of Education (MoE), Government of India, for awarding the scholarship to the initial two authors.

Funding

This review work received no particular grant support from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

SH and MKS designed the content for review work. SH and SD prepared the first draft of manuscript including figures and tables. MKS prepared the final draft of manuscript.

Corresponding author

Correspondence to Mahesh Kumar Sah.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, S., Dan, S. & Sah, M.K. Graphene and its derivatives as support system ingredient for bone fracture repair. Graphene and 2D mater 8, 43–58 (2023). https://doi.org/10.1007/s41127-023-00060-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-023-00060-8

Keywords

Navigation