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Abstract
The vulnerability of modern cars increases due to their multiple connections to the 
environment, which offers the possibility of remote attacks in the worst case with 
fatal outcome. The controller area network (CAN) is still highly used and includes 
no security features, so intrusion detection systems are a promising approach to 
secure the communication. The proposed method monitors the CAN communication 
and uses static checks to differentiate between normal and attack traffic. This ena-
bles reliable and comprehensible attack detection and achieves a detection rate up to 
100%, generating zero false alarms for the investigated data sets.

Keywords  Intrusion Detection System · Controller Area Network · Automotive

1  Introduction

Nowadays, cars include about 100 Electronic Control Units (ECUs) (Miller and 
Valasek 2014) communicating among each other to increase driving comfort and to 
fulfill safety standards. The most established communication system between these 
ECUs is the Controller Area Network (CAN). Advantages of CAN are its proven 
high functional safety and its cost and complexity savings compared to direct wir-
ing. Even ECUs which are responsible for high critical functionality like braking or 
airbag systems communicate over CAN.

The disadvantages of CAN are its vulnerability, as there are almost no security 
mechanisms built in and countermeasures are hard to include due to functionality 
and manufacturer requirements. Modern cars are highly connected to the outside 
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world, which leads to multiple remote attack vectors such as mobile broadband com-
munication, Bluetooth, or GPS. Their number will increase even more concerning 
future technologies such as V2V (Vehicle to Vehicle) and V2I (Vehicle to Infra-
structure) communications. The risks assumed from manipulated cars to people and 
the environment were shown by Miller and Valasek (2015). They are able to control 
the car through direct physical as well as remote access which in the worst case ends 
fatally for a human being.

In order to prevent damage, attack detection is an important tool. A reliable 
detection allows suitable reactions which may range from raising an alert up to set-
ting the car into a fail safe mode or shutting down the engine. For this purpose, 
Intrusion Detection Systems (IDS) are used. The challenge for IDS operating on 
CAN increases due to the variety of CAN matrices that are used and not publicly 
available. A CAN matrix encodes the messages send internally over CAN and varies 
from manufacturer to manufacturer and even within manufacturers from vehicle line 
to vehicle line.

2 � Related Work

The quality of an IDS can be evaluated on the basis of the following criteria, 
although not all possible criteria are mentioned here: the detection rate, the false 
positive rate, the applicability in real systems, which includes resource consumption 
and detection time, and the adaptability or expandability. In addition, the IDS should 
of course not represent a security risk for the system. The perfect IDS detects fast all 
possible attacks, even those which are unknown at the moment, has a false positive 
rate of zero, performs this tasks successful with a low resource budget, and is appli-
cable in real-time systems.

Many imperfect IDS approaches exist with different strengths and weaknesses 
which will be described in more detail in Sect. 2.4. First, we introduce CAN and 
important attacks related to the protocol architecture.

2.1 � Controller Area Network (CAN)

CAN was introduced by Robert Bosch GmbH in the early 1980’s to reduce the wir-
ing complexity of the automobile, where the possibility of attacks and especially 
remote attacks are not considered. CAN is a message-based broadcast protocol, 
where each message is transmitted sequentially and received by every participant on 
the bus. Only one participant can write to the bus at the same time. If more than one 
participant wants to write to the bus, the message with the highest priority, which 
is encoded in the identifier field, wins the arbitration and is allowed to transmit its 
message. CAN has a maximum signaling rate of 1 MB/s for short networks (smaller 
than 40 m), while the real bitrate depends on network length and the hardware used, 
usually around 500 KB/s for high speed CAN.

CAN has four frame types: Data frames which are used to transmit data, remote 
frames which are used to request data, error frames which are transmitted if a node 
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detects an error, and overload frames which are used to inject a delay between data 
or remote frames. Each message has a fixed format as shown in Fig. 1. Highlighted 
in green are the fields carrying the payload, while the other fields are defined by 
the protocol. The checksum is only used to detect transmission errors. The Identi-
fier (ID) in base frame format has 11 bits, and in extended frame format 29 bits. 
IDE (Identifier extension bit) denotes which format is used. DLC (Data Length 
Code) is the number of bytes in the data field with a maximum data payload of 8 
bytes in classical CAN. CAN FD introduced in 2012 allows a payload of up to 64 
bytes. Considering the basic CAN protocol described above, CAN contains no secu-
rity features. The resulting vulnerabilities are described in detail by Buttigieg et al. 
(2017) and Hartzell and Stubel (2017).

2.2 � CAN Attacks

The lack of security benefits a range of attacks targeting the CAN, shown by Nie 
et al. (2017), which can either be executed directly via physical access to the car’s 
OBD-II port (On-board Diagnostics port) or remote via different vectors, short- or 
long-range as described in Checkoway et al. (2011). As a consequence of a success-
ful attack, the hacker is able to control the lights or the dashboard as well as he is 
able to control safety-critical functions related to the basic driving behavior of the 
vehicle like braking, acceleration, or steering.

Some attacks gain information about the architecture and the behavior of the con-
nected ECUs in the car. Therefore, no specific prior knowledge is needed. Every 
manufacturer uses his own set of identifiers for the same functionality, this is 
decoded in the CAN matrix and is not even constant for every model. Thus, in-deep 
knowledge is important to perform the targeted attacks.

2.2.1 � Replay Attack

For a replay attack Hoppe et  al. (2007), no prior knowledge is needed. Observed 
messages are saved and replayed while the reaction of the system is monitored. 
Replaying only one message is possible as well as replaying a sequence of messages.

Fig. 1   CAN message format. SOF (Start of Frame), RTR (remote transmission request), IDE (identifier 
extension bit), r (reserved bit), DLC (data length code), ACK (acknowledge field), DEL (delimiters) and 
EOF (End of Frame). The green fields contain the actual information transported by the frame (colour 
figure online)
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2.2.2 � Fuzzing Attack

For a fuzzing attack either the ID or the payload of the observed messages is ran-
domly manipulated and transmitted to the CAN. By again monitoring the system 
reaction, the attacker increases their knowledge about the target (Koscher et  al. 
2010).

2.2.3 � Diagnostic Attack

Woo et  al. (2015) mentioned that the range of standard message IDs differs from 
the range used by messages from the diagnostic tools, they identified a range for 
diagnostic messages from 0 × 700 to 0 × 7FF . The data set from Dupont and Lekidis 
(2019) includes data from an Opel Astra and shows occurrences of CAN IDs fre-
quently in this range during normal driving, so the range for diagnostic messages 
depends on manufacturer and model or the concept is questionable.

2.2.4 � Spoofing Attack

If the attacker has already some knowledge about the messages and their effects, 
selected messages with specific values are transmitted to the bus to achieve the 
desired outcome. If the legitimate ECU is still active and continues to transmit its 
messages to the bus, the attacker has to deal with the reaction of legal ECUs to con-
flicting messages. Miller and Valasek (2013) executed a spoofing attack on a Ford 
Escape, where the dashboard shoes a ’door ajar’ alarm, while the door is closed.

2.2.5 � Flooding Attack

To ensure that the spoofed messages are considered while the correctly working 
ECU is still transmitting the correct messages, flooding attacks are used. In these 
attacks, the frequency of the spoofed message is much higher, usually up to 100 
times, than the transmission rate of the correct message (Miller and Valasek 2014).

2.2.6 � Denial of Service (DoS) Attack

With a DoS attack the bus is occupied, so that no participant can transmit its mes-
sages to the bus. The behavior of the car in this case is unpredictable. The easiest 
way is to send messages with the highest priority (ID 0 × 000 ) as shown by Miller 
and Valasek (2013).
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2.2.7 � Suspension Attack

For suspension attacks, the assumption is that one message ID is transmitted only 
by one ECU. This kind of attack results in missing messages with a specific ID from 
the compromised ECU, as shown by Taylor et al. (2016). Wang et al. (2018) suppose 
that IDs are used by more than one ECU, but not at the same time. The data sets 
used in this paper assume the first case for suspension attacks.

2.2.8 � Impersonating Attack

Like in case of suspension attacks the assumption here is a compromised ECU. 
This ECU stops its message transmission to CAN and manipulated messages are 
sent from another node using IDs from the compromised ECU. This attack could 
be seen as a combination of suspension and spoofing attack.

The attacks influence the transmitted CAN messages in different manner: some 
change the ID itself (fuzzing attack), or the sequence of IDs (replay, fuzzing, 
flooding, DoS, and suspension attack), some add IDs to the normal traffic (DoS 
and diagnostic attack), some influence therefore the frequency of IDs indirectly 
or directly (spoofing attack), and some influence the payload (fuzzing, spoofing, 
impersonating attack).

2.3 � Data Sets

The data set from TU Eindhoven (Dupont and Lekidis 2019) includes recorded 
CAN traffic via the OBD-II port of Opel Astra and Renault Clio driving in a 
city. In addition, they build a prototype with a VW instrument cluster, 2 Arduino 
boards with CAN bus shields and a joystick. The two Arduino boards are pro-
grammed to model either a legitimate or a compromised ECU. The legitimate 
ECU sends its messages regularly, while the compromised ECU launches certain 
attacks on the CAN bus. Additionally, the dashboard receives inputs from the joy-
stick, which represents the car’s throttle. If the joystick is pushed forward, accel-
eration is desired and CAN messages related to the speedometer are sent resulting 
in increasing speed displayed on the dashboard.

The attacks in real cars are simulated by manipulating the recorded data, 
while for the prototype, the corrupt ECU executes DoS and speedometer spoof-
ing attacks. For the real cars, each a diagnostic attack, two fuzzing attacks (one 
manipulates the ID, the other the payload), a replay, a DoS attack (with ID 
0 × 000 ), and a suspension attack are simulated.

The data set from Hacking and Countermeasures Research Labs (HCR Lab) 
(Lee et al. 2018) includes recorded CAN traffic from a Kia Soul during driving in 
a city. They executed and recorded a DoS attack with ID 0 × 000 , a fuzzing attack 
with random ID and payload, and two spoofing attacks related to revolutions per 
minute (RPM) and drive gear information (gear).
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2.4 � Related Work

Lokman and Othman (2019) and Dupont et al. (2019) summarize a wide range of 
IDS. IDS are either host-based, where the IDS is implemented in a participating 
node of the network, or network-based, where the IDS is attached as an additional 
node to the network. We focus on network-based IDS, where no internal knowl-
edge or manipulation of existing ECUs is necessary and only the traffic of the 
network is monitored. IDS could be further categorized by the techniques used 
for intrusion detection.

Specification-based IDS use a set of thresholds and rules to detect abnormal 
behavior. These specifications depend on the component supplier and the car 
model, which are not generally available to the public.

Signature-based IDS use signatures of known attacks and compare their actual 
input to these patterns to detect attacks. Obvious new attack patterns are not 
always detectable using this method, while known attacks are detected accurately.

Anomaly-based IDS use patterns to compare the actual traffic against. The 
patterns in this case describe the normal behavior of the traffic. Deviations from 
the normal behavior are then classified as anomalous. Techniques used to build 
these patterns are machine learning, statistical, or hybrid approaches. Variance of 
detection rates are very high and a direct comparison is hard as different data sets 
are used, ranging from pure synthetical data to real data including real attacks. 
Statistical approaches have the advantage of reliable and traceable alerts in con-
trast to machine learning approaches. The best solutions using machine learning 
achieve an accuracy of 100%, with a false alarm rate that is higher than zero, like 
Taylor et al. (2016). They consider fuzzing attacks on message payload as well as 
replay attacks in which the order of the messages is changed for 20 message IDs 
on data taken from a Subaru Impreza for their experiments. Analysis of the data 
sets used in this paper show, however, an amount of 27–84 different message IDs 
in normal traffic. Beneath this, nothing is said about the applicability in real cars, 
especially about the resources and the time needed for detection. According to 
the authors, further research should be conducted on extensibility, among other 
things; in the presented approach, this is not provided.

Weber et al. (2018) use a hybrid approach. In the first step, specification-based 
static checks are applied, which use the specifications from the manufacturer. 
These checks are extended in the second step with learning checks, executed on 
signal time series as produced by sensors. They use CANoe from Vector Infor-
matics together with a synthetic CAN signal showing that their approach works in 
principle. According to the authors, further evaluations of the approach should be 
realized with data from real vehicles, also with regard to the performance.

Another hybrid approach is proposed by Tariq et al. (2020). They achieve an 
accuracy of 99.45% for real car data of two different cars. They consider DoS, 
fuzzing, and replay attacks. The rule-based approach is based on ID frequency 
and hamming distance for the payload and reaches an F1-score of 99.9% for 
the Kia Soul and 98.41% for Hyundai Sonata. Additionally, they measured the 
time-delay in detection, which is for the rule-based part in average 0.073  s. As 
they only used a PC for the experiments (without any information regarding the 
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required memory), a statement regarding the operational capability in real sys-
tems is difficult to make.

Song et  al. (2016) use the message rate as feature for attack detection. They 
achieve an accuracy of 100% for real car data but only for injection attacks. The 
time for detection is stated as 1 ms, without further information about the hardware 
used. They do not consider fuzzing, suspension, and impersonating attacks. Fuzzing 
attacks that only affect the payload are undetectable with this approach.

Wu et al. (2018) proposed an approach where the entropy of message IDs in 
a sliding window is used to detect DoS and injection attacks. They achieve an 
accuracy of 100% for DoS and 92.3% for injection attacks on real car data with 
0.081 ms as response time of attack detection. Since they only use the message 
IDs for detection, they are not able to detect attacks that alter only the payload.

Zhang et al. (2018) use a two stage approach, where the first stage is a robust 
rule-based system and the second stage uses a deep neural network for anomaly 
detection. The rule-based system includes a valid ID rule and a time interval 
rule. With this they achieve an accuracy between 99.91 and 99.97% and a false 
positive rate of 0.018–0.09% for real car data with a processing time for each 
message between 0.53 and 0.61 ms on a ThinkPad T440s notebook. They con-
sider DoS, replay, spoofing, suspension, and fuzzing attacks.

If we reconsider the criteria mentioned before (detection rate, false positive 
rate, detection time, resource consumption, applicability, and expandability), 
only detection rate and false positive rate are examined by most of the authors. 
For this point of view, perfect IDS have a false positive rate of zero, detect all 
possible attacks with a detection rate of 100%, and prove this on real car data. 
None of the mentioned approaches fulfills all criteria. Some have (nearly) per-
fect detection or false positive rates while tested only with simulated data or 
only with certain attacks. A direct comparison of the mentioned approaches is 
hard because they consider different attacks and use different data sets from dif-
ferent cars, which vary among others in amount of the used IDs.

The challenge here is to detect as many attacks as possible—while the false 
positive rate has to be zero—with a system that has real-time ability on embed-
ded systems with limited resources. A method that can not fulfill this criterion is 
of no avail in practice. As well as a low false positive rate seems to be very good 
the interesting metric is the alerts per hour or better per day. Car owner which 
receives warnings every time they drive their car will ignore such alerts or will 
be frustrated. The rate of messages per second in CAN is between 8 and 17, thus 
makes up to 62,000 messages per hour. A false positive rate of 0.00001 may 
already raise one alert per hour.

Our approach shows that a systematic content-driven data analysis is much 
more effective than standard anomaly analysis approaches. With respect to the 
false positive rate, our approach is superior to those that use machine learn-
ing methods. In contrast to the rule-based approaches mentioned before, our 
approach achieves a higher detection rate and is able to detect more different 
attacks. Therefore, additional rules are developed based on analyses of the data 
sets. The basic assumptions made for this are also described by other authors 
who work on data sets for other cars. The application of the publicly available 
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data sets, Dupont and Lekidis (2019) and Lee et al. (2018), allows a comparison 
in the future, and additionally the data sets originate from real cars, providing 
the applicability in practice. To show that our approach can be used in real sys-
tems, we have created a demonstrator on a FPGA. Such a comprehensive IDS 
with demonstrated applicability in real systems has not been presented by any 
author before.

3 � Method

First, we analyzed the attack-free dumps and the dumps with attack data for the 
different data sets. Based on these analyses, in the second step, we developed 
assumptions about certain properties of the dumps that can be used to distinguish 
normal dumps from those with ongoing attacks. In the third step, we used these 
assumptions to design criteria that are used to detect attacks. In order to detect 
all the mentioned attacks, the designed criteria must consider both the ID of the 
messages and their payload. The criteria are described in more detail in Sects. 3.1 
and 3.2.

With these criteria, we implemented a framework consisting of different 
python scripts, which in a first step extracts the parameters needed for the crite-
ria from a given attack-free dump. In the second step, the framework is used to 
explore the dumps containing attacks and reports the detected attacks. The differ-
ent steps are performed automatically, first loading the complete dump and then 
following the parameter extraction, executing the attack detection with all criteria 
at the same time. Further, we designed a demonstrator with a Xilinx Zynq Z7 
Board (Zybo), where we implemented the criteria on a FPGA. The Zybo is con-
nected to a CAN bus, as well as a second FPGA, which is able to send CAN mes-
sages. The criteria are implemented as hardware-accelerated Assertion Checking 
Units (ACU), which are guided by software and thus reconfigurable. To visualize 
the detection of an attack, a LED is activated when an attack is detected. With 

Table 1   Analysis of Opel Astra

Frame quantity (FQ) describes the amount of messages contained in 
the data set, #ID denotes the amount of different IDs, the amount of 
attack frames is denoted as #AF, and Type denotes the type of the 
manipulation related with the attack

Attack FQ #ID #AF Type

Attack-free 2,690,069 84 0 –
Diagnostic 807,009 87 10 Injection
DoS 827,555 85 40,015 Injection

19,459 Deletion
FuzzID 807,009 88 10 Injection
Fuzzpay 806,999 84 10 Modification
Replay 807,026 84 27 Injection
Suspension 806,599 84 400 Deletion
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this we can demonstrate that our approach gets along with the limited resources 
and is able to react in real-time.

The basic analysis of the data sets is shown in Tables 1, 2, 3 and 4 and covers 
the number of messages (denoted as FQ (Frame Quantity)), the quantity of differ-
ent IDs (#ID), and, in case of data which includes an attack, the amount of Attack 
Frames (#AF) and the type of the manipulation (Type).   

In detail the data set from TU Eindhoven contains attack-free data for the 
Opel Astra with 84 unique IDs (see Table 1), for the Renault Clio with 55 unique 
IDs (Table 2), and for the prototype the attack-free data contains 17 unique IDs 
(Table 3), whereat no extended IDs are considered.

Table 2   Analysis of Renault 
Clio with FQ the number of 
messages, #ID the number of 
different IDs in the data set

The quantity of attack frames is denoted as #AF, and Type denotes 
the type of the manipulation related with the attack

Attack FQ #ID #AF Type

Attack-free 386,567 55 0 –
Diagnostic 115,981 58 10 Injection
DoS 141,927 56 40,001 Injection

14,045 Deletion
FuzzID 115,981 59 10 Injection
Fuzzpay 115,971 55 10 Modification
Replay 116,002 55 31 Injection
Suspension 115,472 55 499 Deletion

Table 3   Analysis of prototype 
with FQ the number of 
messages, #ID the number of 
different IDs in the data set

The quantity of attack frames is denoted as #AF, and Type denotes 
the type of the manipulation related with the attack

Attack FQ #ID #AF Type

Attack-free 100,292 17 0 –
Diagnostic 29,003 20 10 Injection
DoS 65,493 18 40,037 Injection
FuzzID 29,003 21 10 Injection
Fuzzpay 28,993 17 10 Modification
Spoof 146,109 17 5772 Injection
Suspension 28,702 17 291 Deletion

Table 4   Analysis of Kia 
Soul with FQ the number of 
messages, #Inj the quantity of 
injected attack frames and #ID 
denotes the number of different 
IDs in the data set

Attack FQ FQ clear #Inj #ID

Attack-free 988,871 988,871 – 27
DoS 3,665,771 2,774,703 587,521 28
Fuzzy 3,838,860 2,947,792 491,847 2048
Spoof-Gear 4,443,142 3,552,074 597,252 27
Spoof-RPM 4,621,702 3,730,634 654,897 27
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For the data set from HCRL, the attack-free data contain 27 unique IDs in stand-
ard identifier format with 11 bits and encompass 988,871 messages in total, see 
Table 4. In case of the data set from HCRL for the Kia Soul, we found that the attack 
dumps show a gap in time, where the attacks take place before this gap. After the 
gap follows an attack-free sequence, which is identical for all files. So we divided 
the files at this point and received therefore a second attack-free sequence. The num-
ber of remaining frames in the respective files is called “FQ clear” in Table 4. The 
second attack-free sequence includes 891,068 messages and also 27 IDs.

In comparison, it is noticeable that the attack-free data of TU Eindhoven com-
prises significantly more messages than those of the HCRL, even if the generated 
second data set is included.

In both data sets, the DoS attack is characterized by one additional ID, while the 
fuzzing attack (related to the ID) is characterized by several additional IDs as can be 
seen in the Tables 1, 2, 3 and 4. In contrast, spoofing, suspension and fuzzing attacks 
(related to the payload) do not change the number of IDs.

Overall, it can be observed that only a small number of IDs is used during normal 
driving, contrary to the 2048 IDs that are possible to encode with 11 bits. Further-
more, it shows that the number of IDs used is influenced by attacks. From this we 
derive the assumption:

Assumption 1  (Message ID) Not every possible ID is used during normal driving.

The research from Woo et al. (2015) also points to this assumption.

Fig. 2   Analysis of the frequencies of message IDs for the attack-free data from Kia Soul (HCRL)
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Thereupon, we analyzed the ID frequencies in the different attack-free data sets. 
In Fig.  2, this analysis is shown for the data from Kia Soul. A single ID occurs 
between 507 and 50,689 times in this data set. Remarkably, only five frequencies are 
found: 100, 50, 20, 10, and 1. The range of this frequencies is very small, in average 
the overall maximum time delta is 0.09s. For the data set of Opel Astra there are ten 
frequencies found with the IDs occurring between 276 and 138,277 times, and for 
Renault Clio six frequencies with occurrences between 64 and 19,255. From this we 
derive the second assumption:

Assumption 2  (ID Frequencies) IDs are sent periodically.

Researches published by Ruth et al. (2012) or Wang et al. (2018) support this 
assumption.

Because the messages are sent periodically with a certain frequency and are 
ordered due to the arbitration of the CAN protocol, the messages should also 
occur in defined sequences. The analysis of the attack-free data sets supports 
this thesis. Thus, we formulate another assumption:

Assumption 3  (ID Sequences) IDs appear in specific sequences, according to their 
content and priority of ID.

Zhang et al. (2018) confirm this assumption.
The results in Table 5 show that criteria based on the assumptions described 

above are not enough to detect all attacks included in the data sets. The prob-
lem faced by most researchers in this field is that of the lack of a communica-
tion matrix. This makes analyses of the content of the messages difficult. But 
what we can analyze without knowing the meaning of the content of the payload 
is the length and presence of certain structures in the payload. The data sets 
from TU Eindhoven and HCRL show in our analysis a fixed length for every ID 
and some messages show constant values at certain bit positions in the payload. 
From this we infer the assumption:

Assumption 4  (Payload) The payload of the messages have an internal structure.

Hanselmann et al. (2020) split the payload into so-called signals, which pro-
motes the hypothesis of the defined structure. Markovitz and Wool (2017) pre-
sented an algorithm to identify different fields in the payload, whereby they 
distinguish between constant, multi-value, and sensor/counter fields. Constant 
fields contain one value, multi-value fields contain a limited set of values (lower 
than possible for the field length), while counter/sensor fields contain values up 
to the number of values possible for the field length. According to their defini-
tion, the values of the fields representing the counters contain certain sequences. 
Likewise, this can be partially assumed for sensor fields, which must follow cer-
tain physical laws. Derived from this is the assumption:
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Assumption 5  (Payload Sequences) Values in payload fields occur in specific 
sequences.

We decided to divide the assumptions into ID-based and assumptions related 
to the payload of the messages (data-based). Assumptions 1–3 fall into the ID-
based category, while Assumptions  4 and 5 fall into the data-based category. 
The attack detection criteria resulting from this assumptions are introduced in 
detail below.

Table 5   Detailed results for the proposed approach

∑

 summarizes the amount of different attacks detected with the checks, while ND denotes the attacks 
that are not detected

Check

Attack ID
M

ID
D

Freq
T

Freq
M

DL FB
∑

ND

Opel Astra
Dia 10 1 0 1 0 0 10 0
DoS 40,015 40,015 40,015 40,015 0 0 40,015 0
FuzzID 10 0 0 0 0 0 10 0
Fuzzpay 0 0 0 0 0 10 10 0
Replay 0 27 27 27 0 0 27 0
Suspension 0 0 400 400 0 0 400 0
Renault Clio
Dia 10 0 0 0 0 0 10 0
DoS 40,001 40,001 40,001 40,001 0 0 40,001 0
FuzzID 10 0 0 0 0 0 10 0
Fuzzpay 0 0 0 0 0 10 10 0
Replay 0 31 31 31 0 0 31 0
Suspension 0 0 499 293 0 0 499 0
Prototype
Dia 10 10 0 10 0 0 10 0
DoS 40,037 40,037 40,037 40,037 0 0 40,037 0
FuzzID 10 1 0 10 0 0 10 0
Fuzzpay 0 0 0 0 0 10 10 0
Spoof 0 1072 293 791 0 5772 5772 0
Suspension 0 0 176 291 0 0 291 0
Kia Soul
DoS 587,521 575,918 551,452 563,414 0 0 587,521 0
Fuzzy 483,491 457,353 431,827 435,363 719 9356 491,847 0
Spoof-RPM 0 653,395 652,577 256,589 0 654,897 654,897 0
Spoof-Gear 0 594,823 593,814 232,405 0 0 594,823 2429
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3.1 � ID‑Based Criteria

From the assumptions described before, we derive different criteria. This subsec-
tion address the ID-based criteria, the next subsection the data-based.

Criterion for Assumption 1 (Message ID)

IDM Valid IDs
A set of IDs is identifiable, which appear during normal driving. This set is 

specific for one car model.

Criteria for Assumption 2 (ID Frequencies)

Freq
T
 : Time-based

Due to the periodicity of IDs a time range can be identified, in which IDs appear. 
By reason of arbitration the range is larger than the ID period.

Freq
M

 Message-based
Instead of using time for calculating the range, the number of messages send in 

between the appearance of messages with the same ID is used.

Criteria for Assumption 3 (ID Sequences)

ID
S
 : ID Sequences

A set of ID sequences is identifiable, which always appear together.
According to Zhang et  al. (2018), the number of sequences is too large to be 

tested for, thus we have designed the following criterion:
ID

D
 : Consecutive ID distance

The distance between consecutive IDs in normal traffic is limited.

3.2 � Data‑Based Criteria

Starting from the data-based assumptions we derived the following criteria to detect 
attacks:

Criteria for Assumption 4 (Payload)

DL: Fixed length.
The length of the payload is fixed for every ID.

FB: Fixed bits.
Inside the payload exist fields with constant values.

SC: Signal correlation.
Fields within the payload are related to each other.
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An example presented by Verma et al. (2020) is the wheel speeds of a car expressed 
in individual signals.

Criterion for Assumption 5 (Payload Sequences)

Pay
S
 : Sequences in fields

For parts of the payload (fields) sequences of ranges are identifiable, which 
appear during normal driving.

For every car model and data set we determine the parameters for the static 
checks using the attack-free dumps and execute the checks on the dumps containing 
the different attacks. For this we created a python framework, which automatically 
determines the parameters and executes the checks.

The data set from HCRL for the Kia Soul contains only a very small attack-free 
dump. Using the parameters determined from this dump, we classify normal data 
from other dumps as attack. The observed behavior was expected given the propor-
tions of attack-free data and data containing attacks. Using the second attack-free 
data set that we acquire by splitting the attack data sets, we also achieve a false 
alarm rate of zero for Kia Soul.

4 � Results

The results were determined individually for each car using our framework. First, we 
use the attack-free dumps to extract the parameters, and with these parameters, we 
perform the checks ID

M
 , ID

D
 , Freq

T
 , Freq

M
 , DL, and FB as described in Sect. 3 on 

the attack dumps.
To consider the criteria for evaluation and applicability of an IDS, besides the 

detection and the false positive rate, we implemented a demonstrator on a FPGA, 
which simulates an embedded system as it could be integrated into a vehicle, as 
described in Sect. 3 in more detail. With this demonstrator, we can attest the real-
time capabilities of our approach and the ability of adaptation. Additionally, we can 
determine the resource consumption and measure the detection time.

The overall outcome is that we generate zero false alarms, with a detection rate 
over 99.99%. Every alert generated by our approach indicates an anomaly. The 
results are depicted in detail in Table 5 and described in the following sections.

4.1 � ID‑Based Attack Detection

It is unsurprising that we can not detect fuzzing attacks related to the payload with 
ID-based checks, as in this case only a payload mutation is executed. For the data 
sets from TU Eindhoven we are able to detect all diagnostic, DoS, fuzzing (ID), 
spoofing, and replay attacks with the ID-based criteria. Suspension attacks are not 
detectable with criteria that are related to message content, as a missing message do 
not have any content. However, since the frequency of the ID changes with missing 
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messages, the frequency-based criteria are suitable for detection. We detected all 
suspension attacks included in the data sets with this criteria.

For the Kia Soul data set from HCRL, we detected all DoS attacks and most of 
the fuzzy and spoofing attacks. Only for the spoofing attack related to the driving 
gear we could not detect all of the injected messages, but the amount of not detected 
attack messages is only 0.004%. Related to all attacks this amount is even smaller.

The detection time varies from criterion to criterion. While criteria ID
M

 and ID
D
 

can decide directly when the message appears whether there is an attack, the fre-
quency-based criteria ( Freq

T
 and Freq

M
 ) can only trigger an alarm when the defined 

range is exceeded or not reached, which is not necessarily the time at which the mes-
sage with the ID should have appeared. The measured detection time with the time-
based criteria for the attacks is between 20 and 30 ms. Similar results are produced 
for the message-based frequency criterion, where the attacks are detected after 49 up 
to 65 messages. This corresponds to a range from 29 to 38 ms.

4.2 � Data‑Based Attack Detection

The data-based criteria complement the ID-based criteria. Their contribution is the 
additional detection of all fuzzing attacks related to the payload in the data sets of 
the TU Eindhoven. All injected messages in the spoofing attack in this data set are 
detected just as well by this criteria.

For Kia Soul the combination of the ID-based with the data-based checks 
detected all attacks in the fuzzy and the spoofing attack related to RPM.

The detection time for these criteria depends on the required message processing 
time, which is hardware and software dependent.

4.3 � Comparison

Compared to the IDS mentioned in Sect.  2.4, we achieve a higher detection rate, 
consider more attacks and generate fewer false alarms with our approach.

Dupont et al. (2019) published an evaluation of different approaches based on the 
same data sets as our approach. The best approaches in this evaluation reach a false 
positive rate of 0%, or close to 0 and detect every kind of attack for the Kia Soul. 
The authors state that an attack type is detected if at least one alert has been raised 
when the IDS is executed on that attack data set, thus it has to be assumed that not 
all attacks are detected. Additionally, for the data set of TU Eindhoven not every 
attack type is detected. Especially the attacks that only modify the payload are not 
detected by these approaches. If we use the metrics from Dupont et al. we are able 
to detect all types of attacks with a false positive rate of zero for both data sets. As 
the checks can be executed in parallel and need little resources the system is able to 
react in real-time. With our demonstrator, we measured the time needed to process 
the messages and detect the attack. In average the processing takes 30 μs , while the 
detection time depends, as mentioned before, on the criterion. For criteria, which 
can decide directly on a message, the detection time is 30 μs , for the frequency-based 
criteria this is in average 3 ms. The measured processing time of our implementation 
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is much faster than the 0.53 ms stated by Zhang et al. (2018) as well as we beat the 
detection time of Tariq et al. (2020), which is stated as 0.073 s.

5 � Conclusion

The proposed approach achieves a detection rate of over 99.99% while generat-
ing zero false alarms and considering a wide range of attack types. This makes the 
approach very attractive for practical usage.

Another result of this research is the question: how good are the publicly avail-
able and popular data sets of the TU and the HCRL to evaluate the quality of IDS? 
Since these data sets can be analyzed almost perfectly with so few, simple rules, 
these data sets are often used for comparison, especially for approaches based on 
machine learning (Dupont et al. 2019). The data set from TU Eindhoven in particu-
lar does not seem to be suitable for machine learning approaches, as they contain 
very few messages representing attacks in relation to the total data set.
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