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Abstract
The application of machine learning in solar physics has the potential to greatly
enhance our understanding of the complex processes that take place in the atmo-
sphere of the Sun. By using techniques such as deep learning, we are now in the
position to analyze large amounts of data from solar observations and identify pat-
terns and trends that may not have been apparent using traditional methods. This can
help us improve our understanding of explosive events like solar flares, which can
have a strong effect on the Earth environment. Predicting hazardous events on Earth
becomes crucial for our technological society. Machine learning can also improve
our understanding of the inner workings of the sun itself by allowing us to go deeper
into the data and to propose more complex models to explain them. Additionally, the
use of machine learning can help to automate the analysis of solar data, reducing the
need for manual labor and increasing the efficiency of research in this field.
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Abbreviations
AANN Autoassociative neural network
AE Autoencoder
ANN Artificial neural network
CBR Coordinate-based representation
CNN Convolutional neural network
CS Compressed sensing
DBSCAN Density-based spatial clustering of applications with noise
DDPM Denoising diffusion probabilistic model
DNN Deep neural network
ELU Exponential linear unit
FCM Fuzzy C-means (FCM)
FCN Fully connected network
GAN Generative adversarial network
GD Gradient descent
GPU Graphical processing unit
INN Invertible neural network
INR Implicit neural representation
LCT Local correlation tracking
LLE Locally linear embedding
LSTM Long short-term memory
ML Machine learning
MLP Multilayer perceptron
MOMFBD Multi-object multi-frame blind deconvolution
NeF Neural field
NF Normalizing flow
PCA Principal component analysis
PCM Possibilistic C-means
RBF Radial basis function
ReLU Rectified linear unit
RL Reinforcement learning
RNN Recurrent neural network
RVM Relevance vector machine
SGD Stochastic gradient descent
SOM Self-organizing map
SPoCA Spatial possibilistic clustering algorithm
SVD Singular value decomposition
SVM Support vector machine
t-SNE Student-t Stochastic Neighbor Embedding
TL Transfer learning
TPU Tensor processing unit
VAE Variational autoencoder

123

4 Page 2 of 89 A. Asensio Ramos et al.



Contents

1 Introduction............................................................................................................................. 4
1.1 Supervised learning........................................................................................................ 6

1.1.1 Classification versus regression..................................................................... 8
1.1.2 Data partitioning ............................................................................................ 8
1.1.3 Encoders and decoders .................................................................................. 9

1.2 Unsupervised learning.................................................................................................... 9
1.3 Reinforcement learning .................................................................................................. 10

2 Some ideas about dimensionality ........................................................................................... 10
3 Linear models: unsupervised .................................................................................................. 12

3.1 Principal component analysis ........................................................................................ 13
3.1.1 Denoising ....................................................................................................... 14
3.1.2 Interpretability................................................................................................ 15
3.1.3 Inversion with lookup tables ......................................................................... 15

3.2 Fuzzy clustering ............................................................................................................. 18
3.3 k-means .......................................................................................................................... 20

3.3.1 Spectral clustering ......................................................................................... 21
3.3.2 Segmentation of coronal holes ...................................................................... 22

4 Linear models: supervised ...................................................................................................... 22
4.1 Hermite functions........................................................................................................... 23
4.2 Relevance vector machines............................................................................................ 23
4.3 Compressed sensing and sparsity regularization ........................................................... 24

5 Deep neural networks ............................................................................................................. 29
5.1 Architectures................................................................................................................... 31

5.1.1 Multi-layer fully connected neural networks ................................................ 31
5.1.2 Convolutional neural networks ..................................................................... 31
5.1.3 Recurrent neural networks............................................................................. 33
5.1.4 Attention and transformers ............................................................................ 34
5.1.5 Graph neural networks .................................................................................. 34

5.2 Activation layers ............................................................................................................ 35
5.3 Training .......................................................................................................................... 36

5.3.1 Loss function ................................................................................................. 36
5.3.2 Gradient descent ............................................................................................ 36
5.3.3 Backpropagation ............................................................................................ 37
5.3.4 Vanishing gradient problem........................................................................... 39

5.4 Bag-of-tricks as of 2023 ................................................................................................ 39
5.4.1 Initialization ................................................................................................... 39
5.4.2 Augmentation................................................................................................. 39
5.4.3 Regularization and overfitting ....................................................................... 40
5.4.4 Normalization ................................................................................................ 40
5.4.5 Residual blocks and skip connections .......................................................... 41
5.4.6 Specialized hardware ..................................................................................... 41

6 Unsupervised deep learning.................................................................................................... 42
6.1 Self-organizing maps...................................................................................................... 42
6.2 t-SNE.............................................................................................................................. 42
6.3 Mutual information ........................................................................................................ 43
6.4 Autoencoders.................................................................................................................. 43
6.5 Generative models.......................................................................................................... 44

6.5.1 Generative adversarial networks ................................................................... 45
6.5.2 Variational autoencoders................................................................................ 46
6.5.3 Normalizing flows ......................................................................................... 47
6.5.4 Denoising diffusion probabilistic models...................................................... 48

7 Applications of supervised deep learning .............................................................................. 48

123

Machine learning in solar physics Page 3 of 89 4



7.1 Segmentation of solar images........................................................................................ 48
7.2 Classification of solar images ........................................................................................ 51
7.3 Prediction of flares ......................................................................................................... 52

7.3.1 HMI era ......................................................................................................... 55
7.3.2 Evaluation metrics ......................................................................................... 55
7.3.3 Baseline models ............................................................................................. 57
7.3.4 Weakly-labeled supervised training............................................................... 59
7.3.5 Operational flare forecasting models............................................................. 60
7.3.6 Deep learning for flare prediction ................................................................. 60

7.4 Explainable models for flare prediction ........................................................................ 61
7.5 Heliosphere and space weather...................................................................................... 61
7.6 Solar Cycle predictions .................................................................................................. 62
7.7 Inversion of Stokes profiles ........................................................................................... 64

7.7.1 Accelerating inversions.................................................................................. 64
7.7.2 Uncertainty characterization .......................................................................... 66

7.8 3D reconstruction of the solar corona ........................................................................... 67
7.9 Image deconvolution...................................................................................................... 68
7.10 Image-to-image models.................................................................................................. 69

7.10.1 Synthetic generation of solar data................................................................. 69
7.10.2 Estimation of velocities ................................................................................. 71
7.10.3 Superresolution .............................................................................................. 71
7.10.4 Denoising ....................................................................................................... 72
7.10.5 Image desaturation......................................................................................... 73
7.10.6 Farside imaging ............................................................................................. 73

8 Outlook for the future............................................................................................................. 74
References ..................................................................................................................................... 75

1 Introduction

Astrophysics, and solar physics in particular, is an observational science in which we
cannot change the experimental conditions, we simply observe. Therefore, the only
way of learning is by confronting observations with state-of-the-art theoretical
modeling. The models are then tuned until the observations are explained and
conclusions are drawn from this comparison. As a consequence, our understanding of
the universe is based on the availability of data.

The amount of data available until the final decades of the 20th century was very
reduced and could easily be stored in relatively standard storage media, from
notebooks, books or small computing centers. The scarcity of data forced researchers
to use strongly informed generative models based on our theoretical advances, with a
heavy use of inductive biases.1 This is necessary to allow generalization of the
conclusions. From a probabilistic point of view, generative models are a way to
describe the joint probability p(x, y), where x are the observations and y are the
parameters of the model. The ever-increasing quality of the observations allowed
researchers to propose more and more complex physical scenarios to be compared
with observations.

1 Set of explicit or implicit assumptions made by an algorithm to properly generalize what is learned from
a finite set of observation into a general model.
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Solar physics is rapidly entering into the big data era, an era dominated by the
availability of data, which cannot fit in current computers and have to be stored, in
many cases, in a distributed manner. The storage and access to this data is a
technological challenge and has not been completely solved in our field. For
example, access to the curated Solar Dynamics Observatory dataset of Galvez et al.
(2019a) implies downloading 6.5 TB of data. Unless a dedicated connection is used,
the transfer and local storage of all this data is hard. On the other hand, the estimated
amount of data in an excellent observing day for the multi-instrument telescopes
Daniel K. Inouye Solar Telescope (DKIST) and European Solar Telescope (EST)
easily reaches the PB regime.

Having access to large datasets is not very useful unless one can extract relevant
information out from them. Such large datasets have made it impossible to have
people looking at the data and search for interesting correlations. For this reason, the
field of machine learning (ML) has recently bloomed as a very attractive way of
using our computing power to extract conclusions from data. The access to a large
amount of data is opening up the possibility of using discriminative models to
directly learn from the data. From a probabilistic point of view, these models try to
directly model the distribution p(y|x). They do not put emphasis on understanding the
generation process of the data x, but on directly inferring properties from
observations. The machine learning revolution that we are witnessing in solar
physics is fundamentally based on discriminative models. The large databases that
we have available are allowing us to directly learn from data, or use data for speeding
up certain complex operations.

Machine learning methods are often divided into three main classes: supervised,
unsupervised, and reinforcement learning (see Fig. 1). Supervised and unsupervised
learning have deep roots in the field of statistics known as statistical learning (see the
textbook by Hastie et al. 2009), which is concerned with model fitting, parameter
estimation, and learning about the structure of data. Reinforcement learning is,
however, strongly based on control theory (e.g., Nise 2000). The term ML became

Fig. 1 Categories of machine learning (ML): supervised, unsupervised and reinforcement learning.
Supervised learning and unsupervised learning have deep roots in the field of statistical learning (Hastie
et al. 2009), while reinforcement learning has strong connections with control theory
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popular in the era of Big Data. To scale statistical learning algorithms to effectively
utilize large data sets, new algorithms and the appropriate software and hardware
stack were developed in tandem. For instance, the development of general purpose
graphical processing units (GPUs) accelerated the development of computer vision
techniques. This in turn drove the development of GPU hardware with higher
throughput, and the development of ML programming frameworks, such as
Tensorflow (Abadi et al. 2015), PyTorch (Paszke et al. 2019) or JAX (Bradbury
et al. 2018). In turn, these developments facilitated the development of models with
greater expressivity and applicability across scientific and engineering domains.

In the following sections, we briefly introduce the goals of supervised,
unsupervised and reinforcement learning. Most applications of ML in solar physics
pertains to the first two classes. The applications of reinforcement learning in solar
physics have received little attention but it can bring substantial improvements in
observational planning and other complex control tasks like adaptive optics.
Functional optimization is used in all three classes of ML, so we will discuss
optimization too.

1.1 Supervised learning

Supervised learning is the task of learning a mapping between inputs (the collection
thereof is often denoted by X) and outputs (denoted by Y; also called targets) for
which examples of input–output pairs are available. From a probabilistic perspective,
the goal of supervised learning is to model the conditional distribution p(y|x).

Supervised learning is especially suited for the physical sciences because it can be
used to infer parameters Y from the inputs X. To illustrate with a concrete example
from solar physics, suppose we have measured the Stokes IQUV parameters of a
magnetically sensitive line over a region of interest on the Sun. The goal here is to
infer the physical properties of the plasma producing the radiation. This process is
commonly known as inversion.

For each spatial location on the Sun, the input data is x ¼ ðI;Q;U;VÞ, where each
Stokes parameter is a function of the wavelength (so x is a tuple with size
N ¼ 4� Nk, with Nk being the number of measured wavelength points). It is
convenient to collect the set of Stokes profiles measured at all M locations of interest

as a matrix X ¼ ðx0; x1; :::; xi; :::; xM ÞT , i.e. each row of X is a sample of input data.
In Fig. 2, each sample (row) of input data X is schematically denoted as a point
residing in a subspace. In ML parlance, this is called the input feature space, denoted
by X.

In our example, the physical parameters of interest include the magnetic field
strength B, the orientation of the magnetic field vector (inclination and azimuth, /, h
respectively), the ambient plasma temperature (T), etc. For each spatial location on
the solar surface, we have y ¼ ðB;/; h; T ; :::Þ. The traditional approach to inferring
these physical parameters is to perform an iterative inversion with the help of a
physics-based forward model. Except under special conditions (generally not valid
on the Sun), the forward model is a nonlinear radiative transfer calculation. The
forward model g : Y �! X , often known in advance and based on physical
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arguments, allows us to compute the predicted Stokes profiles x 2 X for any y 2 Y.
In Fig. 2, g is denoted by the arrow going from subspaces Y to X.

An iterative inversion begins with an initial estimate of y. The physics model is
used to compute xpred ¼ gðyÞ, which is compared to the target (observed) x with a
chosen penalty function. A common function is the mean-squared error, which is
motivated by the assumption of Gaussian noise with diagonal covariance in the
observations. In general, a suitable probabilistic approach can take into account other
sources of noise or regularization (see Sect. 4.3). The physical parameters are
adjusted at each iteration to minimize the discrepancy between predicted and
observed data. To guide the updates of y in a way to reduce the penalty function, the
curvature of the penalty function with respect to the parameters is often used (see del
Toro Iniesta and Ruiz Cobo 2016). The forward model g is used to generate pairs of
ðy; xpredÞ until a pair is found such that xpred � x to some tolerance. This entire
procedure is then repeated for each x 2 X. In this approach, the inversion provides a
pairwise mapping between each sample pair. Although it works, it has two major
drawbacks. First of all, it is inefficient because the inference of a pair xi �! yi is
performed completely independently of other pairs in the data. Secondly, the
approach does not let us efficiently compute how a perturbation of the input impacts
the output.

Whereas the traditional iterative optimization procedure gives a mapping between
individual pairs in the input and output feature spaces, supervised learning aims to
provide the mapping between the two spaces, i.e. f : X �! Y (see Fig. 2).
Supervised learning does so by using the data X and Y globally (not individual rows)
to fit a model approximating f. This is usually posed as an optimization problem of
the following form:

Fig. 2 Schematic representation of supervised learning, with the feature space X and the target space
Y. The aim is to define or learn mappings f and g between the two spaces by taking advantage of the
information encoded in the pairwise relations were known in advance for a specific sample of the two
spaces
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f # ¼ argmin Lðf ðXÞ;YÞ: ð1Þ
In other words, find an optimal function f such that the loss function L (which
compares the predicted and observed values) is minimized.2 Usually, the function f is
expressed in terms of parameters (e.g., weights and biases in a neural network, as
explained in Sect. 5), and fitting is performed to adjust the parameters of f to min-
imize L. This step is called model training.

Note that the forward model g is not needed when doing model training. As long
as pairwise data linking X and Y is available, the forward model is not a prerequisite
for supervised learning. In fact, in many applications, both f and g are unknown prior
to fitting. In cases where g is known (e.g., our Stokes spectropolarimetry example)
and is used to generate observables X from Y, supervised learning amounts to
learning the inverse mapping f ¼ g�1.

Having presented the goal of supervised learning, we introduce some necessary
nomenclature to aid discussion throughout this review article.

1.1.1 Classification versus regression

In a supervised learning setting, the target variable Y may be a continuous variable or
may be discrete (e.g., the set of non-negative integers Zþ). These two types of
problems are called regression and classification, respectively. Both regression and
classification can be tuned to deal with the same problem. For instance, let us
consider the problem of flare prediction. The following is a classification problem:
predict whether the Sun will produce a flare of class M or higher. The ground truth
values are binary (Yes or No). Another way to pose a similar question involves a
regression problem: predict the peak X-ray flux within the next 24 h. This is a
regression problem since the peak X-ray flux is a continuous variable. Classification
problems are often simpler to solve using machine learning.

1.1.2 Data partitioning

Data partitioning or data splitting is the act of splitting X and Y into training, testing
and validation sets. Members of the training set ðXtrain;YtrainÞ are used at time of model
fitting, and the loss function gives a scalar computed over this set. After training, the
loss function is evaluated over the test set ðXtest;YtestÞ and is compared with the value
for the training set. The case Ltest [ Ltrain is a sign of possible overfitting, so that the
model is “memorizing” the training set and not generalizing correctly.

The test set is reserved for the evaluation of the performance of the final trained
model(s) on certain chosen metrics. If the model contains hyperparameters (for
instance, the width of a densely connected layer), a validation set is carved out from
the training set for exactly this purpose (Russell and Norvig 2009). This further
partitioning of the (non-test) data into a training and validation set allows one to

2 A simple widespread loss function is the mean squared error (MSE) between predicted and measured y,
which assumes that the residual between the predictions and the measurements follows a Gaussian
distribution.
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evaluate the performance of the model during training time without building bias
toward fitting the test set.

Data partitioning is one of the most important decisions in a machine learning
project. Depending on the goal, the partitioning strategy will vary. For instance,
should flares from the same AR be in both test and training sets? The appropriate
partitioning strategy is highly dependent on the nature of the scientific/engineering
objective as well as the nature of the underlying system under consideration. To
successfully apply ML to solar physics problems, it is desirable not to apply it blindly
but take into account the existing knowledge.

1.1.3 Encoders and decoders

In ML parlance, the forward model g is sometimes called the encoder, and the
optimal function f is known as the decoder. The two functions in series, i.e., g(f(x) or
f(g(y)), is called autoencoder. As will be discussed later, autoencoders are useful in a
number of applications, including data denoising. They are useful, as well, when
both g and f are not known a priori. However, when one of them is known (e.g., a
physics model for g), autoencoders can be used to directly learn the other mapping
from data. This way of combining machine learning and physical information turns
out to be extremely powerful.

1.2 Unsupervised learning

Unsupervised learning is the task of discovering patterns in the data X. Unlike
supervised learning, this task does not require matching target values Y. In other
words, unsupervised learning is about characterizing the structure of the probability
density function PðXÞ. For instance, a common question addressed using unsuper-
vised learning is in regard to clustering of data points. Unless the components of x
are independent and identically distributed (i.i.d.), PðXÞ will have local minima and
maxima, with the latter indicating clustering of data in parts of the input space.

Unsupervised learning can be very useful for a global understanding of the
observations. From a probabilistic perspective, the task is to model the prior distribution
of observations p(x). As such, unsupervised models do not make use of any labeling, just
purely observations. As an illustration, we return to the example application of
spectropolarimetry. Due to the physics (e.g., Zeeman or Hanle effects), the values of the
Stokes IQUV parameters emergent from the Sun’s atmosphere are not independent
across the spectral (i.e., wavelength) dimension. Furthermore, the four Stokes parameters
are correlated with each other as a consequence of the laws of physics (e.g., I2k �V 2

k þ
U 2

k þ Q2
k where the subscript denotes the monochromatic intensity at wavelength k).

Even if a spectrogram has Nk wavelength positions, the number of degrees of freedom in
a Stokes IQUV measurement is significantly less than 4Nk. If we knew the exact details
of the underlying plasma (e.g., turbulence properties, whether there is subpixel structure),
the number of degrees of freedom would be known a priori. In the absence of such
insights, unsupervised learning can help with dimensionality reduction, by automatically
finding the correlations and exploiting them.
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1.3 Reinforcement learning

Although reinforcement learning (RL) often involves techniques used in supervised and
unsupervised learning, it is considered a separate field ofML. The goal of RL is to explore
how autonomous agents (e.g., a robot) interact with an environment (e.g., the world), and
how to effectively train such agents to achieve desired objectives (Sutton and Barto 1998).
In an RL setting, an agent has an internal state. The agent is exposed to input (stimuli) from
its environment (e.g., an image of the scene surrounding the agent). Based on policies
available to the agent, it carries out an action which can change the agent’s state and its
environment. The objective of the agent is to maximize its cumulative rewards, as
determined by a suitable reward function. RL has found extensive applications in robotics,
the automotive industry, and gaming. As of writing, the authors are aware of a single
applicationofRL in solar physics, that is discussed inSect. 7.3.6.However,we envisageRL
will eventually be used for complex solar physics-related applications, such as observation
planning or better adaptive optics systems (Nousiainen et al. 2022).

2 Some ideas about dimensionality

Data living in very high dimensions present difficulties when analyzing and
understanding their statistical properties. The efficiency of typical statistical and
computational methods usually degrades very fast when the dimensionality of the

Fig. 3 Curse of dimensionality for an Euclidean space of dimension d. This figure shows the volume ratio
between an hypersphere of radius r and the hypercube in which the hypersphere is circumscribed. It shows
that the volume resides in the external parts of the space. Both linear and logarithmic scales are shown for
clarity
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problem increases, thus making the analysis of the observed data cumbersome or,
sometimes, unfeasible. This fact is often referred to as the curse of dimensionality.
The fundamental reason for that lies in the fact that, for high dimensional spaces,
almost all the volume of the space tends to accumulate in the borders of the space.
We can easily visualize this in an Euclidean space of dimension d. The ratio between
the volume of the hypersphere of radius r centered at the origin and that of the
hypercube of side length 2r centered at the origin in which the hypersphere is
inscribed is given by:

Vhypersphere

Vhypercube
¼ pd

d2d�1Cðd=2Þ : ð2Þ

As shown in Fig. 3, the ratio exponentially goes down to zero when d increases, so
that the volume very quickly accumulates on the borders of the hypercube. As a
consequence, any sampling of a high-dimensional space rapidly becomes useless.
The enormous success of ML in recent years, thanks to the deep learning revolution,
is rooted in the ability of deep learning to overcome the curse of dimensionality.

The advent of computers has permitted us to face the analysis of increasingly
complex data. These data usually exhibit an intricate behavior, and in order to
understand the underlying physics that produces such effects, we have been forced to
develop very complicated models. Ideally, these models have to be based on physical
grounds, but there seems to be no way of knowing in advance how complicated this
model has to be to correctly reproduce the observed behavior. Despite their inherent
complexity, the analysis of large data sets, such as those produced by modern
instrumentation, indicates that not all measured data points are equally relevant for
the understanding of the underlying phenomena (one of the simplest example is the
limited information carried out by spectral points in the continuum versus spectral
points sampling spectral lines). In other words, it is clear that the reason why many
simplified physical models are successful in reproducing a large amount of
observations is because the data itself is not truly high dimensional. Based on this
premise, it makes sense to develop and apply methods that are capable of reducing
the dimensionality of the observed data sets while still preserving their fundamental
properties. Mathematically, the idea is that while the original data may have a very
large dimensionality, they are in fact confined to a small manifold of that high-
dimensional space. In this case, we can consider that the data “lives” in a subspace of
low dimension (the so-called intrinsic dimension) that is embedded in the high-
dimensional space. This lower dimension manifold is not simple to describe in
general, simply because it is highly nonlinear and unknown.

Instead of fully characterizing the manifold, the simpler task of estimating its
intrinsic dimensionality is of interest to understand the complexity of the models
used to extract information. Additionally, it is a check that the machine learning
method used to analyze the data is able to overcome the curse of dimensionality. One
of the simplest examples is the one in which the data consists of spectral, or more in
general, Stokes profiles, that encode the polarization state of light. A deep analysis of
objects of much larger dimensionality, like images of the Sun, has never been carried
out. As shown later in this review, some of the recent deep learning methods have
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been successfully applied to solar images. This implicitly demonstrates that solar
images also lie in a manifold of reduced dimensionality when compared with the
potential dimensionality of all possible images.

The estimation of the dimensionality of the manifold of Stokes profiles for
photospheric lines was pursued by Asensio Ramos et al. (2007c). They used an
estimator of the dimensionality based on the maximum likelihood principle
previously developed by Levina and Bickel (2005). When applied to Fe I lines in
the visible and the infrared, they reached the following conclusions. First, the
dimensionality of the infrared lines is slightly larger than those in the visible, thus
suggesting that there is more variability in the Stokes profiles in the infrared. This is
probably a consequence of the fact that Doppler shifts and Zeeman splittings in the
infrared are slightly larger than in the visible, producing more deformations in the
line profile. Second, the dimensionality of circular polarization is larger than that of
Stokes I, a consequence of the fact that Stokes V is much more sensitive to variations
in the magnetic field than Stokes I. Finally, they quantitatively proved the idea that
adding more spectral lines increases the amount of information available (see, e.g.,
Semel 1981; Socas-Navarro 2004). Adding more spectral lines monotonically
increases the dimensionality of the manifold but clearly not in proportion to the
number of added spectral lines. There is a lot of redundant information already
encoded in all spectral lines and only small details can be better seen in one spectral
line or another.

Given that Stokes profiles sampled at Nk wavelength points are demonstrated to be
lying in a manifold of dimension d � Nk, it makes sense to exploit this property for
different purposes. The two more obvious ones are denoising and compression.
Uncorrelated additive noise typically assumed to be present in spectropolarimetric
observations, spans the full space of Nk dimensions. It is advantageous to find a
suitable representation in which the signal is separated from the noise by exploiting
the fact that the signal lies in a manifold of reduced dimensionality. Similarly,
representing the spectropolarimetric data with a reduced set of numbers leads to an
important compression factor, which turns out to be important for data storage and
transfer via telemetry. The methods presented in the following sections have been
successfully used in solar physics for these purposes.

3 Linear models: unsupervised

The availability of data to analyze, their large sizes, and the difficulties in extracting
physical information from the observations has led to the widespread application of
unsupervised machine learning methods. These methods allow us to extract relevant
information from the observations directly, typically focusing on the regularity that
can be explained in a posteriori. Clustering or classification is perhaps one of the
most obvious tasks of unsupervised machine learning methods. We start first by
describing linear models for unsupervised ML. These methods, despite their
limitations, have been extremely successful in science and, specifically, in solar
physics.
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3.1 Principal component analysis

Principal Components Analysis (PCA; Loève 1955), also known as the Karhunen–
Loève transformation, is perhaps one of the most used algorithms in multivariate
statistics3. Briefly, its main use is to obtain an orthogonal basis on which the data can
be efficiently expressed. This basis has the property that the largest amount of
variance is explained with the least number of basis vectors. It is useful to reduce the
dimensionality of data sets that depend on a very large number of parameters and one
of its most straightforward applications is denoising.

PCA can be seen as the solution to a linear regression problem in which both the
weights and the basis functions are inferred from the data. Since this is an ill-defined
problem, PCA imposes the additional restriction of orthogonality for the basis
functions. Summarizing, PCA is a way to decompose any observed signal as a
weighted sum of empirical orthogonal basis functions. It has been extensively used in
the field of spectropolarimetry for denoising and, in general, dimensionality
reduction purposes.

Let us assume that the wavelength variation of the Stokes profiles of a particular
spectral line is described by the quantity Sij. The index i represents the wavelength
position while the index j = {I, Q, U, V} labels the Stokes parameter. Each Stokes
parameter is a vector of length Nk, corresponding to the number of sampled
wavelength points. Assume that the spectral line is observed in many locations in the
field of view, that we term Nobs. By stacking all observations, one can build the
observation matrix O, which is of size Nobs � Nk. As well, all Stokes parameters can
be stacked together and one ends up with a matrix of size Nobs � 4Nk. The principal
components can then be found by computing the eigenvectors of this matrix of
observations. This means that the PCA procedure reduces to the diagonalization of
the matrix O. Since we often have that Nobs � Nk, this matrix is not square and one
needs to use the singular value decomposition (SVD; see, e.g., Press et al. 1986) to
diagonalize O and compute its singular vectors. The SVD decomposition reads as
follows:

O ¼ URVH; ð3Þ
where U is an Nobs � Nobs orthogonal matrix with the left singular vectors in columns
while V is an Nk � Nk orthogonal matrix with the right singular vectors in columns.
R is a diagonal matrix with the singular values on the diagonal. The real power of
PCA lies in the fact that one can truncate the previous decomposition by only leaving
r singular values equal to their original value and setting the rest to zero. This way,

one gets ~O, a reconstruction of the original matrix constrained to have rankð ~OÞ ¼ r.
Although carrying out the PCA decomposition using the O matrix is possible, it is

often much more efficient from a computational point of view to compute the
singular vectors of the correlation or the cross-product matrices. With the use of

simple algebra for the case of the correlation matrix, X ¼ OyO, one can verify that:

3 PCA is available on the scikit-learn Python package.
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OyO ¼ VRHUHURVH ¼ V RHR
� �

VH; ð4Þ
so that the right singular vectors of the X matrix are equal to the right singular vectors
of the observation matrix. Likewise, the singular values of the correlation matrix are
those of the original matrix but squared. The advantage of this approach is that the
matrix X has size Nk � Nk, so that the diagonalization becomes more computa-
tionally efficient if Nk � Nobs.

On the contrary, in cases in which Nk � Nobs, one can use a similar approach but

using the cross-product matrix, X0 ¼ OOy. In such case, the left singular vectors of
the matrix O are obtained. It is important to remark that both descriptions are dual
and they are completely equivalent, so one should choose the one that provides the
most efficient computation.

Once an orthogonal basis is found, one can reconstruct the original matrix by just
computing the projection along each direction and multiplying each projection by the
orthogonal basis:

O ¼ OVð ÞVH: ð5Þ

3.1.1 Denoising

Given that the largest amount of variance of the input dataset is explained with the
first singular vectors, reconstructing the data with only a few such vectors lead to a
very efficient denoising technique. This can be technically achieved by reconstruct-
ing the original dataset with the matrix V0, a submatrix of V of lower rank that only
contains the columns associated with the largest singular vectors. A denoised dataset
can then be obtained by computing:

Odenoised ¼ OV0ð ÞV0H: ð6Þ
The selection of the number of eigenvectors to keep is often done by computing the
residual Odenoised �O and characterizing its statistical properties. In the case of
Gaussian noise with fixed variance, one can stop adding eigenvectors once the
variance of the residual is similar enough to the noise variance. When this is
achieved, one can be sure that the selected eigenvectors are retaining the signal and
removing the uncorrelated noise. For a more automatic way, see Gavish and Donoho
(2014), which provides a strategy for optimally picking the rank of V0.

If the observations are affected by systematic effects, like interferometric fringes
(in the case of Stokes observations), they will be part of the output. In many cases in
which these systematic effects are strong, one can be lucky and find them isolated in
one or two eigenvectors. If this is the case, it is possible to remove these systematics
from the observations by deleting these eigenvectors from V0. However, it is often
the case that systematic effects are extracted together with real signals in some
eigenvectors and they cannot be easily separated. A technique that has recently been
proposed is to carry out a rotation in the subspace described by these eigenvectors
with the aim of isolating the contribution of systematic effects and real signal (Casini
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and Li 2019). Other techniques, with more control from the user side, are based on
the techniques presented in Sect. 4.2.

PCA denoising is now systematically used for removing Gaussian noise from the
observations (Asensio Ramos et al. 2007a; Martínez González et al. 2016; Jurčák
et al. 2018). This denoising is also very helpful in stabilizing spatial deconvolution
methods, like the one developed by Ruiz Cobo and Asensio Ramos (2013), which is
routinely used to remove the effect of spatial smearing in observations (Quintero
Noda et al. 2015, 2016b, a; Felipe et al. 2016; Borrero et al. 2016, 2017).

3.1.2 Interpretability

Somehow surprising, it has been found that, in some specific cases, the leading
singular vectors of the PCA decomposition have a well defined physical meaning.
This was first pointed out by Skumanich and López Ariste (2002), who demonstrated
this for spectropolarimetric observations of a sunspot. They showed that the first
singular vector of Stokes I is associated with the average spectrum, the second one
gives information about the velocity, and the third one gives information about
magnetic splitting or any other broadening mechanism. Likewise, for Stokes V they
found that the first singular vector correlates with the longitudinal component of the
field, the second one correlates with velocities in the magnetic component and the
third one correlates with broadening mechanisms. This is not surprising if one
realizes that PCA is akin to a the Taylor expansion of the Stokes profiles (Skumanich
and López Ariste 2002). Despite the results discussed so far, PCA often does not
extract interpretable physical information from the observations. The reason has to be
found on the fact that PCA focuses on global properties of the observations to
maximize the amount of variance explained. However, many of the interpretable fea-
tures of data are local (i.e., the position of the core of the line, the presence of several
velocity or magnetic components in the line, etc). When looking for interpretability,
other techniques like t-SNE (Student-t Stochastic Neighbor Embedding; Hinton and
Roweis 2002) can be more useful (see Sect. 6).

3.1.3 Inversion with lookup tables

The compression capabilities of PCA have been also exploited for accelerating the
inversion of Stokes profiles. The process of inverting Stokes profiles consist of
inferring the physical properties that produce a given observation. This inversion is
usually solved using a maximum likelihood approach in which a merit function
(often the v2 as a consequence of the assumption of Gaussian noise), that measures
the difference between the observations and synthetic Stokes profiles is minimized.
This minimization can be done using several techniques. However, the idea when
using PCA is to use one of the simplest methods of inversion one can think of:
generate a large database with Stokes profiles synthesized in model atmospheres
parameterized with Npar parameters and pick up the model providing the best fit.

This inversion method, first suggested by Rees et al. (2000), requires some
specialized methods for the construction of the database. The reason is that a trivial
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method in which every parameter of the model is sampled at n values requires a
database of size nNpar, which quickly becomes impractical. Moreover, because of the

curse of dimensionality, an exponentially large amount of sampled models will lie in
the borders of the space and can become useless for the inversion process. As a
consequence, this inversion method only works for very simple models.

With these problems in mind, Rees et al. (2000) developed a Monte Carlo
approach for populating the database. They started from a model chosen at random.
A new model is randomly proposed and the resulting Stokes profiles are compared
with the existing ones. If they both lie in a small Euclidean ball of radius �, they are
assumed to be coming from very similar atmospheres and only one of them is kept.
This procedure is iterated until a sufficiently large database is obtained or when the
fraction of accepted new models becomes impractically low. This can be understood
as an indication that the space of models is densely sampled. PCA compresses the
database by only storing the projections along a few relevant singular vectors. This
can lead to compression factors of an order of magnitude, which also accelerates the
database search.

After the first pioneering work of Rees et al. (2000), more works followed. They
were especially centered on the interpretation of scattering polarization signals and
the Hanle effect in lines of He I. The fundamental reason for this is that the solution
of the forward problem for these lines is very time consuming, so one better spends
the time building a database that can later be used to carry out very fast inversions.
This is in contraposition with what happens when a classical iterative algorithm is
used for fitting the observations. López Ariste and Casini (2002) proposed using
PCA to compress a database of synthetic profiles of the He I D3 multiplet at 5876 Å
using the optically thin approximation. They used the database to invert observations
of prominences carried out with the THEMIS telescope, showing that this technique
is promising. They obtained magnetic fields that are almost parallel to the solar
surface and with strengths around 40 G. The same code was applied to prominence
data from the High Altitude Observatory Stokes II polarimeter (Querfeld et al. 1985)
by López Ariste and Casini (2003). For computational reasons, the database building
process was specifically tailored for the observations, by restricting the ranges of
some of the model parameters. Again, the method yields strongly inclined magnetic
fields, almost parallel to the solar surface, with strengths as large as 50 G.

The availability of the PCA-based inversion code opened the possibility of
quickly inverting 2D maps. For this reason, Casini et al. (2003) observed a
prominence with the Dunn Solar Telescope (DST) of the National Solar Observatory
(NSO) with a spatial resolution close to 1”. A database of 2�105 was built for
inverting the physical properties of prominences. The resulting maps show magnetic
fields with an average of � 20 G, but with blobs displaying strengths above 50 G.
Again, the fields are almost parallel to the solar surface. Some possible limitations of
the model used for the inversion were discussed in Casini et al. (2005). The same
approach of using PCA-compressed databases were also used by López Ariste and
Casini (2005) to deal with the inversion of He I D3 profiles in spicules. This
demonstrates that the generation of a look-up table is a suitable inversion procedure
for any observation once the database is built with the appropriate ranges of the
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model parameters. Their conclusion is that the magnetic field vectors are aligned with
the visible structure of the spicule, finding fields above 30 G in some cases.

Later on, databases for the simultaneous inversion of the He I D3 and 10830 Å
multiplets were developed. Lines that are sensitive to scattering polarization and the
Hanle effect (as is the case in the mentioned He I lines) suffer from more ambiguities
than those whose polarization is controlled only by the Zeeman effect. A careful
interpretation of the polarization signal of several lines can potentially help in solving
these ambiguities. However, more care needs to be taken when constructing the
database precisely to deal with these ambiguities. Casini et al. (2009) built a database
with 2.5�105 models and used it to invert simultaneous observations of He I D3 and
10830 Å, resulting in an improved determination of the magnetic field.

Despite its success, the look-up method has some drawbacks, some of them a
consequence of the curse of dimensionality:

1. The procedure followed to fill the database has difficulties dealing with
ambiguous and quasi-ambiguous solutions. The Zeeman effect is subject to the
well-known 180	 ambiguity in the azimuth in the reference system of the line-of-
sight. In other words, fields whose azimuth on the plane of the sky for 180	

produce exactly the same Stokes profiles. When scattering polarization and the
Hanle effect dominate, possible additional 90	 ambiguities (Hanle ambiguities)
appear. Rejecting synthetic profiles that lie inside the �-ball of other preexisting
profiles in the database disfavor the representation of physical properties that are
subject to ambiguities. This is of almost no importance for profiles controlled by
the Zeeman effect but can turn out to be important for those cases dominated by
scattering and the Hanle effect.

2. Current observations of Stokes profiles produce noise standard deviations of the
noise that reach 10�4 in units of the continuum intensity. This means that the �-
balls have to be really tiny so that the number of profiles needed to fill a database
with such precision quickly becomes unmanageable. Most existing databases
have been constructed with larger �-balls, so that we are at the risk of confusing
cases in which different (ambiguous) physical configurations but produce similar
Stokes profiles. Ideally, one would like to push the limit on the �-balls to very
small values, even smaller than the noise level, but this is clearly unfeasible.

3. Filling up the database using the Monte Carlo approach can take a very long
time. The first proposed profiles will always be accepted but the fraction of
acceptance drops substantially when a few hundred thousand profiles are already
part of the database. Additionally, every time one checks for the addition of a
new profile, it must be tested against all profiles already present in the database.
The number of comparisons to carry out is NtotðNtot þ 1Þ=2 to fill Ntot profiles in
the database. Even though each comparison is very fast, the number of them one
needs to carry out rapidly makes this approach difficult to use. To partially
compensate for this problem, other approaches based on the Latin hypercube
sampling have also been used (McKay et al. 1979).

4. When used in evaluation mode, the inversion requires the comparison of the
Stokes profiles of interest with all the profiles in the database. This requires the
calculation of Ntot comparisons for each observed Stokes profile. Recently,
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Casini et al. (2013) has devised an indexing method that accelerates the search. It
is based on the use of a binary search tree built using the signs of the first n PCA
coefficients of each profile. This can potentially lead to an acceleration of a factor
24n in computing time.

3.2 Fuzzy clustering

The solar corona is the outermost layer of the solar atmosphere and can be observed
in various wavelengths (Kasper et al. 2021). In the corona, magnetic pressure
dominates over plasma pressure (Gary 2001), and closed magnetic field lines confine
plasma, appearing as bright coronal loops in extreme ultraviolet (EUV) wavelengths.
Coronal holes are observed as dark areas (Cranmer 2009) and are regions with
plasma depletion and lower temperature and density due to the continuous outflow of
plasma along “open” magnetic field lines. Proper identification of coronal hole
boundaries is crucial as they are a major source of the solar wind (SW), which can
affect the Earth’s environment (Tsurutani et al. 2006), especially during the declining
phase of a solar cycle (Tsurutani et al. 2006). Accurate detection of coronal holes is
challenging due to their varying boundaries with wavelength and resolution Ervin
et al. (2021).

Developing connectivity models between the Sun and the Earth requires
observational constraints from the Sun, and a good evaluation of coronal hole
boundaries can help improve these models. Machine learning methods have become
increasingly popular for identifying coronal hole boundaries (e.g., Barra et al.
2008, 2009), replacing laborious and experienced observer-based methods. Accurate
determination of coronal hole boundaries could also help solve new solar coronal
questions such as the “open flux” problem, where the magnetic field in the Earth is
two orders of magnitude higher than estimated from the Sun (Linker et al. 2017).

Before machine learning techniques were used, researchers used different
techniques for the identification of the CH boundaries. Previously, the identification
and mapping of CH were performed based on the helium spectroheliograms and
photospheric magnetograms by iterative visual inspection (Henney and Harvey
2005), a laborious process requiring experienced observers. Automatic detection of
the CH was realized initially using spectroheliogram images in He I 1083 nm
wavelength, or spectral line properties of He I 1083 nm multiplet and other multi-
wavelength analysis (Henney and Harvey 2005, and the references therin). In the last
decades, we are witnessing a strong increase in the application of ML methods for the
identification of the CH boundaries.

One of the earlier identification methods is the spatial possibilistic clustering
algorithm4(SPoCA) which is implemented as part of JHelioviewer5 (Barra et al.
2008, 2009; Verbeeck et al. 2014). Other approaches are based on segmentation
techniques together with ML algorithms (Reiss et al. 2015), or on the fuzzy (Colak
and Qahwaji 2013) and k-means clustering (Inceoglu et al. 2022). The SPoCA
method, based on an unsupervised fuzzy clustering method (Barra et al. 2008), is a

4 The latest version can be found in https://github.com/bmampaey/SPoCA.
5 See Müller et al. (2017) and find it on http://swhv.oma.be/user_manual.

123

4 Page 18 of 89 A. Asensio Ramos et al.

https://github.com/bmampaey/SPoCA
http://swhv.oma.be/user_manual


generalization of the k-means clustering discussed in Sect. 3.3. SPoCA implements
three types of fuzzy clustering algorithms considered to be appropriate for the EUV
solar images: the Fuzzy C-means (FCM); a regularized version of FCM known as
Possibilistic C-means (PCM), and a Spatial Possibilistic Clustering Algorithm
(SPoCA) that integrates neighbouring intensity values. The SPoCA algorithm was
described and implemented by Barra et al. (2008, 2009) for the automatic
identification of the CH, AR and quiet sun (QS) in EUV images. The reason for
using fuzzy clustering for the EUV images lies in the inherent uncertainty when
categorizing visible structures. The SPoCA algorithm works by optimizing the
following objective function:

JSPoCAðB;U ;X Þ ¼
XC
i¼1

XN
j¼1

umij
X
k2N j

bkdðxk ; biÞ þ si
XN
j¼1

ð1� uijÞm
0
@

1
A; ð7Þ

where C ¼ 3 is the number of clusters ({CH, AR, QS} in this case), N is the number
of pixels of the image, B ¼ fb1; :::; bCg are the cluster centers, X ¼ fxj; j ¼
1; . . .;Ng are the feature vectors of dimension p that describe the Sun at each
location, U is a fuzzy partition matrix that encodes the membership of feature vector
xj to class i, m� 1 is a parameter that controls the degree of fuzzification (a value of

m ¼ 1 means no fuzziness), bk ¼ 1 if k ¼ j, and bk ¼ ðCardðN jÞ � 1Þ�1, for any
other k, with CardðN jÞ being the number of elements in the neighborhood of pixel j,
d is a distance function in the space of features, and si is the intraclass mean fuzzy
distance.

Verbeeck et al. (2014) build upon the SPoCA software to extract, characterize and
track CH and AR from EUV images. They used an FCM to initialize a PCM, which
is considered more robust to noise and outliers. For the map segmentation, they used
different decision rules. Verbeeck et al. (2014) looked mostly at CH and AR and
performed a parametric study to determine optimal configurations of the algorithm.
The dataset was built based on different EUV imagers. The data used for the study
was between 1997 and 2011 and obtained from the EIT/SOHO in 171 and 195 Å.
The output of the program is a mask that overlays onto the original image. The
solution provides also the location of the AR or CH barycenter. From the results, it
was concluded that the FCM yields the best output for extracting CH. The SPoCA
detection method is regularly used for feature identification within JHelioviewer and
also as a training set for other methods.

One of the challenging tasks in the determination of the CH boundaries is how to
discriminate them from filament channels. This is a consequence of the fact that,
sometimes, filaments (prominences seen in the solar visible disk) can be mistaken
with CH. One of the early attempts in tackling this issue was made by Reiss et al.
(2015), who used image segmentation methods together with supervised ML
techniques for distinguishing between filaments and CH using AIA/SDO images in
the channel at 193 Å. The data is preprocessed by applying intensity-based
thresholding and then the CH is identified using SPoCA. After the feature extraction,
CH and filaments were manually labeled based on simultaneous Ha images.
Additionally, the line-of-sight magnetic field is obtained from HMI/SDO. They
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analyzed support vector machines (SVM) for classification (Cortes and Vapnik
1995), decision trees, and random forests as classifiers. They found that the SVM
provided the best result, especially when using the magnetic field information.

3.3 k-means

The k-means algorithm (MacQueen 1967) has been widely applied in solar physics,
fundamentally in the field of spectropolarimetry, to classify the observed Stokes
profiles in 2D maps6. k-means tries to cluster the n observed M-dimensional data
points ðx1; x2; . . .; xnÞ into k sets S ¼ ðS1; S2; . . .; SkÞ, defined by their respective
cluster centers ðl1; l2; . . .; lkÞ. This is done by obtaining the cluster centers that
minimize the intracluster distance for all the points in the dataset:

argmin
l

Xk
i¼1

Xn
j¼1

1SiðxiÞkxi � ljk2; ð8Þ

where 1SðxÞ is the indicator function, which takes the value 1 if the elements belongs
to class S and zero otherwise:

1SðxÞ ¼
1 if x 2 S

0 if x 62 S:

�
ð9Þ

Formally, this results into an M-dimensional Voronoi diagram,7 which has linear
decision boundaries. From a practical point of view, this loss function is optimized
iteratively as follows:

1. Define a set of cluster centers.
2. Compute the distance between all the observations and the cluster centers.
3. Associate each observation to its closest cluster.
4. Recompute cluster centers and repeat from step 2.

The distance metric used can be tuned for the problem at hand but it is often simply

the Euclidean distance (e.g. kxi � ljk2 in the previous equation). Other metrics like

the Mahalanobis distance8 can be used to account for the covariance in the clusters.
All of them produce an M-dimensional Voronoi diagram but the decision boundaries
depend on the specific distance metric.

k-means suffers from two fundamental problems. The first one is the inability of
the algorithm to infer the number of clusters (i.e., it is a hyperparameter). To
automatically extract the number of clusters one needs to resort to more advanced
methods. The second problem is that the final positions of the clusters depend on the
initialization. The simplest solution to the first problem is to carry out k-means with
different values of k and deciding the optimal number by minimizing approximate

6 The k-means algorithm is available, for instance, on the scikit-learn Python package.
7 A Voronoi diagram is a partition of a hypervolume into regions close to each of a given set of objects.
8 The Mahalanobis distance measures the distance between two points taking into account the covariance
structure of the underlying distribution.
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estimations of the Bayesian evidence like the Bayesian information criterion (BIC
Schwarz 1978). A better option is to use “density-based spatial clustering of
applications with noise” (DBSCAN, see Ester et al. 1996), which can infer the
number of cluster centers by finding core samples of high density and expanding
clusters from them9. Arguably the most robust option is to build a fully hierarchical
Bayesian model (Teh and Jordan 2010) in which the number of clusters is considered
a random variable.10 Concerning the second problem, it is often the case that k-
means need to be carried out several times to check for proper convergence.

3.3.1 Spectral clustering

k-means was used by Viticchié and Sánchez Almeida (2011) to analyze the circular
polarization profiles in the quiet Sun as observed with Hinode/SP (Lites et al. 2013).
They ended up inferring that the optimal number of classes is � 35 and that they can
be grouped in six families according to their general shape. One of the most
prominent outcomes is that a large fraction of the observed circular polarization
profiles are asymmetric. This means that the inversion of these profiles has to be done
with atmospheric models with gradients along the line of sight (see Grossmann-
Doerth et al. 1988, for an explanation regarding the physical origin of asymmetric
profiles). Later, Kleint et al. (2015) used k-means in the analysis of filament eruption
that produced an X-class flare. The strong variability of the observed profiles of the
Ca II 8542 Å line (showing emission, absorption, asymmetric, and also flat profiles)
made it difficult to estimate the velocity from their Doppler shift. By using k-means
to cluster all the profiles into classes, the authors were able to better define a model
for each class of profiles to robustly estimate the Doppler shift.

Along this very same line, Panos et al. (2018) used k-means to analyze
observations of the Mg II h and k spectral lines in flares with the Interface Region
Imaging Spectrograph (IRIS; De Pontieu et al. 2014). Their conclusion, by studying
hundreds of thousands of profiles from several tens of flares, is that profiles in flares
show a single peak, instead of the double peak typical of the quiet Sun. Additionally,
these profiles also show enhanced broadenings and blueshifted central reversals.

Recently, Sainz Dalda et al. (2019) applied k-means for the fast inversion of IRIS
profiles. The idea is to cluster the Mg II h and k profiles from a large selection of
observations, leading to what they call Representative Profiles (RP). A detailed
inversion of this representative profiles with inversion codes like the STockholm
Inversion Code (STiC; de la Cruz Rodríguez et al. 2019) can then be done, with the
necessary care and the large computing time that these inversions require (they
sometimes require of the order of 2 CPU hours per profile). The result is a one-to-one
relation between RP and Representative Model Atmospheres (RMA). Afterward, the
inversion of maps is carried out by comparing each observed pixel with the list of RP
and setting the associated RMA as the solution. When the code is working in

9 DBSCAN is available on the scikit-learn Python package.
10 In this case, Dirichlet processes are often used as priors. A Dirichlet process is a probability distribution
whose range is itself a set of probability distributions. It is used in Bayesian inference to describe the prior
knowledge about the distribution of random variables.
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evaluation, one finds acceleration factors of 5–6 orders of magnitude in computing
time.

The use of RP leads to a huge gain in computing time at the expense of precision
in the results. k-means will always select the RP with the smallest distance to the
observed profile at every pixel. Although this distance is the smallest, nothing avoids
this distance to be large in absolute units, when none of the RP produces a good fit to
the observed profile. This would happen, for instance, in pixels with rare spectra,
sufficiently rare that it was not statistically present on the training set. Therefore, one
should always be cautious and avoid overinterpreting the results. It is always a good
practice to visualize the distance (in suitable units) between the observations and the
selected RP, paying special attention to those pixels in which the distance is large and
its specific reason.

3.3.2 Segmentation of coronal holes

Recently, k-means has been implemented for the identification of CH by Inceoglu
et al. (2022). Three of the AIA/SDO wavelengths (171, 193 and 211 Å) were used in
different combinations, individual channels, 2-channels (2CC) and 3-channels (3CC)
composites, for building the data sets. By computing the within-group sum of square
distances as a function of the number of clusters, they manage to give an optimal
number of clusters by locating the elbow of the plot (also known as the scree-plot
method). The results obtained by applying the k-means method on each of the data
sets were compared among themselves to identify the best-performing data set. The
results were also compared with CH identified with other methods such as CATCH
and HEK (Heliophysics Event Knowledge; Hurlburt et al. 2012). They concluded
that k-means has a good overlap with the CHs obtained with CATCH, especially
when using the AIA 193 Å channel.

4 Linear models: supervised

Linear regression is arguably the simplest model used in statistics and machine
learning and it has become the workhorse of these two disciplines, also in solar
physics. Its main assumption is that the signal of interest can be developed as the
weighted sum of basis functions:

IðxÞ ¼
XM
i¼1

wiKjðxÞ; ð10Þ

where wi are the weights associated with the M basis functions KjðxÞ. The flexibility
in the selection of the basis functions is one of the reasons for the power and
flexibility of linear models. Additionally, the linear character of the model simplifies
the calculations, in many cases allowing to carry out analytical calculations.
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4.1 Hermite functions

While PCA provides a purely empirical orthogonal basis set to represent the Stokes
profiles, other more classical approaches have been tried in the literature. One that is
particularly relevant is the use of Hermite functions, developed by del Toro Iniesta
and López Ariste (2003). They realized that these functions when defined as

hnðkÞ ¼ 2nn!
ffiffiffi
p

p� ��1=2
exp �k2=2
� �

HnðkÞ; ð11Þ
where HnðkÞ are the Hermite polynomials as a function of the wavelength k, look
very similar to the Stokes profiles when displayed in wavelength units normalized to
the width of the spectral line. h0ðkÞ is a Gaussian function, very similar to Stokes I,
h1ðkÞ looks similar to Stokes V when dominated by the Zeeman effect, while h2ðkÞ
looks similar to Stokes Q and U in the same regime. Although interesting from a
mathematical point of view, the Hermite expansion has not been used in real situ-
ations because they work well only when all the profiles have a definite width. When
Stokes profiles of different widths are present in the field of view, empirical
decompositions like PCA are definitely much more efficient.

4.2 Relevance vector machines

Very powerful methods have been proposed and used in solar physics for regression
based on non-parametric models. Non-parametric regression relies on the application
of a sufficiently general function that only depends on observed quantities and that is
used to approximate the observations. A very flexible and efficient non-parametric
regression method is that of the relevance Vector Machines (RVM; Tipping 2000), a
Bayesian update of the support vector machine learning technique of Vapnik
(1995).11 In this case, the general function is just the linear combination of user-
defined kernels of Eq. (10) with x ¼ k. The KjðkÞ functions are arbitrary and defined
in advance, and wi is the weight associated to the i-th kernel function. The parameters
we infer from the data appear linearly in the model once the kernel functions are
fixed. For instance, if the kernel functions are chosen to be polynomials, one ends up
with a standard polynomial regression.

The main advantage of non-parametric regression is that the model automatically
adapts to the observations. For this adaptation to occur, the basis functions should
ideally capture all possible ways in which the signal can behave. The number of basis
functions one can include in the linear regression can be arbitrarily large, making
Eq. (10) a very powerful model for any unknown signal. As an example, one can use
a combination of polynomials of many different orders, sinusoidal of many
frequencies, and Gaussians at different positions and with different widths to
approximate a very general spectral line.

Obviously, this makes the regression problem ill-defined and the solution severely
overfits the data provided that M is large enough. For this reason, Tipping (2000)
proposed to circumvent overfitting by pursuing a hierarchical Bayesian approach. In

11 https://github.com/aasensio/rvm.
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this case, a Gaussian prior is imposed for each one of the wi. This prior is made
dependent on a set of hyperparameters ai, which are learned from the data. If a
Jeffreys’ prior is imposed on ai, i.e., pðaiÞ / a�1

i , the resulting prior for wi is

pðwiÞ / jwij�1. In essence, with the specific priors, in the limiting case that ai tends
to infinity, the marginal prior for wi is so peaked at zero that it is compatible with a
Dirac delta. This means that this specific wi does not contribute to the model and can
be dropped without impact. This regularization proposed by Tipping (2000) leads to
a sparse w vector, so an automatic relevance determination is implemented in the
method.

This method was applied for the first time for denoising purposes by Asensio
Ramos and Manso Sainz (2012) in solar physics. For this purpose, one selects
Gaussian functions of different widths centered at each one of the spectral points
observed. This obviously constitutes an overdetermined non-orthogonal dictionary12

but the regularizing properties of RVM help in keeping only a few active Gaussians,
which explain the observations. The remaining signal is considered to be noise.
López Ariste (2014) proposed it as a very efficient method for fringe removal from
data. Fringes appear in observed spectra because of the internal reflection in thin
plates in the optical path. As a consequence, the observed spectrum can be
understood as a combination of quasi-periodic fringes plus the original spectrum.
López Ariste (2014) proposed Gaussian functions, GjðkÞ of different widths for
explaining the spectral lines and a combination of sines and cosines, PjðkÞ for
explaining the fringes:

IðkÞ ¼
XM
i¼1

piPjðkÞ þ
XM
i¼1

wiGjðkÞ: ð12Þ

The sparsity regularization that is part of RVM produces that spectral lines are not
efficiently developed with periodic functions. One would need lots of sines and
cosines to do that and this is penalized by the model. Likewise, fringes are not
efficiently developed with Gaussians for precisely the same reason. Once the
regression is done, defringing is done by removing the quasi-periodic component and
computing:

IdefringedðkÞ �
XM
i¼1

wiGjðkÞ: ð13Þ

4.3 Compressed sensing and sparsity regularization

The theory of compressed sensing has emerged recently to solve strongly
undetermined problems. One case of that is the recovery of signals from
measurements. It is a well-known fact that band-limited signals need to be sampled
according to the Nyquist-Shannon theorem. If not, the latent function cannot be

12 A dictionary is a set of potentially non-orthogonal functions that are used to represent a signal as a linear
expansion.
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properly recovered from the samples. During the last few years, the emerging theory
of compressed sensing (CS; Candès et al. 2006b; Donoho 2006) has shown that this
sampling is indeed too restrictive when some details of the signal structure are known
in advance. Although this might sound counterintuitive, it is indeed true that, in many
instances, natural signals have a structure that is known in advance, in many cases
motivated by physical arguments. For instance, stellar oscillations can be represented
by sinusoidal functions of different frequencies, images can be represented in a
multiresolution analysis using wavelets, etc. The key point is that, typically, only a
few elements of the basis set in which we develop the signal are necessary for an
accurate description of the important physical information. The innovative character
of CS is that this compressibility of the observed signals is inherently taken into
account in the measurement step, and not only in the post-analysis, thus leading to
efficient measurement protocols. Instead of measuring the full signal (wavelength
variation of the Stokes profiles in our case), under the CS framework one measures a
few linear projections of the signal along some vectors are known in advance and
reconstruct the signal solving a nonlinear problem. For a more in-depth description,
we refer the reader to recent references (e.g., Baraniuk 2007; Candès and Wakin
2008, and references therein).

The usage of compressive sensing techniques for the measurement of a signal,
represented as a vector x0 of length M, is based on the following two key ideas:

1. Instead of measuring the signal itself, one measures the scalar product of the
signal with carefully13 selected vectors:

y ¼ Ux0 þ e; ð14Þ
where y is the vector of measurements of dimension N, U is an N �M sensing
matrix and e is a vector of dimension N that characterizes the noise on the
measurement process. Note that the previous equation describes the most general
linear multiplexing scheme in which the number of measurements M and the
length of the signal N may differ. In the standard multiplexing case, the number
of measured scalar products equals the dimension of the signal (N ¼ M ).
Consequently, it is possible to recover the vector x0 provided that rankðUÞ ¼ N ,
so that the problem is not ill-conditioned. In other words, one has to verify that
every row of the U matrix is orthogonal with respect to every other row.

2. The assumption that the signal of interest is sparse in a certain basis set (or can be
efficiently compressed in this basis set). Any compressible signal can be written,
in general, as:

x0 ¼ WTx; ð15Þ
where x is a K-sparse vector (if only K elements of the vector are different from
zero) of size M and WT is the transpose of an M �M transformation matrix
associated with the basis set in which the signal is sparse. For instance, W can be
the Fourier matrix if the signal x is the combination of a few sinusoidal
components. Other transformations of interest are the wavelet matrices or even

13 The precise meaning of “carefully” can be found in Candès et al. (2006b).
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empirical transformation matrices like those found using principal component
analysis.

The combination of those ingredients leads to the multiplexing scheme:

y ¼ UWTxþ e; ð16Þ
with the hypothesis that x is sparse, which renders CS feasible. It has been
demonstrated by Candès et al. (2006b) that, even if rankðUWT Þ\N (we have fewer
equations than unknowns), the signal x can be recovered with overwhelming prob-
ability when using appropriately chosen sensing matrices U. When the number of
equations is less than the number of unknowns, it is usual to solve Eq. (16) using
least-squares methods that try to minimize the ‘2 norm14 of the residual. This is
usually accomplished using techniques based on the singular value decomposition
(see, e.g., Press et al. 1986). However, such minimization is known to return non-
sparse results (e.g., Romberg 2008). A more appropriate solution is to look for the
vector with the smallest ‘0 pseudo-norm (the number of non-zero elements of the
vector) that fulfills the equation:

argmin
x

kxk0 subject to ky�UWTxk2\�; ð17Þ

where � is an appropriately small quantity. The solution to the previous problem is, in
general, not computationally feasible. However, Candès et al. (2006b, 2006a)
demonstrated that, under certain conditions for the matrix UWT (Candès et al.
2006b), the problem reduces to:

argmin
x

kxk1 subject to ky�UWTxk2\�; ð18Þ

The advantage lies in the fact that very efficient numerical methods exist for the
solution to such a problem15.

The theory of CS has extensively been used in solar physics after Asensio Ramos
and López Ariste (2010) introduced it into the field of spectropolarimetry. Given that
the theory relies on the compressibility of signals, these authors tested whether this is
indeed practically the case for the Stokes profiles. They showed that polarimetric
signals in many spectral lines can be efficiently compressed using PCA and also non-
empirical basis sets like different families of wavelets. Once this is verified, they
proposed several potential applications of the CS theory to the measurement of
Stokes profiles. The first one is the conceptual idea of a multiplexing spectro-imager.
This is an extension of the classical double pass subtractive spectrographs which
work as follows: i) the slit of the standard spectrograph is removed; ii) a coded
narrow slit following a Hadamard orthogonal sequence is located in the focal plane
of the spectrograph, together with a device to return the light through the
spectrograph in subtractive mode. As a consequence, an image is formed at the
entrance of the spectrograph where each column corresponds to a different

14 The ‘q norm of a vector is given by kxkq ¼
P

xqið Þ1=q when q� 1.
15 Some CS problems can be solved using the scikit-learn Python package.
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wavelength. This idea later became real with the development of the Tunable
Universal Narrowband Imaging Spectrographs (TUNIS; López Ariste et al.
2010, 2011). The inverse problem to recover the original monochromatic images
is solved using CS and a sparsity constraint in the spectral direction.

Asensio Ramos and López Ariste (2010) also proposed a sub-Nyquist spectro-
graph, in which the pixel size is several times larger than the spectral sampling of the
spectrograph. The original spectral resolution of the spectrograph is obtained by
solving again a CS problem. The authors demonstrated that, under certain conditions,
the original resolution can be recovered. This might be of relevance for very high
resolution spectrographs, which also require cameras with a large number of pixels to
cover a sufficiently large spectral range.

Another idea suggested by Asensio Ramos (2010) was the application of the CS
theory to Fabry-Perot etalons (FPE). Almost all successful FPE consists of three
optical elements: a relatively narrow filter and two etalons of different free spectral
ranges. An etalon is a thin plate that works as a periodic frequency filter with well-
defined transmission peaks of high transparency. When the two etalons are
appropriately aligned and tuned, the transmission profile of the combination has a
very high transmission peak. The secondary transmission peaks are strongly reduced,
although this spectral structure is again periodic with a much larger period. The
narrow filter serves to isolate only one of the transmission peaks. Tuning the etalons
is a very difficult task and, for this reason, only a few such instruments exist. Asensio
Ramos (2010) suggested that one can use the CS theory to remove one of the etalons
and still recover the original signal. The numerical experiments using PCA as a
sparsity-inducing basis set was successful. However, no instrument is still based on
this idea. Probably one of the reasons is that one needs to precompute the basis set,
and for this, a normal spectrograph is needed. Recently, Molnar et al. (2020)
demonstrated that the application of neural networks for the solution of CS problems
can overcome this difficulty and recover a large fraction of the spectral resolution lost
during the observation with the instrument.

The idea of a sub-Nyquist polarimeter was put forward by Asensio Ramos (2016)
using the CS theory. Such a polarimeter modulates the polarimetric properties of the
incoming light at very high frequencies (roughly at kHz rates) to freeze the variations
of the refraction index of the Earth atmosphere, but measures at a much slower rate
(of only a few hundred Hz). The camera then integrates the modifications to the
Stokes parameters produced by seeing variations. Consequently, one ends up solving
a linear recovery problem like that of Eq. (18), under the assumption that the seeing
variations are compressible in the Fourier basis. This is indeed approximately the
case given that the power spectrum of the seeing roughly follows a 1=f 2 law. The
simulations carried out by Asensio Ramos (2016) demonstrated that it is possible to
recover the seeing variations at kHz frequencies from integrations one order of
magnitude slower, with a very robust behavior with noise.

Another very fruitful field of application of compressed sensing is in the thermal
diagnostics of the corona. The multiband observations capabilities of the Atmo-
spheric Imaging Assembly instrument (AIA; Lemen et al. 2012) onboard the Solar
Dynamics Observatory (SDO; Pesnell et al. 2012) can be potentially used to
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constrain the temperature and densities of the optically thin plasma in the solar
corona. This is done via the solution of the linear Differential Emission Measure
(DEM) problem, which can be posed as a linear system once the problem is
discretized. The DEM problem is severely undetermined and its solution must be
regularized to find a reliable result. Cheung et al. (2015) applied a sparsity constraint
by posing the DEM inversion problem in the form of Eq. (18), with the additional
constraint that each component of the solution vector be non-negative (since the EM
is proportional to the square of the free electron density, it must be non-negative to be
physically meaningful). The method works by proposing an overcomplete and non-
orthogonal dictionary composed of Dirac-delta and Gaussian functions that cover the
expected range of temperatures in a logarithmic scale. The solution method imposes
sparsity on the coefficients associated with the elements of the dictionary to find the
final combination that explains the observations. The method was validated in a large
variety of synthetic cases, from simple ones to thermodynamic models obtained from
a fully compressible, 3D magneto-hydrodynamic (MHD) simulation of an active
region. Later, Su et al. (2018) pointed out that the selection of widths of the
Gaussians that are part of the dictionary proposed by default by Cheung et al. (2015)
could lead to some problems in flaring regions. They decreased the default width of
some of the Gaussians and also increased the log T gridding to allow for more
thermal structure. The thermal structure inferred from AIA data alone is,
consequently, more consistent with thermal X-ray observations.

Compressed sensing has also been proposed by Cheung et al. (2019) for the
analysis of current and future multi-slit spectroscopic instruments, like the Multi-slit
Solar Explorer (MUSE; De Pontieu et al. 2020). These multi-slit instruments observe
different regions of the solar surface. The dispersive element used for the analysis of
the spectrum produces, at the detector, a superposition of spectra originating from all
slits. Disentangling this mixture is again done by solving a linear problem like that of
Eq. (14), where the mixture matrix depends on the specifics of the instrument.
Cheung et al. (2019) proposed that an ‘1 constraint can be used to successfully solve
the problem. This method has also been adapted for unfolding overlapping EUV
spectra in slitless imaging spectrometer data, e.g., for the COronal Spectroscopic
Imager in the EUV (COSIE Winebarger et al. 2019; Golub et al. 2020).

Sparsity constraints can also be applied to the solution of nonlinear problems, like
the inversion of Stokes profiles. In this case, the problem to be solved is:

argmin
x

kxk1 subject to ky� f ðWTxÞk2\�; ð19Þ

where ysyn ¼ f ðpÞ are the synthetic Stokes profiles. These are obtained by solving
the radiative transfer equation on a model atmosphere parameterized by the vector of
physical properties p. Using this approach, Asensio Ramos and de la Cruz Rodríguez
(2015) developed a new 2D inversion code under the Milne-Eddington approxi-
mation (see Landi Degl’Innocenti and Landolfi 2004). The solution is regularized by
assuming that the maps of physical properties are sparse in a wavelet basis. The
sparsity constraint effectively reduces the number of free parameters of the problem
and produces much cleaner inverted maps. This approach has also been exploited by
Asensio Ramos et al. (2016) to invert Stokes profiles that can be affected by
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systematic effects that are not part of the line formation model (e.g., fringes, blends,
etc.).

Hybrids of unsupervised and supervised models including sparsity have also been
built for solar flare prediction (Benvenuto et al. 2018). In this case, a sparsity
constrained linear model is used to extract relevant features from the observations,
while a variant of k-means is used to cluster the resulting features. The results show
that the synergy between the supervised and unsupervised methods performs
classification better than previous approaches.

5 Deep neural networks

Arguably the most successful machine learning methods nowadays are based on deep
nonlinear artificial neural networks (ANN), especially deep neural networks (DNN).
For this reason, we focus this section on the description of ANNs which we consider
to be models with great potential in the field.

ANNs are well-known computing systems based on connectionism that can be
considered to be universal approximants (Bishop 1996) to arbitrary functions (a
theorem demonstrated by Cybenko 1988). They are inspired by the connectivity of
animal brains and their origin can be traced back to the 1940 s. At that time, some
ideas of how to carry out computations based on mimicking animal brains appeared
(McCulloch and Pitts 1943). After some theoretical advances, Rosenblatt (1958) built
the Mark I Perceptron machine, the first implementation of a perceptron, a supervised
algorithm for binary classification. ANNs slowly evolved over the decades but never
emerged as the method of choice for machine learning. The fundamental reason for
this was, as demonstrated in recent years with the success of deep learning,
fundamentally wrong. Their training is based on the optimization of a scalar loss

Fig. 4 Building block of a fully-
connected neural network. Each
input of the previous layer is
connected to each neuron of the
output. Each connection is
represented by different lines
where the width is proportional
to the absolute value of the
weight. Solid lines represent
positive weights while dashed
lines refer to negative weights
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function that is non-convex in the parameters. Consequently, locating the global
minima is a daunting task. In fact, it may not exist at all and the loss landscape is
made of a plethora of local minima. For this reason, the machine learning community
preferred to use methods based on convex loss functions, like the ones presented in
the previous section. Only in recent years, researchers are starting to understand the
loss landscape and realize that non-convexity is in fact the property that has opened
up the current revolution in machine learning.

The building block of an artificial neural network is shown in Fig. 4. The most
basic constituent of a neural network is the neuron (inspired by biological neurons
but not strictly equivalent), shown as grey circles in the figure. From a mathematical
point of view, a neuron can be understood as a simple storage of a real number, which
is then used in some predefined operations when this neuron is connected with other
neurons. These connections can be massive and this connectivity is precisely the one
that gives enormous representation power to neural networks. The state of each
neuron i is computed by a very basic operation on the input vector: it multiplies all
the input values xj by some weights wj, adds some bias bi and finally returns the
value of a certain user-defined nonlinear activation function f(x). In mathematical
notation, a neuron computes:

yi ¼ f
X
j

xj 
 wj þ bi

 !
; ð20Þ

which is a generalization of the simple model for a neuron of McCulloch and Pitts
(1943). The output yi is then input in another neuron that does a similar operation.
Therefore, neural networks can be considered to be a complex composition of very

simple nonlinear functions. Each layer k is parameterized by a set of parameters hðkÞ.
After passing through the L layers the output can be written as:

y ¼ f ðx; hÞ ¼ f ðLÞ
hðLÞ

ð
 
 
 f ð2Þ
hð2Þ

ðf ð1Þ
hð1Þ

ðxÞÞÞ: ð21Þ

It is sometimes useful to make explicit all intermediate features of the neural
network:

yð1Þ ¼ f ð1Þ
hð1Þ

ðxÞ
yð2Þ ¼ f ð2Þ

hð2Þ
ðyð1ÞÞ


 
 

yðL�1Þ ¼ f ðL�1Þ

hðL�1Þ ðyðL�2ÞÞ
y ¼ f ðLÞ

hðLÞ
ðyðL�1ÞÞ

ð22Þ

Using the standard notation for function composition (	), a neural network then
provides the following output:
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y ¼ ðf ðLÞ
hðLÞ

	 f ðL�1Þ
hðL�1Þ 	 
 
 
 	 f ð2Þ

hð2Þ
	 f ð1Þ

hð1Þ
ÞðxÞ: ð23Þ

Precisely this composition character is the one that allows graphical models like the
one depicted in Fig. 4 to be useful. The compositional character opens up the pos-
sibility to split very complex models as the combination of smaller submodels. This
abstract block representation gives neural networks an enormous potential because
they can be engineered quite easily to the solution of a very broad class of problems.

In many cases, an ANN can be understood as a pipeline where the information
goes from the input to the output, where each neuron makes a transformation like the
one described above. Each transformation deforms the topology of the input space
(Naitzat et al. 2020) with the hope that the final prediction turns out to happen in a
much simpler space. Neurons are usually grouped in layers and the number of
connected layers defines the depth of the network. For reasons that will become clear
in Sect. 5.3.3, very deep neural networks are hard to train, and only in the last decade,
we have been able to do that. Currently, some of the most successful neural networks
contain millions or billions of neurons organized in several tens or hundreds of layers
(Simonyan and Zisserman 2014).

One may ask: How do we know which weights and biases to use to get an optimal
result for our supervised learning problem? The optimal values for the weights and
biases are unknown before training. They are parameters of the ANN, typically
initialized by sampling from a random distribution (e.g., normal distribution). The
task of supervised training is to provide samples of input and targets (rows of X and
Y) so that the loss function can be evaluated, and gradient descent be used to update
the parameters of the ANN. See Sect. 5.3 for a discussion of how ANNs are
efficiently trained.

5.1 Architectures

5.1.1 Multi-layer fully connected neural networks

The most used type of neural network from the 1980 s to the 2000 s is the fully
connected network (FCN; see Schmidhuber 2014, for an overview), in which every
input of all considered layers is connected to every neuron of the following layer.
Likewise, the output transformation becomes the input of the following layer (see left
panel of Fig. 4). This kind of architecture succeeded to solve problems that were
considered to be not easily solvable, such as the recognition of handwritten
characters (Bishop 1996).

5.1.2 Convolutional neural networks

Despite the relative success of neural networks, their application to high-dimensional
objects like images or videos turned out to be an obstacle. The fundamental reason
was that the number of weights in a fully connected network increases extremely fast
with the complexity of the network (defined by the number of neurons) and the
computation quickly becomes unfeasible. As each neuron of a given layer is
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connected to every neuron of the previous one, adding a new neuron to a layer also
implies adding a large number of weights, equal to the number of neurons in the
layer. The number of weights of a deep fully connected neural network is, then:

N ¼
X

i2layers
NiNi�1; ð24Þ

where Ni is the number of neurons of layer i. A larger number of neurons implies
then a huge increase in the number of connections. This became an apparently
insurmountable handicap, which was only solved with the appearance of convolution
neural networks (CNN or ConvNets; LeCun and Bengio 1998). The idea brought
forward by LeCun and Bengio (1998) was motivated by biological processes and
exploit the fact of sharing weights across the input. From a mathematical point of
view, CNNs define a set of kernels of small size that are then used as convolution
kernels. The input is then convolved with them, providing as output that is known as
feature map. The fundamental advantage of CNNs is that sharing the weights across
the whole input drastically reduces the number of unknowns. As a side effect,
convolutions also make CNN’s shift invariant (features can be detected in an image
irrespectively of where they are located), a very powerful inductive bias.

For a two-dimensional input X of size N � N with C channels16 (a cube or tensor
of size C � N � N ), each output feature map Oi (with size 1� N � N ) of a
convolutional layer is computed as:

Oi ¼ Ki � X þ bi; i ¼ 1; . . .;M ; ð25Þ
where Ki is the C � K � K kernel tensor associated with the output feature map i, bi
is a bias value (1� 1� 1) and the symbol � is used to refer to the the convolution
operation17. Once the convolution with M different kernels is carried out and stacked
together, the output O will have size N � N �M . All convolutions are here indeed
intrinsically three-dimensional, but one could see them as the total of M � C two-
dimensional convolutions plus the bias.

Like the weights of a fully-connected network, the optimal weights of a
convolutional kernel are unknown. Instead they are initialized (often with values
sampled from random distributions) and updated during training time. Regardless of
the value of the kernels, the individual application of the convolutional operator (as
given in Eq. (25)) and the serial composition of such operations remain linear
operations. To introduce nonlinearities and increase the expressivity, convolutional
layers are often succeeded by activation functions (see Sect. 5.2). Pooling layers are
also used to improve the spatial connectivity of CNNs and to reduce the
dimensionality of the input. For example, the maxpool operation returns the
maximum value in non-overlapping windows of size Nsub � Nsub pixels. Often,

16 The term channels is inherited from the those of a color image (e.g., RGB channels). However, the term
has a much more general scope and can be used for arbitrary quantities (see Asensio Ramos et al. 2017, for
an application).
17 In most ML framework implementations of convolutional layers, the � operator is actually the cross-
correlation instead of convolution, as is usually defined in the mathematical literature. The difference
between the two operations are irrelevant because kernels will be learned during training, but the
correlation is more computationally efficient.
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applications of the convolutional layer and/or maxpool layers are strided. For a stride
of one, a convolution displaces the kernel on the input with a step of one pixel. When
the stride is larger than one, the convolution kernel is displaced in larger steps. This
practice reduces the nominal dimensionality (i.e., the number of components of the
output, not the intrinsic rank) of the output. Repeated application of this type of
downscaling reduces the number of trainable parameters, and thus the computational
effort needed to train the network.

Like fully connected layers, CNNs are typically composed of several layers. This
layer-wise architecture exploits the property that many natural signals are generated
by a hierarchical composition of patterns. For instance, faces are composed of eyes,
while eyes contain a similar internal structure. This way, one can devise specific
kernels that extract this information from the input. CNNs work on the idea that each
convolution layer extracts information about certain patterns, which is done during
the training by iteratively adapting the set of convolutional kernels to the specific
features to locate. This obviously leads to a much more optimal solution as compared
with hand-crafted kernels. Despite the exponentially smaller number of free
parameters as compared with a fully-connected ANN, CNNs often produce much
better results.

It is interesting to note that, since a convolutional layer just computes sums and
multiplications of the inputs, the same operation could be done with a multi-layer
FCN. However, training such a neural network would require huge amounts of
training data to learn the natural inductive biases of locality and shift invariance of
CNNs (Peyrard et al. 2015).

Although a convolutional layer significantly decreases the number of free
parameters as compared with a fully-connected layer, it introduces some hyperpa-
rameters (global characteristics of the network) to be set in advance: the number of
kernels to be used (number of feature maps to extract from the input), the size of each
kernel with its corresponding padding (to deal with the borders of the image) and the
stride (step to be used during the convolution operation) and the number of
convolutional layers and specific architecture to use in the network. As a general rule,
the deeper the CNN, the better the result, at the expense of a more difficult and
computationally intensive training.

5.1.3 Recurrent neural networks

The efficient description of sequences of data requires neural networks with a
different architecture. In this case, it turns out to be important to have feedback
connections to keep track of long-term dependencies in the input sequences.
Recurrent neural networks (RNNs; Rumelhart et al. 1986) can keep track of these
dependencies by unrolling the network for all the elements of the sequence and
connecting the output of each neuron in the sequence to the input of the next one.
RNNs are designed to learn sequential or time varying patterns (Medsker and Jain
2021), like for example the solar cycle variation. RNNs started to be used initially for
solving character recognition problems, but they were also implemented in many
other fields, like financial predictions, the verification of the water quality, etc. The
architecture can be built on fully or partially-connected layers, including multilayer
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feedforward networks and specific learning algorithms were developed for the RNNs
(Medsker and Jain 2021). The RNNs were initially difficult to train because they
suffer from the vanishing gradient problem (see Sect. 5.3.3). Different architectures
were proposed to cure this problem, and the long short-term memory (LSTM;
Hochreiter and Schmidhuber 1997b) is arguably the most successful. In solar
physics, the LSTM was intensively applied for the prediction of the current solar
cycle (see Sect. 7.6).

5.1.4 Attention and transformers

The attention mechanism, which is a variety of algorithms that compute the output by
weighting the importance of different features of the data, has become important
thanks to the Transformer model (Vaswani et al. 2017). Transformers can translate a
sequence of arbitrary length into a sequence of the same length of features of
arbitrary dimensionality using self-attention. Given an input X, self-attention works
by building matrices of values (V), queries (Q) and keys (K) by using trainable
weight matrices:

V ¼ WVX; Q ¼ WQX; K ¼ WKX ð26Þ
and computing:

AttðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk
p

� 	
V; ð27Þ

where dk is the dimensionality of the queries and keys. The product of the query and
key matrices is a score matrix that defines the amount of attention that each element
of the output pays to every element of the input sequence. This score matrix is then
scaled down to allow for more stable gradients, and a softmax is applied to trans-
form the scores into probabilities. Finally, these attention weights are applied to the
values. Transformers have not been yet applied in solar physics (see Sect. 7.10.6 for
an usage of attention). However, given their success in other fields, we anticipate that
this kind of attention model will eventually emerge as suitable ones in the analysis of
images or sequences.

5.1.5 Graph neural networks

Neural networks can also be defined in graphs, which is sometimes appropriate for
specific problems. These problems are still hard to find in solar physics but at least
one application already exists (see Sect. 7.7). A connected graph G ¼ ðV ;EÞ is
defined by the set of grid points V (also known as nodes or vertices) and the set of
edges connecting the grid points, E. Each node can encode relevant properties pi.
Each edge eij connects the two nodes i (sender) and j (receiver), and describes
relevant inter-node properties. The computation inside the graph is based on the so-
called processor, made of N consecutive message passing processes. Message
passing is fundamental to connect the information in very distant nodes in the graph,
given that all updates are local, as shown in the following. Each message passing
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consists of updating the latent information contained in all edges and then in all
nodes, as follows:

etþ1
ij ¼etij þ f tþ1

E ðetij; vti; vtjÞ;
�etþ1
j ¼

X
k

f tþ1
A



vtk ; e

tþ1
kj

�
;

vtþ1
j ¼f tþ1

V



vj; �e

tþ1
j

�
;

ð28Þ

where fE, fA and fV are neural networks. After a predefined number of message
passing steps, one ends up with updated information in the nodes and in the edges. In
a supervised training setup, this updated information is then compared with that of
the training set and the weights of the neural networks are updated until convergence.

5.2 Activation layers

The output of a linear layer of a neural network is often passed through a nonlinear
function, known as the activation function. This function introduces the non-linear
character into the neural networks, which is the source of its strength. Although

hyperbolic tangent, f ðxÞ ¼ tanhðxÞ, or sigmoidal, f ðxÞ ¼ ½1þ expð�xÞ��1, activation
units were originally used in ANNs (see Fig. 5), nowadays a panoply of more
convenient nonlinearities are used. Probably the most common activation function is
the Rectified Linear Unit (ReLU; Nair and Hinton 2010) or slight variations of it, like

Fig. 5 Some activation functions often used in ANNs: hyperbolic tangent (Tanh), sigmoid, rectified linear
unit (ReLU), and exponential linear unit (ELU)
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the exponential linear unit (ELU; Clevert et al. 2015). The ReLU replaces all
negative values in the input by zero and keeps the rest untouched:

ReLUðxÞ ¼ maxð0; xÞ: ð29Þ
This activation has the desirable property of having a constant derivative for positive
arguments, which greatly accelerates the training and reduces the vanishing gradient
problem. Examples of a few activations functions are displayed in Fig. 5.

5.3 Training

Neural networks (either deep or shallow) can be seen as a very flexible parametric
function that produces an output, y, from an input, x, with the aid of some internal
parameters, h. These parameters are the weights and biases of all layers, together with
any possible learnable parameter of the activation layers. Training is performed by
iteratively modifying the vector of parameters h until a loss function is minimized.
This can be seen as a standard maximum-likelihood optimization when the loss
function is given by the likelihood function.

5.3.1 Loss function

In general, a loss function is a differentiable scalar function that depends on the
inputs and outputs, as well as any parameter or internal feature of the neural network.
Using the definition of the neural network functional form of Eq. (23), the most
general loss function is represented by the following scalar:

L ¼ gðx; y; fhðLÞ; . . .; hð1Þg; fyðL�1Þ; . . .; yð1ÞgÞ; ð30Þ

where the dependence on hðiÞ shows the contribution of the weights of all interme-
diate layers in the neural network, while the dependence on yðiÞ shows the depen-
dence on all intermediate features.

5.3.2 Gradient descent

In general, and irrespective of the specific loss function, the optimization is routinely
solved using simple first-order gradient descent algorithms (GD; see Rumelhart et al.
1988), which modifies the weights using the gradient of the loss function with respect
to the model parameters.

In practice, procedures based on the so-called stochastic gradient descent (SGD)
are used, in which only a few examples from the training set (a batch) are used during
each iteration to compute a noisy estimation of the gradient and adjust the weights
accordingly. A training set is then divided into n batches, each one containing B
training examples. Although the calculated gradient in a batch is a noisy estimation
of the one calculated with the whole training set, the training is often faster and more
reliable. To formalize SGD, let us consider the loss function as the addition of losses
over all the n batches of the training set, so that:
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LðhÞ ¼
Xn
j¼1

XB
k¼1

LkjðhÞ; ð31Þ

where Lkj is the loss function for the k-th element of the j-th batch. The standard
gradient descent algorithm optimizes the loss function by updating the parameters of
the neural network using:

hiþ1 ¼ hi � grLðhiÞ ¼ hi � g
Xn
j

rLjðhiÞ; ð32Þ

where g is the learning rate. The SGD method updates the parameters following the
same idea but calculating the gradient using only a single batch:

hiþ1 � hi � grLjðhiÞ ¼ hi � g
XB
k¼1

rLjkðhiÞ; j ¼ 1; . . .; n: ð33Þ

The learning rate is used to tune the step size defined by the gradient, which is often
not optimal unless one is very far from the optimal solution. The learning rate can be
kept fixed or it can be changed according to our requirements. It is usually tuned to
find a compromise between the accuracy of the network and the speed of conver-
gence. If g is too large, the steps will be too large and the solution could potentially
overshoot the minimum. On the contrary, if it is too small it will take too many
iterations to reach the minimum. In recent years, adaptive methods like Adam
(Kingma and Ba 2014) or RMSProp (Tieleman and Hinton 2012) have been
developed to automatically tune individual learning rates for each variable. These are
still first-order algorithms in which some second-order information from the Hessian
is estimated using consecutive iterations.

5.3.3 Backpropagation

The gradient of the loss function with respect to the free parameters of the neural
network needed during training is obtained via the backpropagation algorithm
(LeCun et al. 1998). The composite character of neural networks makes the
calculation of these gradients easier than for a general nonlinear function because one
can recursively apply the chain rule. To demonstrate this, it is advisable to start with
the simple case of two layers:

L ¼ g x; uð Þ ð34Þ

u ¼ f ð2Þ
hð2Þ

ðvÞ ð35Þ

v ¼ f ð1Þ
hð1Þ

ðxÞ; ð36Þ

where u and v are used as intermediate results of hidden layers. The gradient of the
loss function with respect to both sets of h parameters are given by:
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oL

ohð1Þ
¼ oL

ou
ou
ov

ov

ohð1Þ
ð37Þ

oL

ohð2Þ
¼ oL

ou
ou

ohð2Þ
: ð38Þ

The case of three layers is similarly given by:

L ¼ g x; uð Þ ð39Þ

u ¼ f ð3Þ
hð3Þ

ðvÞ ð40Þ

v ¼ f ð2Þ
hð2Þ

ðwÞ ð41Þ

w ¼ f ð1Þ
hð1Þ

ðxÞ ð42Þ

The gradients are given by:

oL

ohð1Þ
¼ oL

ou
ou
ov

ov
ow

ow

ohð1Þ
ð43Þ

oL

ohð2Þ
¼ oL

ou
ou
ov

ov

ohð2Þ
ð44Þ

oL

ohð3Þ
¼ oL

ou
ou

ohð3Þ
ð45Þ

In general, except for the first element in both previous equations, the rest of the
terms of the shape ou=ov are the Jacobian matrices. Therefore, the backpropagation
can be understood as the multiplication of Jacobian matrices of the effect of each
individual layer. The algorithm can be implemented with relative simplicity by just
multiplying Jacobian matrices when traversing the neural network in the backward
direction (that is precisely the reason for the name of the algorithm). Note that this
calculation is also very efficient because one can store precomputed products of
Jacobian matrices and use them afterward.

To efficiently calculate all gradients, one starts by computing the gradient oL=ou
with the loss function and the last layer of the network. Then one goes to the previous

layer and computes the Jacobians ou=ov and ou=ohð3Þ. Both Jacobians are used to

update the gradients with respect to the variables hð2Þ and hð3Þ respectively. The
procedure is iterated until the first layer is found. In practice, this process is currently
done with automatic differentiation techniques, implemented in packages like
PyTorch18 (Paszke et al. 2019), Tensorflow19 (Abadi et al. 2015) or JAX20 (Bradbury
et al. 2018). Because these tools deal with the product of Jacobians in the neural

18 https://pytorch.org/.
19 https://www.tensorflow.org/.
20 https://github.com/google/jax.

123

4 Page 38 of 89 A. Asensio Ramos et al.

https://pytorch.org/
https://www.tensorflow.org/
https://github.com/google/jax


network graph, they allow the user to easily define flexible neural network
architectures tailored to specific needs.

5.3.4 Vanishing gradient problem

The way neural networks are trained suffers from a problem known as the vanishing
gradient problem (e.g., Kolen and Kremer 2001). This was the reason why the field
of artificial neural networks was somehow stalled during the years before the first
decade of the 21st century. If one considers typical nonlinear activation functions like
the tanhðxÞ, their derivative becomes very close to zero if the input is relatively far
from zero. Consequently, the Jacobian of this activation function becomes very small
and the gradient is not propagated backwards to the previous layers. As an effect, the
gradient of the loss function with respect to the first layers of the neural networks
using tanh(x)-like activation function rapidly becomes zero. As a result, the
stochastic gradient descent cannot produce any correction on their weights. As
commented before, new activation functions like ReLUðxÞ largely solve this problem
because their derivative does not saturate.

5.4 Bag-of-tricks as of 2023

5.4.1 Initialization

Tuning the initial value of the weights and biases of all the connections turned out to
be crucial for the success of deep learning. The aim of the initialization is to avoid the
explosion or vanishing of the layer activations so that gradients can seamlessly be
backpropagated and producing changes in all the layers of the model. If symmetric
activation functions like tanh are used, Glorot and Bengio (2010) noticed that good
results are found when initializing weights with a uniform distribution bounded in the

interval ½� ffiffiffi
6

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nin þ nout

p
;
ffiffiffi
6

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nin þ nout

p �, where nin and nout are the number of
input and output connections at a given layer, respectively. This is currently known
as Xavier initialization. For asymmetric activation functions, He et al. (2015) checked
that initializing weights from a normal distribution with zero mean and variance
2=nin can be efficiently used to train very deep neural networks. This is currently
known as the Kaiming initialization.

5.4.2 Augmentation

The supervised training of deep neural networks often requires a large number of
examples in the training set. Many times, especially in science, building such large
databases is unfeasible simply because of the lack more training examples. In such a
case, one can apply augmentation techniques as a remedy to artificially increase the
training set. Rotations, reflections, changes in contrast, and many other such
transformations can produce new training cases that produce a more stable result and
better generalization after training.
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5.4.3 Regularization and overfitting

Because of the large number of free parameters, especially in very deep CNNs,
overfitting can be a problem. One would like the network to generalize well and
avoid any type of “memorization” of the training set. There is increasingly stronger
empirical and theoretical evidence showing that stochastic gradient descent methods,
specific neural architectures, and the overparameterization of very large models leads
to flat minima in the loss function that automatically produce good generalization (e.
g., Hochreiter and Schmidhuber 1997a; Barrett and Dherin 2020). In other words, the
non-convex optimization problem is plagued with local minima but all of them are
equally good in their generalization properties.

One could argue that deep neural networks seem to be self-regularizing. But, in
those cases in which overfitting is found, there are a few ways to introduce extra
regularization during training. Many of them can be understood as an addition of a
prior term in the loss function so that one optimizes for the maximum a posteriori
solution instead of the maximum likelihood. The most used ones are weight decay
and dropout. Weight decay consists of forcing the weights of the neural network to be
small. Large weights tend to produce neural networks that are very specialized to the
training data and do not generalize well. For this reason, one typically adds an ‘2
(also known as Tikhonov) regularization term like the following:

Lregularized ¼ Lþ kjhj2: ð46Þ
The strength of the regularization is controlled by the hyperparameter k. Dropout
consists of randomly removing connections among neurons in the neural network
with probability p. This makes the training noisier but introduces a certain regular-
ization by sparsifying the weights. In essence, neural networks learn how to solve the
problem at hand even with random perturbations to the architecture.

5.4.4 Normalization

Several techniques have been described in the literature to accelerate the training of
CNNs and also to improve generalization. Batch normalization (Ioffe and Szegedy
2015) is a very convenient and easy-to-use technique that consistently produces large
accelerations in the training. It works by normalizing every batch to have zero mean
and unit variance. Mathematically, the input is normalized so that:

yi ¼ cx̂i þ b

x̂i ¼ xi � lffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �

p ;
ð47Þ

where l and r are the mean and standard deviation of the inputs on the batch and
� ¼ 10�3 is a small number to avoid underflow. The parameters c and b are learnable
parameters that are modified during the training. Although batch normalization can
stabilize and accelerate training, it is true that it requires the usage of relatively large
batches so that the statistics l and r are not too noisy. Other variants of normalization
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have also been developed: layer normalization, instance normalization, group nor-
malization, ....21

We caution against the liberal use of batch normalization in physics applications
(especially for regression) without careful testing. If a feedforward network F : x �
! y is thought of as a mapping between two dimensional quantities, the use of batch
norm essentially means the units in which the inputs are provided changes for every
batch.

5.4.5 Residual blocks and skip connections

Very deep networks usually saturate during training, producing higher errors than
shallow networks because of difficulties during training (fundamentally produced by
the vanishing gradient problem). Residual networks He et al. (2016) came to the
rescue by obtaining state-of-the-art results with exceptionally deep networks without
adding any extra parameters and with practically the same computational complexity.
It is based on the idea that if y ¼ FðxÞ represents the desired effect of the block on the
input x, it is much simpler for a network to learn the deviations from the input. This
residual mapping works then by rewriting y ¼ xþ RðxÞ, with R(x) a new neural
network that describes the residual. Skip connections are specific types of residual
connections in which intermediate features of the neural network are added or
concatenated in later stages of the network (see the U-Net architecture of Fig. 7).
They also help in propagating gradients to the initial layers of the neural network.

5.4.6 Specialized hardware

The embarrassingly parallel character of the operations to be carried out in a layer of
a neural network (for instance, convolutions with different kernels can be carried out
simultaneously without any dependence) has opened up the possibility of using
specific hardware to accelerate the calculations. GPUs were traditionally architected
for parallel graphics rendering (using fragment shaders). They are optimized for
Single Instruction Multiple Data (SIMD) processing. This type of parallel
programming paradigm is suited for application to large-scale scientific datasets,
and for dense matrix multiplication. This means GPUs are ideal for accelerating deep
neural networks, giving increases in the computation power of more than an order of
magnitude with respect to general purpose CPUs. Tensor Processing Units (TPU) are
even more specialized hardware that are, in essence, very fast matrix multipliers.
Recently, even optics-based computation hardware has been proposed, with the
promise to accelerate some computations by orders of magnitude at very reduced
power consumption (Miscuglio and Sorger 2020).

It has also been verified that deep neural networks are especially tolerant to
floating point errors so that they can be easily (and routinely) trained in single-
precision. Even half-precision can be used, provided one does the backpropagation in
single-precision. Specialized GPUs and TPUs can accelerate half-precision calcu-
lations by a large factor when compared with single-precision.

21 See https://bit.ly/3XleCff.

123

Machine learning in solar physics Page 41 of 89 4

https://bit.ly/3XleCff


6 Unsupervised deep learning

One of the weakest points of all linear methods described in the previous sections is
that they rely only on the information provided by second-order statistics
(correlation). Therefore, they cannot efficiently describe a dataset which is lying in
a nonlinear manifold of the original high-dimensional space. We expect this to be
true in general, so relying on nonlinear models has become a necessity. Several
unsupervised nonlinear models were developed in the first years of the century:
locally linear embedding (LLE; Roweis and Saul 2000), Isomap (Tenenbaum et al.
2000), a kernelized version of PCA (Schölkopf et al. 1998), self-organizing maps
(SOM; Kohonen 2001), autoassociative neural networks (Bourlard and Kamp 1988)
and t-SNE (Hinton and Roweis 2002). Only the last three methods have been used in
solar physics but without much continuity. However, the landscape in recent years
has changed completely thanks to the deep learning revolution. It is now possible to
train excellent generative models that capture the statistical properties of a training
set and we should expect this line of research to produce very interesting applications
in solar physics.

6.1 Self-organizing maps

A self-organizing map22 is a specific type of neural network that is trained
unsupervisedly. A SOM is a way to project a high-dimensional dataset into a two-
dimensional space by keeping, as much as possible, the topological information
present in the original space. It consists of a predefined set of N � N neurons that are
connected locally. The training is done by competitive learning starting from a
random initial distribution of weights. Weights are updated after each observation is
used by computing the neuron that is closer (typically in Euclidean distance) to the
observation. The information of the neuron is then propagated to the neurons around
within a predefined distance. One of the problems of this training is that it results in
an unpredictable distribution of classes along the whole map. However, we point out
that reproducibility can easily be solved by fixing the random seed used for training.
It was used by Asensio Ramos et al. (2007a) to classify profiles of the Mn I line
whose Stokes I profile is especially sensitive to the magnetic field strength. SOMs
were later used by Asensio Ramos (2012) to classify profiles in IMaX (Martínez
Pillet et al. 2011) observations and they also proposed them as a poor’s man
inversion method with reduced precision because it is fundamentally a classification-
based inversion. Although self-organizing maps look promising for classification
purposes, the lack of control of the output reduces their attractiveness.

6.2 t-SNE

Student-t Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality
reduction method23 that has had some success in recent years. The idea is to embed

22 An implementation can be found in https://github.com/bougui505/quicksom.
23 t-SNE is available on the scikit-learn Python package.
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high-dimensional data for visualization in a low-dimensional space of two or three
dimensions, which are especially suited for human understanding. It models each
high-dimensional object by a two- or three-dimensional point in such a way that
similar objects are modeled by nearby points and dissimilar objects are modeled by
distant points with high probability. Thanks to the perplexity hyperparameter, one
can make the mapping focus more on global or local properties of the observations.
This multi-scale characteristics makes t-SNE a good candidate for exploring
purposes. However, contrary to PCA, t-SNE does not set up a basis. Mapping new
observations requires training the algorithm from scratch. It has been used by Panos
and Kleint (2020) for the classification of Mg II line profiles. t-SNE can reliably
distinguish between profiles associated with flaring regions and non-flaring regions.
Additionally, it has been used by (Verma et al. 2021) for classifying Ha profiles and
identifying those that are suitable for a simple inversion method based on the cloud
model. Both works demonstrate that t-SNE is promising for understanding the
general picture of large observations. However, as any unsupervised method, this
interpretation can only be done a posteriori.

6.3 Mutual information

Panos et al. (2021) explored the use of neural networks to compute the mutual
information between pairs of spectral lines observed with the IRIS satellite. Mutual
information can be seen as a generalization of correlation.24 For two random
variables X and Y, the mutual information measures the difference between the joint
distribution p(x, y) and the product of their marginal distributions p(x)p(y). Panos
et al. (2021) showed that an encoder-type neural network can be trained to measure
the mutual information. This training proceeds by using the same neural network to
encode two spectral lines observed at the same pixel, which are samples from the
joint distribution. The same neural network is used to encode two spectral lines from
different pixels, which are seen as samples from the marginal distributions. By
maximizing the distance between both encodings, the neural network learns how to
approximate the mutual information. After training such an architecture with millions
of IRIS profiles, they found that lines are weakly correlated in quiet conditions. The
coupling strongly increases in flaring conditions, with Mg II and C II having the
strongest coupling. Panos and Kleint (2021) used this tool to analyze in detail the full
atmospheric response during flares. This tool is very promising for the study of
multispectral data.

6.4 Autoencoders

Perhaps the most promising nonlinear dimensionality reduction are autoencoders25

(AE), also known in the past as autoassociative neural networks (AANNs; Socas-
Navarro 2005a). They were not very often used because of their inherent
computational burden, given that one has to train a neural network for every new

24 An implementation can be found in https://github.com/gtegner/mine-pytorch.
25 An implementation can be found in https://github.com/dariocazzani/pytorch-AE.
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type of observation that one needs to analyze. This is currently not a problem because
of the availability of libraries for training neural networks and the powerful hardware
to which we have access. However, even during the first decade of the 2000 s,
training these neural networks was still problematic. AANNs are a special case of an
encoder-decoder fully connected neural network. For the case of analyzing Stokes
profiles, the input Stokes profiles are encoded by decreasing the size of the layers
until a bottleneck layer of only d neurons is found. d is the expected intrinsic
dimensionality of the Stokes profiles. They are again expanded in the decoder part
until recovering the original size of the Stokes profiles. They are trained by forcing
the network to output exactly the same profiles used as input. This way, the neural
network has to compress the relevant information for each Stokes profile into only
d numbers. Socas-Navarro (2005a) showed a comparison of AANNs and PCA.
Given the nonlinear character of AANNs, they are able to much better reconstruct a
set of Stokes profiles using a lower dimensionality.

We anticipate that, in the current era of deep learning, AE will find a central role in
many fields of solar physics, especially those related with spectroscopy and
spectropolarimetry, although imaging could certainly obtain gains. The projection of
the observations into a latent space of reduced dimensionality introduces a strong
regularization, that can be efficiently exploited by many inversion methods. The first
applications of modern AEs are very recent. Sadykov et al. (2021) used them to show
that the spectroscopic data of the Mg II line observed withe the NASA’s IRIS satellite
can be compressed by a factor of 27 without any relevant impact on the line profiles.
Additionally, the authors find that the features found by the AE are interpretable.
More recently, Díaz Baso et al. (2022) use an AE to compress Stokes I profiles to
facilitate the computation of uncertainties during the inference process using a
Bayesian framework (see Sect. 7.7.2 for more details).

6.5 Generative models

Generative models are probabilistic models, pðXÞ, that can approximate the
distribution of objects of interest, X, given a sufficiently large training set while
being accompanied with an efficient way of sampling from pðXÞ. As such, they can
be used as priors for X in any subsequent inference process. Modern generative
models, especially for objects of large dimensionality like images, are either based on
variational autoencoders (VAE; Kingma and Welling 2014), generative adversarial
networks (GAN; Goodfellow et al. 2016), normalizing flows (NF; Dinh et al. 2014)
or denoising diffusion probabilistic models (DDPM; Ho et al. 2020). A diagram with
the specific architecture of each generative model is shown in Fig. 6. All of them can
be seen as an instance of a latent-variable model (displayed as red blocks). In these
models, we assume the existence of a hidden latent variable with a dimensionality
that can be equal to or smaller than that of the signal of interest. This latent variable is
often extracted from very simple probability distributions (Gaussian noise in many
cases) and transformed, thanks to the action of a neural network, into samples from
the distribution of interest.
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6.5.1 Generative adversarial networks

Generative adversarial networks26 (GAN) have had a huge impact on image
generation, arts, language, and on some fields of research. They are based on two
networks (see the upper row of Fig. 6): a generator GðzÞ, that maps the latent variable
into the signals of interest, and a discriminator DðxÞ that tells whether a sample x is
coming from the distribution of interest or not. Both neural networks are trained
simultaneously using adversarial training (Goodfellow et al. 2016).

Despite the huge impact in many fields, the impact in solar physics has been
somewhat reduced. Kim et al. (2019) proposed conditional GANs for the generation
of artificial magnetograms from STEREO data. The interest of such an approach is
that once trained, GANs can generate artificial magnetograms on the far side of the
Sun. They can be compared with current observations carried out with the
Polarimetric and Helioseismic Imager (PHI) on Solar Orbiter (Solanki et al. 2020).
The quality of farside magnetograms is still reduced, even after the improvements
provided by Felipe and Asensio Ramos (2019) and Broock et al. (2022). Kim et al.
(2019) trained the generator by using extreme UV data from AIA and magnetograms
from HMI, both observed on the near side. The generated magnetograms in active

Fig. 6 Overview of the most successful nonlinear generative models for signals in high dimensions
(adapted from https://lilianweng.github.io/posts/2021-07-11-diffusion-models)

26 An implementation can be found in https://github.com/eriklindernoren/PyTorch-GAN.

123

Machine learning in solar physics Page 45 of 89 4

https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://github.com/eriklindernoren/PyTorch-GAN


regions look very similar to the target ones while also providing very strong
correlations in the total unsigned magnetic flux. More daunting is the task of
correctly generating the polarity structure of the active regions, whose information is
absent or barely present in the EUV images. According to Kim et al. (2019), their
GAN is able to correctly produce Hale’s law, purely learned from the data.

The reverse process, to produce EUV images from magnetograms, was
approached by Park et al. (2019) with some success using GANs. Trained again
with SDO data, the model is able to produce brightenings in all AIA filters in active
regions, which compares well with the real data. In filters like 171 Å which show
conspicuous loops, the GAN has a hard time reproducing them probably because the
connectivity information is not present in the magnetograms.

Shin et al. (2020) developed a model that generates artificial magnetograms from
Ca II K images. They improved over previous works by using a training scheme that
takes into account both large-scale and small-scale properties of the images
simultaneously, as proposed by Wang et al. (2017). This allows them to generate
high-resolution magnetograms with sizes up to 1024�1024 pixels. Again, the
polarity structure of very active regions is correctly captured by the model even
though this information is probably absent from the Ca II images. The only sensible
explanation for this is that this information is extracted from the statistical properties
of the training set. The authors also point out that the model does a bad job on the
quiet regions of the Sun.

An obvious question that arises for the image-generation models that we have
discussed is what is their final purpose. It seems obvious that simply generating the
images might have limited applicability, except perhaps homogenizing very long
baseline datasets. On the contrary, having an efficient generative model for such
complex processes will surely become key for future research. Generative models
map a latent vector z of reduced dimensionality onto a complex and large image I.
Consequently, introducing a pretrained generative model in an elaborate inference
scheme is a very good prior and can strongly inform the output and lead to very
efficient inference methods directly from images. For instance, one can think of data
assimilation methods in which a physical simulation is set up to explain a specific
observation. In this case, the physical model is very efficiently related to the
observation via the latent space, which automatically avoids outliers.

6.5.2 Variational autoencoders

Standard autoencoders, as shown in Sect. 6.4, are not generative models because
there is no way of sampling from the distribution. A variational autoencoder27 (VAE;
Kingma and Welling 2014) is a modification of a standard autoencoder that works as
a generative model (see the second row of Fig. 6). To this end, the latent space is
forced to have a fixed probability distribution during training. Once trained, sampling
from this fixed distribution (often a Gaussian distribution) and passing the samples
through the decoder, produces samples of the variable of interest according to the
prior. A VAE was used by Panos et al. (2021) as a means of compressing Mg II

27 An implementation can be found in https://github.com/dariocazzani/pytorch-AE

123

4 Page 46 of 89 A. Asensio Ramos et al.

https://github.com/dariocazzani/pytorch-AE


profiles. When the VAE is trained with line profiles from the so-called quiet Sun, it
represents a very efficient outlier detector. Out-of-distribution profiles (i.e., flaring
profiles) cannot be efficiently reproduced by the VAE. Therefore, if the difference
between the reconstructed profile and the original profile is large, one can safely say
that the profile is not coming from the inactive Sun.

6.5.3 Normalizing flows

Another powerful way of producing samples from the posterior distribution is via
normalizing flows28 (NF), which are a very flexible, tractable, and easy-to-sample
family of generative models, that can approximate complex distributions. Simply put,
an NF is a transformation of a simple probability distribution (often a multivariate
standard normal distribution, with zero mean and unit covariance) into the desired
probability distribution (see the third row of Fig. 6). Normalizing flows accomplish
this by the application of a sequence of invertible and differentiable variable
transformations. Let us assume that Z is a d-dimensional random variable with a
simple and tractable probability distribution qZðzÞ, with the condition that it is fairly
straightforward to sample. Let X ¼ f ðZÞ be a transformed variable, with a function f
that is invertible. If this condition holds, then Z ¼ gðXÞ, where g ¼ f �1. The change
of variables formula states that the probability distribution of the transformed
variable is given by:

qXðxÞ ¼ qZðgðxÞÞ det ogðxÞ
ox

� 	����
����: ð48Þ

The term ogðxÞ=ox is the Jacobian matrix and takes into account the change of
probability volume during the transformation. Its role is to force the resulting dis-
tribution to be a proper probability distribution with unit integrated probability. Since

the transformation is invertible, the equality ogðxÞ=ox ¼ ðof ðzÞ=ozÞ�1 holds, so that
one can rewrite the previous expression as:

qXðxÞ ¼ qZðzÞ det of ðzÞ
oz

� 	����
����
�1

: ð49Þ

Designing an invertible transformation that can be trained to produce generative
models over complex datasets is difficult. For this reason, normalizing flows make
use of the fact that the composition of invertible transformations is also invertible.
Then, if f ¼ fM 	 fM�1 	 
 
 
 	 f1, the transformed distribution is

qXðxÞ ¼ qZðzÞ
YM
i¼1

det
ofiðyiÞ
oyi

� 	����
����
�1

; ð50Þ

where yi ¼ fi�1 	 
 
 
 	 f1ðzÞ and y1 ¼ z. Compositional invertible transformations
have made it possible to define very flexible normalizing flows through the use of
deep neural networks.

28 https://github.com/bayesiains/nflows.
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Despite their potential as a flexible probabilistic generative model, they have not
been used in solar physics for this purpose yet. We refer the reader to Sect. 7.7.2 for a
discussion on how NFs have been applied for the acceleration of Bayesian inference
from spectropolarimetric observations by directly fitting the posterior distribution.

6.5.4 Denoising diffusion probabilistic models

Denoising diffusion models29 (DDPM; Ho et al. 2020) are based on two chains of
processes (see Fig. 6). The first one adds a small amount of noise to a certain sample
from the variable of interest. When this noise addition is repeated many times, the
final result cannot be distinguished from pure noise and is assumed to be the latent
variable. This process is, obviously, easy to simulate. The inverse process takes the
latent variable and proposes a neural network that “cleans” the noise, trying to undo
what the first process did to the signal. This generative model is at the base of the
most recent image generative models, of enormous success when coupled with
powerful language models. We still need to see applications of DDPMs as prior for
solar data.

7 Applications of supervised deep learning

The vast majority of applications of nonlinear models in supervised training are
based on CNNs. The models have been increasing in complexity in the last few
years, motivated by the success of CNNs in learning directly from the data. In the
following, we describe relevant applications to different subfields of solar physics.

7.1 Segmentation of solar images

Deep learning has produced a huge advance in the dense (per pixel) classification of
solar images, of special relevance due to the large amount of synoptic solar
observations that we currently have. Automatic detection and segmentation of solar
structures in images could allow us to build databases for an enormous amount of
images. Detecting sunspots, flares, coronal holes, and other structures are potential
candidates for such applications. CNNs have recently been used for the identification
of CHs. Illarionov and Tlatov (2018) proposed a U-Net architecture30 as proposed by
Ronneberger et al. (2015) (see Fig. 7) to identify CHs on solar AIA/SDO images
obtained in the 193 Å wavelength. Illarionov and Tlatov (2018) trained the model
with 2385 binary maps from the Kislovodsk Mountain Astronomical Station. The
output of the U-Net is a binary image that tells whether the pixel belongs to a coronal
hole or not. The training is carried out using the binary cross-entropy (BCE) as a loss
function:

29 https://github.com/lucidrains/denoising-diffusion-pytorch.
30 https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.
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L ¼ �
X
i

yi log ŷi þ ð1� yiÞ logð1� ŷiÞ; ð51Þ

where yi is the target label for the i-th pixel and ŷi is the prediction of the network.
The results of the CH identification were compared with feature maps of other
methods, such as CHIMERA (Coronal hole identification via multi-thermal emission
recognition algorithm; Garton et al. 2018) and SPoCA, from January 2017 to July
2018. One of their conclusions is that the U-Net architecture produces segmentation
maps that are more consistent than those of SPoCA. By comparing the area variation
of the CH, they observe that CHIMERA and U-Net show similar results and the two
methods have a correlation coefficient of 0.76. In a follow-up study, Illarionov et al.
(2020) extended the identification of the CH for synoptic maps and they constructed
a catalogue for 2010-2020 based on the AIA/SDO 193 Å data. The Solar Corona
Structures Segmentation Network (SCSS-Net) was also developed by Mackovjak
et al. (2021), again inspired by the U-Net architecture, for the dense segmentation of
solar images and the localization of CH and AR. U-Nets were also used by Jiang
et al. (2020) to identify and track solar magnetic flux elements observed in mag-
netograms. This will largely facilitate tracking of small-scale magnetic elements,
something that is currently done with ad-hoc techniques and large human inter-
vention (e.g., Gošić et al. 2014). Since tracking involves some degree of time
coherence on the labeling of the elements, we anticipate that taking into account the
time evolution could produce a large improvement over single-frame segmentation
(e.g., Ventura et al. 2019).

Jarolim et al. (2021) used a CNN to identify the boundaries of CH using the seven
extreme ultraviolet (EUV) channels of AIA/SDO as input, together with the line-of-
sight magnetograms provided by the HMI/SDO. Their identification method is
termed Coronal Hole RecOgnition Neural Network Over multi-Spectral-data

Fig. 7 Schematic drawing of the encoder-decoder U-Net architecture. In this case, the input has 3
channels, while the output contains only one channel. The number of channels after the first convolutional
layer is C. Green blocks summarize the application of a convolutional layer with a 3� 3 kernel, followed
by batch normalization and a ReLU. These operations are repeated twice. Solid arrows correspond to the
MaxPool operation, while dashed arrows refer to bilinear upsampling of the feature images. Grey arrows
refer to skip connections that are simply concatenated in the decoder
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(CHRONNOS). Their analysis of the CNN concludes that the CNN has the ability to
learn directly from multi-dimensional data and can identify CH and distinguish them
from prominence channels. To this end, the CNN takes advantage of the shape,
structural appearance, global context information, and the multi-wavelength
representation.

Later, using three different and independent wavelengths, Baek et al. (2021)
implemented the Single Shot MultiBox Detector (SSD) and the Faster Region-based
Convolutional Neural Network (R-CNN), for the detection of the CH, prominences
and sunspots. The training set is based on full-disk data from AIA/SDO and HMI/
SDO between 2010 and 2019. The data cadence is 12 hr for sunspots and CH and
four hours for the prominences. The events in each observed image was manually
labelled, including the bounding boxes. The total number of images with coronal
holes was 5085 (from the AIA 193 Å channel), those with sunspots was 4383 (from
the intensity images of HMI/SDO) and those with prominences were 2926 (from the
AIA/SDO 304 Å channel). Once trained, they checked that the models do a good job
in locating the CH after a direct comparison with the HEK database.

Although several methods (some of them based on CNNs) have been developed in
the recent years, we are still missing an estimation of the uncertainties in the
segmentation of solar images. In a recent paper, Reiss et al. (2021) analyzes these
uncertainties in the detection of CH boundaries. Nine automatic methods are
compared using a CH from the southern hemisphere, close to the sun center, and
observed for a couple of solar rotations. Multiple EUV wavelengths and measure-
ments of the radial component of the photospheric magnetic field from the SDO
spacecraft were used as preparation of the data to be used by different methods. The
compared methods are ASSA-CH, CHIMERA (Garton et al. 2018), CHORTLE,
CNN193 (Illarionov and Tlatov 2018), CHRONNOS (Jarolim et al. 2021), SPoCA-
CH (Verbeeck et al. 2014), and SYNCH. They also evaluated the mean CH intensity
in AIA 193A, the mean signed and unsigned line-of-sight magnetic field component
(BLOS), the degree of unipolarity, and the net open magnetic flux (sum of BLOS over
the CH area). They found that different methods produce significantly different
outcomes. The differences are small in the center of the CH and they start to be larger
when approaching the boundary of the CH. Differences in the shape of the CH and
its physical properties are also found (see Fig. 8).

As a consequence, the choice of the method has a non-negligible impact on the
predicted solar wind. As a final conclusion, one of the fundamental problems to
characterize the uncertainties is the absence of a well-agreed definition of a CH (or,
by extension, of any feature on the solar surface). We can only compare automatic
methods with a segmentation made by eye by the observer. This manual
segmentation can also depend on the wavelength used for its evaluation. We
urgently need a community effort toward defining an agreed training set.

Dense segmentation of photospheric images has been pursued recently by Díaz
Castillo et al. (2022), with the aim of classifying granular structures. The access to
high-resolution images has shown the overwhelming complexity of granulation. One
can only hope to understand the physical mechanisms by first applying a semantic
segmentation of the images and isolating interesting phenomena (intergranular lanes,
exploding granules, ...). Although it is still work in progress, Díaz Castillo et al.
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(2022) demonstrated that a U-Net is able to learn this segmentation problem and then
apply it to large datasets to analyze the statistical properties of magnetoconvection.

7.2 Classification of solar images

Arguably one of the most used ways of understanding physical phenomena in the
solar surface and the heliosphere has been by painfully classifying all events into
different classes. This allows researchers to pinpoint typical properties of similar
events and associate them with their physical properties. In the era of photographic or
video images, this classification could be done by hand. However, the amount of data
that we are currently generating, as well as the expected increase in data rates in the
near future, is so large that we need the help of machines to classify all events.
Armstrong and Fletcher (2019) used a deep neural network to automatically classify
solar events in different classes: quiet Sun, prominence, filaments, sunspots, and flare
ribbons. The trained neural network achieves an extremely high performance (close
to 99.9%). They also demonstrate that transfer learning can be used in solar physics.
Transfer learning is the idea of reusing complete, or parts of a neural network that
have been previously trained and applying them to another problem. Transfer
learning is part of many successful applications of deep learning in general and is
based on the idea that the initial layers of a convolutional neural network are able to
extract features from the images that are used by the last layers of the neural network

Fig. 8 A comparison of the estimated coronal hole maps from nine different automated detection schemes
overlaid on the AIA 193 Å. Image reproduced with permission from Reiss et al. (2021), copyright by the
author(s)
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to carry out the classification. Armstrong and Fletcher (2019) successfully
demonstrated that the first layers of a CNN trained with solar structures in one
wavelength are able to extract features that can be used with images in a different
wavelength.

Along the same line raised in the previous section, Armstrong and Fletcher (2019)
also advocated for the generation of a huge and curated database of classified solar
images. This is in parallel to similar efforts in the machine learning community like
ImageNet (Deng et al. 2009), in which more than 14 million images have been
labeled by hand using more than 20 thousand words describing the images. The solar
ImageNet would be a large database of multiwavelength multi-instrument images
ideally labeled by hand.

Apart from the pure classification of images, one of the potential applications of
these neural networks is to automatically detect “interesting” events that are far from
the typical cases. In the case of a classifier, a flag can be raised by the machine when
it finds an event that is associated with similar probability to several classes. This
means that the class is not known with certainty so it does not look like any of the
examples in the training set. Another option to develop an outlier detector is by using
a generative model (see Sect. 6.5) that learns how to produce images like those in the
training set. If the properly trained generative model is able to correctly reproduce the
input (some generative models are even able to output an estimation of the
likelihood), the input is compatible with the trained data and cannot be considered an
outlier. If it is not well reproduced (or the likelihood is very small), then it can be
tagged as an outlier and a flag can be raised for later analysis.

Although not a whole-image classification scheme, MacBride et al. (2021) used a
FCN classifier to identify and classify spectral line profiles. The aim was to rapidly
cluster the profiles into different categories depending on the number of components
in the emission peak and absorption dip present in the line. The model is able to
determine the underlying properties of complex profiles, not only to identify the peak
and dips in the profiles but also to classify sub-classes that will then be used to
constrain better the fitting of a single or multiple velocities components inside the
pixel. They tested the method using Ca II 8542 Å line profiles observed by the
Interferometric BIdimensional Spectrometer (IBIS) using an uneven spectral
sampling, with a higher density in the line core, as proof of concept of the model,
and also as a benchmark for two-component atmospheric profiles studies that are
commonly present in sunspot chromospheres (see Fig. 9).

7.3 Prediction of flares

Due to the consequences of an impact of a major solar flare on terrestrial space
weather, there has been an increasing interest in applying statistical learning
techniques for the prediction of flares (typically M-class flares and greater) and
coronal mass ejections (CMEs). Since not all flares have associated CMEs (and vice
versa),31 forecasting of the two are considered related, but different problems.

31 Sheeley et al. (1983) reported that every GOES X-ray flare (lasting six hours or longer) had an
associated CME. Their data set comprised events observed between 1979 and 1981.

123

4 Page 52 of 89 A. Asensio Ramos et al.



In either case, the problem is usually posed as a classification problem. Given
input parameters x sampled at time t0, does a flare occur in the time period
t 2 ðt0; t0 þ Dt�, with Dt on the order of hours to days? Variations on this problem
statement can include multiclass classification (e.g., whether there is an M- or X-class
flare), or regression to predict the maximum soft x-ray flux (e.g., as measured by
GOES XRS) in the time period of interest.

Early attempts at flare/CME prediction focused on the use of input features
inspired by physics models (or heuristics) of how solar flares are thought to operate.
Ample theoretical considerations, observational evidence, and numerical simulations
support the commonly accepted picture that solar flares are powered by abrupt
reconfigurations of the solar coronal magnetic field (see reviews by Priest and Forbes
2002; Shibata and Magara 2011) which results in the coronal magnetic field entering
a lower energy state. The lowest energy state of the coronal magnetic field above an
active region is the potential field configuration, which has zero current density, since
j ¼ r� B ¼ r� ½�rU� ¼ 0 (e.g., see Altschuler and Newkirk 1969). Without
available free energy (i.e., the magnetic energy in excess of the energy stored in a
potential field configuration), an active region should not be flare-productive. This
physical argument suggests the photospheric (since this is the layer for which
magnetograms are most easily acquired) current density should have predictive
power for flare prediction. A related quantity of interest is the twist parameter, which
is the current density normalized by the magnetic field strength.

Fig. 9 SPectral classifications of an IBIS observation, where the color bar relates to the spectral shape
classified, with ‘0’ and ‘4’ representing pure absorption and emission profiles, respectively. The umbra/
penumbra boundary is highlighted using a black contour Image reproduced with permission from
MacBride et al. (2021), copyright by the author(s)
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Falconer (2001) performed a pilot study of the association between CME-
productivity and an AR’s perceived non-potentiality with two quantities derived from
vector magnetograms. The latter was visually assessed from the morphology of loops
in Yohkoh X-ray images (e.g., the presence or absence of a sigmoid). The paper
suggests that the length of the main polarity inversion line (PIL) and the net current
(measured through one polarity) are quantitative indicators of CME productivity.
However, only eight vector magnetograms covering three distinct ARs were
available for this study. Falconer et al. (2002) extended the work using 17 vector
magnetograms covering 12 ARs. In addition to the PIL length and net current, they
examined a dimensionless twist parameter and reported all three are correlated with
the flux content of the AR, and are correlated with CME productivity. To address the
limitations imposed by the lack of regular vector magnetogram coverage available at
the time, Falconer et al. (2003) developed a proxy for the main PIL length parameter
using line-of-sight magnetograms from the Michelson Doppler Imager (Scherrer
et al. 1995) onboard the ESA/NASA Solar & Heliospheric Observatory (SOHO;
Domingo et al. 1995) mission. This work opened up the possibility to use MDI full-
disk magnetograms (available at 90 min cadence) for assessing the CME productivity
of ARs.

In a series of papers (Leka and Barnes 2003a, b; Barnes and Leka 2006; Leka and
Barnes 2007), Leka & Barnes performed systematic analyses of how vector
magnetogram-derived parameters such as current and twist are different between
flaring and non-flare active regions. Of particular relevance is Leka and Barnes
(2003a), in which they performed discriminant analysis on flaring and non-flaring
regions. This is a linear model for binary classification. Suppose x is the feature
vector (consisting of vector magnetogram-derived quantities) and x0 and x1 denotes
the mean of x over the two separate populations (in this case, flaring and non-flaring
active regions). The sign of the linear functional

f ðxÞ ¼ xC�1ðx0 � x1Þ þ 1

2
ðx0 � x1ÞC�1ðx0 þ x1Þ; ð52Þ

was used to classify whether an active region with feature vector x is in the flaring or
non-flaring population. They computed discriminate functions for single variate as
well as multivariate feature vectors. However, the data set available only included 24
blocks of roughly 1-hour long observations (spanning over 7 active regions and 10 C,
M and X flares) from the University of Hawaii Imaging Vector Magnetograph. The
data set was enough to establish that a small number of input parameters is insuf-
ficient to distinguish the two flare-active and flare-quiet active region populations
with low error rates. With six input features (standard deviation of the horizontal
magnetic vector, skew of vertical current density Jz, kurtosis of Jz, area of pixels with
a shear angle greater than 80 deg, time rate of the change of the best-fit linear force-
free parameter and the time rate of change of the mean unsigned normal flux density),
they were able to construct a function f ðxÞ which linearly separates the two
populations.
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7.3.1 HMI era

The Leka and Barnes (2003a) study was limited by the quantity of data available and
it is not clear how generalizable the results are when applied to other active regions.
However, within the data set studied, it appears variables measuring the distribution
of magnetic twist helps with discerning whether an active region is flare-quiet or
productive.

The availability of regular vector magnetograms at 12 min cadence from SDO/
HMI was a game changer. It enabled the curation of flare prediction datasets with
hundreds and thousands of samples. The Space Weather HMI Active Region Patches
(SHARPs) data product provides vector magnetograms in rectangular patches (on the
CCD or on a longitude-latitude grid; see Fig. 10) following active regions as they
emerge and rotate across the solar disk. The metadata for this data product includes
quantities that summarize the size (in terms of flux content and area spanned), and
magnetic twist (e.g., area-averaged current density) for each magnetogram in the
temporal sequence (see Bobra et al. 2014, for the complete list). When used for
problems like flare prediction, the SHARP parameters can be considered ‘hand-
engineered’ features extracted by experts.

The paper by Bobra and Couvidat (2015) ushered in a new era for solar flare
prediction. Their contributions to the field of flare prediction research are manyfold.
This study was the first to use the HMI SHARP data set to demonstrate the potential
utility of continuous vector magnetogram data for flare prediction. The paper
introduced many standard data science practices to the solar physics community. This
includes the practice of n�fold cross-validation (CV). Specifically, they evenly split
the dataset into n tranches, picked the union of n� 1 tranches to train a model, and
then used the remaining tranche as a test set. They then rotated through the tranches,
each time using a different tranche to be the test set. This allowed the model to be
trained and tested n times. The spread of the evaluation metrics over the so-called
n�folds provides a measure of the reliability of the metrics.

7.3.2 Evaluation metrics

As more research groups began to tackle the flare prediction problem, there emerged
a need to standardize how flare prediction models are evaluated. Consider any binary
classification problem. The aim is for the model to classify whether an element is in
class A. For any binary classification problem (including flare prediction), consider
the contingency Table 1. The contingency table completely specifies the joint
probability density function (JPDF) regarding whether an event has occurred, and
whether it was forecast to occur.

Metrics regarding the performance of the forecasting method are functions of the
JPDF (see Table 2). For example, the recall (false alarm rate) is the conditional
probability of a positive forecast, given the event did (not) take place. In contrast, the
precision is the conditional probability that the event occurred, given a positive
forecast was issued.

Which metric is the correct one to use? It depends on the goal and there is no
single correct answer. For instance, the stakeholder of an operational space weather
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forecast may prioritize the need to minimize false positives, because false positives
will trigger protocols (e.g., shutting down the power supply). For other stakeholders,
avoidance of a false negative (i.e., a reliable all-clear“ forecast) may be the priority (
Barnes et al. 2016). If the stakeholders were solar physicists with research interests in
flares and must submit their observing plans to instruments on a space-borne
observatory (e.g. Hinode or IRIS) a day in advance, the cost for false alarms may be
comparatively small.

When comparing different flare prediction models, one would ideally wish to
compare models using identical test data sets. In practice, it is not possible without
the coordination of research groups tackling the flare prediction problem due to
differences in the choice of flares they include in the data sets, the choice of train/test
set partitioning, etc. These choices impact the class imbalance between flaring and
non-flaring events in the data sets used. Let the class imbalance be the ratio of non-
events (TN þ FP) to actual events (TPþ FN). Evaluation metrics comprising sums

Fig. 10 Space Weather HMI Active Region Patches (SHARPs) identified by a computer tracking
algorithm. In this image, two SHARPs have been identified and are marked by rectangular bounding boxes

Table 1 Contingency table for
binary classification

Event: Yes Event: No

Forecast: Yes TP FP

Forecast: No FN TN

We denote TP, TN, FP and FN as the number of true positives, true
negatives, false positives and false negatives, respectively
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or products of terms, each of which only depends on blue or red quantities (e.g.,
Recall, Specificity, False Alarm Rate, True Skill Statistic) do not depend on the
underlying class imbalance (Fig. 11).

Bloomfield et al. (2012) and Bobra and Couvidat (2015) offer extensive
discussions of the benefits of using the True Skill Statistic over the Heidke Skill
Score (e.g., Barnes and Leka 2008) to measure the performance of flare prediction
models. The primary reason is that the latter is sensitive to the class imbalance.
Choosing metrics that are insensitive to the class imbalance is especially important
when data augmentation or sampling strategies are used in the attempt to improve
model performance. Since the number of X-class (M-class) flares in a solar cycle is in
the dozens (hundreds) in a solar cycle, the underlying population has a high class
imbalance. In order to help models train better, ML practitioners may use resampling
strategies that mitigate the imbalance. Relying on metrics that are sensitive to the
imbalance ratio makes it difficult to compare metrics evaluated on the training set,
testing set (which may reflect the population imbalance), and across studies (see
discussions by Bobra and Couvidat 2015; Barnes et al. 2016).

7.3.3 Baseline models

When evaluating flare prediction models, whether they are physics-based or purely
data-driven, it is important to compare their metrics with respect to baseline models.

Table 2 Evaluation metrics for binary classification

Metric Definition Meaning Range

Recall TP
TPþFN

PðForecast:YesjEvent: YesÞ [0, 1]

Precision TP
TPþFP

PðEvent:YesjForecast: YesÞ [0, 1]

Specificity TN
TNþFP

PðForecast:NojEvent: NoÞ [0, 1]

False Alarm Rate FP
TNþFP

PðForecast:YesjEvent: NoÞ [0, 1]

Accuracy TP
TPþFNþTNþFP

PðForecast: Yes & Event:YesÞ [0, 1]

Rate Correct TPþTN
TPþFNþTNþFP

PðForecast == EventÞ [0, 1]

Critical Success Index TP
TPþFPþFN

– [0, 1]

Gilbert Skill Score TP�CH
TPþFPþFN�CH

CSI excluding chance hits [0, 1]

Heidke Skill Score (v1) TP
TPþFN � FP

TPþFN Recall�ð2� Precision�1Þ ð�1; 1�
Heidke Skill Score (v2) TPþTN�E

TPþFNþTNþFP�E
– [0, 1]

True Skill Statistic TP
TPþFN � FP

TNþFP
Recall - False Alarm Rate ½�1; 1�

Refer to Table 1 for the definition of classes. In the definition for the Gilbert Skill Score, CH (chance hits)
is the Accuracy for a random forecast model. The probability that a random forecast outputs a positive is
uncorrelated with the underlying probability of the event. Hence, the joint probability for the Accuracy can

be factored, giving CH ¼ PðForecast: YesÞ � PðEvent:YesÞ ¼ ðTPþFPÞ
n

ðTPþFNÞ
n , where

n ¼ TPþ FP þ FNþ TN . In the definition for the Heidke Skill Score (v2; SWPC 2014), E refers to the

Rate Correct for a random forecast model: E ¼ CHþ ðFPþTNÞðFNþTNÞ
n2
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A useful baseline model tends to be one that is interpretable, conceptually simple,
and computationally inexpensive (relative to the models being evaluated). The
purpose of a baseline model is to serve as a reference point. By evaluating a metric
over predictions from the baseline model, and doing the same for a more
sophisticated model, one can measure the marginal utility of the extra effort. For flare
prediction, two basic baseline models are the random forecast model, and the
climatological model.

Random forecast model This model provides a positive forecast with a set
probability p ¼ TPþFP

n , regardless of the input data. Since the forecast is uncorrelated
with the actual event occurrence (and ignores any input features), the Accuracy and
Rate Correct of this model are

Accuracy ¼ PðForecast: YesÞ � PðEvent:YesÞ

¼ p
ðTPþ FNÞ

n
:

ð53Þ

Rate Correct ¼ ðForecast: YesÞ � PðEvent:YesÞ
þ PðForecast: NoÞ � PðEvent: NoÞ

¼ p
ðTPþ FNÞ

n
þ ð1� pÞ ðTN þ FPÞ

n
:

ð54Þ

The Accuracy and Rate Correct metrics depend on the chosen p, and the underlying
event class imbalance.

In contrast, the True Skill Statistic (TSS) for a random forecast model is

Fig. 11 Dependence of various binary classification metrics (Heidke Skill Scores, Gilbert Skill Score and
True Skill Statistic; see Table 2) on the underlying class imbalance ratio TNþFP

TPþFN Image reproduced with
permission from Bobra and Couvidat (2015), copyright by AAS
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TSS ¼Recall � False Alarm Rate

¼PðForecast:YesjEvent: YesÞ � PðForecast:YesjEvent: NoÞ
¼ p� p ¼ 0;

ð55Þ

which is true irrespective of the class imbalance and the forecast probability (p)
chosen.

Climatological forecast model This is a special case of the random forecast
model, with p ¼ PðForecast: YesÞ ¼ PðEvent:YesÞ. Note the forecast probability
used here is the event rate evaluated over the population (hence the name
climatological). For example, the 0.01% of calendar days has at least one X-flare, and
the prediction task is to predict whether at least one X-flare occurred on a calendar
day, PðEvent:YesÞ ¼ 0:01. Suppose p ¼ 0:01 for the climatological model. If the
testing set used for evaluating metrics has the same class imbalance as the

population, Accuracy ¼ p2 ¼ 0:0001 and Rate Correct ¼ p2 þ ð1� pÞ2 ¼ 0:9802.
So in terms of the former, the climatological model appears dismal, and in terms of
the latter, it performs spectacularly well. In contrast, TSS ¼ 0, which illustrates why
this is an unbiased metric.

The Gilbert Skill Score and the Heidke Skill Score (v2; see Table 2) are both
metrics that are defined relative to the random forecast model. They partially address
the desire that we want to measure the marginal utility of a model against a baseline
model. Nevertheless, they still suffer from dependence on class imbalance.

Our recommendation is to decouple metrics from models (as opposed to the
Gilbert and Heidke Skill Scores). If possible (and desirable, depending on the
stakeholder’s needs), choose unbiased metrics like TSS. Then evaluate metrics for
baseline and ML models alike to evaluate marginal utility (improved performance, if
any). We caveat this recommendation by reiterating that the most relevant metric(s)
always depends on the context and the stakeholder(s).

The choice of appropriate baseline models depends on the application. For flare
prediction, the climatological model is used as a reference point by NOAA (e.g., see
Barnes et al. 2016). In some contexts where predictive models (where purely ML-
baed and/or physics-based) are already in common use, the State-of-the-Art (SOTA)
model may be appropriate.

7.3.4 Weakly-labeled supervised training

The analysis and prediction of flares, especially when done with spectra, is an
instance of weakly-labeled datasets. The observations of the IRIS satellite are of
special relevance for the analysis of flares in recent times. Although each spectral
observation constitutes a fundamental unit of information, the label associated with
the flare (flare/no flare) cannot be put at the level of individual spectra but only at the
time series level. Huwyler and Melchior (2022) approached this classification
problem by using multiple instance learning (Dietterich et al. 1997), a supervised
learning technique that associates labels not to individual instances but to bags of
instances. They were able to detect the presence of flaring regions with tens of
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minutes in advance from observation of the Mg II window with IRIS. These weakly-
labeled techniques can also be of great help in segmentation problems.

7.3.5 Operational flare forecasting models

Leka et al. (2019a) provides a comprehensive review of operational flare forecasting
models and, for the first time, a consistent comparison between flare models
deployed at various international agencies and research institutions. While most
models perform better than a no-skill baseline model, there was no single operational
model that consistently outperformed others over a broad set of metrics and event
distributions.

Further detailed analysis of the behaviors of operational flare models by Leka
et al. (2019b) and Park et al. (2020) provides some important conclusions. Firstly,
information regarding prior flare activity and active region evolution can improve
forecasts. Secondly, having a human “forecaster in the loop” helps. Thirdly,
performance degrades when data is restricted to near disk-center. Lastly, the use of
“modern data sources” (e.g., SDO/HMI) and statistical approaches improves
performance. The data used for the comparison is available from Leka et al. (2019a).

7.3.6 Deep learning for flare prediction

The widespread availability of GPUs, deep learning frameworks and open-source
computer vision codebases has supercharged the adoption of computer vision
methods for flare forecasting. Huang et al. (2018) applied CNNs to MDI and HMI
line-of-sight magnetograms for flare forecasting. They find that the trained CNNs
include intermediate spatial filters that are sensitive to magnetic polarity inversion
lines. In contrast, some deep neural network flare prediction models use “hand-
engineered” feature extraction (e.g., Nishizuka et al. 2018). LSTMs have also been
applied to flare prediction using 25 SHARP parameters, augmented by 15 flare
history parameters (Liu et al. 2019). Consistent with prior literature, this work shows
the incorporation of the prior flare productivity improves prediction performance.

Given the success of deep neural models, Yi et al. (2023) proposed to train the
CNN model proposed by Yi et al. (2021) using deep reinforcement learning. This
model predicts the presence of a flare as a binary output from line-of-sight
magnetograms. The results indicate that RL can improve the quality of the prediction
when compared to more standard training schemes, especially when dealing with rare
events.

Given that these deep neural models will eventually be part of operational flare
forecasting strategies, it turns out important to check their biases. Liu et al. (2022)
analyzed several deep neural models to look for the influence of the image resolution
on the prediction abilities. They found that the models analyzed are robust to the
specific image resolution. They pay more attention to global features extracted from
the active regions, and pay less attention to local information in magnetograms. This
points out that these models will become operational soon.
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7.4 Explainable models for flare prediction

Many of the deep learning models developed for flare prediction are complex.
Consequently, it is difficult to interrogate the models to understand the reasons why a
model predicts the presence of a flare. For this reason, the community has recently
relied on some of the techniques for explainability developed in machine learning in
recent times (Barredo Arrieta et al. 2020). Yi et al. (2021) used Gradient-weighted
Class Activation Mapping32 (Grad-CAM; Selvaraju et al. 2017) to localize the
regions of the solar surface that triggered the model to predict a flare. Grad-CAM can
be used with any CNN-based model. It works by computing the derivative of the
prediction with respect to the final convolutional layer to produce a coarse
importance map. This map highlights the parts of the input images that trigger the
detection of a flare in the neural network. They find that the model correctly focuses
on the polarity inversion line to forecast a flare, a fact that is well known. Likewise,
Panos et al. (2023) used Grad-CAM and the game-theoretic method expected
gradients (Erion et al. 2021) to discover features in the spectra of Mg II for
predictions of flares. They found that triplet emission, flows, broadening, and highly
asymmetric spectra are features that appear before a flare. Additionally, the regions to
which the neural networks pay more attention for the prediction are strongly
associated with the location of the maximum UV emission of the flare.

7.5 Heliosphere and space weather

This section focuses on applications of ML to heliospheric and space weather
problems using solar data as inputs. For an overview of the role of ML in space
weather studies and forecasting and a gentle introduction to ML tailored for the space
weather audience, we refer the reader to Camporeale (2019). Another recommended
review paper is Bortnik and Camporeale (2021), which lists ten broad categories of
approaches to applying ML to space science problems. We show some examples of
applications, although we encourage the reader to consult these review papers
focused on many aspects of heliophysics beyond solar physics.

Torres et al. (2022) used fully connected neural networks to predict the solar
energetic particles (SEP) above 10 cm�2s�1sr�1 with energies above 10 MeV to
occur from the properties of the coronal mass ejection (CME). They found that the
neural approach provides consistent results, although they depend on the availability
of observations of the CME. This makes this method not sufficiently reliable, since
SEPs can be present even if no CME is seen. A similar approach was pursued by
Lavasa et al. (2021), although they compared the neural approach with many
different linear classifiers.

Upendran et al. (2020) tackled the problem of solar wind speed prediction at
Lagrangian point 1 (L1) by training a DNN which takes temporal sequences of SDO/
AIA EUV images to predict the solar wind velocity as available in the OMNI
database. This work made use of the technique of transfer learning (TL), whereby the
frontend of the DNN was imposed as a set of pretrained layers from a well-known

32 https://github.com/jacobgil/pytorch-grad-cam.
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computer vision package (in this case, GoogleNet). This frontend acts as a
preprocessor for feature extraction. The output latent vector is then passed on to the
remaining trainable layers of the DNN. The SDO dataset used by Upendran et al.
(2020) comprised AIA images at a daily sampling frequency. By using instead a 30
min sample frequency, Brown et al. (2022) reported significant improvements in
evaluation metrics (e.g., root mean squared error) for the solar wind speed prediction.
Another change they made was to use an attention-based mechanism, though the
improvement of model performance is largely attributed to the much higher data
sampling frequency.

Bernoux et al. (2022) trained a DNN to use SDO AIA images (193 Å) as inputs to
produce a probabilistic forecast of geomagnetic activity (Kp index). The model
output is probabilistic in the sense that the output consists of a mean and standard
deviation of Kp. Similar to the aforementioned work on solar wind speed prediction,
this model uses TL and has a preprocessor feature extractor.

7.6 Solar Cycle predictions

It is well known that the Sun passes from a low magnetic activity (measured as the
number of visible sunspots on the disk) to a high magnetic activity with a periodicity
of roughly 11 years. Over time, researchers have tried to find correlations between
the solar cycle and other observables. Among them, we find flares, CMEs,
geoeffectiveness (Ap index measured at Earth), cosmic ray flux reaching the Earth’s
environment, and many more. The observations showed that the activity of the Sun is
correlated with the amount of cosmic rays reaching the Earth (Usoskin 2023). The
sunspot number (SSN) displays a high correlation with the total solar irradiance
(TSI),33 which turns out to be an important parameter for understanding of the
Earth’s climate. It also displays correlation with the occurrence of CMEs (Lamy et al.
2019). The periods of large activity in the Sun produce strong magnetic fields in the
atmosphere, which are correlated with strong eruptive events. They can be hazardous
for the Earth’s environment.

In quest of a suitable solar cycle forecast method, Nandy (2021) analyzed 77
predictions made by different research groups for cycle 24 and 37 predictions for the
current cycle 25. Out of the 77 models, only a couple of models managed to properly
predict the observed peak of the cycle. Interestingly, none of the methods based on
machine learning models was able to correctly predict the amplitude of the cycle.

Cycle 25 is not yet at its peak and the aim of some of the most recent methods
based on ML is the prediction of its maximum amplitude and when it will take place.
Li et al. (2021) reported two methods employing an auto-regressive neural network34

method and a recurrent LSTM network. Using the same LSTM approach, and based
on the SSN variation, three other predictions were reported. Prasad et al. (2022)
predicted an increase of � 20% with respect to the previous cycle, with the peak in
August 2023 and a maximum of SSN of 171.9 ± 3.4. Wang et al. (2021b) reported a

33 TSI is defined as the radiant energy emitted by the Sun at all wavelengths crossing a square meter each
second outside Earth’s atmosphere (Hathaway 2015)
34 Autoregression implies predicting the future of a sequence using previously observed values.
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decrease in the amplitude of cycle 25, with a predicted peak SSN of approximately
114 around 2023. Finally, Bizzarri et al. (2022) forecasted a decrease of the peak
amplitude of � 14% with respect to cycle 24, and a maximum activity peak on cycle
25 around mid-2024.

Okoh et al. (2018) used a hybrid of regression and a neural network to provide a
prediction. The regression method is used to derive characteristics of the solar cycle,
which was used afterward as input for a neural network. They predicted a maximum
amplitude for cycle 25 of 112.1 ± 17.2, to happen in January 2025 (±6 months).

Benson et al. (2020) predicted a weaker cycle 25 when compared with cycle 24,
with a maximum SSN of 106 ± 19.75. Their estimations are based on the WaveNet
(Oord et al. 2016) and LSTM architectures. WaveNet is a DNN based on an
autoregressive generative model. It learns to model the probability distribution of a
given time-series conditioned on the past. To this end, it uses dilated causal
convolutional layers (see Oord et al. 2016, for more details), which allows the model
to capture time dependencies of very long baselines. They predicted a peak SSN of
106 ± 19.75 for cycle 25. Using four machine learning techniques, Dani and
Sulistiani (2019) obtained four different predictions for the strength of cycle 25.
Based on a feed-forward artificial neural network implementation, Covas et al.
(2019) predicted the lowest amplitude for cycle 25. A linear regression predicts the
maximum to occur in September 2023 (with an amplitude of 159.4 ± 22.3). A
random forest (RF) and a radial basis function (RBF) method predicts the same time
for peak, happening in December 2024 but with two different amplitudes: 110.2 ±

Fig. 12 Predictions of the solar cycle 25 peak time and SSN for different ML models: mark 1 with red
right-triangle (Li et al. 2021), mark 2 with green octagon (Prasad et al. 2022), mark 3 with blue star (Wang
et al. 2021b), mark 4 with orange x and mark 5 with purple plus (Bizzarri et al. 2022), mark 6 with pink
square (Okoh et al. 2018), mark 7 with olive hexagon (Benson et al. 2020), mark 8 with cyan triangle,
mark 9 with brown diamond, mark 10 with lime triangle, mark 11 with blue-violet plus (Dani and
Sulistiani 2019), and mark 12 with grey circle (Covas et al. 2019)
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12.8 for the RF and 95.5 ± 21.9 for the RBF. Finally, a SVM method predicts a peak
around July 2024 with a peak SSN of 93.7 ± 23.2. All predictions, showing the
dispersion, are summarized in Fig. 12.

All the proposed methods show very good testing and prediction capabilities for
the past solar cycles. However, it is uncertain whether this is true in future cycles.
Predicting a nonlinear process like the solar cycle is a delicate task, and it remains to
be tested that the statistical properties of previous solar cycles contain enough
information to predict the future.

7.7 Inversion of Stokes profiles

7.7.1 Accelerating inversions

The application of neural networks for the inversion of Stokes profiles goes back in
time to Carroll and Staude (2001), who proved that multi-layer FCN could be used
for estimating model parameters from the observations. Carroll and Staude (2001)
proposed their use for simple Milne-Eddington inversions and concluded that they
were able to obtain physical parameters without any optimization once the neural
networks were trained. As additional advantages, they showed that the neural
networks provided an increase in speed, noise tolerance, and stability. This was later
verified by other works (Socas-Navarro 2003, 2005b). Inspired by these advances,
Asensio Ramos and Socas-Navarro (2005) also applied neural networks for the
acceleration of the solution of chemical equilibrium. Solving chemical equilibrium
with a large set of species turns out to be slow and can dominate the computation
time in inversion codes. That is precisely the reason why the inversion code NICOLE
(Socas-Navarro et al. 2015) has the neural solution as an option.

Carroll and Kopf (2008) later expanded their original work to use FCNs to infer
the depth stratification in a geometrical height scale of the temperature, velocity, and
magnetic field vector. The network was trained using stratifications and synthetic
Stokes profiles from an MHD simulation of the quiet Sun (Vögler et al. 2005). The
application of the neural network in a pixel-by-pixel manner allowed them to recover
a tomographic view of the FOV by recombining all individual line-of-sight
stratifications.

After an impasse of more than a decade, the neural inversion of Stokes profiles is
again gaining momentum, driven by modern DNN. Asensio Ramos and Díaz Baso
(2019) proposed SICON,35 a CNN that is trained with MHD simulations and opens
up the possibility of carrying out extremely fast inversions of 2D maps for
observations of the Hinode satellite. As an example, a map of 512�512 pixels can be
inverted in an off-the-shelf GPU in merely 200 ms. The authors proposed two
different architectures, both of them displaying consistent results. Apart from the
enormous speed of the inversion, the CNN’s have other advantages. One of them is
that the inferred physical properties are not affected by the Hinode PSF, so it
essentially deconvolves the data while inverting. This can only be achieved for
space-born observatories because the PSF is well known and constant with time.

35 https://github.com/aasensio/sicon.
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Another advantage is that the networks can provide estimations of quantities that are
very difficult to obtain with classical inversion methods. This is the case of gas
pressure and the Wilson depression. The main reason why these CNNs can do this
job is because they exploit correlations in the training data.

Higgins et al. (2021) also used a CNN (a U-Net in this case) to accelerate the
production of vector magnetograms from HMI/SDO. Instead of training with
simulations, they trained the CNN with inversions carried out with the standard
pipeline. They also viewed the inference as a classification problem with a large
number of bins for each variable of interest, instead of a regression problem. Despite
the inherent binning error, this allowed them to easily compute uncertainties in the
output. Higgins et al. (2022) expanded their previous work by training the U-Net
with inversions of the same field of view and at the same time carried out with the
Hinode/SOT-SP instrument. They developed SynthIA (Synthetic Inversion Approx-
imation), which works under the assumption that the information encoded in the
Hinode/SOT-SP observations (and the ensuing inversions) is also present in HMI/
SDO (potentially spread over multiplet pixels). This assumption is non-trivial since
HMI/SDO observes only the Fe I spectral line at 617.3 nm at low spectral resolution,
while Hinode/SOT-SP observes the pair of lines at 630 nm at high spectral resolution.
They showed that SynthIA can indeed extract this information and produce full-disk
inversions with a quality similar to that of Hinode/SOT-SP. A similar approach has
been pursued by Jiang et al. (2022) to generate vector magnetograms for the
Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory
(SOHO). MDI/SOHO was observing the Sun between 1996 and 2010, but it was
only recording the longitudinal component of the magnetic field. Jiang et al. (2022)
combined this information with Ha observations collected with the Big Bear Solar
Observatory (BBSO) to train a CNN to produce maps of the components of the
magnetic field in the plane of the sky. The trained CNN produces good vector
magnetograms, extending the period in which vector magnetograms are available for
the Sun from 1996 to the present day. Despite the success of these approaches, we
caution that using data from different instruments should be done with care since
small data alignment problems might affect the results (Fouhey et al. 2022).

Milic and Gafeira (2020) showed that a relatively simple 1D CNN can output
temperatures, velocities, and magnetic fields at three optical depth heights in the
atmosphere directly from the Stokes profiles. They train the CNN with the aid of
MHD simulations of the quiet Sun. However, in order to more closely mimic
standard inversion codes, they do not train directly with the data from the simulation.
They first invert the data with SNAPI (Milić and van Noort 2018) and use these
results as a training set. The output of the network shows a very good correlation
with the original data while accelerating the inversion by a factor � 105.

Along a different line, we find studies of applying DNNs to provide initial
solutions to standard gradient-based inversion codes (Gafeira et al. 2021). These
methods can greatly accelerate the convergence of inversion codes because the
initialization is close to the expected solution. One of the sub-products of starting
close to the solution is that the Levenberg-Marquardt algorithm often used in these
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inversion codes can be made to work close to the Gauss-Newton regime from the
very beginning, which has an almost quadratic convergence rate.

The inversion of lines affected by departures from local thermodynamic
equilibrium (non-LTE) is computationally demanding. The reason is that one needs
to self-consistently solve the statistical equilibrium equations for the atomic/molec-
ular species producing the observed spectral lines and the radiative transfer equation
(see the review by de la Cruz Rodríguez and van Noort 2017). Accelerating this
process has been recently tackled with two different approaches. The first one uses
CNNs (Chappell and Pereira 2022) to map the populations in LTE to the populations
in non-LTE (the ratio between the populations in non-LTE and those in LTE is known
as the departure coefficients) for a hydrogen model atom. Since populations in LTE
can be obtained from the local physical properties, the trained mapping avoids the
solution of the time consuming radiative transfer problem. Another approach has
been recently presented by Vicente Arévalo et al. (2022) based on graph neural
networks and specifically tailored to accelerate inversions of chromospheric lines of
Ca II. This approach predicts the departure coefficients as a function of the height in
the atmosphere, producing a speedup of a factor 103 without a significant impact in
the synthetic spectral lines. This allows inversions of chromospheric lines, even those
dominated by partial redistribution effects like Ca II H & K, to be carried out as fast
as lines formed in LTE.

7.7.2 Uncertainty characterization

Since inversion problems are ill-defined in general, providing a single point estimate
of the physical parameters as output is not optimal. In principle, one should provide
full posterior distributions, which encode the uncertainties and correlations among all
model parameters (Asensio Ramos et al. 2007b). A deep learning approach to this
has been pursued by Osborne et al. (2019) based on the concept of invertible neural
networks (INNs; Ardizzone et al. 2018). The idea of INNs is to learn the forward and
inverse mappings simultaneously. The forward mapping, y ¼ f ðxÞ goes from model
parameters x to observations. The inverse mapping, x ¼ gðy; zÞ is augmented with a
latent vector z that is assumed to be extracted from a known distribution. This latent
vector takes into account all information lost during the forward pass, which
precisely makes the inverse problem ill-defined. Once the INN is trained, an
approximation to the posterior distribution can be obtained by sampling the latent
vector. Osborne et al. (2019) were able to derive temperatures, electron number
densities and velocities in flaring regions from the interpretation of the Ha and Ca II

8542 Å line using a RADYN model (Carlsson and Stein 1992, 1995, 1997; Allred
et al. 2015).

Normalizing flows can also be utilized to characterize uncertainties. If the NF is
conditioned on the observations, the normalizing flow can be trained to return
Bayesian posterior probability estimates of the model parameters for any arbitrary
observation. This amortized posterior estimation is time consuming to train but can
then be applied very fast to observations, opening up the possibility of doing
Bayesian inference in large fields of view. Díaz Baso et al. (2022) showed how this
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can be applied to the inversion of Fe I and Ca II data and diagnose the stratification of
the solar photosphere and chromosphere. They obtained the most probable value of
the temperature, bulk velocity, and microturbulent velocity in a very large field of
view, together with their uncertainties and correlations.

7.8 3D reconstruction of the solar corona

Rahman et al. (2023) has recently shown that one can use GANs to build a mapping
from photospheric magnetograms to electron density maps at different heights in the
atmosphere. The model is trained with simulations from the Magnetohydrodynamic
Algorithm outside a Sphere (MAS) method, that solves the time-dependent resistive
magnetohydrodynamic equations (MHD) in 3D, including coronal heating, thermal
conduction and radiative losses (Lionello et al. 2008; Riley et al. 2015).

Recent works have demonstrated the potential of using fully connected neural
networks for the description of continuous fields (scalar, vector,...) as a function of
the position in space (e.g., Mildenhall et al. 2020). To this end, neural networks,
usually termed implicit neural representations (INR), coordinate-based representa-
tions (CBR), or neural fields (NeF), are used to map coordinates on the space (or
space-time) to coordinate-dependent field quantities. NeFs have many desirable
properties. They are very efficient in terms of the number of free parameters. They
produce continuous and differentiable fields, which can then be seamlessly part of
complex models. Finally, they have a strong implicit bias, favoring specific signals.
An NeF is given by the following simple, but flexible, fully-connected neural
network:

logNeðxÞ ¼/n 	 /n�1 
 
 
 	 /0ðxÞ;
/i ¼rðWixi þ biÞ;

ð56Þ

where Wi are weight matrices, bi are bias terms, and r is an activation function.
NeFs, as defined by Eq. (56), are known to suffer from the so-called spectral bias

(Rahaman et al. 2019; Wang et al. 2021c), which prevents them from learning high-
frequency functions. This problem has been empirically alleviated by first passing the
input coordinates through a Fourier feature mapping, which allows the INR to
correctly generate high spatial frequencies (Tancik et al. 2020). Recently, Sitzmann
et al. (2020) proposed SIRENs,36 which uses periodic functions (sines) as activation
functions so that the electron density can be written as:

logNeðxÞ ¼ SwðxÞ ¼Wnð/n�1 	 /n�2 
 
 
 	 /0Þ þ bn
/i ¼ sin xi Wixi þ bið Þð Þ; ð57Þ

where w summarize all tunable parameters of the SIREN. Thanks to a specific
initialization procedure, a SIREN can efficiently reproduce both low and high spatial
frequencies. In some sense, a SIREN can be seen as a nonlinear extension of a
Fourier series.

36 https://github.com/vsitzmann/siren.
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NeFs have been recently introduced in solar physics by Jarolim et al. (2022) for
the description of the magnetic field in the solar corona. Jarolim et al. (2022) carry
out the extrapolation of the photospheric magnetic field by describing it with a NeF.
They optimize the neural network by imposing the force-free and the solenoidal
conditions:

Lff ¼kðr � BÞ � Bk2
kBk2 þ �

Ldiv ¼krBk2:
ð58Þ

The spatial derivatives are easy to compute for a NeF using automatic differentiation.
These losses are optimized by simultaneously fulfilling the boundary conditions.

Later, Bintsi et al. (2022) used NeFs to show that it is possible to infer the
emission properties in the whole 3D corona from a set of observations from the
ecliptic (with latitudes below 7	). To this end, NeFs are used to describe the local
emission properties in the 3D volume. The training requires accumulating the
emission along rays using ray tracing and optimizing a loss that compares the
synthetic images and AIA/SDO observations at 193 Å. The simulations demonstrate
that 32 observations are enough to obtain a very accurate description of the corona,
even in the polar regions. Extending the procedure to infer physical properties like
temperature and electron density (from which the local emission properties are
computed) is just one step ahead.

The force-free extrapolation of magnetic fields in the corona, especially above
photospheric magnetic field concentrations, improves significantly if one has
additional information about the 3D geometrical structure of coronal loops observed
in the UV. A reliable inference of this 3D structure requires the use of triangulation
techniques with the aid of stereoscopic observations. Since having these observations
is not the case in many occasions, Chifu and Gafeira (2021) used a CNN to extract
the Z component of the loop based only on the 2D shape extracted from a EUV
single image. The model obtained a very high accuracy for short loops with no
complex shapes and lower performance in very complex and twisted shapes.

7.9 Image deconvolution

Observing any other astronomical object through the Earth’s atmosphere introduces
perturbations that are difficult to correct. The obvious solution of moving to space is
not always possible or feasible. Even if adaptive optics systems are working properly,
some residual wavefront perturbations are still present in the images, and the
diffraction limit of the telescope is not reached. A posteriori correction techniques
based on phase diversity (Paxman et al. 1992; Löfdahl and Scharmer 1994; Löfdahl
et al. 1998) and multi-object multi-frame blind deconvolution (MOMFBD; Löfdahl
et al. 2002; van Noort et al. 2005) have been developed. The main disadvantage of
these methods is their large computational requirements. For this reason, deep
learning has been applied recently by Asensio Ramos et al. (2018) to accelerate the
deconvolution process. The method is based on a fully convolutional deep neural
network that was trained supervisedly with images previously corrected with the help
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of MOMFBD. Once trained, this method can deconvolve bursts of 1k�1k images
containing 7 short-exposure images in � 5 ms with an appropriate GPU. This opens
up the possibility of, for instance, doing the deconvolution online while analyzing the
data.37

Although a step forward in terms of speed, the neural approach developed by
Asensio Ramos et al. (2018) has two main problems. The first one is that it is trained
with supervision, so one needs to use the MOMFBD algorithm to build the training
set. Though not a major obstacle, a method that does not need this previous step
would be preferable. The second issue is that it only produces deconvolved images.
No estimation of the wavefront in each individual frame is produced. Estimating the
wavefronts can be helpful in checking the performance of the telescope and
instrument and understanding the performance of the adaptive optics. For this reason,
Asensio Ramos and Olspert (2021) improved the approach by showing how the
training can be done in a fully unsupervised manner, while also producing an
estimation of the wavefront for each observed frame. Given the lack of supervision,
the method can be generally applied to any type of object, once a sufficient amount of
training data is available.38

7.10 Image-to-image models

Arguably the most powerful property of deep learning models is their ability to deal
with high-dimensionality data like images. Models are powerful enough to produce
very high-resolution natural images. This fact has also been exploited in solar physics
in different applications that we summarize in the following.

7.10.1 Synthetic generation of solar data

The multi-wavelength and multi-layer coverage of the solar atmosphere by SDO
instruments provide opportunities to explore the synthetic generation of solar data. In
this context, synthetic data generation includes the translation of data from one
instrument into proxy data for another instrument (or even the same instrument), as
well as the generation of data that follow the underlying distribution of real observed
data, but which is not necessarily instantiated on the real Sun.

One example of data translation is the generation of proxy EUV spectral
irradiance data. Using the SDOML dataset (Galvez et al. 2019b), Szenicer et al.
(2019) trained a CNN to translate multi-channel AIA images into disk-integrated line
(and band) irradiance data observed by EVE. This was done by using data captured
by both instruments before mid 2014, when EVE MEGS-Awas still operational. The
errors from the CNN model prediction are smaller than from a physics model based
on differential emission measure (DEM) inversions. After the model was trained, a
rearrangement of the network components allowed for the generation of synthetic
line irradiance images (Fig. 13).

37 https://github.com/aasensio/learned_mfbd.
38 https://github.com/aasensio/unsupervisedMFBD.
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Conditional Generative Adversarial Networks (cGANs) have been trained to
generate synthetic magnetograms from EUV/UV images (Kim et al. 2019).
Theoretical considerations would suggest EUV/UV intensity data would not encode
magnetic global polarity information (Liu et al. 2021). Specifically, the expectation is
that the thermodynamic structure of the solar atmosphere is symmetric under the
operation B ! �B. However, the synthetic magnetograms from Kim et al. (2019) do
have bipolar active regions that resemble real active regions with Hale polarity rules
consistent with solar cycle 24. Detailed comparisons with actual observed active
regions reveal big differences in the morphology. So these synthetically generated
magnetograms would not be useful for AR-scale studies. Whether they are
suitable for use for downstream heliospheric predictions remains to be seen.

Another image translation problem is the synthetic generation of EUV images
from other EUV images of different wavelengths. This problem was posed by
Salvatelli et al. (2019) in the context of potentially reducing the number of physical
channels needed in future EUV telescopes. The approach was to use three AIA input
channels to generate another AIA channel using U-Nets. This problem was further
extensively explored by Lim et al. (2021) using cGANs, who considered image
translation from single, double, and triple input channels with cross-correlation (CC)
coefficient between prediction and ground truth as the performance metric. Salvatelli
et al. (2022) further explored the problem by considering other metrics, including
commonly used computer vision metrics like structural similarity index measures.
Salvatelli et al. (2022) showed that the CC metric may not be the ideal performance
metric, and also showed how various metrics degraded when the trained model was
applied during flaring conditions.

Fig. 13 Synthetic EUV line irradiance images generated by a CNN trained to map AIA images to EVE
disk-integrated line irradiance data Image reproduced with permission from Szenicer et al. (2019),
copyright by the author(s)
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7.10.2 Estimation of velocities

Motions in the solar photosphere are fundamentally controlled by convection in a
magnetized plasma. Remotely sensing these three-dimensional velocities is important
for the analysis of solar events. The component along the line of sight (LOS) of the
velocity can be extracted from spectroscopic observations thanks to the Doppler
effect. However, the components of the velocity field in the plane perpendicular to
the LOS cannot be diagnosed spectroscopically. Different algorithms have been used
to trace horizontal flows at the solar surface by estimating the optical flow from
consecutive images. The most widespread is the method of local correlation tracking
(LCT; November and Simon 1988). This method suffers from problems when
dealing with events of a short time duration or with reduced physical size. To
alleviate this, Asensio Ramos et al. (2017) developed DeepVel,39 an end-to-end deep
learning approach for the estimation of horizontal velocity fields in the solar
atmosphere based on a deep fully convolutional neural network. The neural network
was trained on a set of velocity fields obtained from simulations of the quiet Sun.
DeepVel is very fast, uses only two consecutive frames, and returns the velocity field
in every pixel and for every time step. DeepVel opened up the possibility of
identifying small-scale vortices in the solar atmosphere that last for a few minutes
and with sizes of the order of a few hundred kilometers, something impossible with
methods based on local correlation tracking

DeepVel was later retrained by Tremblay et al. (2018) to carry out an exhaustive
comparison with classical local correlation methods and check their ability in
extracting transverse plasma motions at a large scale from SDO/HMI observations.
They concluded that DeepVel was able to beat classical methods by a large margin in
small scales, those of the granulation while being very similar to local correlation
methods in larger scales. It is encouraging that, when applied to simulations, DeepVel
is able to nicely recover the kinetic energy density from the simulation.

A new model, DeepVelU,40 based on the U-Net architecture, has been proposed
by Tremblay and Attie (2020). This model displays several improvements with
respect to the original DeepVel network. The U-Nets analyze the inputs in a
multiscale fashion, which turns out to be interesting to capture horizontal velocities at
different scales, from granular to the supergranular scales. Additionally, Tremblay
and Attie (2020) trained DeepVelU in simulations of the quiet Sun and active
regions. They checked that DeepVelU is able to capture the transverse velocities from
simulations with much improved correlation, especially when dealing with large
spatial scales.

7.10.3 Superresolution

Instruments are limited by optics to provide a certain spatial resolution on the solar
surface. However, the recent field of research on compressed sensing, which is
founded on the idea of sparsity and compressibility, has demonstrated that one can

39 https://github.com/aasensio/deepvel.
40 https://github.com/tremblaybenoit/DeepVel_DeepVelU.
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enhance the spatial resolution of images under certain conditions. It is clear that the
presence of spatial correlation in the images of the Sun suggests that one can enhance
current observations to provide a certain degree of superresolution. Díaz Baso and
Asensio Ramos (2018) proposed Enhance,41 a deep CNN that provides superre-
solved continuum and magnetograms for SDO/HMI. The nominal pixel size of HMI
of 0.500 is transformed into 0.2500. These images are compared, as a cross-check, with
images obtained from the Hinode satellite (correctly degraded to provide a resolution
of 0.2500 per pixel). The superresolved images provide a very good representation of
the small scales, enhancing the contrast in the continuum in the quiet Sun by almost a
factor 2. Magnetograms are also properly superresolved although the fact that this is
a signed quantity can produce small artifacts. All-in-all, Enhance is a very good
tool to provide a better picture of the environment around regions of interest.

More recently, Dou et al. (2022)42 have used generative adversarial network
(GAN) to produce high-fidelity and photorealistic super-resolved images of
Michelson Doppler Imager (MDI) in order to match the Helioseismic and Magnetic
Imager (HMI) resolution. First, a GAN model is designed to downscale the HMI data
to MDI resolution to transfer the characterization of the HMI data to the MDI scale.
Then a second supervised GAN model was developed to produce the superresolved
magnetograms based on the MDI data. We caution the reader to be very critical when
using superresolved data for data analysis since the presence of artifacts and
ambiguities can surely affect the physics inferred from them.

7.10.4 Denoising

Although exquisite detail is put on the design of the instruments developed to
observe the Sun, they are always affected by noise. A posteriori methods can be used
to denoise the data by exploting the regularity of the solar structures, helped by the
fact that noise has reduced spatial and temporal correlation. As already discussed in
Sect. 3.1.1, linear methods have been used with this purpose. However, new, more
powerful nonlinear methods are appearing in the literature, and they are being used
for denoising different solar observations. In particular, Díaz Baso et al. (2019) got
inspiration from the Noise2Noise approach of Lehtinen et al. (2018). This is a
method that supervisedly trains a relatively simple denoising neural network by only
having pairs of the same solar structure with two different realizations of the noise. In
contrast, the standard supervised approach needs pairs of noisy and clean images,
which are only possible using synthetic data. It is obvious that obtaining training
examples for the Noise2Noise approach is much easier than for the standard
supervised case. This was indeed demonstrated by Díaz Baso et al. (2019), who used
pairs of images taken with the CRISP instrument mounted on the Solar Swedish
Telescope (SST) at the same wavelength but at different times, making sure that the
time separation was small. The denoising results are great, with special relevance on
filterpolarimeters like CRISP, which show conspicuous (preferentially when

41 https://github.com/cdiazbas/enhance.
42 https://github.com/dfpdl/SPSR.
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analyzing polarimetric signals) systematic artifacts on the observed field, produced
either by the instrument or by the data reduction process.

Later, Park et al. (2020) also approached the denoising problem of SDO/HMI
solar magnetograms using a deep convolutional conditional GAN, leading to a
reduction in the average noise level of more than a factor 2.5. The GAN is trained so
that it maps single magnetograms to the average of the 21 magnetograms centered on
the one of interest (including 10 before and 10 after). Potentially, this could lead to a
reduction in the noise standard deviation of a factor � 4:6, although it can also lead
to a slight blurriness of the generated images produced by motions in the solar
surface. The generator network is conditioned on the noisy magnetogram and its
purpose is to produce a denoised version of the magnetogram. Following the
standard GAN paradigm, a second discriminator network is in charge of
distinguishing the magnetogram produced by the generator and the real ones from
the training set. The equilibrium of the two networks is produced when the generator
produces images indistinguishable from the training set so that the discriminator is
fooled roughly 50% of the time.

7.10.5 Image desaturation

A very interesting application of deep learning is the desaturation of SDO/AIA data.
These synoptic observations frequently suffer from saturation effects mainly as a
consequence of the occurrence of solar flares. Correcting the saturated regions of the
image is an instance of image inpainting. The aim is to fill the (irregular) holes by
leveraging statistical information from the rest of the image and from the training set.
To this end, Yu et al. (2022) developed a model using a GAN. The generator is based
on a U-Net that uses partial convolution layers (Liu et al. 2022) instead of standard
convolutional layers. These partial convolution layers are specifically suited for
inpainting tasks. The discriminator is based on a PatchGAN architecture (Isola et al.
2017; Wang et al. 2021a). The results show a promising avenue to provide
continuous synoptic observations even when energetic events happen in the Sun.

7.10.6 Farside imaging

Predictions of the active regions currently on the hidden side of the Sun (known as
farside) are routinely computed using helioseismic measurements. They are obtained
by solving the inversion problem known as helioseismic holography (Lindsey and
Braun 1997), which uses time series of waves on the visible surface (nearside) and
map them back to the far side. Given the dispersive character of the mapping between
the nearside and the farside, the resulting images are quite diffuse. Machine learning
has great potential for the improvement of these inversions. Kim et al. (2019) trained
generative models to produce farside magnetograms from STEREO extreme
ultraviolet (EUV) images. Since the polarity of the magnetic field is not directly
encoded on the EUV images, it is noteworthy that the correct polarity can be
recovered. Felipe and Asensio Ramos (2019) gave the more conservative step of
proposing a CNN (FarNet) that associates the farside maps obtained with
helioseismic holography with probability maps obtained from magnetograms
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acquired half a rotation later. As a consequence, the aim is to estimate the presence of
active regions, neglecting the polarity, with nearside data. The neural approach is
able to detect much weaker active regions than those that are detected with the
standard technique. Improvements on this approach will probably require deep
architectures directly trained with Doppler maps. Later, Broock et al. (2021) analyzed
the statistical properties of FarNet and concluded that for equivalent false positive
ratios when compared with the standard method, it produces � 47% more true
detections. Additionally, it is able to detect much weaker active regions. A significant
improvement (FarNet-II) was also recently published by Broock et al. (2022), by
including attention mechanisms and convolutional recurrent layers based on the
ConvLSTM approach (Shi et al. 2015). Using temporal information provides a much
improved time consistency of the predicted active regions, also allowing for a better
prediction in the case of weak active regions.43

8 Outlook for the future

Machine learning has been routinely used in solar physics. However, the recent deep
learning revolution is producing a panoply of new applications that were never
envisioned a few years back, permeating in many subfields of research inside solar
physics. The availability of increasingly larger observational material is making solar
physics transition to the powerful collection of methods that advanced ML offers to
help us understand what we see. We frankly think ML will become an intrinsic part
of our research in the future.

Currently, many applications in solar physics consider the ML model as a very
convenient way of parameterizing a very flexible mapping that carries out the inverse
problem directly. This is interesting because we need to accelerate certain complex
operations that cannot be carried out otherwise, especially with the current and future
solar telescopes. However, we are also starting to witness a huge revolution in solar
physics in which deep learning models are informed with physical models. A good
synergy can be obtained if the physical laws that we currently use to interpret our
observations are used together with neural networks to approximate the most
complex parts of the process. We will surely see new methods for the inversion of the
Stokes profiles, new methods for the extrapolation of magnetic fields, new methods
to accelerate MHD simulations, new methods to understand synoptic observations,
and many more. All of them will use deep learning as a key ingredient.
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