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Abstract
One obvious feature of the solar cycle is its variation from one cycle to another. In
this article, we review the dynamo models for the long-term variations of the solar
cycle. By long-term variations, we mean the cycle modulations beyond the 11-year
periodicity and these include, the Gnevyshev–Ohl/Even–Odd rule, grand minima,
grand maxima, Gleissberg cycle, and Suess cycles. After a brief review of the
observed data, we present the dynamo models for the solar cycle. By carefully
analyzing the dynamo models and the observed data, we identify the following broad
causes for the modulation: (1) magnetic feedback on the flow, (2) stochastic forcing,
and (3) time delays in various processes of the dynamo. To demonstrate each of these
causes, we present the results from some illustrative models for the cycle modula-
tions and discuss their strengths and weakness. We also discuss a few critical issues
and their current trends. The article ends with a discussion of our current state of
ignorance about comparing detailed features of the magnetic cycle and the large-scale
velocity from the dynamo models with robust observations.

Keywords Solar physics · Solar activity · Solar cycle · Solar dynamo

Contents

1 Introduction............................................................................................................................. 2
2 Long-term variations of the solar cycle ................................................................................. 3

2.1 Grand minima and maxima ........................................................................................... 3
2.2 Cycles and modulations beyond 11 years ..................................................................... 4

3 Solar dynamo: an overview.................................................................................................... 5
4 Some historical developments of the dynamo models .......................................................... 7

4.1 Axisymmetric kinematic dynamo equations.................................................................. 7
4.2 Babcock–Leighton dynamo models............................................................................... 9
4.3 Flux transport dynamo models ...................................................................................... 11

& Bidya Binay Karak
karak.phy@iitbhu.ac.in

1 Department of Physics, Indian Institute of Technology (Banaras Hindu University),
Varanasi 221005, India

123

Living Reviews in Solar Physics (2023) 20:3
https://doi.org/10.1007/s41116-023-00037-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8883-3562
http://crossmark.crossref.org/dialog/?doi=10.1007/s41116-023-00037-y&amp;domain=pdf
https://doi.org/10.1007/s41116-023-00037-y


5 Mechanisms of long-term variations ...................................................................................... 12
5.1 Magnetic feedback on the flow ..................................................................................... 12
5.2 Stochastic forcing........................................................................................................... 13
5.3 Time delay in various processes of the dynamo........................................................... 15

6 Mean-field models for long-term cycle variabilities .............................................................. 16
6.1 Models with nonlinear feedback on the large-scale flows............................................ 16

6.1.1 Variation in differential rotation .................................................................... 17
6.1.2 Variation in meridional circulation................................................................ 18
6.1.3 Joint models with multiple nonlinearities ..................................................... 19

6.2 Models with fluctuations................................................................................................ 19
6.2.1 Fluctuations in a-effect.................................................................................. 19
6.2.2 Fluctuations in a-effect coupled with dynamic a-effect ............................... 20
6.2.3 Fluctuations in Babcock–Leighton process................................................... 20
6.2.4 Does the Babcock–Leighton process operate during grand minima? .......... 24
6.2.5 Variability vs dynamo supercriticality........................................................... 26

6.3 Specific nonlinearities in the Babcock–Leighton process............................................. 29
6.3.1 Tilt quenching................................................................................................ 29
6.3.2 Flux loss due to magnetic buoyancy ............................................................ 30
6.3.3 Latitudinal quenching .................................................................................... 32
6.3.4 Magnetic field-dependent inflows around BMRs ......................................... 32

6.4 Time-delay models ......................................................................................................... 33
6.4.1 Iterative map .................................................................................................. 33
6.4.2 1D time-delay dynamo .................................................................................. 35
6.4.3 2D time-delay dynamo .................................................................................. 35

7 MHD simulations for long-term cycle variabilities ............................................................... 36
8 Some open questions and current trends ............................................................................... 40

8.1 Do grand minima represent different states of the solar dynamo?............................... 40
8.2 Do grand maxima require different mechanisms for their origin? ............................... 41
8.3 What is the origin of Gnevyshev–Ohl/Even–Odd rule? ............................................... 41
8.4 What are the causes of Gleissberg and Suess/de Vries cycles? ................................... 42

9 Summary and discussion ........................................................................................................ 42
References ..................................................................................................................................... 44

1 Introduction

The most prominent and fundamental feature of the solar magnetic field is its 11-year
cyclic oscillation. Systematic observations of the large-scale solar magnetic field,
available since the 1950 s, revealed the reversals of the field. However, the times of
the reversals and the strength of the field are not the same for all the cycles. Time
series of sunspot number and the sunspot area, for which we have direct observations
for longer durations (group sunspot number since 1610 and the area since 1874), also
show cycle-to-cycle variations (Hathaway 2015); Fig. 1. Thus, there is no doubt that
the 11-year solar cycle is not regular and that makes the prediction of the future cycle
a formidable task (Petrovay 2020). The prediction, however, is essential as the Sun’s
magnetic field drives the space weather which sometimes poses serious problems to
us—e.g., by damaging satellite’s electronics, modern-day technologies such as
telecommunications, GPS networks, and electric power grids at high latitudes,
making polar routes dangerous for aviation, increasing the radiation dose to
astronauts in space (Temmer 2021). Evidence suggests that the variable solar
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activity may also drive changes in the Earth’s global temperature (Solanki et al.
2013).

Simply saying that the solar cycle is irregular is not enough to describe its true
nature; there are many distinct features—such as grand minima and grand maxima—
which can be considered as extreme examples of irregularity; Fig. 2. Additionally,
there are some long-term patterns beyond the usual 11-year variation, such as
Gnevyshev–Ohl rule and Gleissberg cycle. Below we briefly discuss these long-term
variations. However, the readers can check the excellent reviews (Hathaway 2015;
Usoskin 2023; Biswas et al. 2023) for extensive discussion.

2 Long-term variations of the solar cycle

2.1 Grand minima and maxima

Grand minima are the extended episodes of considerably lower magnetic activity
than the normal one. The best example of these is the Maunder minimum in the 17th
century when solar activity was considerably weaker than the normal one for about
70 years (Eddy 1976); Fig. 1. We emphasize that this is not an artifact due to few

Fig. 1 Yearly variation of the monthly mean sunspot number smoothed using a Gaussian filter of FWHM
¼ 7 months (red curve), available since 1749 and the yearly mean group sunspot number (black curve)
available during 1610–2015. Note that group number is scaled by a factor of 18 to bring it to the scale of
sunspot number. The blue curve with 98-year period guides the Gleissberg cycle. Cycle numbers for which
the Even–Odd effect is obeyed are shown by tagging the number on the odd cycles. Data source: WDC-
SILSO, Royal Observatory of Belgium, Brussels

Fig. 2 Reconstructed (decadal) sunspot number along with its 68% confidence interval (gray shading) over
nine millennia derived from 14C data using a multi-proxy Bayesian method by Wu et al. (2018). The red
curve shows the decadally resampled international sunspot number for the last 300 years (version 2, scaled
by 0.6). The dashed line marks the zero spot number. Asterisks and circles mark the times of occurrences of
grand maxima and minima, respectively
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observations but a real and well-observed event (Hoyt and Schatten 1996).
Observations have shown that the Maunder minimum was not complete lack of
activity—the Sun was still producing spots and even cycles but at a lower rate (Beer
et al. 1998; Zolotova and Ponyavin 2015; Usoskin et al. 2015; Vaquero et al. 2015;
Zolotova and Ponyavin 2016. This makes the Maunder minimum (and possibly all
grand minima) a special state of solar activity. Further distinct aspects of Maunder
minimum are the followings. (1) There was a strong hemispheric asymmetry during
the latter half of Maunder minimum; sunspots were observed mostly in the southern
hemisphere (Ribes and Nesme-Ribes 1993). (2) Recovery of Maunder minimum is
gradual, however, the onset is somewhat uncertain (Fig. 1). Some previous results
suggested that the onset is abrupt (Usoskin et al. 2000), while later studies showed
that it is likely to be gradual (Vaquero et al. 2011). (3) A proxy of solar activity
inferred from a cosmogenic isotope 14C showed that the cycle length before the onset
of the Maunder minimum was significantly longer than its usual value (Miyahara
et al. 2021; Usoskin et al. 2021).

Analyses of 14C for the last 11,400 years revealed the following important results
(Usoskin et al. 2007; Usoskin 2023; Usoskin et al. 2021). (1) The Sun spent about
17% of its time in the grand minimum state. (2) Grand minima are of two types: short
minima of Maunder type with duration 30–90 years and long ([ 100 years) minima
of Spörer type. (3) The grand minima recur aperiodically. (4) The waiting time
distribution of the occurrence of grand minima displays a deviation from an
exponential distribution. However, Moss et al. (2008) showed that feature (5) can be
an artifact of poor statistics (it is based on only 27 grand minima identified in the
observed data).

Grand maxima, on the other hand, are extended periods with appreciably higher
magnetic activity than the normal one. The modern maximum that occurred around
1960 is an example of the same. In about last 11,000 years, 23 grand maxima were
detected and the Sun spent about 12% of its time in this phase (Usoskin et al. 2007;
Usoskin 2023). Grand maxima are more short-lived than the grand minima (Solanki
et al. 2004; Usoskin et al. 2021). The distribution of the duration of grand maxima
shows a smooth variation with an exponential fall at longer durations. The
distribution of the waiting time between the consecutive grand maxima is not
conclusive but there is an indication of deviation from the exponential law.

2.2 Cycles and modulations beyond 11 years

Beyond the regular 11-year solar cycle, the following longer cycles or modulations
are detected in the solar activity data.

● Gnevyshev–Ohl rule/Even–Odd effect: This says that if the cycles are arranged in
pairs with the even cycle and the following odd cycle, then the sum of the sunspot
number in the odd cycle is higher than the even cycle (Gnevyshev and Ohl 1948).
We note that this is not a strict rule, it is violated in cycle pairs: 4–5, and 22–23
(Hathaway 2015).
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● Gleissberg cycle: a modulation in the solar activity with a mean period of about
90 years (Gleissberg 1939; Hathaway 2015). Recent data shows that a sinusoidal
fit to the detrended amplitude gives an approximate period of 98 years as shown
in Fig. 1; also see Forgács-Dajka et al. (2004) who found somewhat closer value
(104 years) in the area-weighted sunspot group data.

● Suess/de Vries cycle: Cycle with a period of 205–210 years detected in the
cosmogenic isotopes (Suess 1980).

Some other cycles like the millennial Eddy cycle and 2400-year Hallstatt cycle are
also noticed in the cosmogenic isotope, however, their signals are poor and require
longer data to confirm (Usoskin 2023).

We would like to mention that not only the solar cycle is irregular, but the
magnetic cycles that are observed in other sun-like stars are also irregular (Boro
Saikia et al. 2018; Garg et al. 2019). Analyzing the data of 111 stars of spectral type
F2–M2, Baliunas et al. (1995) showed that the slowly rotating (old) stars show a
smoother variability in the magnetic cycle and possibly occasional grand minima,
whereas the rapidly rotating young stars show irregular activity and no grand
minima. Recently, Shah et al. (2018) and Baum et al. (2022) claim that HD 4915 and
HD 166620 are possibly entering into the grand minimum phase. Hence, stellar
cycles are also interesting in terms of their modulations.

Now we shall come to the models for these long-term variations of solar activity.
By models in this article, we mean the dynamo models that are used to explain the
long-term variations of solar activity. Below we first present an introductory
discussion of the solar dynamo (Sect. 3) and models (Sect. 4). Then we identify the
causes of the long-term modulations (Sect. 5), followed by some illustrative models
for the same (Sects. 6 and 7). Finally, we discuss a few open questions with current
trends (Sect. 8) and end the article with concluding remarks (Sect. 9).

3 Solar dynamo: an overview

Dynamo is a process in which a sufficiently strong and complex plasma flow
maintains a magnetic field by overcoming its Ohmic dissipation. The magnetic fields
that give rise to sunspots, global dipole magnetic field, and 11-year cycle are
essentially of the large-scale (global) type which usually requires a non-zero net
helicity (mirror asymmetry) in the flow. Due to the global rotation, the convective
motion of plasma in the Sun is helical and the rotation is differential (nonuniform).
Through this helical flow, the poloidal field in the Sun is primarily generated from the
toroidal field, while the poloidal field acts as a source for the toroidal field through
the differential rotation (Parker 1955a). Thus, the solar dynamo is essentially a cyclic
oscillation between two fields and the turbulent transport plays an essential role in
this oscillation (Sect. 4). For a detailed discussion of the solar dynamo, we refer the
readers to the comprehensive reviews by Ossendrijver (2003) and Charbonneau
(2020).

To study the solar dynamo, we need to begin with at least two basic equations of
the magnetohydrodynamics, namely,
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oB
ot

¼$� ðv� B� g$� BÞ; ð1Þ

q
ov
ot

þ ðv � $Þv
� �

¼� $P þ J � Bþ $ � ð2mqSÞ þ F; ð2Þ

where B and v are the magnetic and velocity fields, respectively, g is the magnetic
diffusivity, q is the density, P is the pressure, J ¼ $� B=l0, the current density, m is
the kinematic viscosity, Sij ¼ 1

2 ðrivj þrjviÞ � 1
3 dij$ � v is the rate-of-strain tensor

and the term F includes gravitational, Coriolis and any other body forces acting on
the fluid.

The above equations must be solved along with the mass continuity, internal
energy and equation of state in the solar CZ with appropriate boundary conditions.
This approach to studying the solar dynamo—so-called global MHD simulations—
was pioneered by Gilman (1983) and Glatzmaier (1984) in the 1980 s. While these
simulations gave a few positive results (e.g., large-scale flows and field and a bit of
polarity reversal), being computationally expensive, these simulations were hardly
applied to explore the long-term variations of the solar cycle. Further, the
applicability of these simulations in the Sun is questionable due to their operation
in a completely different parameter regime. In recent years, however, we have got
some encouraging results in the global MHD simulations, a few of them were run for
several magnetic cycles to explore the cycle modulations. In Sect. 7, we shall discuss
the modulations of cycles found in these simulations. Probably the biggest problem
in these simulations is to explore and understand the cause of solar cycle variabilities.
In fact, often an equivalent mean-field model is set up to identify dynamics of the
magnetic field in these global MHD simulations. On the other hand, the mean-field
models have been extensively employed in the past to explore the cause of solar
cycle variability. Therefore, below we shall consult the mean-field version of the
above equations to identify various mechanisms that can possibly lead to cycle
modulations.

Writing the magnetic and velocity fields in terms of mean/large-scale and
fluctuating/small-scale parts and applying suitable approximations in Eqs. (1) and
(2), one can obtain the following equations (Krause and Rädler 1980).

oB
ot

¼$� ðv� Bþ EÞ; ð3Þ

q
ov
ot

þ ðv � $Þv
� �

¼� $P þ J � Bþ J 0 � B0 � $ � qQþ F; ð4Þ

where the quantities with overline and prime respectively denote the mean and
fluctuating components. The mean electromotive force E is given by

E ¼ v0 � B0: ð5Þ

In the mean-field theory, this E is written in terms of the mean magnetic field in some
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limiting case (which holds at small Strouhal and magnetic Reynolds numbers) as
follows.

E i ¼ âijBj þ ĝijk
oBj

oxk
; ð6Þ

Some components of â tensor give the dynamo action and some of the components of
ĝ tensor are responsible for the diffusion of fields. For homogeneous and isotropic
turbulence, one can show that

E ¼ aB� gtð$� BÞ; ð7Þ

where a ¼ � 1
3 scorrðv0 � $� v0 � ðql0Þ�1B0 � $� B0Þ and gt � 1

3 scorrv
0 � v0. In the

classical aX dynamo model, this a coefficient is the one which is responsible for the
generation of the poloidal magnetic field from the toroidal one (Parker 1955a;
Steenbeck et al. 1966). The turbulent diffusivity gt is several orders of magnitude
larger than the molecular g and that is the reason we have dropped out the g term in
Eq. (3).

If the turbulence is inhomogeneous, then there will be an additional term c� B in
the above E. This c is the magnetic pumping which is usually ignored in most of the
kinematic mean-field dynamo models, but found to be important in the solar dynamo
(e.g., Guerrero and de Gouveia Dal Pino 2008; Karak and Nandy 2012; Kitchatinov
and Olemskoy 2012; Cameron et al. 2012; Karak and Cameron 2016; Karak and
Miesch 2017) and has also been detected in global convection simulations (Racine
et al. 2011; Augustson et al. 2015; Simard et al. 2016; Warnecke et al. 2018).

The value of Q in Eq. (4) can be written in terms of Reynolds and Maxwell
stresses as

Qij ¼ v0iv0j � ðql0Þ�1B0
iB

0
j ¼ Q

k
ij �N ijkl

ovk
oxl

; ð8Þ

where the tensor N gives the turbulent viscosity mt. While N is rotation dependent
and has a complex form, it has two simple terms in the case of isotropic turbulence.
Again like gt, mt is usually much larger than the molecular viscosity (m) and thus the
latter is neglected in Eq. (4).

The term Q
k
ij is called the K effect which drives angular momentum in the rotating

CZ (Kippenhahn 1963; Rüdiger 1989; Kichatinov and Rüdiger 1993) to give rise to
the differential rotation. While the second term in Eq. (8) tends to smooth out the

nonuniformity in rotation, Q
k
ij makes the rotation nonuniform.

4 Some historical developments of the dynamo models

4.1 Axisymmetric kinematic dynamo equations

Despite tremendous contribution to the field, the pioneering simulations of Gilman
(1983) and Glatzmaier (1984, 1985) were discouraging for the dynamo modellers as
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they failed to reproduce most of the basic features of the solar magnetic field. Due to
this failure, the dynamo modellers paid more attention to the mean-field models to
study the solar cycle. Motivated by the observed large-scale magnetic and velocity
fields, the coronal structure, and to make calculations simple, historically the mean-
field solar dynamo was mostly studied under the axisymmetric approximation. With
this approximation, the large-scale magnetic field can be written as

Bðr; h; tÞ ¼ Bp þ Bt ¼ $� Aðr; h; tÞ/̂
h i

þ Bðr; h; tÞ/̂; ð9Þ

where Bp ¼ Brðr; h; tÞr̂ þ Bhðr; h; tÞĥ is the poloidal component of the magnetic field

and Bt ¼ Bðr; h; tÞ/̂ is the toroidal component. Similarly, the velocity can be written
as

vðr; hÞ ¼ vmðr; hÞ þ v/ðr; hÞ/̂ ¼ vrðr; hÞr̂ þ vhðr; hÞĥþ r sin hXðr; hÞ/̂; ð10Þ

where vm ¼ vrðr; hÞr̂ þ vhðr; hÞĥ is the meridional circulation and Xðr; hÞ is the
angular frequency.

We note that here we have taken the velocity as the time-independent (steady),
which is the case when we make the kinematic approximation. The kinematic
approach has been adopted extensively in the literature to study the solar dynamo
because in this case, we do not have to consider the equation for the flow (Eq. 4) and
thus it makes the dynamo problem linear (see Eqs. 11, 12) below) and thus simpler.
Nevertheless, observations provide us with the azimuthal flow in the whole CZ and
the meridional flow in the near-surface layer. Given the fact that the differential
rotation shows a little variation (in the form of torsional oscillation), one would
expect that the kinematic approach is not a bad assumption for the sun.

After substituting the above forms of the fields in Eq. (3) and using the value of E
from Eq. (7) one can derive the following equations.

oA
ot

þ 1

s
ðvm � $ÞðsAÞ ¼ gt r2 � 1

s2

� �
Aþ aB; ð11Þ

oB
ot

þ 1

r

oðrvrBÞ
or

þ oðvhBÞ
oh

� �
¼ gt r2 � 1

s2

� �
Bþ sðBp � $ÞXþ 1

r

dgt
dr

oðrBÞ
or

; ð12Þ

where s ¼ r sin h and gt is assumed to depend only on r.
In the above equations, the second term involving vm (or equivalently vr; vh)

corresponds to advection of poloidal field by meridional flow and the first terms on
the RHS of both equations represent the diffusion. In Eq. (11), the term aB is the
source for the poloidal magnetic field. We discuss more about it in the next
section. The term sðBp � $ÞX in Eq. (12) is the source for the toroidal field, in which
the nonuniformity of the rotation along the direction of poloidal field induces a
toroidal field (the X effect). We note that while deriving above equations we have

neglected a term /̂ � ½$� ðaBpÞ�. This is also a source for the toroidal field through
the a-effect. However, in Sun we believe that this term is negligible compared to the
source due to differential rotation. The dynamo model constructed based on this
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assumption is traditionally called the aX type dynamo in which the poloidal and
toroidal fields maintain each other through a feedback loop. Finally, the last term in
Eq. (12) gives rise to an advection due to nonuniform turbulent diffusion.

4.2 Babcock–Leighton dynamo models

There are two potential and widely studied mechanisms through which the poloidal
field in the Sun can be generated. The first one was proposed by Parker (1955a) and
mathematically studied in detail by Steenbeck et al. (1966). In this process, the
helical convection (which has non-zero net helicity) in the CZ twists the toroidal field
to generate a poloidal component. This is the traditional a-effect. We note that this
process only operates when the energy density of the toroidal magnetic field is below
the energy density of the convective turbulence so that the turbulent flow can twist
the field. The second mechanism goes to Babcock (1961) and Leighton (1964) who
proposed that the decay of tilted bipolar magnetic regions (BMRs) generates a
poloidal field.

Observations show that the line joining the centres of poles of a BMR makes an
angle with respect to the equatorial line. This tilt statistically increases with the
latitude which is known as Joy’s law (Hale et al. 1919). When a BMR decays, the
magnetic field of two poles diffuses at slightly different latitudes. The field from the
leading part predominantly cancels with the field from the other hemisphere across
the equator and the trailing part is largely advected towards the pole to produce a
global dipole moment for the Sun; see Fig. 3 and also see Hazra et al. (2017). This
process of generating poloidal field, the so-called Babcock–Leighton process
requires a tilt in the BMR and this process need not be very efficient in terms of the
fact that the magnetic flux in the polar cap is approximately the net flux content in
only one BMR (� 5� 1021 Mx; Cameron and Schüssler 2015).

As the BMRs are produced from the deep-seated toroidal field and the decay of
BMRs produces a poloidal field, this mechanism in many Babcock–Leighton type

Fig. 3 Demonstration of Babcock–Leighton process. Decay and dispersal of two BMRs deposited
symmetrically at 25� are shown for three years. Note that due to finite tilts (� 14� as assigned by Joy’s law)
of the BMRs, a net poloidal field near the pole is produced (see the weak field near the pole in the last
snapshot). Snapshots are taken from a 3D model (Karak and Miesch 2018) in which meridional flow
(poleward on the surface), differential rotation (fast equator) and a turbulent diffusivity of 1012 cm2 s�1are
specified. While the magnetic field in the initial BMR is 3000 G, it is saturated at 0.1 G to show the weak
field at the end
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dynamo models is phenomenologically prescribed by a term aB in Eq. (11). Here, a
is nonzero only near the surface in contrast to the (classical) a-effect, which operates
in the whole CZ. Although both the a-effect and Babcock–Leighton process for the
generation of the poloidal field are captured by the same term aB in mean-field
dynamo models, their mechanisms are completely different. Nevertheless, in some
comprehensive dynamo models, e.g., the 3D model of Yeates and Muñoz-Jaramillo
(2013), Miesch and Dikpati (2014), Kumar et al. (2019) and Bekki and Cameron
(2022) and the 2� 2D model of Lemerle and Charbonneau (2017), do not capture
the Babcock–Leighton process through this aB term, instead, they include explicit
BMRs which self-consistently generates the poloidal field. We further emphasise that
the Babcock–Leighton dynamos are also of mean-field type although the Babcock–
Leighton source term is often introduced in a heuristic way instead of strictly
deriving it from the mean-field MHD.

There was little doubt, at least, after the helioseismology mapped the rotation
profile in the CZ (Howe 2009) that the toroidal field in the Sun is produced through
the X effect. However, it was not clear whether the helical a-effect or Babcock–
Leighton process is the dominating mechanism for the generation of the poloidal
field in the Sun. Most of the early dynamo models considered the a-effect. Then in
the 1990 s, the studies from the thin flux tube model have shown that the tilt of the
BMR is presumably produced due to the Coriolis force acting on the rising flux tube
of the toroidal field in the CZ (D’Silva and Choudhuri 1993; Fan et al. 1994). These
studies also showed that the magnetic field at the bottom of the CZ (BCZ) in the
BMR forming regions1 has to be of the order of 105 G, which is much higher than the
equipartition field strength (� 5� 103 G; Stix 2002). If this is the case, then the
classical a will not be able to operate in this strong field. However, the Babcock–
Leighton process still can operate in this regime as in this process, the original
toroidal field and the generated poloidal field are segregated in space and there is no
generation of magnetic helicity and no catastrophic quenching (Kitchatinov and
Olemskoy 2011a). This was a strong support behind the Babcock–Leighton process
as the primary source for the poloidal field in the Sun.

We would like to recall that there are observational supports for the operation of
the Babcock–Leighton process. First, there is a close connection between the
locations of BMR emergences and the sites of the formations of the trailing polarity
surges at low latitudes, as seen in the time-latitude distribution (or maybe in the
Carrington maps) of the magnetic field (e.g., Mordvinov et al. 2020, 2022). Second,
the Surface Flux Transport (SFT) models, which describe the evolution of the radial
component of the magnetic field by utilizing the observed BMRs, large-scale flows
(such as differential rotation and meridional circulation) and turbulent diffusion on
the solar surface, capture the Babcock–Leighton process (Wang et al. 1989;
Baumann et al. 2004; Upton and Hathaway 2014b; Jiang et al. 2014b). The
remarkable success of the SFT model in terms of reproducing the observed magnetic
field on the solar surface as well as the coronal structure gives support that at least the
observed magnetic field in the Sun is largely due to the Babcock–Leighton process.

1 During the BMR formation, the magnetic field may also be locally amplified from the diffuse field; see
discussion in Getling and Buchnev (2019).
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Next, the observed correlation between the polar field (or its proxy) at the end of the
cycle and the amplitude of the next cycle (Wang and Sheeley 2009; Kitchatinov and
Olemskoy 2011b; Muñoz-Jaramillo et al. 2013; Priyal et al. 2014; Kumar et al.
2021b, 2022) and the flux budgets of the observed and the generated poloidal and
toroidal fields (Cameron and Schüssler 2015) suggest that the Babcock–Leighton
process is possibly the main source of the poloidal field in the Sun.

4.3 Flux transport dynamo models

While developing a satisfactory dynamo model for the solar cycle in the Babcock–
Leighton framework, modellers faced a challenge to reproduce the observed
migration of sunspots. As the deep-seated toroidal field gives rise to sunspots and the
latitudinal band of sunspots migrates towards the equator within a cycle, we expect
the toroidal field in the deeper CZ to advect towards the equator with the progress of
a cycle. However, to obtain an equatorward propagation through dynamo wave,
Parker–Yoshimura sign rule demands that a oX

or \0 in the northern hemisphere

(Parker 1955a; Yoshimura 1975). The observed profile of X shows that oXor is positive
in the low latitudes where sunspots emerge. Furthermore, the observations of BMR
tilts also suggest that the a corresponding to the Babcock–Leighton process is also
positive in the northern hemisphere. Hence, Parker–Yoshimura sign rule suggests a
poleward migration in contrast to observations. This problem was resolved by
introducing a meridional flow such that it is equatorward in the deeper CZ. A
sufficiently strong flow can overpower the poleward dynamo wave and can explain
the equatorward migration of the sunspot belt (Wang et al. 1991; Choudhuri et al.
1995; Durney 1995; Hazra et al. 2014a). While the poleward component of the
meridional flow on the surface has been well-known for many years, recent
helioseismic observations find some indication of the equatorward (return) flow near
the base of CZ (Rajaguru and Antia 2015; Gizon et al. 2020). Also, there is
controversy about the depth of the return flow and the number of cells that exist in
the CZ.

The dynamo models in which the equatorward migration of the toroidal field at the
BCZ is driven by the meridional flow (or some other flow), rather than dynamo
waves, are popularly known as the flux transport dynamo models (Wang et al. 1991;
Choudhuri et al. 1995; Durney 1995); see Karak et al. (2014a) for a review on this
topic. Usually, the Babcock–Leighton dynamo models (in which the poloidal source
is due to the Babcock–Leighton process) include a meridional flow to produce the
equatorward migration of the toroidal field and thus they are of flux transport type,
however, an aX type dynamo can also be of flux transport type if a sufficiently strong
meridional flow is present. Usually, these flux transport dynamo models, consider a
single cell (in each hemisphere) meridional circulation profile with a return flow of
about a few meters per second at a depth of about 0:7R	. Most of the existing
Babcock–Leighton type flux transport dynamo models are kinematic, however, see
Rempel (2006), Inceoglu et al. (2017) and Bekki and Cameron (2022) for exceptions.
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5 Mechanisms of long-term variations

With the above introduction to the solar dynamo theory, we shall explore how the
irregular variations in the solar cycle can occur. Broadly, we can think of the
following three major causes for these.

● Magnetic feedback on the flow

● Stochastic forcing

● Time delays in various processes of the dynamo

5.1 Magnetic feedback on the flow

We have seen in Sect. 3 that the flows are essential for the dynamo mechanism. The
large-scale component of velocity, as appearing in Eq. (3), is observed in the form of
differential rotation and meridional circulation in the Sun. The differential rotation
induces a strong toroidal field from the poloidal one in the CZ. The meridional
circulation transports the magnetic field near the surface from low to high latitudes
where it pushes the field to the deeper CZ, and it possibly transports the field towards
the equator near the BCZ. Hence, it is natural that any dynamical change in these
large-scale flows can cause variation in the solar cycle.

In Eq. (4), we find several dynamical terms through which modulation in the flow
can arise. First is the mean Lorentz force J � B, which arises through the interaction
between the mean magnetic and the mean current. This is also called the Malkus-
Proctor effect (Malkus and Proctor 1975). The second is the small-scale feedback,
which consists of two parts. One is the direct small-scale Lorentz forcing J 0 � B0
appearing in Eq. (4) (through the fluctuating current and magnetic field). Another is
the dynamical modulation in the K effect, which comes from the anisotropic
turbulence (appearing through Q in Eq. 8). This modulation arises because the mean
magnetic field also gives rise to the Lorentz force on the small-scale turbulence
(Kitchatinov et al. 1994b). This, so-called micro (small-scale) feedback, has been
captured through a simple quenching in the K effect in many mean-field dynamo
models (Küker et al. 1999). The dynamo-induced small-scale magnetic field also
affects the large-scale flows and the turbulent transport; see Eqs. (4, 7, 8) and Käpylä
(2019).

Next, the magnetic field gives feedback on the dynamo coefficients. The magnetic
field dependence of the a coefficient is popularly studied in the literature (Pouquet
et al. 1976; Field and Blackman 2002; Subramanian and Brandenburg 2004). While
we do not have an analytical theory for the magnetic field dependence of the dynamo
coefficients from the first principle, Rüdiger and Kichatinov (1993) and Kitchatinov
et al. (1994a) respectively gave the dependences of the a and g on the magnetic field
using the quasi-linear and quasi-isotropic turbulence. Based on this theory, when the
magnetic field is much larger than the equipartition field strength, the a falls as 1=B3,
while many kinematic dynamo models traditionally use a quenching factor

1= 1þ ðB=BeqÞ2
� �

with Beq being the equipartition field. MHD turbulent (Käpylä
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and Brandenburg 2009; Karak et al. 2014b) and global convection simulations
(Racine et al. 2011; Simard et al. 2016; Warnecke et al. 2018) also do show some
magnetic quenching in a. Whatever be the exact magnetic field-dependent form of a,
in all these results one thing is clear: as the magnetic field tries to grow, it suppresses
a and this in turn reduces the generation of the magnetic field. Hence, the
nonlinearity in a tries to make the cycle regular, rather than producing irregularity in
the cycle, provided the strength of a is not much higher than the critical a.

The feedback on the small-scale turbulence can also be seen in the modulation of
turbulent viscosity and magnetic diffusivity, which can in turn give some variation in
the magnetic field. However, due to difficulties in computing these turbulent
coefficients, we have limited knowledge on how much cycle modulation can arise
due to magnetic feedback on the turbulent coefficients; anyhow, see the results of
quasi-linear approximation (Kitchatinov et al. 1994a) and the convection simulations
cited above. Unlike a quenching, the diffusivity quenching, however, tends to make
the model unstable by increasing the magnetic field when the field strength is large
(Kitchatinov and Olemskoy 2010) and thus unless some other mechanism, say a
quenching is included, the dynamo usually does not produce stable cycle (Kitchati-
nov and Olemskoy 2010; Vashishth et al. 2021). The last two references have also
shown that the nonlinearities in a and g produce dynamo hysteresis—strong
oscillatory magnetic field in the subcritical regime if the dynamo is started with a
strong field and decaying solution otherwise if started with a weak field. This was
also confirmed in numerical simulations of turbulent dynamos (Karak et al. 2015b;
Oliveira et al. 2021).

We would like to emphasize that the recent observations of stellar rotation
(Metcalfe et al. 2016) show that the rate of solar rotation is close to the minimum rate
for the onset of the large-scale dynamo (also see Rengarajan 1984). Furthermore,
Cameron and Schüssler (2017) and Cameron and Schüssler (2019) showed that the
variability seen in the cosmogenic isotope for the last 10,000 years is consistent with
the results from the generic normal form model for a noisy and weakly nonlinear
limit cycle. Grand minima are only produced when the dynamo is not highly
supercritical and the Sun and solar-like slowly rotating stars do produce grand
minima (Kitchatinov and Olemskoy 2010; Kumar et al. 2021a; Vashishth et al.
2021, 2023). All these suggest that the solar dynamo is only slightly supercritical and
weakly nonlinear. Thus, possibly the nonlinear effects are not very important in
producing long-term modulations in the solar cycle.

5.2 Stochastic forcing

Solar CZ is highly turbulent and the turbulent quantities (appearing in Eqs. (7) and
(8)) are subjected to fluctuations around their means in a time scale equal to the
correlation time of the turbulent convection. As there is a finite number of convection
cells over the longitudes at a given latitude in the Sun, the fluctuations in the
turbulent coefficients are significant compared to their mean values. Hoyng (1988)
argued that the fluctuations in the a-effect can be larger than its mean and thus they
can produce variation in the solar cycle (Choudhuri 1992; Hoyng 1993; Ossendrijver
et al. 1996). In fact, due to small-scale dynamo, there are always fluctuations around
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E (Brandenburg et al. 2008; Brandenburg and Spiegel 2008). The fluctuations in the
angular momentum transport (as parameterized by the K effect; Eq. 8) can also alter
the differential rotation and meridional circulation and thus can produce modulations
in the solar cycle (Rempel 2005; Inceoglu et al. 2017).

Babcock–Leighton process, in which decay and dispersal of tilted BMRs generate
a poloidal field in the Sun, involves some intrinsic fluctuations. The tilts of BMRs
have a considerable amount of scatter around Joy’s law (Howard 1991; Stenflo and
Kosovichev 2012; McClintock et al. 2014; Senthamizh Pavai et al. 2015; Jha et al.
2020). As seen in Fig. 4, the scatter is indeed much larger than the mean. Also, a
large number of BMRs are having opposite tilts (negative in the northern
hemisphere) due to non-Joy and anti-Hale configurations which generate opposite
polarity field. Not only the tilt, but the rate of emergence and flux content of BMR
also have considerable variations around their means. The cumulative effect of the
fluctuations of all these parameters of BMRs can have a large impact on the polar
field or the dipole moment at the end of a cycle which can lead to a considerable
variation in the solar cycle (Nagy et al. 2017). On average, in the Sun, only a few
(new) BMRs per day are produced and thus the short-term variation in the poloidal
field is considerably large. This we can also identify by carefully observing the
magnetic field on the solar surface (Cameron et al. 2013; Jiang et al. 2014a;
Mordvinov et al. 2016; Kitchatinov et al. 2018; Karak et al. 2018a; Mordvinov et al.
2022). The variation in the inflows around BMR (Jiang et al. 2010; Martin-Belda and
Cameron 2017; Nagy et al. 2020) and the meridional flow (Baumann et al. 2004;
Karak 2010; Upton and Hathaway 2014a) also can change the amount of poloidal
field generated. Like fluctuations in the classical-a, there is a long list of work which
reported the fluctuations in the Babcock–Leighton process and have utilized these in
the dynamo models to reproduce various aspects of the long-term modulation of the
solar cycle (e.g., Charbonneau and Dikpati 2000; Charbonneau et al. 2004;
Charbonneau 2005; Charbonneau et al. 2007; Choudhuri and Karak 2009; Karak and
Choudhuri 2011; Choudhuri and Karak 2012; Olemskoy and Kitchatinov 2013;

(a) (b)

Fig. 4 Tilt angles of BMRs computed by “tracking” the MDI line-of-sight magnetograms covering the
Cycle 23 (1996 September–2008 December). Here each BMRs are tracked over their lifetimes and the tilt
and latitude of a BMR are taken by averaging their values over its time evolution when the flux is more
than 60% of its maximum. In a solid line guides Joy’s law: c ¼ 17:8 sin k. b Shows the tilt distribution
(with 5� bin size) with fitted Gaussian (solid line) of l ¼ 10:1� and r ¼ 18:7�. The figure is produced
using the data presented in Sreedevi et al. (2023)
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Passos et al. 2014; Lemerle and Charbonneau 2017; Karak and Miesch 2017; Nagy
et al. 2017)

5.3 Time delay in various processes of the dynamo

Time delays are involved in various processes of the dynamo action. Yoshimura
(1978) argued that the adjustment of the velocity field due to the back reaction of the
dynamo-generated magnetic field is not instantaneous and involves a bit of delay—at
low Prandtl number, the fluctuations in the large-scale flow lag behind the Lorentz
force. Furthermore, the modification of the thermodynamics due to magnetic
feedback alters the velocity field and this involves again a time delay. Yoshimura
(1978) showed that a time delay in the dynamo model produces a long-term
modulation with occasional ceased activity. In the Babcock–Leighton dynamo
framework, some time delays are unavoidable because the sources for the poloidal
and toroidal fields are spatially segregated. The poloidal field from the surface layer
has to be transported down to the deeper CZ to be sheared by the differential rotation,
thus there involves a long time lag between the poloidal to the toroidal field. This lag
is comparable to the solar cycle. Similarly the toroidal to the poloidal field
conversion process also involves a time lag as the toroidal field needs to rise to the
surface to form BMRs and then BMRs decay to give rise to the poloidal field. This
delay however is short compared to the solar cycle length as the BMR eruption takes
a few days to month and the decay takes another few months. While these two lags
are captured by default in the numerical dynamo models of Babcock–Leighton and
interface (in cases where the regions of shear and a-effect are spatially segregated,
MacGregor and Charbonneau 1997) types, a time delay is included by hand in the
iterative map and the time-delay dynamo models (Sect. 5.4 of Charbonneau 2010).
This time delay in the nonlinear dynamo model produces a variety of cycle
modulations, including Gnevyshev–Ohl rule and intermittent cycles like the grand
minima in certain parameter regimes (Durney 2000; Charbonneau 2001; Wilmot-
Smith et al. 2006; Charbonneau et al. 2007). While in most of the Babcock–Leighton
models, the toroidal to poloidal process is assumed to be instantaneous, Jouve et al.
(2010) and Fournier et al. (2018) included a short delay in their model and made it
magnetic field dependent regarding the fact that the flux tube with a strong magnetic
field rises fast due to high magnetic buoyancy. This magnetic field-dependent time
delay during the flux emergence in their flux transport dynamo with nonlinear a-
effect can produce some modulation in the cycle amplitude. We here note that time
delays in all these models produce cycle variability only when the nonlinearity
becomes important; it is the nonlinearity which is essential to produce cycle
modulation. Thus, the time delay alone cannot produce a variability in the solar
cycle.

With these basic discussions of the causes of the modulation of the solar cycle, we
are now ready to discuss some illustrative models for the long-term variation in the
solar cycle.

123

Models for the long-term variations of solar activity Page 15 of 56 3



6 Mean-field models for long-term cycle variabilities

6.1 Models with nonlinear feedback on the large-scale flows

As discussed in Sect. 5.1, the large-scale flows are subject to change dynamically due
to direct Lorentz feedback on the flow (Malkus and Proctor 1975) or through the
feedback on the angular momentum transport (like K effect; Kitchatinov et al.
1994b). Extensive research has been done on this topic to capture the Lorentz
feedback of the dynamo-generated magnetic field (Spiegel 1977; Tavakol 1978;
Ruzmaikin 1981). Particularly, using a simplified dynamo model (Küker et al. 1999)
showed that a modification of the differential rotation by the large-scale Lorentz force
produces strong modulation in the magnetic cycle including grand minima (also see,
Moss and Brooke 2000). However, when the a quenching is added, the modulation is
drastically suppressed (which is expected as the a quenching tends to limit the
growth of the magnetic field). Some amount of cycle modulation and grand minima
are again recovered if a strong K quenching is included in this model; also see
Kitchatinov et al. (1999) for a similar study. In a somewhat improved dynamo model
but by including only the feedback of the large-scale magnetic field on the
differential rotation, Bushby (2006) find some modulation in the magnetic cycle
including grand minima like phases. Chaotic solutions are also produced in the
highly truncated dynamo model (Weiss et al. 1984) which produces modulation in
the cycle.

Basically, in all these models, the modulations happen in two ways (Knobloch
et al. 1998). In one, the large-scale magnetic field of one parity (dipolar or
quadrupole) drives velocity perturbations and energy is exchanged between the
magnetic field and the flow. In this case, a large variation in the flow velocity is
observed with no change in the parity. In the second case, there exists a nonlinear
interaction between the dipole and quadrupole modes, mediated via the velocity
perturbation which is driven by the Lorentz force. This modulation is associated with
changes in the parity with almost no change in the velocity (Thelen 2000). These two
mechanisms of cycle modulation in the literature are referred as Type II and I,
respectively (e.g., Tobias 1997; Knobloch et al. 1998). Based on a nonlinear
extension of the Parker (1993) model, Beer et al. (1998) showed that the latter type of
modulation is the cause of Maunder-like grand minima. In Fig. 5, we see that during
the grand minimum the parity of the magnetic field is changed. Based on a highly
idealized simple model of the nonlinear dynamo equations, Weiss and Tobias (2016)
and Beer et al. (2018) showed that the long time-scale ‘supermodulation’ apparent in
the cosmogenic isotope data can be ascribed to switching of the dynamo between two
different modulational patterns i.e., from dipole or quadrupole symmetry to mixed-
mode solutions.

Nevertheless, these models are still preliminary and fail to produce many detailed
features of the observed magnetic field and the large-scale flows, particularly the
correct amount of variation in the differential rotation. Furthermore, in some studies,
the amount of feedback on the differential rotation and meridional circulation are
tuned.
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6.1.1 Variation in differential rotation

Observations find almost no variation in the differential rotation (Gilman and
Howard 1984; Jha et al. 2021) except a tiny one (\0:5%) around the mean, which is
known as the torsional oscillation (Howe 2009). Early dynamo models tried to
explain torsional oscillation using the variation of Reynolds stresses due to dynamo-
generated magnetic field (Kueker et al. 1996). Some other models tried to explain it
using the mean Lorentz force of the dynamo-generated magnetic field on the
momentum equation (Schüssler 1981; Chakraborty et al. 2009); see Pipin and
Kosovichev (2019) who included both magnetic feedbacks on the turbulent angular
momentum transport and the large-scale Lorentz force. In spite of that, none of these
models could successfully explain both the equatorward and poleward branches of
the torsional oscillation. A comprehensive model of Rempel (2006) showed that an
enhanced surface cooling of the active region belt as proposed by Spruit (2003), in
addition to the Lorentz forcing, is needed to explain the equatorward branch of
torsional oscillation. This model expectedly finds almost no long-term modulation in
the magnetic cycle due to this tiny variation in the differential rotation. Thus, we may
expect that the observed tiny change in the differential rotation may not be a potential
cause of the long-term modulation in the solar cycle. However, a series of mean-field
dynamo calculations have demonstrated that a variety of cycle modulations including
grand minima can be produced due to the nonlinear back reaction of the magnetic
field on the large-scale flow through the so-called Type I modulation, which leaves a
little imprint in the differential rotation (e.g., Beer et al. 1998; Knobloch et al. 1998;
Bushby 2006; Weiss and Tobias 2016). Therefore, it is subtle to answer how much is
the role of the tiny variation in differential rotation in producing cycle irregularity.

Fig. 5 Butterfly diagrams
showing the toroidal field at a
fixed radius as a function of time
and latitude. In a the parity is
interrupted by the occurrence of
a grand minimum. The dynamo
recovers from the grand
minimum with a strong
hemispheric asymmetry. b The
grand minimum triggers a flip
from a dipolar to quadrupolar
parity. Image reproduced with
permission from Beer et al.
(1998), copyright by Springer
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6.1.2 Variation in meridional circulation

The meridional circulation is also subject to vary due to the Lorentz forcing of the
dynamo-generated magnetic field acting directly on it or through the alteration of the
differential rotation. Models including the magnetic feedback often find a cyclic
variation in the meridional flow (Rempel 2006; Passos et al. 2012; Hazra and
Choudhuri 2017), in agreement with some observations (Hathaway and Rightmire
2010). Inflows around active regions also cause a cyclic perturbation in the
meridional flow (Gizon and Rempel 2008; González Hernández et al. 2008, 2010).
This cyclic change in the meridional circulation with no overall modulation cannot
produce much variation in the magnetic cycle (Karak and Choudhuri 2012).
However, when the amount of perturbation in meridional flow varies with the solar
cycle strength, it can cause a significant modulation in the solar cycle (Jiang et al.
2010). Observations find some temporal variations in the meridional circulation
(González Hernández et al. 2006), although there is no consensus on its long-term
trend due to limited data. If the steady-state meridional circulation is maintained by a
slight imbalance between two large terms—the non-conservative part of the
centrifugal force and the baroclinic forcing (which arises due to a latitudinal
temperature difference), a slight change in the balance can produce a large variation
in the meridional circulation (Kitchatinov and Rüdiger 1999). In fact, the global
convection simulations do find a tiny variation in the differential rotation but a
considerable variation in the meridional circulation (Karak et al. 2015a; Passos et al.
2017), somewhat consistent with the available observations. By assimilating the
synthetic magnetic proxies in the variational data assimilation method based on flux
transport dynamo model, Hung et al. (2015) and Hung et al. (2017) also find a time-
varying meridional circulation.

In the models, particularly in the flux transport dynamo models, the variation in
the meridional circulation has been found to produce a profound effect on the solar
cycle. In these models, the meridional flow regulates the cycle duration, weaker flow
makes the cycle longer and vice versa (Dikpati and Charbonneau 1999). The
meridional circulation has also an effect on the cycle strength, however, the effect
depends on the diffusivity used in the model. If the dynamo operates in the diffusion-
dominated regime (relative importance of the diffusion is more with respect to the
advection due to flow), then a weaker flow allows the poloidal magnetic field to
diffuse for a longer time and thus makes the magnetic field weak (Yeates et al. 2008).
The opposite scenario happens when the flow is strong. Using this idea, Karak (2010)
discovered that if we want to match the cycle duration by adjusting the speed of the
meridional flow, then the cycle amplitudes are also matched up to some extent. Thus,
a significant part of the variation of the solar cycle can easily be modelled simply by
varying the speed of the meridional flow. Karak (2010) also showed that a sudden
weakening of the meridional flow can trigger a Maunder-like grand minimum as
shown in Fig. 6.

Although the results from some of the flux transport dynamo models with
variation in the meridional flow are very promising, in terms of modelling long-term
variations in the solar cycle, it remains to be answered whether there was any large
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variation in the meridional flow in the past, particularly during the Maunder
minimum.

6.1.3 Joint models with multiple nonlinearities

A few mean-field dynamo models were developed by considering full MHD equations
with multiple possible nonlinearities (Brandenburg et al. 1989, 1991; Barker and Moss
1994; Thelen 2000; Jennings 1993; Muhli et al. 1995; Rempel 2006; Pipin and
Kosovichev 2019; Sraibman and Minotti 2019). Most of these models included a
quenching and Lorentz force feedback (in some form) in the momentum equation. The
aim of these models was mostly to study the nonlinear stability and the operation of the
dynamo. These models do not produce a considerable long-term modulation and grand
minima unless some stochastic fluctuations in the dynamo parameter are included
(Inceoglu et al. 2017). This will be discussed in the later sections.

6.2 Models with fluctuations

As discussed in Sect. 5.2, stochastic fluctuations in the solar dynamo is unavoidable
and thus using these fluctuations numerous dynamo models have been constructed to
explain the variable solar cycle.

6.2.1 Fluctuations in a-effect

There is a long history studying the modulation of the solar cycle utilizing the
stochastic fluctuations in the dynamo model. Choudhuri (1992), Hoyng (1993),
Ossendrijver and Hoyng (1996), Ossendrijver et al. (1996), Gómez and Mininni
(2006), Brandenburg and Spiegel (2008) and Moss et al. (2008) are some examples
from a long list of publications in which stochastic fluctuations in the a parameter in
their dynamo model were included and found long-term modulations including
quiescent period like grand minima in some parameter regimes. We would like to
mention that most of these models also include some nonlinearities, usually the a

Fig. 6 Figure showing that a sufficient drop in the meridional flow can trigger a Maunder-like grand
minimum. a Shows the required meridional circulation speed in m s�1 (solid/dashed for north/south).
b Shows the location of the sunspots from the dynamo model. Image reproduced with permission from
Karak (2010), copyright by AAS

123

Models for the long-term variations of solar activity Page 19 of 56 3



quenching to stabilize the dynamo. Therefore, it was found that when this a
quenching was included, the variability was decreased. In Fig. 7, we present cycles
from a simplified mean-field aX dynamo model of Ossendrijver and Hoyng (1996)
with stochastic fluctuations in the a term. They showed that with a certain amount of
fluctuations in a, the variability in the modelled cycle closely resembles the
variability seen in the observed sunspot data.

6.2.2 Fluctuations in a-effect coupled with dynamic a-effect

When the classical a-effect is combined with another a-effect having a magnetic
field-dependent lower threshold, a large modulation is expected. The best example
for this is the dynamo model coupled with the dynamic a-effect which is produced
due to the instability in the flux tube at the BCZ (Schmitt 1985; Chatterjee et al.
2011). In a mean-field dynamo model, Schmitt et al. (1996) included this dynamic a-
effect in the overshoot layer below the CZ in addition to the classical a-effect. As the
dynamic a-effect works only when the magnetic field is greater than a threshold field
strength, it stops operating when the field falls below this threshold. Schmitt et al.
(1996) and Ossendrijver (2000) showed that when the magnetic field is strong in a
normal cycle, both a operate concurrently. However, due to stochastic fluctuations,
the magnetic field can occasionally fall below the threshold and the dynamical a
stops operating. This caused the magnetic field to fall drastically—that is the
beginning of a grand minimum; see Fig. 8. Note that in this case, the magnetic field
can suddenly drop to a considerably lower value. During this quiescent period, the
classical a alone slowly grows the field and recovers the model from grand
minimum.

6.2.3 Fluctuations in Babcock–Leighton process

For about the last two decades, Babcock–Leighton type flux transport dynamo
models have been extensively used to explain the variabilities in the solar cycle. The
first landmark paper in this series came from Charbonneau and Dikpati (2000) who
included stochastic fluctuations in their 2D (axisymmetric) flux transport dynamo
model. For this, they added a stochastic term with a coherence time of a month in the
a parameter, the Babcock–Leighton source term in their axisymmetric model. They

Fig. 7 A representative case of the solar cycle (as measured by the toroidal field) from a simplified aX
dynamo model with stochastic noise in the a-effect. Image reproduced with permission from Ossendrijver
and Hoyng (1996), copyright by ESO
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essentially replaced a by 1þ s rðtÞ½ �a in Eq. (11), where r is random deviate within
½�1; 1� whose value is updated every month and s determines the level of
fluctuations. They found some modulation in the solar cycle, including the observed
weak anti-correlation between the cycle duration and the amplitude with 200%
fluctuations (s ¼ 1) in a. Later Charbonneau et al. (2007) showed that the long time
delay inbuilt in this type of Babcock–Leighton dynamo model naturally reproduces a
Gnevyshev–Ohl like pattern in the modelled solar cycle (more in Sects. 6.4 and 8.3).
Fluctuations in the Babcock–Leighton process can also lead to a large variation in the
poloidal field with occasional dips in the polar field (as observed in the solar
magnetic field), which can lead to double peaks (Gnevyshev gaps) and spikes in the
following cycle (Karak et al. 2018a). Large fluctuations in the Babcock–Leighton
process also lead to Maunder-like grand minimum as shown initially by Charbon-
neau et al. (2004) and later by many other authors (Choudhuri and Karak 2009;
Passos et al. 2012; Hazra et al. 2014b; Passos et al. 2014) in different Babcock–
Leighton type dynamo models. In particular, Choudhuri and Karak (2012) estimated
the amount of variation in the polar field at the end of a cycle (a cumulative effect of
the fluctuations in the Babcock–Leighton process) and the variation in the meridional
circulation based on indirect observations and included those into their high
diffusivity dynamo model. They found the correct frequency of the grand minima in
the last 11,000 years (Fig. 9). Another work was by Olemskoy and Kitchatinov
(2013) who also made an estimate of the level of fluctuations in the Babcock–
Leighton process by computing the contribution to the polar field from the sunspot
group data of Royal Greenwich, Kodaikanal and Mount Wilson Observatories. They
found that the statistic of grand minima are consistent with the Poisson random
process, which indicates that the initiation of grand minima is independent of the
history of the past minima (also see Karak and Choudhuri 2013). They also showed
that there is a correlation between the occurrence of grand minima and the deviation
from the dipolar parity and thus the hemispheric asymmetry; also see Nagy et al.
(2017) and Hazra and Nandy (2019) for the same conclusion from different
Babcock–Leighton models. Figure 10a shows the smoothed (in the same way as
done in, Usoskin et al. 2007) sunspot number from an 11,000-year long simulation
done by Olemskoy and Kitchatinov (2013) in which the red and blue shaded areas
represent the grand maxima and minima, respectively.

The hemispheric asymmetry which is a robust feature during grand minima is also
reflected in a typical grand minimum as presented in Fig. 10b. The fluctuations in the
Babcock–Leighton process of north and south hemispheres are uncorrelated and thus

Fig. 8 Cycle modulations and grand minima (as measured by the magnetic energy) in the dynamo model
with stochastic fluctuations in the a-effect combined with a (threshold field dependent) dynamic a
produced due to the instability in the flux tube at the BCZ. Image reproduced with permission from Schmitt
et al. (1996), copyright by ESO
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hemispheric asymmetry is unavoidable during grand minima in this model and also
other dynamo models with fluctuations in the Babcock–Leighton process (Passos
et al. 2014; Karak and Miesch 2018). The hemispheric asymmetry, however, cannot
remain for multiple cycles as the diffusive coupling at the equator tends to smooth
out the asymmetry acquired due to fluctuations (Chatterjee and Choudhuri 2006;
Karak and Miesch 2017). Another way that north–south asymmetry in the magnetic
field can come about in these models is due to the random excitation of the
quadrupolar mode by the stochastic fluctuations in the Babcock–Leighton process
(Schüssler and Cameron 2018).

Fig. 9 The durations vs the times of their occurrence of the grand minima in the 2D Babcock–Leighton
dynamo model of Choudhuri and Karak (2012). Image reproduced with permission from Choudhuri and
Karak (2012), copyright by APS

Fig. 10 a A proxy of the smoothed sunspot number from the dynamo model of Olemskoy and Kitchatinov
(2013). Blue and red shaded regions correspond to the grand minima and maxima (using the same
definition as used in, Usoskin et al. 2007). b Toroidal field as a function of latitude and time, highlighting a
grand minimum. Images reproduced with permission from Olemskoy and Kitchatinov (2013), copyright by
AAS
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Further support for the stochastic origin of the long-term modulation of the solar
cycle came from Cameron and Schüssler (2017) who studied the following
‘stochastic’ normal form model.

dX ¼ bþ ix0 � ðcr þ iciÞjX j2
� �

Xdt þ rXdWc ¼ 0; ð13Þ

where X is a complex quantity whose real and imaginary components give the
toroidal and poloidal fields, b determines the growth rate of the dynamo and thus the
supercriticality, x0 sets the magnetic cycle frequency, cr and ci regulate the non-
linearity of the model and determine the cycle amplitude, Wc represents a complex
Wiener process and r is a measure of added noise. The values of all these parameters
are fixed by the observations. Cameron and Schüssler (2017) showed that in the
weakly nonlinear regime, the variability of the solar cycle as seen in the recon-
structed data over the past 9000 years can be modelled using this stochastic normal-
form model (Cameron and Schüssler 2019). They have also tested this idea using a
1D Babcock–Leighton type dynamo model constrained by observations.

While most of the Babcock–Leighton models are kinematic (see Bekki and
Cameron 2022, for an exception to this), recently Inceoglu et al. (2017) utilized the
2D nonkinematic dynamo model of Rempel (2006) to study the nature of the grand
minima and maxima. In this work, they considered random fluctuations in the
angular momentum transport process in addition to the Babcock–Leighton term. This
caused some nonlinear interaction between the flow and the fields. Even in this
model, they found that the occurrences of grand minima and maxima are largely
described by memoryless processes. In this model, it is also expected to observe
modulation in the flow. They found that the radial differential rotation tends to be
larger during grand maxima, while it is smaller during grand minima. The latitudinal
differential rotation, on the other hand, is found to be larger during grand minima in
agreement with the data by Ribes and Nesme-Ribes (1993). The meridional
circulation speed tends to be faster during grand minima.

Recently, two comprehensive kinematic Babcock–Leighton dynamo models,
namely, 2�2D model (Lemerle and Charbonneau 2017; Nagy et al. 2017) and 3D
model (Miesch and Teweldebirhan 2016; Karak and Miesch 2017) were used to
model the cycle modulations. The good thing about these models is that the BMRs
are explicitly deposited in these models and thus all the observed (statistical)
properties of the BMRs are captured by and large. Lemerle and Charbonneau (2017)
and Karak and Miesch (2017) showed that the randomness associated with the BMR
production are the major causes for the long-term modulation in the solar cycle. Both
these groups included the observed scatter around Joy’s law tilt (using a Gaussian
distribution) and found considerable amount of variation, including north–south
asymmetry and grand minima in the solar cycle (Figs. 11 and 12). As the level of
fluctuations is increased, the variability and the number of grand minima is increased
(Fig. 12). We note that the observed distribution in the delay time of the BMR
eruption and the BMR flux also give some modulation in the solar cycle as seen in
Fig. 12a in which there is no scatter imposed around Joy’s law.
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6.2.4 Does the Babcock–Leighton process operate during grand minima?

Dynamo models including only the Babcock–Leighton process for the poloidal
source is so successful in reproducing the observed features of the solar cycle, it is

Fig. 11 Time series of the monthly BMR number (pseudo-SSN) from the simulation with observed tilt
scatter of the 2� 2D kinematic Babcock–Leighton model (Lemerle and Charbonneau 2017). Panels are
obtained from two different realizations of dynamo simulations at same parameters

(a)

(b)

(c)

Fig. 12 Time series of the monthly BMR number from a 3D kinematic Babcock–Leighton dynamo model
a without tilt scatter, b with a Gaussian scatter of rd ¼ 15� (close to the observed value), and (c) rd ¼ 30�,
respectively taken from Runs B9, B10, and B11 of Karak and Miesch (2017). The horizontal line shows
the mean of peaks of the monthly group numbers obtained for last 13 observed solar cycles. Arrows in
c represent the locations of grand minima. Images reproduced with permission from Karak and Miesch
(2017), copyright by AAS
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natural to ask the question whether the Babcock–Leighton process operates during
grand minima.

To operate the Babcock–Leighton process, we need “tilted” BMR. However,
observations, particularly the early ones, found only a few spots during the Maunder
minimum. Thus, one would expect that the Babcock–Leighton process will not
operate, or be inefficient during the Maunder minimum and possibly during other
grand minima. The classical (helical) a (Parker 1955a) which efficiently operates in
the sub-equipartition field is a obvious candidate for the generation of the poloidal
field during these episodes (Karak and Choudhuri 2013; Hazra et al. 2014b). Passos
et al. (2014) performed simulations of 2D Babcock–Leighton dynamo model with a
weak classical a operating in the whole CZ. They showed that this additional a
produces poloidal field and recovers the model from grand minima when the
Babcock–Leighton process stops operating (Fig. 13); also see Ölçek et al. 2019 for
another beautiful demonstration of this idea in 2D�2D model with explicit BMR
deposition. Unlike most of the Babcock–Leighton dynamo models,2 in these models,
the Babcock–Leighton process is stopped operating at low field regime by
introducing a lower threshold and thus only helical a operates during grand minima.
The mechanism of this type of dual dynamo model is similar to the model of
Ossendrijver and Hoyng (1996) in which a classical a and the dynamical a driven by
the magnetic buoyancy were incorporated (Sect. 6.2.2).

In any rotating convective layer (like the solar CZ), generation of a-effect is
natural. However, its nature and how strong its value in the CZ is still uncertain. Thus
introducing this a in the model, brings several unknown parameters. On the other
hand, the following facts support the operation of Babcock–Leighton process during
Maunder minimum and other grand minima. (1) Maunder minimum was not
completely devoid of sunspots. Recent analyses clearly show that some spots were
observed during the Maunder minimum (Zolotova and Ponyavin 2015; Usoskin et al.
2015; Vaquero et al. 2015; Zolotova and Ponyavin 2016). (2) Even a few BMRs can
produce an appreciable amount of poloidal field which, if not decayed considerably,

Fig. 13 Grand minima reproduced from 2D flux transport dynamo model with additional a-effect
operating in the bulk of the CZ (Passos et al. 2014). Colour shows the toroidal field at the BCZ and the
contours show the areas where the field exceeds the threshold for the model-spot eruptions. Note that in
this model, the recovery from the grand minimum is due to the a-effect; see also Ölçek et al. (2019). Image
reproduced with permission from Passos et al. (2014), copyright by ESO

2 Even the models of grand minima by Karak (2010), Choudhuri and Karak (2012) and Karak and
Choudhuri (2013) using the Surya code (Chatterjee et al. 2004) although include a lower threshold for the
spot eruption, the Babcock–Leighton process still operates in these models because some toroidal field
rises to the upper layer due to upward meridional flow and diffusion.
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can slowly produce enough toroidal field and recover the Sun from grand minima
phase. In fact, Cameron et al. (2012) showed that in the Sun the diffusion of the
poloidal field through the surface is negligible—this in the flux transport dynamo
models can be achieved by including a downward magnetic pumping (Karak and
Cameron 2016). (3) Smaller BMRs (including ephemeral regions) produce little
contrast in the white light and were not detectable as spots with the telescopes of the
Maunder minimum epoch (Jha et al. 2020) but their eruption rate is large (smaller the
BMR, larger is the emergence rate; Hagenaar et al. 2003). These small BMRs have
some non-zero tilt and they can produce some polar field during grand minima
(Stenflo and Kosovichev 2012; Tlatov et al. 2013; Jha et al. 2020).

By including a downward magnetic pumping, Karak and Miesch (2018) showed
that the model with stochastic properties (tilt scatter) in BMRs can recover from
grand minima without any additional source for the generation of the poloidal field;
see Fig. 14. They found that during grand minima as the poloidal magnetic field does
not decay (due to pumping), it keeps on supplying the toroidal field and thus the
model continues to produce BMR at a low rate even during grand minima (Fig. 15).
The poloidal field generated from these few BMRs is alone sufficient to recover the
model to the normal phase. Their model reproduces most of the features of the grand
minima (including frequency of grand minima, longer cycles and strong hemispheric
asymmetry during grand minima).

6.2.5 Variability vs dynamo supercriticality

Whenever there is any change in the dynamo number D (¼ a0DXR3
	=g

2
0, where a0 is

the strength of a-effect, DX is the amount of shear in the CZ, and g0 is the
diffusivity), there will be a change in the amplitude of the magnetic field. Thus, the
cycle modulation due to fluctuations in the dynamo parameter is obvious. However,
for a given level of fluctuations and the form of nonlinearity, the amount of
variability depends on the value of D or the regime operation of the dynamo. This is
apparently seen in Fig. 16 that the same amount of variation in D causes a large
variation in magnetic field when the dynamo operates near the critical transition

Fig. 14 a Decadal-binned and smoothed BMR number from the model of Karak and Miesch (2018) with
randomness in the BMR properties (mainly scatter around Joy’s law tilt). b Shows the zoomed-in portion
of the monthly smoothed BMR number. Image reproduced with permission from Karak and Miesch
(2018), copyright by AAS
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(djBcj) and a small variation when the dynamo operates in supercritical regime
(djBsj).3 The reason for this is not difficult to understand. When the dynamo operates
near the critical transition, a small D makes the growth rate of the magnetic field
small and the dynamo weakly nonlinear. Now consider a scenario when the magnetic
field has become weak due to a reduction of D (or a0) and after some time due to
fluctuations, D has increased. Then the dynamo will (almost linearly) amplify the
field for a long time before the nonlinearity becomes important and thus the net
growth of the field will be large. On the other hand, if the dynamo operates in a
highly supercritical regime, then the nonlinearity will quickly suppress the dynamo
growth and the net amplification of the field will be small.

The above discussion also means that in the near-critical (or weakly supercritical)
regime, we expect long-term modulation in the cycle and extended grand minima. In
this regime when the field becomes weak due to fluctuations, the dynamo will take a
long time (several cycles) to grow the field and this will tend to produce a smooth
long-term variation. In contrast, in the super-critical regime, we do not expect much
long-term modulation in the cycle amplitude and no extended grand minima because
when the magnetic field falls to a low value, the dynamo will quickly increase the
field in a cycle. This is clearly seen in Fig. 17; also see Vashishth et al. (2021),
Tripathi et al. (2021) and Albert et al. (2021). Furthermore, for the given diffusive
and advective transports, the long-term memory of the field should depend on the
supercriticality of the dynamo. Kumar et al. (2021a) showed that in the weakly
supercritical dynamo, the long-term memory of the polar field persists for multiple
cycles. However, when the supercriticality is increased, the multi-cycle memory is
reduced to only one cycle. In fact, for rapidly rotating young stars, we expect the
dynamo to be strong (convective motion is more helical) and thus we do not expect
extended grand minima there (Vashishth 2022; Vashishth et al. 2023). This is

Fig. 15 Evolution of the a surface radial field b BMR eruptions and the hemispheric parity of the toroidal
field (dashed line) and c the toroidal field at BCZ from a grand minimum presented in Fig. 14b (marked by
dashed lines). Image reproduced with permission from Karak and Miesch (2018), copyright by AAS

3 Another way to understand this result is from the dynamo instability. In a slightly supercritical regime,

the amplitude B of magnetic cycles follows a general rule B / ðD� DcÞ1=2 for all instabilities (Landau and
Lifshitz 1987). Thus, dB=dD decreases with the supercriticality.
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congruous with the stellar observations that the grand minima are detected only in the
slowly rotating stars (Boro Saikia et al. 2018; Oláh et al. 2016; Shah et al. 2018; Garg
et al. 2019; Baum et al. 2022).

The above discussion, although seems to be promising, has a subtlety. In the
highly supercritical regime, when the dynamo number is increased to a very high
value, the variability of the magnetic field may not remain small because the dynamo
may enter into a more complex regime. In this regime, dynamo modes with different
base periods can emerge and in turn the linear superposition and nonlinear coupling
of different modes is expected to introduce an increasingly strong and complex
modulation of the periodic behaviour (Charbonneau et al. 2007; Schüssler and
Cameron 2018; Albert et al. 2021). In addition, even without the presence of other

Fig. 16 A Hopf bifurcation diagram, showing the transition from a fixed point to dynamo instability. This
is a typical variation of the magnetic field strength (|B|) vs dynamo number (D) in dynamo model with any
nonlinear quenching mechanism as long as D is not much larger than Dc. Here, Dc is the critical D. djBcj
and djBsj are the amplitude variations of the magnetic field for a given change in D in two different regimes
of the dynamo

(a)

(b)

(c)

(d)

Fig. 17 Polar field (averaged over 55� latitude to north pole) from a dynamo simulation in which the
dynamo operates a near-critical or weakly-supercritical regime (D=Dc ¼ 2) and b supercritical regime
(D=Dc ¼ 6). c and d are showing the cycles for 400 years from the long data shown in (a) and (b),
respectively. The red portions represent extended weaker activity (the grand minima). The figures are
produced from the model presented in Kumar et al. (2021a)
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modes and other base periodicities, the iterative map of Charbonneau (2001) and the
flux transport dynamo model inbuilt with a time delay and nonlinearity (Charbon-
neau et al. 2005) enter into chaotic solution through sequence of period-doubling
bifurcations. However, we must remember that to enter the dynamo into this region,
the D must be much larger than Dc; see e.g., Fig. 3 of Charbonneau et al. (2005); also
see the discussion given at the end of Sect. 5.1. Furthermore, we find that Babcock–

Leighton dynamos with the popular a-quenching of the form: 1=½1þ ðB=B0Þ2� does
not lead to chaotic solution; the solution remains stable all the way to a very large
value of D.

It remains a big question that what is the supercriticality of the Sun. Stellar
observations indicate that probably our Sun is not too supercritical (Metcalfe et al.
2016; Kitchatinov and Nepomnyashchikh 2017). Furthermore, as only the weakly
supercritical dynamo produces grand minima (Vashishth et al. 2021; Kumar et al.
2021a; Cameron and Schüssler 2017) and somewhat smooth cycle variation and Sun
does produce grand minima, we expect that the solar dynamo is probably not
operating in highly supercritical regime.

6.3 Specific nonlinearities in the Babcock–Leighton process

In the Babcock–Leighton solar dynamo also, the magnetic field acts on the flow and
gives a nonlinearity in the model. However, given the fact that the observed
differential rotation has only a little variation over the solar cycle, the poloidal to
toroidal field conversion, i.e., the X effect, is largely linear. On the other hand, the
toroidal to poloidal part of the Babcock–Leighton models is not due to the classical
a-effect which experiences a catastrophic quenching due to magnetic helicity
conservation (Sect. 8.7 of Brandenburg and Subramanian 2005), rather it is due to the
Babcock–Leighton process. The latter is a nonlocal process and does not experience
catastrophic quenching (Kitchatinov and Olemskoy 2011a). However, due to a lack
of understanding in the past, most of the Babcock–Leighton dynamo models

included a simple quenching of the form 1= 1þ ðB=B0Þ2
� �

in the poloidal field term

to limit the growth of magnetic field (Charbonneau 2020). Fortunately, in recent
years some potential candidates for nonlinearity have been identified which we
discuss below.

6.3.1 Tilt quenching

The tilt angle of BMR plays a crucial role in generating the poloidal field in the Sun.
Theory based on the thin flux tube approximation suggests that the tilt is produced
due to the torque induced by the Coriolis force acting on the east–west flow emerging
from the apex of the rising flux tube of toroidal field ( D’Silva and Choudhuri 1993;
Fan et al. 1994, also see Sect. 5 of Fan 2021). If a flux tube has a strong magnetic
field, then there will be two consequences. One is that the flux tube will rise quickly
due to strong magnetic buoyancy and thus the Coriolis force will not get much time
to induce the tilt. The other consequence is that the flux tube will have strong
magnetic tension which will oppose the torque. Both of these effects will reduce the
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tilt. Based on this theoretical concept, we expect the tilt to decrease with the magnetic
field in the BMR forming flux tube. This, the so-called tilt quenching may be a
potential source for the nonlinearity in the Babcock–Leighton type dynamo models.

The observational support for the tilt quenching however is limited. Dasi-Espuig
et al. (2010) have found an anti-correlation between the cycle amplitude and the
cycle-average tilt angle of the sunspot group normalized by the mean latitude from
the white-light data of Mount Wilson and Kodaikanal Solar Observatories (also see
Dasi-Espuig et al. 2013 for the corrected plot for Mount Wilson data). However,
other studies do not find a statistically significant relationship for this (e.g., Wang
et al. 2015). Also, studies have shown that the tilt angle measured from the white
light data can be significantly different than that obtained from the magnetic field
data (Poisson et al. 2020). Jiao et al. (2021) carefully examined the previous methods
of estimating tilt angles from Kodaikanal and Mount Wilson, supplemented by tilt
angles from Debrecen Photoheliographic data and show that the tilt is statistically
anti-correlated with the cycle strength as shown in Fig. 18a.

While the above studies explored the variation of the cycle-average tilt with the
cycle strength, Jha et al. (2020) examined the tilt of BMR within the cycle from the
line-of-sight magnetograms of Michelson Doppler Imager [MDI onboard Helio-
spheric Observatory (SOHO); 2010–2018] and Helioseismic and Magnetic Imager
[HMI onboard Solar Dynamic Observatory (SDO); during 1996–2011]. They
showed that the BMR tilt has non-monotonous dependence on the BMR’s field
strength; in the small field regime, the tilt increases and in the large field regime it
decreases. This is shown in Fig. 18b. We note that in this study, the data were used
from Cycles 23 and 24 which are weak cycles and for these very little reduction of tilt
was seen in the study of Jiao et al. (2021). Therefore, the limited data used in Jha
et al. (2020) could not predict the exact magnetic field-dependent form of the BMR
tilt.

6.3.2 Flux loss due to magnetic buoyancy

Magnetic buoyancy is the key for the formation of sunspots or more generally BMRs
(Parker 1955b). Models under thin flux tube approximation showed that when a

(a) (b)

Fig. 18 a Tilt coefficient as computed from the mean tilt normalized by the mean latitude vs the sunspot
cycle amplitude (Jiao et al. 2021); also see Dasi-Espuig et al. (2010). b Slope of Joy’s law as a function of
the maximum field strength of the BMR (Jha et al. 2020)
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portion of the toroidal flux tube with sufficient field strength at the BCZ becomes
magnetically buoyant, it rises to surface to give rise to a BMR. In this process, the
portion of the flux tube from where the flux is depleted becomes inefficient for flux
eruption for some time. As the flux emergence happens only when the field strength
exceeds a certain value and after each flux emergence the flux is reduced locally, this
introduces a nonlinearity in the dynamo. This nonlinear loss of toroidal flux plays an
important role in limiting the growth of the magnetic field in the Sun (Schmitt and
Schüssler 1989; Nandy and Choudhuri 2000; Chatterjee et al. 2004). Studies have
shown that dynamo models including magnetic buoyancy reproduces observations
better (Schmitt and Schüssler 1989; Hazra et al. 2015).

By introducing the magnetic buoyancy in a simple way, Biswas et al. (2022)
explained the observed latitudinal variation of the solar activity over the cycle as
shown in Waldmeier (1955) and Cameron and Schüssler (2016) also see Fig. 19a, b.
Let us explain how the flux loss helped to explain the observed feature. In the
Babcock–Leighton dynamo model, the poloidal magnetic field largely produces a
toroidal field in the higher latitudes of the deeper CZ and then this toroidal field is

Fig. 19 The trajectory of the cycles when plotted in terms of annual sunspot number (a, c) and full width at
half maximum (FWHM) of the latitudinal distribution (b, d) against the central latitude of the annual
distribution. a, b From observations. c, d From dynamo simulation with buoyancy-induced toroidal flux
loss. The plots show that the beginning phases (right part of the curves) of the cycles are widely different
depending on their strength yet the decline phase are quite similar irrespective of their strength. Also see
Talafha et al. (2022) for modeling these features using a different model. Images reproduced with
permission from [top] Cameron and Schüssler (2016), copyright by ESO; [bottom] Biswas et al. (2022),
copyright by APS
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advected towards the lower latitudes. During its journey, when the toroidal field
exceeds a certain value Bc (the threshold for BMR eruption), it starts producing
BMRs at higher latitudes. As the X effect keeps on producing the toroidal field, the
activity grows while the toroidal flux is advected towards the equator. Now consider
a cycle becomes strong. The strong cycle starts producing BMRs at high latitudes
and the activity (number of BMR) rises rapidly (strong cycles rise rapidly). Rapid
growth means the toroidal flux loss occurs at a faster rate. Quickly the magnetic field
at BCZ becomes comparable to Bc and the activity does not grow further. Any further
generation of the magnetic field will then be compensated by the flux loss due to
BMR emergence and the cycle decline at the same rate for all cycles; Fig. 19c, d.
That is why in strong cycles the activity begins to decline when the activity belt is
already at higher latitudes.

We would also like to mention that without invoking the flux loss due to magnetic
buoyancy, only the cross-equatorial diffusion was used to explain this universal
decline of the solar activity in different studies (Cameron and Schüssler 2016;
Talafha et al. 2022).

6.3.3 Latitudinal quenching

The observational facts presented in Fig. 19a, b also suggest that strong cycles on
average produce BMRs at high latitudes and vice versa (also see Waldmeier 1955;
Solanki et al. 2008; Mandal et al. 2017). On the other hand, we know that when
BMRs appear at higher latitudes, they are less efficient in generating a poloidal field
due to poor cross-equatorial cancellation (Jiang et al. 2014a; Karak and Miesch 2018;
Petrovay et al. 2020). In contrast, when BMRs appear near the equator, it becomes
easier for the leading polarities to cancel with the flux of the opposite polarity from
the other hemisphere. Now consider a cycle that has become strong in which the
BMRs appear in high latitudes. These high latitudes BMRs will produce less poloidal
field and the next cycle will be weak. Hence, the indefinite growth of the magnetic
field will be halted. Petrovay (2020) called this mechanism latitude quenching and
Jiang (2020) argued that this mechanism could stabilize the growth of the magnetic
field in the kinematic dynamo. Karak (2020) implemented this idea in a 3D
Babcock–Leighton dynamo model by taking a simple latitude-dependent threshold
for BMR eruption and showed that this latitudinal quenching can regulate the growth
of the magnetic field when the dynamo is not too supercritical.

6.3.4 Magnetic field-dependent inflows around BMRs

Surface observations show a converging flows around the BMRs (Gizon et al. 2001;
González Hernández et al. 2008). These inflows cumulatively generates mean flows
around the activity belt whose strength depends on the amount of flux in the cycle
(Jiang et al. 2010; Cameron and Schüssler 2012). Due to these flows, the cross-
equatorial cancellations of the BMRs are reduced and the effectivity of the Babcock–
Leighton process is suppressed. In a strong cycle, this effect is stronger and thus lead
to a stabilizing effect in the dynamo (Martin-Belda and Cameron 2017; Nagy et al.
2020).
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In summary, tilt quenching, flux loss due to magnetic buoyancy, latitudinal
quenching and inflows are the potential candidates for the nonlinearity in the toroidal
to the poloidal process of the Babcock–Leighton dynamo which can potentially
saturate the magnetic field.

6.4 Time-delay models

As discussed in Sect. 5.3, the time delay involved in various processes in the solar
dynamo, operating concurrently with the nonlinearity can lead to irregular cycles.
Yoshimura (1978) introduced a long delay of 29 years in the nonlinear dynamo
model and found occasional eras of suppressed activity. Although such a long delay
is not expected in the solar dynamo, a finite delay arises naturally in any dynamo
model as long as the sources for the poloidal and toroidal fields are spatially
segregated. In the Babcock–Leighton dynamo models, the poloidal field after it is
produced near the surface through the decay of tilted BMRs needs to be transported
to the deeper CZ (through meridional circulation, turbulent diffusion and pumping)
where the toroidal field is generated through the X effect. There is also a short time
delay between the toroidal and poloidal field conversion as the toroidal flux tubes
take finite time to rise to the surface to form BMR and a finite time is spend to decay
and disperse the BMR. All these two delays in the nonlinear dynamo model can
produce a variety of modulations.

6.4.1 Iterative map

Durney (2000) assumed that there is a delay of one cycle between the poloidal field
of cycle n and the toroidal field of cycle nþ 1 and brilliantly reduced the Babcock–
Leighton dynamo equations into a iterative map. He writes,

Tnþ1 ¼ DXDtPn ¼ aPn; n ¼ 0; 1; 2; . . . ð14Þ
(Here DX is the shear in the CZ and Dt is the time interval during which the poloidal
field acts on the shear.) Neglecting the time delay in the toroidal to poloidal fields
conversion, we can write the following nonlinear relation:

Pnþ1 ¼ f ðTnþ1ÞTnþ1 ð15Þ
Here f ðTnþ1Þ is a measure of the efficiency of the poloidal field generation from the
toroidal field (Babcock–Leighton process) which depends on the toroidal field.
Substituting Eqs. (14) into (15) and normalizing the fields appropriately, we find

pnþ1 ¼ a f ðpnÞpn ð16Þ
(where normalizing factors are absorbed in a). For different nonlinear functions (f) of
the Babcock–Leighton process, different maps can be constructed. Durney (2000)
chose it 1þ bð1� pnÞ and thus the map became
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pnþ1 ¼ pn 1þ bð1� pnÞð Þ b[ 0: ð17Þ
Charbonneau (2001) chose it cð1� pnÞpn which produced a map

pnþ1 ¼ c p2nð1� pnÞ c[ 0: ð18Þ
By capturing a lower cut off in the Babcock–Leighton process, Charbonneau et al.
(2005) produced another map

pnþ1 ¼ a f ðpnÞpn a[ 0; ð19Þ
where

f ðpnÞ ¼ 1

4
1þ erf

pn � p1
w1

� �� �
1� erf

pn � p2
w2

� �� �
ð20Þ

(Here p1 ¼ 0:6, w1 ¼ 0:2 p2 ¼ 1:0, and w1 ¼ 0:8.)
Charbonneau (2001) and Charbonneau et al. (2005) showed that as the map

parameter increases, the transition from the fixed amplitude oscillation to the chaotic
solution occurs through a sequence of period doubling; see left panel of Fig. 20 for
the map given by Eq. (19). Durney (2000) showed that in the parameter regime of the
doubly periodic oscillations, the Gnevyshev–Ohl rule can be explained. Later
Charbonneau (2001) showed that this is indeed not necessary, stochastic perturbation
outside this region can also produce Gnevyshev–Ohl rule as a consequence of the
oscillatory nature of the convergence to the fixed point; even the map without
showing limit cycle for 1=ð1þ B2Þ type nonlinearity also show Gnevyshev–Ohl rule.
Intermittent and chaotic solutions are produced in all these maps, as long as the map
parameter is above a certain value; also see Fig. 5 of Charbonneau (2001) for an
illustration.

Fig. 20 Bifurcation diagrams. a Cycle amplitude (iterate Pn) versus the map parameter a from Eq. (19). b
Same as left one but obtained from 2D numerical dynamo model of Charbonneau et al. (2005) and shows
the magnetic energy as function of the dynamo number Cs. Images reproduced with permission from
Charbonneau et al. (2005), copyright by AAS
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6.4.2 1D time-delay dynamo

Finite delays are also included in the 1D dynamo models in which the equations for
the toroidal and poloidal fields are truncated by removing the spatial dependences in
the following way.

dB

dt
¼ x

L
Aðt � T0Þ � B

sd
ð21Þ

dA

dt
¼ a0f ðBðt � T1ÞÞBðt � T1Þ � A

sd
: ð22Þ

Here, T0 and T1 represent the time delays required for the generation of toroidal and
poloidal fields, respectively. x and L are the contrast in differential rotation and the
length scale in the tachocline, sd is the diffusion time scale, a0 is the amplitude of the
Babcock–Leighton source. f ðBðt � T1ÞÞ is the nonlinear function which represents
the suppression of the Babcock–Leighton mechanism. By considering f ðBðt � T1ÞÞ
of the from of Eq. (20) (with lower quenching), Wilmot-Smith et al. (2006) found
irregular cycles in a certain parameter regime (when the time delay is larger than the
diffusion time). Later, including fluctuations in the a0 term, Hazra et al. (2014b),
Kumar et al. (2021a) and Tripathi et al. (2021) obtained long-term modulations and
grand minima like intermittent solutions in a range of parameters.

6.4.3 2D time-delay dynamo

In models like the Babcock–Leighton type flux transport and the interface dynamos,
in which the source regions for the fields are spatially segregated, the time delays are
by default inbuilt into the equations. Thus all the Babcock–Leighton dynamo models
discussed in this review are also time-delay models. Charbonneau et al. (2005)
showed that the 2D Babcock–Leighton dynamo models also show the same type of
behaviour as seen in the reduced map. Figure 20b, shows the bifurcation diagram of a
2D Babcock–Leighton dynamo model with a nonlinear quenching function of the
form given by Eq. (20). Again, with this type of nonlinearity, we observe that the
solution goes to a chaotic regime through a sequence of period doubling with the
increase of dynamo number. The model is capable to produce Gnevyshev–Ohl rule in
a wide range of parameter regimes with stochastically forced a (Charbonneau et al.
2007); more in Sect. 8.3.

Jouve et al. (2010) went one step ahead of this and included the short time delay
associated with the flux emergence from the deep-seated toroidal flux that is usually
ignored in the dynamo models. They realized the fact that the buoyancy time delay
depends on the magnetic field strength—strong flux tubes experience strong
buoyancy and thus rise quickly compared to the weaker ones (Fan et al. 1994). Jouve
et al. (2010) captured this delay in their flux transport dynamo model by replacing the
poloidal source term: aB in Eq. (11) by
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aBð0:7R	; h; t � sBÞ
1þ Bð0:7R	; h; t � sBÞ=B0ð Þ2 ; ð23Þ

where sB is the delay time which they took to be equal to s0=Bð0:7R	; h; tÞ2 and s0 is
used to regulate the amount of delay. Figure 21 shows the results from two simu-
lations with different amounts of delay as presented by Jouve et al. (2010). We
evidently see that just the addition of this delay in the poloidal source produces a
considerable amount of modulation in the cycle and the amount of modulation
increases with the increase of delay (also see Fournier et al. 2018).

However, we note that in these models, the flux loss due to magnetic buoyancy is
ignored (Sect. 6.3). The flux loss tries to keep the magnetic field around the
equipartition value. In that case, the toroidal flux tube will not have much different
field strength from one another and the delay times will not be very different. Hence,
if the flux loss due to magnetic buoyancy is incorporated in these models then we do
not expect much modulation in the cycle. Biswas et al. (2022) included flux loss due
to magnetic buoyancy in the dynamo model with local a prescription and they did not
find noticeable modulation in the cycle due to field-dependent delay with respect to
the case without delay.

7 MHD simulations for long-term cycle variabilities

In the MHD simulations one needs to solve the following continuity equation for the
mass and the energy equation in addition to Eqs. (1) and (2).

oq
ot

þ $ � ðqvÞ ¼ 0; ð24Þ

Fig. 21 Cycle modulations (as measured by the toroidal field at r ¼ 0:7R	 and h ¼ 20�) in the flux
transport dynamo model of Jouve et al. (2010) with magnetic field-dependent delay in the Babcock–
Leighton source for the poloidal field generation process (Eq. 23). The left and right panels are for short
(14 days on 1 kG fields) and long delay (14 days on 50 kG fields so that 10 kG fields will be delayed by
almost a year in this case compared to a few hours in the previous case). Images reproduced with
permission from Jouve et al. (2010), copyright by ESO
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T
os
ot

þ ðv � $Þs
� �

¼ 1

q
gl0J

2 � $ � ðFrad þ FSGSÞ � Fcool

� 	þ 2mS2; ð25Þ

where q is the density, m is the kinematic viscosity, Frad is the radiative diffusive flux
and is given by �K$T, K being the heat conductivity, FSGS represents the additional
subgrid scale (SGS) diffusion which is used to keep the simulation numerically
stable (usually taken as �vSGSqT$s

0 with vSGS being the SGS diffusion coefficient
and s0 is the fluctuations of entropy), and Fcool is the radiative cooling near the
surface. These equations are numerically solved using appropriate initial and
boundary conditions to study the dynamo problem; see for example Käpylä et al.
(2020) for the detailed profiles of all the model parameters and the boundary
conditions.

In the last one decade, global MHD convection simulations have reached to a
somewhat realistic level (not in terms of the Reynolds numbers but in terms of the
level of turbulence and the realistic value of Rossby number). They produced some
basic features of the large-scale flows and the magnetic field. We refer the readers to
Sect. 6 of Charbonneau (2020) for a review on this subject. An advantage of these
simulations is that all the nonlinear and stochastic effects are included by default in
these simulations, in contrast to the mean-field models where these effects need to be
included by hand. However, due to limited computation facilities, global convection
simulations were rarely run for a longer time so that a long-term cycle modulations
can be studied. Furthermore, being extremely complicated in nature, identifying the
mechanisms of the long-term modulations are not trivial. Fan and Fang (2014),
Karak et al. (2015a), Viviani et al. (2018) and Viviani et al. (2019) presented some
simulations which were run for a somewhat longer duration. Here we discuss three
important results for the cycle modulations gleaned from three different numerical
codes. The first one is from Passos and Charbonneau (2014) who presented cycles
from a simulation run of 1650 years in which 40 excellent cycles with average period
of 40 years were seen (Fig. 22). This simulation ‘broadly’ reproduces some observed
features of the solar magnetic cycle including the regular polarity reversal and dipole-
dominated large-scale field. Interestingly a good amount of modulation in the cycle
amplitude is naturally produced in this simulations. There is also a pattern for the
Gnevyshev–Ohl rule (watch the peaks after t ¼ 800 yr) and a hint for the Gleissberg
modulation in these cycles. However, in this 1650 years of simulations no grand
minimum or maximum is seen. With respect to the solar observations, there are some
discrepancies as well which include an in-phase variation of the poloidal and toroidal

Fig. 22 Cycles from the global MHD convection simulations using EULAG-MHD code. Image
reproduced with permission from Passos and Charbonneau (2014), copyright by ESO
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components, magnetic activity confined to high latitudes, and the low degree of
hemispheric coupling.

The second important result came from Augustson et al. (2015) utilizing the 3D
MHD ASH code which is shown in Fig. 23. This is from a model of one solar mass
rotating at three times the Sun. Again this simulation produces many features that are
consistent with observation and the important one is the equatorward migration of the
toroidal field belt at low latitudes which is caused by the nonlinear modulation of the
differential rotation. The interesting feature in their simulation is that a clear grand
minimum was identified with a considerably reduced magnetic field for about five
cycles. However during this minimum, the large-scale field failed to reverse,
although its amplitude oscillated cyclically. The grand minimum in this simulation is
possibly caused by the interplay between the symmetric and anti-symmetric dynamo
families. During the regular cycle, the anti-symmetric dynamo family is greater than
the symmetric family but during grand minimum phase, the symmetric family
dominates over the anti-symmetric one; see the right panel of Fig. 23 for the
increased parity of the radial field at two different depths. The mechanism for the
generation of the grand minimum in this simulation is similar to the one proposed by
Tobias (1997) and Moss and Brooke (2000) based on the nonlinear mean-field
dynamo model.

The final one is from Käpylä et al. (2016) utilizing the Pencil Code. They
performed this simulation for a model of one solar mass rotating at five times the
Sun. This simulation also produced some solar-like features, including regular
polarity reversals and an equatorward migration of the toroidal field at low latitudes
(due to a nonlinear dynamo wave). In addition to the dominant global magnetic cycle
of an average period of 4.9 years, there are two other prominent cycles, one having a
higher frequency mode near the surface and at low latitudes with poleward migration,
and the other one having low frequency residing at the BCZ. Their simulation also
finds an episode of reduced magnetic field for about three cycles, happening
asynchronously in hemispheres (t ¼ 20–45 years). Interestingly, the magnetic field in
the deeper CZ is stronger during this period and thus the global magnetic field during
this period is larger than during the normal phase. The dynamics of the magnetic

Fig. 23 Left top: Time-latitude distributions of the longitude average Br and B/ at 0:92R	 from the ASH
simulation code of Augustson et al. (2015). The grand minimum identified in this simulation is marked by
vertical lines. Right panel shows the parity of the magnetic field computed at 0:75R	 (orange curve) and
0:95R	 (black). Images reproduced with permission from Augustson et al. (2015), copyright by AAS
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fields in this simulation are extremely complex and the grand episode of the reduced
activity is caused through the interplay of various dynamo modes.

Although the global convection simulations produce some long-term modulations
in the cycles and the grand minimum-like reduced activity which are consistent with
solar observations, there are few caveats that we should keep in mind. The cycle
modulations observed in the above convection simulations are many ways far from
the actual Sun. The large-scale flows produced in these simulations are also quite far
from the real Sun. Importantly, the power in the sub-surface convective flow at large
scales are much stronger than that is obtained from the measurements, so-called the
convective conundrum (Hanasoge et al. 2012; Lord et al. 2014; also see e.g., Hotta
et al. 2015; Karak et al. 2018b for the studies that attempt to resolve this.)
Furthermore, we do not have any information about whether these long-term
modulations found in the convection simulations are robust in the model parameter
regimes. Finally, the simulations do not produce BMRs which are important
component of the solar cycle and are responsible for the generation of the poloidal
field in the Sun, at least the field that is observed on the surface. Therefore, future
work is needed to make the global convection simulations more realistic so that they
can be utilized to study the long-term cycle modulation.

Ideal MHD simulations in the local box are also performed to study the large-scale
dynamos. With helical forcing and imposed shear, Karak et al. (2015b) performed
HMD simulations in the local Cartesian geometry and found modulations in the
large-scale magnetic cycle. The interesting fact about their study was that they found
grand minima like intermittent activity only when the dynamo operates in the
subcritical and critical regime but not in the supercritical regime. This independent
study thus supports the idea that the variability and the grand minima are less
probable in the supercritical dynamo; see Sect. 6.2.5 for details. Local simulations are
also useful to study the cycle modulations in presence of the small-scale dynamo.
The small-scale magnetic field generated from the small-scale dynamo affects the
flows and thus the global dynamo (Karak and Brandenburg 2016). Global dynamos
are usually performed at low Reynolds numbers and thus small-scale dynamo is not
excited, except a few (e.g., Nelson et al. 2013; Käpylä et al. 2017; Hotta and Kusano
2021), however, they are not ran for many cycles.

Fig. 24 Temporal variation of the mean Br average over the longitudes on the surface from global
convection simulation using Pencil Code (Käpylä et al. 2016). The color scale is saturated at the half of the
extrema i.e., at [�11:7, 10.4] kG. Note the disturbed magnetic activity during t ¼ 20–45 years. Image
reproduced with permission from Käpylä et al. (2016), copyright by ESO
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8 Some open questions and current trends

8.1 Do grand minima represent different states of the solar dynamo?

By analyzing the solar activity data for the past, Usoskin et al. (2014) showed that the
distribution of the solar activity is bi-modal. Of this, the dominant mode corresponds
to the regular activity phase and the reduced-activity mode which corresponds to the
grand minima is distinct from the dominant regular one. As seen from Fig. 25, the
distribution is clearly bimodal.

In terms of the dynamo theory, of course, the physics during grand minima is not
quite the same as that during the regular cycle. For example, during the grand minima
phases, the magnetic field falls to a low value and then the Sun takes some time to
grow its magnetic field to the normal level. During these grand minima phases, the
generation of the poloidal field is low because the Babcock–Leighton process which
is the dominant source for the poloidal field in the Sun becomes less efficient due to
fewer BMRs (Sect. 6.2.4). The strength and morphology of the flow can also be
different during this phase. Therefore, the Babcock–Leighton dynamo models
coupled with weak a-effect and/or the dynamo models coupled with the dynamic a-
effect produced by the instability of flux tube (discussed in Sect. 6.2.2) can naturally
explain the bimodal distribution. The dominant source of the poloidal field
(Babcock–Leighton process or dynamic a-effect) maintains the normal mode of
the solar activity while the grand minima phase is maintained by the weak a-effect.
Time-delay models or the iterative map with low-amplitude additive noise and
fluctuating map parameter/dynamo number with specific nonlinearity can also
naturally produce the bimodal distribution of solar activity; see Fig. 1 of
Charbonneau (2001) and Tripathi et al. (2021). Also, see Petrovay (2007) for a
possible explanation of a bimodal solar dynamo based on an interface dynamo model
coupled with a fast tachocline model. Karak et al. (2015b) using 3D simulations of
turbulent dynamo suggested that the bimodal distribution of solar activity can be
produced in the subcritical dynamo.

Fig. 25 Probability distribution function of the reconstructed sunspot number (filled grey curve) and the
observed group sunspot number (red curve). Blue is the bi-Gaussian curve. Figure is modified after
Usoskin et al. (2014); also see Wu et al. (2018) for the distribution from longer data
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8.2 Do grand maxima require different mechanisms for their origin?

In most of the previous studies, the origin of the grand maxima is ignored. However,
the mechanism for its generation is subtle because the dynamo is more nonlinear
during the grand maxima phase. When the Sun tries to produce a strong magnetic
field, the nonlinearity tries to quench its generation process (efficiencies of both the
poloidal and toroidal field generations are reduced with magnetic field). Incidentally,
the Sun spent less time in the grand maxima phase than in the grand minima phase
(Usoskin et al. 2007; Solanki et al. 2004). Thus, producing extended grand maxima
using the stochastic fluctuations in the dynamo parameters is less obvious. However,
stochastic fluctuations still can produce a very strong magnetic cycles and grand
maxima if they occur in a certain phase of the cycle. Kitchatinov and Olemskoy
(2016) showed that at the beginning of a cycle (when the field at the poles is
strongest) if the generation of the poloidal field is reversed (say due to the emergence
of some wrongly tilted BMRs), then it will produce the same polarity field as it was
there in the pole. Consequently, instead of reversing the old polarity polar field, it will
amplify. This strong polar field will make the current cycle very strong. By
introducing stochastic fluctuations in a 2D flux transport dynamo model, Kitchatinov
and Olemskoy (2016) showed that this mechanism can occasionally produce a much
stronger cycle which corresponds to the grand maxima phase. However, in this
mechanism, not more than one strong cycle at a time is produced, while in the solar
grand maximum, at least two consecutive cycles are strong (Usoskin et al. 2007).
Also, this study is based on a kinematic model, in which the nonlinear feedback of
the magnetic field on the flow is ignored.

Another way of generating the grand maxima is through the combined effect of
multiple poloidal field generation processes. Ölçek et al. (2019) find that when the
deep-seated a-effect is coupled with the surface Babcock–Leighton process in a
dynamo model, these two processes more or less contribute equally to the generation
of the poloidal field through a sort of constructive interference. This could be the
mechanism of grand maxima in their dynamo model. However again this model is
kinematic and the magnetic feedback is not taken care of.

8.3 What is the origin of Gnevyshev–Ohl/Even–Odd rule?

One plausible explanation for the Gnevyshev–Ohl rule is the fossil field hypothesis.
A steady large-scale magnetic field of fossil origin (Boruta 1996) can interfere with
the oscillating magnetic field from the CZ. In one cycle the oscillating magnetic field
appears in the same polarity as that of the fossil field and it makes the cycle strong. In
the next cycle, the oscillating magnetic field becomes of opposite polarity and thus
the cycle becomes weak. To explain the Even–Odd rule using this idea, the fossil
field has to be comparable to the dynamo-generated oscillating magnetic field at the
BCZ which is of the order of 10 kG. However, the present observations do not
confirm this strong fossil field. Furthermore, if the Gnevyshev–Ohl rule is caused by
the fossil field, then there should be infinite memory in it, in a sense that once this
rule is established, odd (even) cycles will always be stronger than the previous even
(odd) cycles, even if there are some violations due to other effects. However, studies
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show that there was a possible reversal in the even–odd pattern during 1745–1850
(Mursula et al. 2001; Tlatov 2013; Zolotova and Ponyavin 2015).

There is another possible explanation for the Gnevyshev–Ohl rule which was
proposed by Durney (2000) using the nonlinear period-doubling effect. He suggested
that the solar dynamo is operating in the region of period doubling beyond the
bifurcation point and in this region the alternating amplitude modulation is
unavoidable. Later Charbonneau (2001) showed that this is indeed not essential;
stochastic forcing in the dynamo can lead to Even–Odd effect even outside this
parameter range of period doubling. The time delays (Sect. 6.4) involved in the solar
dynamo including simple amplitude limiting nonlinearity can produce the same
period-doubling and Gnevyshev–Ohl rule as seen in the complex nonlinear system
(Charbonneau et al. 2007). The dynamo model and map with various types of
nonlinearity show Gnevyshev–Ohl rule under fluctuations in the poloidal source (a).
However, this Gnevyshev–Ohl rule becomes evident only when the nonlinearity
becomes important (large map parameter or dynamo number) and it seems to be little
restricted to a narrow range of the diffusivity in the BCZ (Sec 4.5 of Charbonneau
et al. 2005). Thus, there is still room to explore the robustness of this feature.

8.4 What are the causes of Gleissberg and Suess/de Vries cycles?

Gleissberg and Suess/de Vries cycles are not strictly cycles, rather they are modulation
over the dominant 11-year period and they are detected in the cosmogenic data having
ranges of periods from 90 to 100 years and from 205 to 210 years, respectively. If these
modulations are the true nature of the solar cycle, then they are probably coming from
the nonlinear interaction between the magnetic field and the flows in the lower part of
CZ. In a axisymmetric aX dynamo model coupled with the angular momentum
equation and ignoring meridional circulation, Pipin (1999) showed that the Gleissberg
cycle is a results from the magnetic feedback on the angular momentum fluxes which
maintains the differential rotation in the CZ. In this model, the period of the Gleissberg
cycle is determined by the time associated with the re-establishment of the differential
rotation after the magnetic perturbations of the angular momentum transport. If this is
the mechanism of the Gleissberg cycle in the sun, then the observed differential
rotation should show a variation in the Gleissberg timescale. However, the available
observations does not provide a conclusive evidence on it (Howard 1978). Passos and
Charbonneau (2014) found a hint of Gleissberg modulation in their computed proxy
sunspot number but not in the radial field data and they require data for a longer
duration to confirm its existence. Cameron and Schüssler (2019) showed that
Gleissberg and Suess/de Vries cycles are consistent with realization noise and the noisy
normal form model can reproduce these modulations.

9 Summary and discussion

Besides the 11-year (a)periodic variation of the amplitude, the most prominent
variation of the solar cycle is the long-term modulation which has been
unambiguously identified in the direct and indirect (cosmogenic data) observations
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of the solar activity. Examples of the long-term modulation include the Gnevyshev–
Ohl/Even–Odd rule, grand minima, grand maxima, Gleissberg cycle and Suess
cycles. In this review, we have presented comprehensive discussions on the origins
and models of long-term variations. To do so, we have broadly identified the
following three major causes for the cycle modulations: (1) magnetic feedback on the
flow, (2) stochastic forcing, and (3) time delays in various dynamo processes.
Problems in the nonlinear mean-field models are that not all possible nonlinearities
are always included in the model and the resulting mean flows and magnetic fields
are not compared carefully with observations. Global MHD convection simulations
are very useful in this respect because all nonlinearities are captured by default. They
have begun to produce some correct results of the large-scale field and the flow,
however, there are big discrepancies as well. Until global convection simulations
reach somewhat realistic parameter regimes and resolve the major issues (convective
conundrum, observed large-scale flows, nonappearance of BMRs), we need to rely
on the mean-field models only.

Stochastic fluctuations in the mean-field models are enough to explain many
features of the long-term variabilities. The Babcock–Leighton dynamo models are
promising models for the solar cycle, in terms of their success in reproducing the
long-term modulations in the solar cycle. Stochastic fluctuations in these models are
due to randomness in the BMR properties (primarily due to scatter around Joy’s law,
BMR emergence rates and emergence latitudes). Babcock–Leighton models are also
nonlinear because at least the toroidal to poloidal field generation step includes
several essential nonlinearities (tilt quenching, latitude quenching, toroidal flux loss
due to magnetic buoyancy). While these nonlinearities have the tendency of
stabilizing the magnetic field, they can lead to fluctuating cycles including
Gnevyshev–Ohl rule and grand minima at highly supercritical regimes (large
dynamo numbers) due to the inherent time delay in the dynamo models with spatially
segregated source regions. Observations indicate that the solar dynamo is possibly
operating in a weakly nonlinear regime (slightly above the dynamo transition) and
thus cycle modulations are caused by stochastic effects.

One way to pick up the correct model out of all the possible models for long-term
modulation is to carefully compare the model results with the observations.
Observational results include the followings (but not limited to). (1) There is a strong
hemispheric asymmetry during the second half of the Maunder Minimum (Ribes and
Nesme-Ribes 1993). (2) However, the asymmetry during the normal cycle is less,
appears randomly, and is smoothed out in a few cycles (the memory of the
asymmetry does not remain for multiple cycles; Goel and Choudhuri 2009; McIntosh
et al. 2013; Das et al. 2022). (3) The differential rotation in the whole CZ of the Sun
is well-measured for about last four decades and it has only a tiny variation (surface
differential is measured even for about 200 years and also shows little variation;
Gilman and Howard 1984; Jha et al. 2021.)

Grand minima are possibly triggered by the stochastic fluctuations in the dynamo
parameters or/and the nonlinear interaction of the Lorentz force. The recovery to the
normal phase from grand minima is trivial in any model which includes the a-effect
because it can operate in the weak-field regime. Recovery through the Babcock–
Leighton process is also possible because recent analyses revealed spots during

123

Models for the long-term variations of solar activity Page 43 of 56 3



Maunder minimum and the Babcock–Leighton process can produce a poloidal field
with a few BMRs or smaller BMRs having nonzero tilts (including ephemeral
regions). Grand maxima are probably more special events and less frequent than
grand minima. Again nonlinear modulation of the flow via Lorentz force and
stochastic fluctuations can trigger these events. A dual source of poloidal field
generation occurring constructively or reversed generation of the poloidal field due to
stochastic fluctuations can produce prominent grand maxima. Occurrences of grand
minima and maxima in the dynamo models can be described by stochastic processes
and these are consistent with the observations. The waiting time distributions of the
grand minima and maxima in the dynamo models are also described by the
memoryless stochastic processes, which however disagree with the available
observations.
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