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Abstract
Numerical simulations of neutron star–neutron star and neutron star–black hole binaries
play an important role in our ability to model gravitational-wave and electromagnetic
signals powered by these systems. These simulations have to take into account a wide
range of physical processes including general relativity, magnetohydrodynamics, and
neutrino radiation transport. The latter is particularly important in order to understand the
properties of the matter ejected by many mergers, the optical/infrared signals powered by
nuclear reactions in the ejecta, and the contribution of that ejecta to astrophysical
nucleosynthesis. However, accurate evolutions of the neutrino transport equations that
include all relevant physical processes remain beyond our current reach. In this review, I
will discuss the current state of neutrino modeling in general relativistic simulations of
neutron star mergers and of their post-merger remnants. I will focus on the three main
types of algorithms used in simulations so far: leakage, moments, and Monte-Carlo
scheme. I will review the advantages and limitations of each scheme, as well as the
various neutrino–matter interactions that should be included in simulations. We will see
that the quality of the treatment of neutrinos in merger simulations has greatly increased
over the last decade, but also that many potentially important interactions remain difficult
to take into account in simulations (pair annihilation, oscillations, inelastic scattering).
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1 Introduction

Over the last decade, the study of merging compact objects has made tremendous
progress. Recently observed astrophysical events provide us with some of the most
reliable information currently at our disposal regarding the population of stellar mass
black holes in the nearby Universe. Rarer events that include neutron stars also
inform us about the mass distribution of neutron stars, the equation of state of dense
matter, and the origin of heavy elements formed through rapid neutron capture
nucleosynthesis (r-process). Our ability to study these systems has largely grown in
tandem with the sensitivity of the LIGO and Virgo gravitational-wave detectors.
Gravitational-wave observatories have now detected dozens of binary black hole
(BBH) mergers, as well as two likely binary neutron star (BNS) mergers and at least
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two likely neutron star-black hole (NSBH) mergers (see Sect. 2.2 for a more detailed
discussion of these events). An overview of these events can be found in the three
GWTC catalogues (Abbott et al. 2019, 2021a, b).

While BNS and NSBH mergers are not as commonly observed as BBH mergers,
they do have important advantages for nuclear astrophysics. The presence of a
neutron star means that these systems can potentially be used to constrain the
equation of state of cold, neutron rich dense matter (Abbott et al. 2018)—a crucial
source of information about many-nucleon interactions and, potentially, the high-
density states of quantum chromodynamics. Additionally, some mergers and post-
merger remnants eject material that undergoes r-process nucleosynthesis. The
radioactive decay of the ashes of the r-process can then power optical/infrared
emission days to weeks after the merger: a kilonova (Lattimer and Schramm 1976; Li
and Paczynski 1998; Metzger et al. 2010; Roberts et al. 2011; Kasen et al. 2013). The
production site(s) of r-process elements remain(s) very uncertain today, and the
observation of neutron star mergers and associated kilonovae may help us solve the
long-standing problem of their astrophysical origin. Additionally, some post-merger
remnants likely produce collimated relativistic outflows (jets) that are currently
believed to be the source of short-hard gamma-ray bursts (SGRBs) (Eichler et al.
1989; Nakar 2007; Fong and Berger 2013). The exact process powering SGRBs is
however not well understood, and further observations of neutron star mergers could
help us ellucidate how these high-energy events occur in practice. Finally, joint
observations of neutron star mergers using both gravitational and electromagnetic
waves may also provide additional information about the properties of the merging
compact objects, the position of the merging binary, and even the value of the Hubble
constant (Holz and Hughes 2005; Nissanke et al. 2010; Abbott et al. 2017a;
Hotokezaka et al. 2019).

Neutron star mergers involve a wide range of nonlinear physical processes,
preventing us from providing quantitative theoretical predictions for the result of a
merger using purely analytical methods. As a result, numerical simulations are an
important tool in current attempts to model the gravitational-wave and electromagnetic
signals powered by compact binary mergers. Gravity, fluid dynamics, magnetic fields
and neutrinos all play major roles during and after neutron star mergers, with out-of-
equlibrium nuclear reactions also becoming important on longer time scales (�
seconds). In theory, merger simulations thus need to solve Boltzmann’s equations of
radiation transport coupled to the relativistic equations of magnetohydrodynamics and
Einstein’s equation of general relativity. However, no simulation can do this with the
desired level of realism at this point. Two major roadblocks to this modeling efforts are
our inability to properly resolve magnetohydrodynamical instabilities during merger
(and thus the dynamo process that may follow the growth of magnetic fields due to
these instabilities) (Kiuchi et al. 2015), as well as the difficulty of properly solving
Boltzmann’s equation of radiation transport for the evolution of neutrinos (Foucart
et al. 2018). In this review, we focus on the second problem. The role of magnetic
fields in merger simulations is discussed in more detail, for example, in Baiotti and
Rezzolla (2017), Paschalidis (2017) and Burns (2020).

Neutrinos play a number of roles in neutron star mergers, with particularly
noticeable impacts on the production of r-process elements and the properties of
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kilonovae. However, properly accounting for neutrino–matter interactions in neutron
star mergers remains a difficult problem because, within a merger remnant, neutrinos
transition from being in equilibrium with the fluid (in dense hot regions) to mostly
free-streaming through the ejected material (far away). In the intermediate regions,
neutrino–matter interactions play an important role in the evolution of the
temperature and composition of the fluid, but neutrinos cannot be assumed to be
in equilibrium with the fluid. Numerical methods that properly capture both regimes
are technically challenging and/or computationally expensive. As a result, most
merger simulations use approximate neutrino transport algorithms that introduce
potentially significant and often hard to quantify errors in our predictions for the
nuclei produced during r-process nucleosynthesis and for the properties of kilonovae.

The main objective of this review is to provide an overview of the various
algorithms currently used in general relativistic simulations of neutron star mergers
and of their post-merger remnants. These can be broadly classified into three groups:
leakage methods, which do not explicitly transport neutrinos; moment schemes,
which evolve a truncated expansion of the transport equations in momentum space
with methods highly similar to those used to evolve the equations of relativistic
magnetohydrodynamics; and Monte-Carlo methods, which sample the distribution of
neutrinos with packets (or superparticles) propagating through numerical simula-
tions. These are discussed in detail in Sect. 4. Section 2 aims to provide some
scientific background about merging neutron stars, while Sect. 3 provides an
overview of neutrino physics in neutron star mergers, and of the important neutrino–
matter interactions that are currently included or neglected in simulations. Finally,
Sect. 5 discusses what existing simulations can tell us about the ways in which our
choice of algorithm impacts our numerical results. We note that the objective here is
not to review all results in the study of neutron star mergers with neutrinos, but rather
to focus on the numerical methods used to perform general relativistic radiation
transport. We will thus focus on comparisons of different numerical methods, rather
that provide an extensive review of existing simulations that make use of neutrino
transport.

Conventions: In this manuscript, latin letters are used for the indices of spatial 3-
dimensional vectors/tensors, while greek letters are used for the indices of 4-
dimensional vectors/tensors. Sections discussing numerical methods will often use
units such that h ¼ c ¼ G ¼ 1, but we explicitly keep physical constants in our
expressions when discussing interaction rates.

2 Scientific background

2.1 Overview of neutron star mergers physics

Before delving deeper into the topic of radiation transport in neutron star mergers, it
is worth reviewing how we currently understand the evolution of these systems, as
well as when different physical processes are expected to play an important role.
When discussing neutron star merger simulations, we are typically concerned with
the evolution of a binary from tens of milliseconds before merger to a few seconds
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after merger, i.e., from the moment standard post-Newtonian methods can no longer
accurately model the gravitational wave signal to the moment when the accretion
disk formed during a merger has lost most of its mass. In the late inspiral (O(10)
orbits before merger), the tidal distortion of a neutron star by its binary companion
has a potentially measurable impact on the gravitational wave signal, which can be
used to put constraints on the equation of state of neutron stars (Flanagan and
Hinderer 2008; Abbott et al. 2018). The main role of numerical simulations in that
regime is to help test and calibrate analytical waveform models used in the analysis
of gravitational wave events (e.g., Bernuzzi et al. 2012; Hinderer et al. 2016; Akcay
et al. 2019 for BNS mergers and Thompson et al. 2020; Matas et al. 2020 for NSBH
mergers). General relativity, fluid dynamics, and the choice of equation of state are
important at that stage, but magnetic fields only impact relatively weak pre-merger
electromagnetic signals and neutrinos have practically no impact on the evolution of
the system.

For NSBH binaries, the same remains true during the merger itself, i.e., the few
milliseconds during which the neutron star is either tidally disrupted by its black hole
companion, or absorbed whole by the black hole. The outcome of the merger is
determined by the masses and spins of the compact objects, the equation of state of
dense matter (Lattimer and Schramm 1976; Pannarale et al. 2011; Foucart 2012), and
the eccentricity of the orbit (East et al. 2015). Numerical simulations of low-
eccentricity binaries have shown that only low mass and/or high spin black holes
disrupt their neutron star companions (MBH.5M� for non-spinning compact objects
and circular orbits), a prerequisite to the production of any post-merger electromag-
netic signal. If the neutron star is tidally disrupted, a few percents of a solar mass of
very neutron rich, cold matter is typically ejected, and tenths of a solar mass remain
in a bound accretion disk and/or tidal tail around the black hole (see e.g., Foucart
2020; Kyutoku et al. 2021 for recent reviews, and Fig. 1). In eccentric binaries,
neutron stars are typically easier to disrupt, and eject more mass in their tidal tails.

For BNS systems, on the other hand, other physical processes become important
once the neutron stars collide. First, the shear region that is naturally created between
the merging neutron stars is unstable to the Kelvin–Helmoltz instability, leading to
the rapid growth of small scale turbulence (Kiuchi et al. 2015). Magnetic fields are
quickly amplified to B� 1016 G as a result, and start to play an important role in the
evolution of the system. Whether a dynamo process can generate a large scale
magnetic field from this turbulent state is an important open questions that
simulations have not so far been able to answer. The collision of the two neutron stars
also creates hot regions where neutrino emission and absorption can no longer be
ignored. BNS mergers eject relatively small amounts of cold tidal ejecta (.0:01M�),
as well as hotter material coming from the regions where the cores of the neutron
stars collide. We will see that neutrinos play an important role in the evolution of that
hot ejecta. Depending on the equation of state and on the mass of the system, the
remnant may immediately collapse to a black hole (on milliseconds time scales),
remain temporarily supported by rotation and/or thermal pressure, or form a long-
lived neutron star (as on Fig. 1). In all cases, that remnant is surrounded by a hot
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accretion disk—with more asymmetric systems producing more massive disks (see e.
g., Baiotti and Rezzolla 2017; Burns 2020; Radice et al. 2020 for recent reviews).

After merger, neutrino emission is the main source of cooling for the accretion
disk and remnant neutron star (if there is one), and neutrino–matter interactions drive
changes in the composition of the disk material and of the outflows. Initially, the
efficiency of neutrinos in cooling the disk lies in between the radiatively efficient
(thin disks) and radiatively inefficient (thick disks) regimes observed in AGNs.
NSBH and BNS simulations including radiation transport show a disk aspect ratio
H=R� (0.2–0.3) (with H the scale height of the disk and R its radius) (Foucart et al.
2015; Fujibayashi et al. 2018). Hydrodynamical shocks and/or fluid instabilities and
then turbulence driven by the magnetorotational instability (MRI) lead to angular
momentum transport and heating in the disk, and drive accretion onto the compact
object. If a large scale poloidal magnetic field threads the disk, magnetically driven
outflows are likely to unbind � 20% of the mass of the disk (Siegel and Metzger
2017; Fernández et al. 2019)—but this is not a given considering uncertainties about
the large scale structure of the magnetic field in post-merger accretion disks. Indeed,
while it is possible to grow such a large scale field after merger (Christie et al. 2019),
this takes too long to efficiently contribute to the production of winds. A large scale
magnetic field generated during merger appears to be required for these winds to exist.

After O(100 ms), the density of the disk decreases enough that neutrino cooling
becomes inneficient (Fernández and Metzger 2013; De and Siegel 2021), while the
MRI remains active. The disk becomes advection dominated. It puffs up to H=R� 1,
and viscous spreading of the disk leads to the ejection of 5–25% of the disk mass
(viscous outflows) (Fernández and Metzger 2013). Neutrino–matter interactions
directly impact the properties of magnetically driven outflows, and indirectly impact

Fig. 1 Merger of a disrupting NSBH binary (Right) and of a low-mass NSNS binary (Left). In disrupting
NSBH systems, most of the matter is rapidly accreted onto the black hole, while the rest forms an accretion
disk and extended tidal tail. Low-mass NSNS binaries form a massive neutron star remnant surrounded by
a bound disk, with a smaller amount of material ejected in the tidal tail.
The right panel is reproduced with permission from Foucart et al. (2017), copyright by IOP; the left panel
visualizes a simulation from Foucart et al. (2016a)

123

1 Page 6 of 83 F. Foucart



the properties of viscous outflows (due to neutrino–matter interactions during the
early evolution of the disk, before weak-interaction freeze-out).

The post-merger evolution is also impacted by the presence and life time of a
massive neutron star remnant. A hot neutron star remnant is a bright source of
neutrinos that can accelerate changes to the composition of matter outflows in the
polar regions. How efficiently matter can accrete onto the neutron star remains
uncertain. Axisymmetric simulations treating the neutron star surface as a hard
boundary predict the eventual ejection of most of the remnant disk (Metzger and
Fernández 2014); whether this would remain true for more realistic boundary
conditions is unclear, but it is at least likely that a larger fraction of the disk is
eventually unbound for neutron star remnants than for black hole remnants. The
neutron star remnants themselves are initially differentially rotating, and simulations
generally find rotation profiles that are stable to the MRI in most of the star (the
angular velocity increases with radius). Some other angular momentum transport
mechanism is thus required to bring these remnants to uniform rotation, e.g.,
convection and/or the Spruit–Taylor dynamo (Margalit et al. 2022). The exact impact
of the interaction between the neutron star remnant, its external magnetic field, and
the surrounding accretion disk on the evolution of the system remains very uncertain.
Examples of post-merger remnants are shown in Fig. 2.

2.2 Observables and existing observations

The main signals observed so far in neutron star mergers include gravitational wave
emission during the late inspiral of the binary towards mergers, SGRBs (and their
multi-wavelength afterglows) likely due to relativistic jets powered by the post-
merger remnant, and kilonovae. For a system with component masses m1;m2, the

Fig. 2 Post-merger remnant a few milliseconds after a BNS merger (Left), and 0.3 s after a NSBH merger
(Right). The BNS system forms a massive, differentially rotating neutron star surrounded by a low-mass
accretion disk, with shocked spiral arms visible in the disk. The NSBH system forms an extended accretion
disk around the remnant black hole, with collimated magnetic fields in the polar region.
The right panel is reproduced with permission from Hayashi et al. (2022a), copyright by APS; the left
panel visualizes a simulation from Foucart et al. (2016a)
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gravitational waves provide us with a very accurate measurement of the chirp mass

Mc ¼ ðm1m2Þ0:6=ðm1 þ m2Þ0:2, as well as, for sufficiently loud signals, less accurate
information about the mass ratio (and thus the component masses), the spins of the
compact objects, the equation of state of neutron stars (through their tidal
deformability), as well as the distance, orientation, and sky localization of the
source (especially for multi-detector observations). We will not discuss the
gravitational wave signal in much more detail here, as it is not meaningfully
impacted by neutrinos. Outflows generated during and after the merger (see previous
section) will be the main source of post-merger electromagnetic signals. Relativistic
collimated outflows power SGRBs detectable by observers located along the spin
axis of the remnant. As the jet material becomes less relativistic, SGRBs are followed
by longer wavelength afterglows detectable by off-axis observers (Fong et al. 2015).
The gamma-ray emission is very short lived (.2 s for a typical SGRB), but radio
afterglows can still be observed a year after the merger (Mooley 2018). The exact
mechanism powering the relativistic jet remains unknown. The most commonly
discussed model requires the formation of a large scale poloidal magnetic field
threading a black hole remnant, with energy extraction from the black hole’s rotation
though a Blandford–Znajek-like process (Blandford and Znajek 1977). Some SGRB
models are however powered by neutrino–antineutrino pair annihilations in the polar
regions. Explaining the most energetic SGRBs through this mechanism is difficult
given what is currently known of the neutrino luminosity of post-merger remnants
and the efficiency of the pair annihilation process (Just et al. 2016), yet even in a
magnetically-powered SGRB, energy deposition due to neutrino pair annihilation or
baryon loading of the polar regions due to neutrino-driven winds could impact the
formation of a jet (Fujibayashi et al. 2017).

The properties of kilonovae and the role of neutron star mergers in astrophysical
nucleosynthesis are likely to be much more significantly impacted by neutrinos than
gravitational waves or even SGRBs. Absorption and emission of electron-type
neutrinos (me) and antineutrinos (�me) modifies the relative number of neutrons and
protons in the fluid. This is usually expressed through the lepton fraction

Yl ¼ ne� � neþ þ nme � n�me

np þ nn
ð1Þ

with ne� ; nn; np; nme ; n�me the number density of electrons, positrons, neutrons, protons,
me and �me respectively. Many simulations use the net electron fraction Ye instead of
the lepton fraction, and assume that charge neutrality requires ne� � neþ ¼ np,

1 so
that

Ye ¼ np
np þ nn

: ð2Þ

The electron fraction is a crucial determinant of the outcome of r-process nucle-
osynthesis in merger outflows. Low Ye outflows (roughly Ye.0:25) produce heavier
r-process elements, while higher Ye outflows produce lighter r-process elements

1 Note that this assumes that muon and tau leptons have vanishing net lepton numbers, i.e. that we have an
equal number of particles and antiparticles for heavy leptons.
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(Lippuner and Roberts 2015). In particular, for the conditions typically observed in
merger outflows, there is not much production of elements above the “2nd peak” of
the r-process (at atomic number A� 130) for high-Ye outflows, and an under-pro-
duction of elements below the 2nd peak for neutron-rich (low Ye) outflows. Cold
outflows that do not interact much with neutrinos are typically neutron-rich, but
hotter outflows can end up with Ye � 0.4–0.5 due to neutrino–matter interactions.
Cooling from neutrino emission and heating from neutrino absorption are also
important to the thermodynamics of the remnant and of the outflows, and neutrino
absorption in the disk corona and close to the neutron star surface can lead to the
production of neutrino-driven winds (Dessart et al. 2009). It is thus clear that neu-
trino–matter interactions should be properly understood if we aim to model the role
of neutron star mergers in the production of r-process elements.

The impact of neutrinos on kilonovae is less direct but no less important. Most of
the r-process occurs within a few seconds of the merger, after which the outflows are
mainly composed of radioactively unstable heavy nuclei. Radioactive decays of these
nuclei will continue to release energy over much longer timescales. Initially, the
outflows are opaque to most photons, and decay products are thermalized—except
for neutrinos, which immediately escape the outflows. As the density of the outflows
decrease, however, they will eventually become optically thin to optical/infrared
photons. When this transition happens depends on the composition of the outflows.
Lanthanides and actinides, which are among the heavier r-process elements that are
only produced by neutron-rich outflows, have much higher opacities than other
nuclei produced during the r-process. As a result, neutron-rich outflows become
optically thin later than higher Ye outflows (� 10 days vs. � 1 day), and the
corresponding kilonova signal is redder (peaks in the infrared, instead of in the
optical). Overall, the duration, color, and magnitude of a kilonova tell us about the
mass of the outflows, their composition, and their velocity (Barnes and Kasen 2013).
For a given binary merger, it will also depend on the relative orientation of the binary
and the observer, as different types of outflows have different geometry.

Other electromagnetic counterparts to neutron star mergers have been proposed,
with no confirmed observations so far. This include bursts of radiation before merger
(Tsang 2013), continuous emission from magnetosphere interactions (Palenzuela
et al. 2013), coherent emission from magnetosphere interactions (Most and Philippov
2022), and months to decades-long synchrotron radio emission from the mildly
relativistic ejecta as it interacts with the interstellar medium (Hotokezaka et al. 2016).
Neutrinos have no impact on the first three, however, and only a minor impact on the
third (as neutrino–matter interactions may slightly change the mass/velocity of the
outflows). More detailed discussions of the range of electromagnetic transients that
may follow a merger can be found, e.g., in Fernández and Metzger (2016) and Burns
(2020)

Electromagnetic emission from neutron star mergers has likely been observed for
decades now in the form of SGRBs, and a first kilonova may have been observed in
the afterglow of GRB130603B as early as 2013 (Tanvir et al. 2013; Berger et al.
2013). However, our current understanding of the engine powering SGRBs is not
sufficient to provide us with much information about the parameters of the binary
system that created the burst—or even to differentiate between a BNS and NSBH
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merger. Gravitational wave observations provide more direct information about the
properties of the compact objects. So far, two systems have been observed with
component masses most easily explained by the merger of two neutron stars:
GW170817 (Abbott et al. 2017b) and GW1902425 (Abbott et al. 2020). The former
is a relatively low mass system, whose observation was followed by a weak SGRB
(most likely observed off-axis), radio emission most likely associated with a
relativistic jet, and a clear kilonova signal most easily explain by a combination of at
least two outflow components—one that led to strong r-process nucleosynthesis, and
one that did not. The exact process that produced these outflows remain a subject of
research today. GW190425 has a higher total mass (3:4M�). There was no observed
electromagnetic counterpart to that signal, a relatively unsurprising result considering
the large uncertainty in the location of the source and the high likelihood that such a
system did not eject a significant amount of matter (Barbieri et al. 2021; Raaijmakers
et al. 2021; Dudi et al. 2021; Camilletti et al. 2022). At least two NSBH mergers were
observed in 2020 (Abbott et al. 2021c), with more candidates also available in the
latest gravitational wave catalogue (Abbott et al. 2021b). None of these systems was
however expected to lead to the disruption of their neutron star, and thus their lack of
electromagnetic counterpart was unsurprising.

Overall, we note that the analysis of current and future observations of neutron
star mergers would benefit from accurate models of kilonova signals, as well as from
an improved understanding of the engine behind gamma-ray bursts. In that respect, it
is particularly important to understand the role of neutrinos in setting the composition
of the outflows powering kilonovae, and possibly their impact on the production of
relativistic jets. In the rest of this review, we will mainly focus on these issues, and on
the methods available to evolve neutrinos in merger simulations.

3 Neutrinos in mergers

3.1 Definitions

When solving the general relativistic equations of radiation transport, we would
ideally evolve Boltzmann’s equation, or the quantum kinetics equations (QKE, when
accounting for neutrino oscillations). Classically, we evolve the distribution function
of neutrinos fmðt; xi; pjÞ, defined such that

N ¼
Z
V
d3x

d3p

h3
fmðt; xi; pjÞ ð3Þ

is the number of neutrinos within a 6D volume of phase space V. Here, xi are the
spatial coordinates and pj the spatial components of the 4-momentum one-form pl,
while h is Planck’s constant.

When using the classical equations of radiation transport, we usually neglect
neutrino masses and assume plpl ¼ 0. Boltzmann’s equation is then
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pa
ofm
oxa

� Ci
acp

c ofm
opi

� �
¼ m

dfm
ds

� �
collisions

ð4Þ

with s the proper time in the fluid frame, m the neutrino energy in the fluid frame, and
Ca
bc the Christoffel symbols. The left-hand side simply implies that neutrinos follow

null geodesics, while the right-hand side includes all neutrino–matter and neutrino–
neutrino interactions, and thus hides most of the complexity in these equations. We
note that we should evolve a separate fm for each type of neutrinos (me; ml; ms) and
antineutrinos (�me; �ml; �ms); and that these distributions functions may be coupled
through the collision terms. As neutrinos are fermions, we have 0� fm � 1.

The spacial coordinate volume d3x ¼ dxdydz and momentum volume d3p ¼
dpxdpydpz are not invariant under coordinate transformations, but d3xpt

ffiffiffiffiffiffiffi�g
p

and

d3pðpt ffiffiffiffiffiffiffi�g
p Þ�1 are, with g the determinant of the spacetime metric glm. Thus d3xd3p

is invariant under coordinate transformations. The stress-energy tensor of neutrinos at
ðt; xiÞ is

Tabðt; xiÞ ¼
Z

d3p

h3pt
ffiffiffiffiffiffiffi�g

p papbfmðt; xi; pjÞ: ð5Þ

In general relativistic merger simulations, we often use the 3þ 1 decomposition of
the metric

ds2 ¼ glmdx
ldxm ¼ �a2dt2 þ cijðdxi þ bidtÞðdx j þ b jdtÞ; ð6Þ

with a the lapse, bi the shift, and cij the 3-metric on a slice of constant time t. The unit
normal one-form to such a slice is then nl ¼ ð�a; 0; 0; 0Þ, and the 4-vector nl ¼
glmnm can be interpreted as the 4-velocity of an observer moving along that normal—
which we will call normal observer from now on. From there, we can deduce that
� ¼ �plnl ¼ apt is the energy of a neutrino of 4-momentum pl as measured by a
normal observer. More generally, the energy of a neutrino measured by an observer
with 4-velocity ul is m ¼ �plul. Here, we will generally reserve the symbol � for the
energy measured by normal observers, and m for the energy measured in the fluid rest
frame, i.e., when ul is the 4-velocity of the fluid.

3.1.1 Equilibrium distribution

We will often make use of the equilibrium distribution of neutrinos. For neutrinos in
equilibrium with a fluid at temperature T moving with 4-velocity ul, that is the
Fermi–Dirac distribution

f eq ¼ 1

1þ exp m�l
kBT

h i ð7Þ

with l the chemical potential of neutrinos, and kB Boltzmann’s constant. We note that
in an orthonormal frame ðt̂; x̂iÞ the energy density of neutrinos is
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Em ¼ Tt̂t̂ ¼
Z

d3p

h3
�̂fm ð8Þ

with �̂ ¼ pt̂ the energy of neutrinos as measured by a stationary observer in the
orthonormal frame. We thus see that we recover the expected results for the equi-
librium energy of a fermion gas in the fluid frame,

Eeq ¼
Z

d3p

h3
m

1þ exp m�l
kBT

h i ¼ 4p
Z

dm

ðhcÞ3
m3

1þ exp m�l
kBT

h i ; ð9Þ

where in the last expression we used the special relativistic result m ¼ kpkc. This is
more easily expressed in terms of the Fermi integrals Fn, which we will use
extensively in this section:

FnðgÞ ¼
Z 1

0
dx

xn

1þ exp ðx� gÞ : ð10Þ

From this definition, we see that

EeqðT ; lÞ ¼ 4p
ðkBTÞ4
ðhcÞ3 F3

l
kBT

� �
: ð11Þ

Similarly, the equilibrium number density of neutrinos is

NeqðT ; lÞ ¼ 4p
ðkBTÞ3
ðhcÞ3 F2

l
kBT

� �
ð12Þ

and the average energy of neutrinos in equilibrium with the fluid

hmeqi ¼
F3

l
kBT

� �
F2

l
kBT

� � kBT ð13Þ

(which asymptotes to 3:15kBT at low densities, when klk � kBT ).

3.2 Commonly considered reactions

Let us now discuss the various neutrino–matter interactions that are commonly
considered in neutron star merger simulations. Our objective here is not to provide
detailed derivations of all interaction rates, but rather to review the reactions that may
be taken into consideration and to get reasonable estimates of the scaling of reaction
rates with the fluid properties. This will allow us to estimate when different reactions
become important to the evolution of the system. Accordingly, for the sake of brevity,
the cross-sections and reaction rates presented here sometimes make stronger
approximations than what is done in merger simulations. However, for each reaction
we provide references to more detailed discussions of these cross-sections. We will
also make use of our discussion of the pþ e� $ nþ me and eþe� $ m�m reactions to
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illustrate a number of issues that arise when attempting to include collision terms in
the radiation transport equations, and thus discuss these reactions in more detail than
the others. Given the significant overlap between reactions important to neutron star
merger simulations and reactions important to core-collapse supernova simulations, a
number of expressions in this section are slight modifications of the interaction rates
presented in the review of neutrino reactions in core-collapse supernovae of Burrows
et al. (2006), though for numerical estimates of interaction rates we focus on the
conditions most commonly found in neutron star mergers and post-merger remnants.

3.2.1 Charged-current reactions

The reactions with the strongest impact on the observable properties of neutron star
mergers involve absorption and emission of me and �me. Indeed, these reactions are
often (but not always) the main source of cooling in the system, and they are the only
reactions that lead to changes in the electron fraction Ye of the fluid. In the hot, dense
remnant of a BNS or NSBH merger, this mostly occurs through the reactions

pþ e� $ nþ me; nþ eþ $ pþ �me ð14Þ
which are typically included at least approximately in all merger simulations that
attempt to account for neutrino–matter interactions.

Self-consistently calculating the forward and backward reaction rates can be
difficult. Final state blocking means that these reactions depend on the distribution
functions of p; n; eþ; e�; me; �me. While we can typically assume equilibrium distribu-
tions at the fluid temperature and composition for n; p; eþ; e� in neutron star mergers,
at least in regions where neutrino–matter interactions are important, the neutrinos
may be far out of equilibrium—and many approximate schemes used in simulations
today do not contain enough information about the neutrino distribution function to
fully account for the value of fm in all reactions.

To illustrate these issues, and some of the ways in which they are handled in
existing simulations, let us consider the cross-section per baryon for the reaction
nþ me ! pþ e�, the dominant absorption process in merger outflows, derived by
Bruenn (1985). Following the notation of Burrows et al. (2006), we get

rmen ¼ 1:38r0
mme þ Dnp

mec2

� �2

1� mec2

mme þ Dnp

� �2
" #1=2

WM ð15Þ

with

r0 ¼ 1:705� 10�44 cm2; ð16Þ
mme the fluid frame neutrino energy, Dnp ¼ ðmn � mpÞc2 ¼ 1:293 MeV the difference
in rest mass energy between neutrons and protons, me the mass of an electron, and
WM a small correction for weak magnetism and recoil (2:5% for 20 MeV neutrinos)
(Vogel 1984). Neutrinos in BNS and NSBH mergers have typical energies mJ10
MeV, significantly larger than the rest mass energy of an electron. Thus, to a
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reasonably good approximation (for the purpose of our qualitative discussion here at
least),

rmen 	 1:38r0
mme
mec2

� �2

: ð17Þ

This dependence of neutrino cross-sections on the square of the neutrino energies is
found in many reactions relevant to neutron star mergers, and is going to be a
significant source of uncertainty in our simulations, as many approximate transport
algorithms do not provide detailed information about the neutrino spectrum.

The opacity for the absorption of me on n is then

ja 	
Z

2d3pn
h3

fnðEÞð1� fpðEÞÞrmen 	 nnrmen ð18Þ

with fn; fp the distribution functions of neutrons and protons, and E 	 p2=2m the
kinetic energy of the baryons (ignoring the difference in mass between protons and
neutrons and momentum transfer onto the proton). In the last expression, which
ignores the final state blocking factor of the protons, nn is the neutron number
density. That expression would be very inaccurate in the densest region of a star
(where fp cannot be neglected), but is quite accurate in the lower-density regions
where neutrinos decouple from the fluid.

To gain a more intuitive understanding of the rate of these interactions, let us
assume that the typical length scale within a neutron star is � 1 km. We can see from
this expression that for a 20 MeV neutrino, we expect ja ¼ 1 km�1 for
nn � 10�3 fm�3, i.e., for a neutron mass density of � 1012 g/cm3. As the center of
a neutron star has density qc � 1015 g/cm3, we see that neutrinos inside the neutron
star have a mean free path much shorter than the size of the star, and decouple from
the matter as they move through the crust of the neutron star.

Similar scalings apply to the pþ �me ! nþ eþ reaction, as

r�mep ¼1:38r0
m�me � Dnp

mec2

� �2

1� mec2

m�me � Dnp

� �2
" #1=2

W �M ð19Þ

	1:38r0
m�me
mec2

� �2

ð20Þ

and ja 	 npr�mep for the absorption of �me on protons, under the same assumptions as
for absorption onto neutrons. The correction W �M is more significant than WM

(� 15% at 20 MeV) (Vogel 1984; Horowitz 2002), though still not large enough to
impact our order of magnitude estimates. As np\nn in most regions of a neutron star
merger remnant, the absorption opacity for �me is smaller than for me.

It is also possible to include in simulations the impact of me and/or �me absorption on
atomic nuclei. This is typically more important in the core-collapse context than in
mergers, as in mergers most of the matter is in the form of free nucleons in regions
where neutrino–matter interactions are significant. Additionally, simulations do not
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keep track of the abundances of individual nuclei, and equations of state for the fluid
do not always contain that information, complicating any estimate of the absorption
cross-section for this process. Cross-sections for the absorption of me onto nuclei can
be found in Bruenn (1985). In high-density, low-temperature, neutron-rich regions
inside of merging neutron stars, the modified URCA processes (Yakovlev et al. 2001;
Alford et al. 2021)

N þ n ! N þ pþ e� þ �me; N þ pþ e� ! N þ nþ m ð21Þ
(with N a spectator nucleon) may also play a role in the evolution of the system
through the creation of an effective bulk viscosity in the post-merger remnant (Alford
et al. 2018).

In the expressions derived so far for neutrino absorption, we have generally
ignored final state blocking factors. These can however be approximately calculated
if we rely on the fact that the fluid particles are in statistical equilibrium at a given
temperature. Final state blocking factors for neutrino emission are slightly more
complex to take into account. For neutrinos of a given energy and momentum, the
neutrino emission rate will generally be of the form g ¼ g
ð1� fmÞ, where the ð1�
fmÞ term captures Pauli blocking for neutrinos in the final state. This is not a form that
is practical to use in simulations, as we would like the emission rate and opacities to
depend solely on the properties of the fluid, without any dependency on fm. Burrows
et al. (2006) show that a convenient redefinition of the emissivity and absorption
opacity can solve this problem. If we directly use g
 as our emission rate (without
neutrino blocking factor), and define j
a ¼ ja=ð1� f eqm Þ as our absorption opacity
(with f eqm taken from Eq. (7)), then the collision term for charged-current reactions in
Boltzmann’s equation can be written in the two equivalent ways

dfm
ds

� �
collisions

¼ gm � cjafm ¼ g
m � cj
afm; ð22Þ

with g the emissivity per unit of solid angle and neutrino energy. Importantly, in the
first expression gm depends of fm, but in the second g
m does not. Accordingly, most
simulations use g
 and j
a to parametrize neutrino–matter interactions. In our dis-
cussion of numerical algorithms for neutrino transport, emissivity and absorption
opacity will generally refer to these corrected values.

We also note that when all reactions are accounted for, g
 ¼ cj
af
eq
m (Kirchoff’s

law). This allows us to calculate only one of ðg
;j
aÞ, then set the other to make sure
that the equilibrium energy density of neutrinos has the desired physical value. This
is particularly useful in dense, hot regions, where neutrinos quickly reach equilibrium
with the fluid. In that regime, the exact emission and absorption rate can be more
difficult to calculate (due to blocking factors), but they are also fairly unimportant:
what matters is that neutrinos quickly reach their equilibrium density, and then
diffuse through the dense regions. This is guaranteed when using Kirchoff’s law,
even if g
 and j
a are not extremely accurate.

The total emission rate of neutrinos due to a given reaction can be calculated by
integrating g
 over both solid angle and neutrino energy. In terms of the absorption
opacity, we get
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Q ¼ 4p
Z

dm

ðhcÞ3
m3

1þ exp m�lm
kBT

h i j
aðmÞc: ð23Þ

For comparison with results for other reactions, we can estimate this emission rate for
me, ignoring the final state blocking factor of protons in the inverse reaction and using
WM � 1. We then get for the emission of electron neutrinos due to electron capture on
protons (energy per unit volume)

Qpe� 	 1:38ð4pÞr0cnn kBT

mec2

� �2 kBT

hc

� �3

F5

	
geqme


ðkBTÞ ð24Þ

with g ¼ l=ðkBTÞ. Similarly, the number of neutrinos emitted per unit volume is
simply

Npe� 	 1:38ð4pÞr0cnn kBT

mec2

� �2 kBT

hc

� �3

F4

	
geqme



; ð25Þ

and the average energy of emitted neutrinos

hmi ¼ F5

	
geqme



F4

	
geqme


 kBT : ð26Þ

For kgmk � 1, hmi� 5:1kBT . We note that this is higher than the average energy of
neutrinos in equilibrium with the fluid. This will generally be true whenever neu-
trinos are allowed to directly escape from an emission region instead of thermalizing
with the fluid first. A more explicit expression for Qpe� is

Qpe� 	 	
3:4� 1030erg s�1cm�3


 kBT
MeV

� �6 nn
1036 cm�3

F5

	
geqme



F5ð0Þ : ð27Þ

We see that the emission rate of neutrinos has a strong dependence in the fluid
temperature, with Q / T6, and a linear dependence in the fluid density (ignoring the
Fermi integral term). The emission rate of �me can be computed in the exact same
manner,

Qneþ 	 	
3:4� 1030erg s�1cm�3


 kBT
MeV

� �6 np
1036 cm�3

F5

	� geqme



F5ð0Þ : ð28Þ

In this expression, we made use of the fact that geq�me ¼ �geqme . The dependence of these
emission rates on nn and np may seem counterintuitive, as Qpe� involves absorption
of electrons on protons, yet is proportional to nn. This is however a natural result of
using Kirchoff’s law; the complete dependence of Qpe� in the density of all fluid
particles is practically hidden in the Fermi integral term F5ðgeqme Þ, and the assumption
of statistical equilibrium in the fluid. In particular, as FnðgÞ monotonically increase
with g, and neutrino emission in post-merger remnants comes from regions of the
fluid where gme\0 (more neutron-rich than in equilibrium), we generally get
Qneþ [Qpe� even though np\nn.
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3.2.2 Pair processes

After charged current reactions, the most commonly considered processes for the
emission and asborption of neutrinos are the pair processes

eþe� $ m�m; cc $ m�m; N þ N $ N þ N þ m�m ð29Þ
i.e., electron–positron annihilation, plasmon decay, and nucleon–nucleon Brems-
strahlung. Here, each pair can be me�me, ml�ml, or ms�ms. Pair processes will be the
dominant source of neutrino emission for muon and tau neutrinos, as charged-current
reactions involving muons and taus are significantly less common than charged
current reactions involving electrons in the merger context (the mass of a muon is
105 MeV, while most of the post-merger remnant has temperature T. 50 MeV, and
the neutrinospheres and optically thin regions are at even lower temperatures). Pair
processes are however harder to accurately include in simulations due to their
nonlinear dependencies in the neutrino distribution functions. The reaction rates for
the m�m pair productions (forward reactions) depend on the distribution function of
both neutrinos and antineutrinos through blocking factors, which are typically dif-
ficult to estimate accurately with existing transport algorithms. Worse, the reaction
rates for pair annihilations (inverse reactions) are directly propoprtional to the pro-
duct of the distribution functions of neutrinos and antineutrinos.

Let us consider for example the reactions m�m ! eþe�, for neutrinos of energy
significantly higher than mec2 (as appropriate in neutron star mergers). We can
slightly adapt the results of Salmonson and Wilson (1999), based on the Newtonian
rate calculations of Cooperstein et al. (1986) and Goodman et al. (1987), to find the
rate of momentum deposition per unit volume

Qa
m�m ¼

Z Z
d3pðmÞffiffiffiffiffiffiffi�g

p
ptðmÞh

3

d3pð�mÞffiffiffiffiffiffiffi�g
p

ptð�mÞh
3
fðmÞfð�mÞ paðmÞ þ pað�mÞ

� �DG2
F

3p
�pbðmÞpbð�mÞ

� �2
ð30Þ

with GF ¼ 5:29� 10�44 cm2 MeV�2 and D ¼ 2:34 for electron type neutrinos,
while D ¼ 0:50 for muon or tau neutrinos. We have here chosen to rewrite the results
of Salmonson and Wilson (1999) into a manifestly covariant expression more
appropriate for general relativistic simulations. From this expression, we can see that
the probability that a given neutrino is annihilated will depend on both the
momentum of that neutrino and the distribution function of its antiparticle.

To limit the computational cost of this calculation, it is often convenient to make
some assumptions regarding the distribution function of neutrinos, e.g. ignoring
neutrino blocking factors (for the forward reactions), assuming equilibrium
distributions of neutrinos (for either direction), or, in moment schemes, using
approximate moments of the distribution functions (for the backward reactions). The
most common strategy in existing merger simulations has been to compute the
forward reaction rates assuming equilibrium distributions of neutrinos or ignoring
blocking factors, either for all neutrinos or only for the muon and tau neutrinos. The
inverse reaction rates are then computed using Kirchhoff’s law, even though that law
is not necessarily valid for pair processes (O’Connor 2015). These approximations
are generally reasonable for heavy lepton neutrinos close to the neutrinosphere, i.e.,
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where most of the neutrinos that leave the remnant are emitted, because as long as
charged-current reactions including muons and taus are negligible, the distribution
functions of ml; �ml; ms; �ms are all identical and close to equilibrium. They are however
very unreliable for electron-type neutrinos and for calculations of the rate of m�m
annihilation in regions where the neutrinos are not in equilibrium with the fluid (e.g.
in the polar regions). We will consider some of the ways in which the latter process
has been studied in our discussion of specific radiation transport algorithm and
simulations.

Now that we have established the difficulty of properly treating pair processes, let
us estimate their importance in the merger context. We begin again with eþe�

annihilation. Ignoring neutrino blocking factors, Burrows et al. (2006) integrate the
reactions rate of Dicus (1972) to find a total emissivity in m�m pair of

Qeþe� ¼ Q0
kBT

MeV

� �9F4ðgeÞF3ð�geÞ þ F3ðgeÞF4ð�geÞ
2F4ð0ÞF3ð0Þ

ð31Þ

with Q0 ¼ 9:76� 1024 ergs cm�3 s�1 for me�me, and Q0 ¼ 4:17� 1024 ergs cm�3 s�1

for all other neutrinos combined. The average energy of the emitted neutrinos in the
fluid frame is

hmi ¼ 1

2

F4ðgeÞ
F3ðgeÞ

þ F4ð�geÞ
F3ð�geÞ

� �
T ð32Þ

(e.g., hmi 	 4:1T when ge ¼ 0). Approximate expressions for the energy spectrum of
the neutrinos are also found in Burrows et al. (2006), following the work of Bruenn
(1985). If we compare this result to Qpe� and Qneþ from the previous section, we see
that for me�me, pair processes will only dominate over charge current reactions in very
hot and/or low density regions of the fluid, where neutrinos will either rapidly reach
their equilibrium distribution or rapidly cool the fluid. In such cases, getting exact
reaction rates is not overly important as long as we obtain the correct equilibrium
distribution and have sufficiently high emission rates. Even in dense regions of the
fluid, neglecting me�me production is thus not a particularly strong approximation (but
neglecting pair annihilation in low-density regions might be, as we will see).

What about the heavy-lepton neutrinos? The equilibrium energy density of
neutrinos is

Em 	
	
6� 1025ergs cm�3


 kBT

MeV

� �4F3ðgmÞ
F3ð0Þ :

ð33Þ

At T ¼ 1 MeV, the timescale for neutrinos to reach that equilibrium density solely
through eþe� emission is thus O(10 s), but at T ¼ 10 MeV, it is O(0.1 ms), i.e., much
shorter than the dynamical timescale of a neutron star merger. In hot regions, heavy-
lepton neutrinos (muons and taus) will thus reach their expected equilibrium density,
and the neutrino luminosity of ml�mlms�ms will be set by the diffusion timescale of
neutrinos through the hot, dense remnant. For heavy-lepton neutrinos, ignoring pair
processes (and missing the associated cooling of the remnant) would be significantly
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worse than incuding approximate reaction rates, as long as those rates properly
recover the equilibrium energy of neutrinos in dense regions.

Let us now briefly consider other pair processes. For nucleon–nucleon
Bremsstrahlung, Burrows et al. (2006) (building on results by Brinkmann and
Turner 1988; Hannestad and Raffelt 1998) find the total neutrino emissivity per
species to be

Qnb 	 1:5� 1026ergs cm�3 s�1
	 
 nn

1036 cm�3

� �2 kBT

MeV

� �5:5
: ð34Þ

We see that Bremsstrahlung will dominate over eþe� annihilation in denser, colder
regions. In the densest region of a post-merger accretion disk (typically
nn � 1035�37 cm�3, T �ð1� 10Þ MeV), we see that the process dominating the
production of heavy-lepton neutrinos may thus vary, and we can neglect neither
Bremsstrahlung nor eþe� pair production/annihilation.

Approximate formula for the total energy emission from plasmon decays and for
the average energy of the neutrinos emitted through that process can be found in
Ruffert et al. (1996). They are equivalent to

Qpl ¼ Q0;pl
kBT

MeV

� �9
c6e�cð1þ cÞ 2þ c2

1þ c

� �
B ð35Þ

with Q0;pl ¼ ð6� 1023ergs cm�3 s�1Þ per species for electron-type neutrinos and
Q0;pl ¼ ð1021ergs cm�3 s�1Þ per species for other neutrinos. The blocking factor
B ¼ hð1� fmÞihð1� f�mÞi can only be evaluated assuming a specific neutrino distri-

bution function, while c 	 0:056
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2 þ 3g2eÞ=3

p
is a parameter with strong sensi-

tivity to the electron degeneracy parameter ge. We see that we need relatively fine-
tuned conditions for plasmon decay to dominate over pair annihilation, especially for
heavy-lepton neutrinos—as a result, this reaction is often ignored in merger
simulations.

From these estimates of the emissivity of pair processes, we can understand one
additional difficulty in the use of these processes in simulations. Both eþe� creation/
annihilation and plasmon decays have Q / T9, with no explicit dependence in the
fluid density (at least in regions where blocking factors are negligible). This can
prove problematic in merger simulations, where numerical errors can lead to the
creation of hot low-density regions whose properties are not necessarily well
modeled by equations of state built to capture the properties of dense matter. As a
result, some simulations ignore pair processes below an ad-hoc density threshold.

3.2.3 Neutrino scattering

Scattering of neutrinos on protons, neutrons, nuclei and electrons plays an important
role in setting the diffusion timescale of neutrinos through the densest regions of
merger remnants. The total cross-sections per baryon for the nearly elastic scattering
of neutrinos onto protons and neutrons are (Yueh and Buchler 1976; Bruenn 1985;
Burrows et al. 2006)
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rs;p 	 1:1r0
m

1MeV

h i2
; rs;n 	 1:3r0

m
1MeV

h i2 ð36Þ

and the scattering opacity for these two processes combined is thus

js 	 ð1:1np þ 1:3nnÞr0 m
1MeV

h i2
: ð37Þ

We see that these quasi-elastic scatterings are about as likely as charged-current
absorption for me and �me, and will often be a dominant contribution to the total opacity
of the fluid for heavy-lepton neutrinos. We also note that the differential cross-
sections are

drn;p
dX

¼ rn;p
4p

1þ dn;pl
	 
 ð38Þ

with l ¼ cos h and h the scattering angle. As dp � � 0:2 and dn � � 0:1 at the most
relevant neutrino energies (Burrows et al. 2006), back-scattering is favored. How-
ever, most merger simulations assume isotropic elastic scatterings in the fluid frame
(dn;p ¼ 0), an approximation whose impact on simulation results has not been tested
so far.

Similar calculations can be made for scattering on atomic nuclei. For example,
elastric scattering on a particles has a total cross-section per nucleus of (Yueh and
Buchler 1976; Burrows et al. 2006)

rs;a 	 0:8r0
m

1MeV

h i2
: ð39Þ

We note that in the neutron star merger context, we typically have na � nn in regions
where neutrino scattering is important, and similar results apply to heavier nuclei. As
many equations of state used in merger simulations do not provide detailed infor-
mation about the abundances of individual atomic nuclei, the contribution of nuclei
to the total scattering opacity is often only approximately taken into account (e.g.
considering only a particles, or a particles and some ‘representative’ nucleus of fixed
proton number Z and atomic number A), or completely ignored.

Including inelastric scattering of neutrinos on electrons is a more difficult
problem, and as a result inelastic scattering has not so far been taken into account in
merger simulations. To understand these issues, we can look at the methods used to
treat inelastic scattering in core-collapse supernovae (Bruenn 1985; Burrows et al.
2006). The relevant part of Boltzmann’s equation can be written

dfm
ds

� �
¼ ð1� fmÞ

Z
d3p0

h3
f 0mR

inðm; m0; cos hÞ � fm

Z
d3p0

h3
	
1� f 0m



Routðm; m0; cos hÞ:

ð40Þ
Note that fm is the distribution function for neutrinos with energy m and momentum
pl, while f 0m is the distribution function for neutrinos with energy m0 and momentum
p0l. R

in;out are the scattering kernels to scatter into/out of the energy bin m from/to m0.
Even ignoring the blocking factors ð1� fmÞ and ð1� f 0m Þ, the collision terms clearly
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depend on the distribution function of neutrinos, and couple the values of fm at all
neutrino momenta. One possible approximation is to use a truncated expansion of the
kernels in cos h:

Rin;outðm; m0; cos hÞ 	 1

2
Uin;out

0 ðm; m0Þ þ 3

2
Uin;out

1 ðm; m0Þ cos h ð41Þ

with U0;1 known functions of the incoming and outgoing neutrino energies. The
integrals over p0i are then similarly truncated using moments of the distribution
function f 0m . While this makes the evolution of fm slightly more tractable numerically,
we still end up with numerically stiff terms coupling every pair of neutrino energies,
which makes these reactions expensive to include in simulations.

The scattering kernels have complex dependencies in the incoming and outgoing
neutrino energies, and the temperature of the fluid (which sets the electron
distribution function). As a very rough order of magnitude estimate, and assuming
that the neutrinos have energies larger than or comparable to the electrons, we have

Rin;out � r0c
�m�e	
mec2


2
" #

ð42Þ

with �m the typical energy of neutrinos at the current point, and �e the typical energy
of electrons. This leads to an effective opacity (i.e., the inverse of the mean free path
of neutrinos with respect to scattering on electrons)

js � r0
�m�e	
mec2


2
" #

�m
hc

h i3
� r0

�4m�e

ðMeVÞ5
" #

1030 cm�3
	 


: ð43Þ

We thus see that at the densities at which neutrino–matter interactions are most
important in neutron star mergers, inelastic scattering on electrons has a significantly
lower opacity than elastic scattering on nucleons or charged-current reactions, but not
necessarily smaller than absorption opacities for pair processes. Accordingly, its
direct impact on me and �me is likely subdominant, but it could be important to the
thermalization of heavy-lepton neutrinos.

Finally, we note that scattering on nucleons is not perfectly elastic. The typical
exchange of energy between neutrinos and the fluid is much smaller for nucleon
scatterings than for electron scatterings, but as seen above, the cross-sections for
nucleon scatterings are larger in regions where neutrino–matter interactions are
important. In core-collapse supernovae, Wang and Burrows (2020) showed that the
smaller energy transfer during each scattering can be used to treat inelastic scattering
on nucleons as a diffusion process in energy space, leading to much cheaper
calculations than when using scattering kernels: there is no need to couple all energy
bins through numerically stiff interaction terms. In Wang and Burrows (2020), the
impact of neutrino–nucleon scattering on the thermalization of heavy-lepton
nucleons was also shown to be comparable to the impact of neutrino–electron
scattering. Accounting for inelastic scattering on nucleons could thus provide an
avenue to partially account for the thermalization effect of scattering events without
an implementation of inelastic scattering on electrons.
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3.2.4 Discussion

From the previous sections, we see that the reactions currently used in our most
advanced merger simulations can, if properly included in a transport algorithm,
capture the dominant processes for emission, absorption, diffusion, and thermaliza-
tion of me and �me in most of a post-merger remnant. Without even getting into the
complications of approximate transport methods, however, we see that the situation
is already more complex for other species of neutrinos. Emission of heavy-lepton
neutrinos is dominated by pair processes which are poorly modeled as soon as
neutrinos are out of equilibrium with the fluid. Thermalization of these neutrinos is
likely impacted by inelastic scattering, which current simulations do not take into
account. Finally, pair annihilation of all types of neutrinos in low-density regions is
difficult to include, but possibly important to jet formation. It is thus worth noting
that uncertainties in transport schemes are not the only potential sources of errors in
our modeling of neutrinos today; the choice of physical processes included in the
simulations, and the accuracy to which they are modeled, remains an area where
significant improvements are possible.

3.3 Quantum kinetics and neutrino oscillations

So far, we have considered neutrinos as particles in well-defined flavor states
(electron, muon, tau). However, we know that this is only an approximation. Even in
vacuum, the fact that the mass eigenstates of neutrinos are different from their flavor
eigenstates leads to oscillations between flavors. Vacuum oscillations occur on length
scales too long to impact the evolution of a post-merger remnant, though if neutrinos
from a neutron star merger were ever to be observed, oscillations between the source
and the Earth would certainly be significant. There are however other processes that
lead to flavor transformation with more relevance to the merger problem. Generally,
any process that transform electron type neutrinos into heavy-lepton neutrinos (or
vice-versa) close enough to the merger remnant that neutrino–matter interactions are
still impacting the composition of the outflows has the potential to change the
properties of kilonovae and the outcome of nucleosynthesis in neutron star mergers.

One way to study neutrino oscillations is through the quantum kinetic equations
(QKE). In that formalism, neutrinos are described by the 3� 3 density matrix
qðt; xi; plÞ. The diagonal terms of this matrix can be understood as equivalent to the
distribution functions fme , fml , fms , while the off-diagonal terms encode quantum
coherence between flavors. A second matrix �q contains information about
antineutrinos. The density matrix evolves according to (Vlasenko et al. 2014)

Dq
ds

¼ �i H ; q½ � þ C½q� ð44Þ

where the left-hand side is a total time derivative in phase-space, and the two terms
on the right-hand side are responsible for, respectively, oscillations and collisions.
The Hamiltonian H can be decomposed as
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H ¼ Hvac þ Hmat þ Hmm; ð45Þ
with Hvac responsible for vacuum oscillations, Hmat for interactions between neu-
trinos and the matter potential, and Hmm for neutrino self-interactions.

At least two types of oscillations have been found to be potentially improtant in
the merger context. The matter–neutrino resonance (MNR) occurs when the matter
potential is equal to the neutrino self-interaction potential, and can impact the
luminosity of me and �me within a few radii of the post-merger remnant (Caballero et al.
2014; Zhu et al. 2016). The flast-flavor instability (FFI), on the other hand, is due
solely to the neutrino self-potential, and seems to occur in regions where the sign of
the net lepton flux (number flux of me minus number flux of �me) changes between
different directions of propagation of the neutrinos (Banerjee et al. 2011; Wu et al.
2017; Grohs et al. 2022). The FFI occurs on very short timescales (� ns, i.e., cm
length scales), and is likely active in many regions close to the post-merger remnant
(Grohs et al. 2022). How much flavor transformation occurs as a result of the FFI
remains uncertain, but recent studies using simplified prescriptions for where the FFI
occurs and how much flavor transformation happens as a result have shown that it
could plausibly lead to significant changes in the composition of matter outflows (Li
and Siegel 2021; Fernández et al. 2022). As quantum kinetics is not at this point
studied as part of general relativistic radiation transport algorithms coupled to merger
simulations, but rather evaluated using either simple approximations or specialized
zoomed-in simulations, we do not discuss it in more detail here. We do however
emphasize that these oscillations could very well have an impact on the composition
of the matter outflows produced in mergers. The fact that they are not included
directly within simulations is due largely to the additional technical difficulty of
evolving the quantum kinetic equations and to the very short timescales involved in
the FFI, rather than to a certainty that oscillations are not important to astrophysical
results. Obtaining better models for the role of oscillations in merger simulations is
certainly an important open problem in merger simulations today.

4 Radiation transport algorithms

Having discussed the reactions that we would like to take into account in neutron star
merger simulations, we can now turn to a discussion of the various methods used so
far to treat neutrino transport and neutrino–matter interactions. These can be broadly
classified into quasi-local leakage schemes, approximate transport schemes based on
the moment formalism, and Monte-Carlo evolution of Boltzmann’s equation.
Multiple simulations have also considered mixed leakage-moment schemes, while
algorithms mixing Monte-Carlo methods with a moment scheme have been
considered but not successfully used in merger simulations. For most of this section,
we attempt to keep the discussion focused to the methods used for general relativistic
radiation hydrodynamics simulations, either in the context of neutron star merger
simulations or for the evolution of their post-merger remnant. We will however
discuss along the way a number of techniques that were first developed for
Newtonian simulations or for simulations using quasi-Newtonian potentials that have
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either been ported to general relativistic simulations, or are likely to be used in that
context in the near future. This is particularly true for the more advanced leakage
schemes, which were first developed in non-relativistic codes but are currently being
integrated in general relativistic simulations. We also note that neutrino radiation
transport algorithms used in simulations of core-collapse supernovae are often more
advanced than any of the algorithms used in merger simulations (e.g. Mezzacappa
and Bruenn 1993; Liebendoerfer et al. 2009; Takiwaki et al. 2014; Kuroda et al.
2016; O’Connor and Couch 2018; Roberts et al. 2016; Bruenn et al. 2020; Skinner
et al. 2019). In fact, many algorithms used in merger simulations today are directly
inspired from work done in the core-collapse community. Accordingly, while we do
not attempt to review the algorithms used in the core-collapse context, we will
occcasionally refer to methods developed for core-collapse simulations if they have
been used in the merger context. More advanced methods have also been proposed,
but not yet applied to the merger problem; e.g. methods for a fully covariant
evolution of the radiative transport equations appropriate for a direct discretization of
Boltzmann’s equation have recently been studied in Davis and Gammie (2020),
Lattice–Boltzmann methods have been implemented and used on test problems in
Weih et al. (2020a), and the MOCMC (Method of Characteristics Moment Closure)
method has shown that it is possible to combine particle and moment formalisms to
improve on the convergence properties of a pure Monte-Carlo radiation transport
code (Ryan and Dolence 2020).

In this review, we focus particularly on moment methods, as they have been used
in the majority of the most advanced radiation hydrodynamics simulations of mergers
to-date. Most general relativistic simulations using leakage schemes use methods that
are at best order-of-magnitude accurate, while very few simulations have been
performed with the recently developed Monte-Carlo algorithms. Accordingly,
moment schemes remain at the moment our best source of information about the
role of neutrinos in neutron star mergers.

We note that while most simulations consider 3 species of neutrinos and 3 species
of antineutrinos, it is fairly common for simulations to assume that the distribution
function of all heavy-lepton neutrinos ml; ms; �ml; �ms are identical, and thus to replace
the evolution of those 4 species by the evolution of a single species mx that represent
them all; we will use the notation mx to represent all heavy-lepton neutrinos here as
well.

4.1 Leakage schemes

4.1.1 Overview

Leakage algorithms are the simplest methods used to treat neutrinos in neutron star
merger and post-merger simulations. In their most basic form, they can capture the
cooling of the post-merger remnant at the order-of-magnitude level, but not the
evolution of the composition of the outflows. More advanced leakage schemes have
however been developed for post-merger simulations, and mixed leakage-moment
schemes have been used in general relativistic merger simulations. Those advanced
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schemes can at least approximately capture absorption within the outflows of
neutrinos emitted by a post-merger accretion disk or by a neutron star remnant.

The leakage schemes used in merger simulations today were first developed by
Ruffert et al. (1996), Rosswog and Liebendörfer (2003). They generally rely on a
local computation of the neutrino energy and number emission rates per unit volume,
Qm;free and Rm;free, for each species of neutrinos. In addition, leakage schemes compute
an estimate of the optical depth between a given grid cell and the outer boundary of
the computational domain, in order to estimate the diffusion timescale of trapped
neutrinos through the remnant.

The energy emission rate Qm;free is calculated as described in Sect. 3.2. In the
merger context, simulations have usually considered the total (energy-integrated)
emission rate, but energy-dependent leakage schemes have been developed for post-
merger simulations (Perego et al. 2016). In the former case, Rm;free ¼ Qm;free=h�mi, with
h�mi the average energy of emitted neutrinos. In the latter case, Rm;free for each energy
bin is just Qm;free=�m, with �m the energy at the center of the bin. In optically thin
regions, this is sufficient to calculate the cooling rate and composition changes of the
fluid. In optically thick regions, however, the rates at which neutrinos carry away
energy and lepton number are much lower than the free emission rates. In those
regions, we expect neutrinos to quickly reach their equilibrium distribution function
f eqm , and to slowly diffuse out of the remnant over a time scale tdiff . The rate at which
neutrinos carry energy away from a given cell is then approximately given, for
neutrinos of a given energy m, by

Qdiff ¼ Eeq
m

tdiff
; ð46Þ

with Eeq
m the equilibrium energy density of neutrinos. Most leakage schemes used in

merger simulations implement the diffusion time scale prescription of Rosswog and
Liebendörfer (2003)

tdiff ¼ adiff s2m
jtotc

ð47Þ

where jtot is the total opacity at the current point (including all absorption and
scattering processes considered in the simulation), and sm is the estimated optical
depth between that point and the domain boundary. The parameter adiff is calibrated
to the result of transport simulations; Rosswog and Liebendörfer (2003) use
adiff ¼ 3, but this choice is not unique (e.g. O’Connor and Ott 2010 argue for an
increase of adiff by a factor of two). The optical depth is defined as

sm ¼ min
C

Z
C
dsjtot

� �
; ð48Þ

with the minimum taken over all possible paths C starting from the current point and
ending at the boundary of the computational domain. The optical depth sm is energy
dependent, but the reactions that dominate the calculation of jtot all have j / m2

(charged-current reactions and elastic scatterings). Calculating sm at a single energy
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and then assuming sm / m2 is thus a reasonable approximation. We discuss different
methods to estimate sm later in this section. More complex estimates of tdiff are also
possible; for example, in the Improved leakage–equilibration–absorption
scheme (ILEAS) of Ardevol-Pulpillo et al. (2019), separate diffusion timescales are
calculated for the number and energy emission rate from the local gradient of the
number density and energy density. Such a local calculation also has the advantage of
allowing for emission rates that match the expected diffusion limit in optically thick
regions, which is not possible using the simpler dimensional analysis of earlier
schemes.

In an energy integrated leakage scheme, one then needs to integrate Qdiff ðmÞ and
Rdiff ðmÞ separately over m:

Qdiff ¼
Z

dm
m3

ðhcÞ3
f eqm
tdiff

ð49Þ

or, if we assume tdiff / m2,

Qdiff ¼ ðkBTÞ2
ðhcÞ2

ð1MeVÞ
hc

1MeV

tdiff ½1MeV�F1ðgmÞ ð50Þ

and similarly for the number diffusion rate

Rdiff ¼ ðkBTÞ
ðhcÞ

ð1MeVÞ2
ðhcÞ2

1

tdiff ð1MeVÞF0ðgmÞ: ð51Þ

The average energy of escaping neutrinos in the diffusion regime is then

h�midiff ¼
F1ðgmÞ
F0ðgmÞ

kBT : ð52Þ

We note that the average energy of diffusing neutrinos is significantly lower than the
average energy of a thermal spectrum, reflecting the fact that low energy neutrinos
diffuse faster than high energy neutrinos.

The actual rate at which neutrinos leave a given region of the fluid is then given by
an interpolation between the estimates valid at low and high optical depth, effectively
considering that neutrino transport is limited by the lowest of those two rates. Ruffert
et al. (1996) uses

Qm ¼ Qm;freeQm;diff

Qm;free þ Qm;diff
; Rm ¼ Rm;freeRm;diff

Rm;free þ Rm;diff
: ð53Þ

Alternatively, Sekiguchi (2010) considers an exponential transition between the two
regimes

Qm ¼ Qm;freee
�3sm=2 þ Qm;diff 1� e�3sm=2

� �
: ð54Þ

These results can then be coupled to the evolution of the fluid equations using
conservation of energy-momentum and lepton number
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raT
ab
fluid ¼

X
mi

�Qmi u
b � gab þ uaub

	 
raPmi

	 

ð55Þ

ra npu
a

	 
 ¼R�me � Rme : ð56Þ
The neutrino pressure term can for example be computed assuming a relativistic gas
of neutrinos in equilibrium with the fluid, i.e., Pmi ¼ Eeq

mi =3 (O’Connor and Ott 2010),
potentially suppressed in regions where neutrinos are not trapped. Alternatively, we
will see below that more advanced leakage schemes have been coupled to evolution
equations for the trapped neutrinos—in which case the neutrino pressure is calculated
directly from the estimated energy density of trapped neutrinos.

4.1.2 Leakage in general relativistic merger simulations

In general relativistic merger simulations, the first published leakage scheme was
developed by Sekiguchi (2010). This algorithm is a mixed moment-leakage
scheme with significantly more complexity that the simple scheme described above.
The algorithm assumes evolution equations

raT
ab
flþtr ¼� Qleaku

b; raT
ab
st ¼ Qleaku

b; ð57Þ

ra Ylu
að Þ ¼ R�me;leak � Rme;leak

	 

ua ð58Þ

for the stress-energy tensor Tab
flþtr of the fluid and trapped neutrinos combined, Tab

st of
streaming neutrinos, and for the lepton fraction Yl. The streaming neutrinos are
evolved using a moment scheme (see Sect. 4.2), which allowed later iterations of this
algorithm to realitively easily take into account reabsorption of the streaming neu-
trinos in low density regions. We can see from the evolution equations that this
algorithm has the advantage of guaranteeing exact conservation of energy-momen-
tum. Additionally, the algorithm evolves the fractions Ye, Yme , Y�me and Ymx of electrons
and neutrinos, assuming that these fractions reach their equilibrium value (at given
temperature, density and lepton fraction) in regions where neutrino–matter interac-
tions are fast compared to the numerical time step. This allows for relatively simple
estimate of the contribution of neutrinos to the fluid pressure, assuming that the
neutrinos are a relativistic gas.

An algorithm closer to the original methods of Ruffert et al. (1996), Rosswog and
Liebendörfer (2003) was first used in general relativistic simulations by Deaton et al.
(2013). In that work, the only contribution of neutrinos to the evolution of the system
is the source terms of Eqs. (55)–(56). In Deaton et al. (2013), the minimum optical
depth was calculated by considering lines along the coordinate directions x̂; ŷ; ẑ of a
cartesian grid, as well as along the diagonals of a cube in the same coordinates, a
method similar to that previously used by Ruffert and Janka (1999). This algorithm
however requires global communications between all points of the numerical grid
whenever sm is computed, and creates preferred directions along the axis of the
cartesian coordinates. An improved method to calculate sm was later proposed by
Neilsen et al. (2014), and is now the most commonly adopted algorithm in numerical
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relativity simulations. Their method relies on finding the path of shortest optical
depth linking neighboring cell centers on a grid. We can indeed discretize our
equation for sm at point �x as

smð�xÞ ¼ min
n

smð�xnÞ þ jtotð�xÞ þ jtotð�xnÞ
2

Dsn

� �
ð59Þ

with the minimum taken over all neighboring points �xn. Here, Dsn is the distance
between �x and �xn. Given an initial guess s0m for the optical depth at each point, we can
solve this equation iteratively, using

skþ1
m ð�xÞ ¼ min

n
skmð�xnÞ þ

jtotð�xÞ þ jtotð�xnÞ
2

Dsn

� �
ð60Þ

until kskþ1
m � skmk\� at all points for some small constant �. Because the optical

depth evolves slowly over time, a single iteration initialized with the value of sm at
the previous time step is generally sufficient to maintain a good estimate of sm
everywhere, except when computing sm for the first time. This method is now widely
used in neutron star merger simulations (Foucart et al. 2014; Radice et al. 2018;
Mösta et al. 2020; Cipolletta et al. 2021; Most and Raithel 2021). A conceptually
similar algorithm that does not rely on the existence of an underlying cartesian grid
has also been developed in Perego et al. (2014a), allowing for the easy use of this
method in grid-less simulations (e.g. SPH), while an improved numerical methods to
solve for sm by solving the eikonal equation has been proposed by Palenzuela et al.
(2022).

4.1.3 Leakage limitations and improved leakage schemes

The accuracy of a leakage scheme can be very problem dependent. The free
parameters in most leakage schemes are calibrated to spherically symmetric transport
problems, and tend to perform best in that context—while neutron star mergers and
their post-merger remnants are very asymmetric. Even ignoring symmetry issues,
however, the standard scheme discussed above has a number of important
limitations. We have already mentioned the fact that the simplest leakage schemes
do not accurately capture the local diffusion rate of neutrinos in the high optical
depth limit; in this section we consider a few additional notable issues.

First, in regions where the total optical depth is high but the absorption and
inelastic scattering optical depths are low, the assumption that neutrinos reach their
equilibrium distribution function can be inaccurate. This is particularly problematic
for heavy-lepton neutrinos, which typically have much lower absorption opacity than
scattering opacity. One way to solve this issue is to keep track of the energy density
of neutrinos, rather than assuming an equilibrium energy density. In Newtonian
simulations of post-merger disks, the Advanced Spectal Leakage (ASL) scheme of
Perego et al. (2016), for example, calculates the energy and number density of
trapped neutrinos assuming that the distribution function of trapped neutrinos f trm
satisfies the equation
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df trm
dt

¼ _fm;prod � _fm;diff ð61Þ

with

_fm;prod ¼
f eqm � f trm

max tm;prod;Dt
	 
 exp � tm;diff

tm;prod

� �
; ð62Þ

_fm;diff ¼
f trm

max tm;diff ;Dt
	 
 exp � tm;prod

tm;diff

� �
ð63Þ

for the estimated production time scale tm;prod and diffusion time scale tm;diff . Here, Dt
is the time step of the evolution. We see that in this scheme, if the time scale to
produce neutrinos is long, the trapped neutrinos do not reach equilibrium with the
fluid. Perego et al. (2016) further assume

f trm ¼ cf eqm 1� e�senð Þ ð64Þ
with sen the optical depth ignoring elasctic scatterings, and c a function of position
only. This allows for the use of the single unknown c to represent the function f trm .
The ASL scheme has been adapted for use in merger simulations within a smoothed
particle hydrodynamics (SPH) code (Gizzi et al. 2021), which in conjunction with the
development of a first general relativistic SPH code (Rosswog et al. 2022) should
allow for the use of ASL in general relativsitic merger simulations in the near future.
We note that the general relativistic algorithm of Sekiguchi (2010) also keeps track of
the energy density of trapped neutrinos when, in the notation of Perego et al. (2016),
tdiff � tprod. However, as Sekiguchi (2010) calculates the neutrino diffusion rate from
the equilibrium density of neutrinos rather than from the energy density evolved
within the simulation, the scheme only partially correct for the difference between
those two estimates of the energy. The ILEAS scheme (Ardevol-Pulpillo et al. 2019)
similarly tracks trapped neutrinos through an “equilibration-advection” step where
neutrinos in optically thick regions are assumed to be in equilibrium with the fluid,
and “trapped” neutrinos are otherwise advected through the computational grid to
guarantee exact conservation of lepton numbers as well as to approximately account
for the impact of trapped neutrinos on the properties of the fluid.

A second common issue with leakage schemes is that the simple interpolation
between free emission and diffusion is naturally going to be inexact in semi-
transparent regions. Corrections to the emission rate can be calibrated to specific
systems (e.g., Perego et al. 2016; Gizzi et al. 2021 for accretion disks and mergers),
but the region where most of the neutrinos leaving the system are emitted is, by
definition, particularly difficult to model accurately in a leakage scheme.

A third issue is that the energy of neutrinos diffusing through the system is not
constant; inelastic scatterings, as well as absorption and re-emission, are both taken
into account in the energy diffusion rate, and these processes tend to bring the
neutrinos closer to thermal equilibrium with the fluid. On the other hand, the
integrated values of Qdiff and Rdiff computed above assume that neutrinos random
walk through the fluid at constant energy. Diffusing neutrinos have lower average
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energies than the emitted neutrinos, but only because the opacity of the system to
high-energy neutrinos is larger; the scheme does not account for thermalization of the
neutrinos. The ASL scheme attempts to partially account for this thermalization by
suppresing Rm by a factor of e�sen=10, then renormalizing the energy-intergrated Rm to
keep the total number of neutrinos constant while reducing their average energy.

The last important issue is that, in its simplest form, a leakage scheme does not
account for the energy, momentum, and lepton number deposited in the fluid by
reabsorption of neutrinos emitted in different regions of the system. Neutrinos either
leave or do not leave the simulation domain, but the interactions between neutrinos
and the fluid after emission do not feedback onto the evolution of the fluid. This is
particularly problematic when studying the composition of matter outflows, which is
known to be significantly impacted by absorption of me (Wanajo et al. 2014). In
general relativistic merger simulations, multiple leakage schemes have attempted to
approximately include these absorption effects. In Mösta et al. (2020) and Cipolletta
et al. (2021), absorption is taken into account by calculating the emission and
absorption of neutrinos along radial rays in the post merger remnant. Along each ray,
the neutrino emissivity is estimated from the energy and number density emission
rates predicted by a leakage scheme. The heating rate and change in composition of
the fluid can then be estimated from the neutrino luminosity integrated over each ray,
and from a local estimate of ja. Radice et al. (2018) instead consider approximate
transport along each ray, evolving the energy density of the free-streaming neutrinos
(zeroth moment, see Sect. 4.2). In all of these works, absorption of free streaming
neutrinos is only included in optically thin regions, with an exponential cutoff / e�sm

applied to the absorption rate in optically thick regions. In the ILEAS scheme (Arde-
vol-Pulpillo et al. 2019), neutrino emission (as predicted by the leakage) is similarly
followed along “rays” and potentially reabsorbed. However, no specific geometry is
assumed for these rays; instead, neutrinos follow the gradient of the optical depth.
This leads to many more rays that may jointly contribute to absorption in any given
cell, thus complicating the algorithm, but also to a propagation of neutrinos that
should better match the geometry of the system.

We note that whenever an attempt is made at taking into account neutrino
absorption, it is important to calculate the absorption opacities for the energy of the
free-streaming neutrinos, rather than for the energy of neutrinos locally in
equilibrium with the fluid. Typically, neutrinos in merger simulations have
�m �ð10� 20Þ MeV, while in the outflows T � 1 MeV. As ja / m2, assuming
thermal equilibrium of the neutrinos with the fluid can lead to large underestimates of
the absorption rate (Foucart et al. 2016b; Radice et al. 2018). This is an issue not only
for leakage schemes, but also for energy-integrated moment schemes, as we will see.

In Newtonian (or pseudo-Newtonian) post-merger simulations, simple lightbulb
prescriptions have instead been used to model the spatial distribution of emitted
neutrinos (Fernández and Metzger 2013; Metzger and Fernández 2014). In a
lightbulb model, the total luminosity of neutrinos is calculated by integrating over the
entire simulation, then that luminosity is assumed to come from a specific region—in
the case of post-merger systems, an annulus around the densest region of the remnant
accretion disk and/or the surface of the remnant neutron star (if present).
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Alternatively, simulations using the ASL scheme have combined that scheme with a
more advanced approximate transport algorithm (see Perego et al. 2014b; Gizzi et al.
2019, 2021). In that algorithm, neutrinos emitted in optically thick regions
(sm [ 2=3) are assumed to diffuse to the neutrinopshere (sm ¼ 2=3 surface) along
the gradient of sm (i.e., along the path of smallest optical depth), before free-streaming
from all points of the neutrinosphere. Neutrinos emitted in optically thin regions just
free-stream from their point of emission. The number density of neutrinos outside of
the neutrinosphere can then be combined with calculations of the absorption and
scattering optical depth to determine energy and momentum deposition in optically
thin regions. As the calculation of the number density of neutrinos requires first the
determination of a map linking each point at sm [ 2=3 to a point on the
neutrinosphere, and then for each point at sm\2=3 an integral over the entire
neutrinosphere and all optically thin regions, this algorithm is significantly more
expensive than other leakage schemes, even in Newtonian physics where free-
streaming neutrinos can be assumed to propagate along straight lines.

4.1.4 Discussion

Overall, we thus see that leakage schemes provide us with a simple, cost-effective
method to approximately incorporate neutrino cooling in merger simulations. Using a
basic leakage scheme typically has no noticeable effect on the cost of a merger
simulations, but the results are only order-of-magnitude accurate and do not account
for the important role of neutrino absorption in matter outflows. More advanced
leakage methods can be developed through coupling to radiation transport
algorithms, or by attempting to predict where the leaking neutrinos will go as they
leave the system. These more advanced algorithms will naturally be more costly, but
they have been shown to provide a better match to the result of full radiation
transport simulations, at least on test problems. Estimating the error of such an
algorithm without comparison to a more advanced simulation is however always
difficult.

4.2 Moments-based radiation transport

To go beyond leakage schemes and attempt to transport neutrinos along geodesics
through a numerical simulation, multiple general relativistic merger codes have now
implemented “tuncated moments” schemes, i.e., algorithms evolving moments of the
distribution function of neutrinos. The formalism for general relativistic moments
schemes was derived by Thorne (1981), while the development of methods for the
coupled evolution of the fluid and moment equations largely build on work
performed for photon transport in Newtonian simulations (Stone et al. 1992; Audit
et al. 2002; Vaytet et al. 2011; Skinner and Ostriker 2013). For general relativistic
transport, it saw early uses in spherical symmetry (Rezzolla and Miller 1994), before
being adapted to the methods used in 3D neutron star merger simulations (Shibata
et al. 2011). Our understanding of the moment equations in relativistic systems also
significantly benefited from work done in the context of photon transport in accretion
disks (Sadowski et al. 2013). The moment formalism leads to evolution equations
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that are typically more complex and costly to evolve than the leakage scheme, but
automatically include emission, transport, and reabsorption of neutrinos. We will see
that moment schemes have been very successful in providing us with an improved
understanding of the role of neutrinos in neutron star mergers, but also that the
truncated expansion of the distribution function used in these schemes will force us
to choose approximate analytical closure for unknown higher moments of fm, leading
to evolution equations that do not converge to the true solution of Boltzmann’s
equation, with hard-to-quantify errors in the results.

We organize our discussion of moment schemes as follow. In Sect. 4.2.1, we
discuss the basic ideas behind the moment formalism and the derivation of the
moment equations. In Sect. 4.2.2, we review evolution equations for the moments in
the frame of a numerical simulation as well as prescriptions to account for energy and
momentum transfer between neutrinos and the fluid. In Sect. 4.2.3, we discuss lepton
number exchange and the option for energy-integrated moment schemes to evolve
the neutrino number density to guarantee exact lepton number conservation. In
Sect. 4.2.4, we provide more details on the calculation of the coupling terms between
neutrinos and matter, with a focus on issues that arise when the energy spectrum of
neutrinos is not known. In Sect. 4.2.5 we discuss the approximate analytical
prescriptions used to close the moment equations, while Sect. 4.2.6 focuses on the
numerical implementation of the moment formalism in general relativistic merger
codes. In Sect. 4.2.7 we discuss specific issues with the use of moment schemes in
high-density regions, and ways to recover the proper diffusion rate of neutrinos
through those regions. Finally, Sect. 4.2.8 discusses approximate implementations of
neutrino–antineutrino pair annihilation in low-density regions.

In this section, we choose units such that h ¼ c ¼ 1.

4.2.1 Truncated moments formalism

To understand the basic idea behind the moment formalism, let us write the neutrino
4-momentum as

pl ¼ � t̂
l þ ll

	 
 ð65Þ
with t̂l a timelike unit vector, and ll a spacelike unit vector orthogonal to t̂l. We see
that � is the neutrino energy for an observer with 4-velocity t̂

l
, and that by con-

struction plpl ¼ 0.
The nth moment of the distribution function fm according to our observer with 4-

velocity t̂
l
is defined as

M a1...an t; xi
	 
 ¼ �3

Z
dXfm t; xi; �;X

	 

t̂
a1 þ la1

	 

. . . t̂

an þ lan
	 


: ð66Þ

with
R
dX an integral over solid angle on the unit sphere in momentum space. For

example, the 1st moment is
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M a
	
t; xi; �


 ¼ �3
Z

dXfm
	
t; xi; �;X


	
t̂
a þ la



; ð67Þ

while the energy density of neutrinos (0th moment) for that same observer is

E t; xi; �
	 
 ¼ �3

Z
dXfm

	
t; xi; �;X


 ¼ � M a t̂að Þ: ð68Þ

We thus see that only the spatial components of M a are independent of the 0th
moment; these are usually denoted as the flux density

Fa ¼ �3
Z

dXfm
	
t; xi; �;X



la ð69Þ

with, by construction, Fa t̂a ¼ 0, i.e., Fa is a purely spatial vector according to our
chosen observer. Combining these results, we get

M a ¼ Et̂
a þ Fa: ð70Þ

Similarly, for the second moment,M ab t̂a ¼ �Mb andM ab t̂b ¼ �M a, and so the only
components of the second moment that cannot be directly reconstructed from E and
Fa are the spatial components of the pressure tensor

Pab ¼ �3
Z

dXfm
	
t; xi; �;X



lalb ð71Þ

with Pab t̂a ¼ Pab t̂b ¼ 0. With those definitions, we can write the second moment as

M ab ¼ Et̂
a
t̂
b þ Fa t̂

b þ Fb t̂
a þ Pab: ð72Þ

We note that these moments are well-defined tensors, but they do generally require
the choice of a specific frame in which neutrino energies are measured. The one
exception is the energy integrated second moment of fm, which can be written as

M ab
tot ¼

Z 1

0
d��

Z
dXfmp

apb: ð73Þ

As �d�dX ¼ d3p=ðpt̂ ffiffiffiffiffiffiffi�g
p Þ is the invariant integration volume in momentum space,

written in an orthonormal frame with timelike coordinate t̂
a
, that expression is

independent of the coordinates in which we measure �. In fact, comparing with

Eq. (5), we see that M ab
tot is the stress-energy tensor for the chosen species of

neutrinos.
The first moment equation can be derived by taking the covariant divergence of

the first moment with neutrino energies measured in the fluid rest frame (i.e., taking
t̂
l ¼ ul), and combining it with Boltzmann’s equation. We get (Thorne 1981)

raM
a � o

om
mM abraub
	 
þM abraub ¼ �Saua ð74Þ

with m the neutrino energy in the fluid rest frame. The right-hand side is defined from
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dfm
ds

� �
collisions

¼ S
	
t; xi; m;X; fm



; ð75Þ

with Sa the first moment of S in the fluid rest frame, i.e.

Saðt; xi; mÞ ¼ m3
Z

dXS
	
t; xi; m;X; fm


	
ua þ la



: ð76Þ

In merger simulations using the moment formalism, the source term has so far been
limited to isotropic emission, absorption, and isotropic elastic scattering of neutrinos.
Then

Sa ¼ gua � jaJu
a � ðja þ jsÞHa ð77Þ

with g the emissivity, ja;s the absorption and scattering opacities, and J ;Ha the
energy density and momentum flux in the fluid frame, i.e.

M a ¼ Jua þ Ha ð78Þ
for our choice of t̂

l ¼ ul. The second moment equation is (Thorne 1981)

rbM
ab � o

om
mM abcrcub
	 
 ¼ Sa: ð79Þ

and we typically decompose M ab in the fluid frame as

M ab ¼ Juaub þ Haub þ uaHb þ Lab ð80Þ
with Lab the pressure tensor in that reference frame.

For an observer using an orthonormal tetrad in the fluid rest frame, we can

interpret the second moment equation as an evolution equation for J and Hî. Indeed,

raM
at̂ ¼ ot̂J þ oîH

î
� �

ð81Þ

raM
aî ¼ ot̂H

î þ oĵL
îĵ

� �
: ð82Þ

However, the evolution equations are not closed: they depend on the next two
moments of fm, Lab and Mabc. To obtain a well defined system of equations, one thus
needs a closure relation. That closure should provide higher moments of fm that are
not evolved in our equations, as a function of the evolved variables. This is practi-
cally similar to the need for an equation of state Pðq; T ; YeÞ in the evolution of the
fluid equations, except that in a fluid P can be calculated assuming statistical equi-
librium of the fluid particles. For out-of-equilibrium particles, we do not have an
analytical expression for the closure; our choice of closure will thus introduce an
error in our solution.

We note that everything in our derivation so far has assumed that the moments are
functions of the neutrino energy in the fluid frame. These functions can be discretized
in energy space to obtain a spectral or energy-dependent moment scheme. Such a
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scheme has been used for the evolution of post-merger remnants in Newtonian
simulations (Just et al. 2015) and in general relativistic simulations of core-collapse
supernovae (Kuroda et al. 2016; Roberts et al. 2016), but not so far in general
relativistic merger simulations. As our focus here is mainly on the latter, we will
mainly discuss the cheaper alternative: evolving energy-intergrated moments of fm
using a grey moment scheme. Grey moment schemes require different closure
relations. On the one hand, we can see from Eq. (79) that, under the physical
assumption that fm drops to zero faster than m�1 as m ! 1, the term involvingM abc in
that equation does not contribute to the energy-intergrated moment equation. On the
other hand, given the strong dependence of ja;s on the energy of the neutrinos, the
caculation of an energy-integrated Sa requires a choice of neutrino spectrum—a new
closure relation that will significantly impact the assumed cross-sections of neutrino–
matter interactions. We will come back to this choice later in this review.

4.2.2 Moment equations in the simulation frame

One of the main advantage of the moment formalisms is that the evolution equations
for the moments can be put into a “conservative” form very similar to that commonly
used for the evolution of the fluid equations (see below). To do so, however, it is
useful to move away from moments computed in the fluid rest frame. Consider
instead the decomposition of the second moment

M ab ¼ Enanb þ Fanb þ naFb þ Pab ð83Þ
with na the unit normal to a constant-time slice in the simulation, and
Fana ¼ Pabna ¼ Pabnb ¼ 0. We can then interpret E;Fa;Pab as the energy density,
flux density, and pressure tensor of the neutrinos of a given species as measured by a
normal observer. Remembering that the energy integrated second moment is inde-
pendent of the reference frame in which we measure the neutrino energy, this
expression makes it easy to calculate E;Fa;Pab as functions of J ;Ha; Lab (and vice-
versa) using projections of the second moment. Let us define the Lorentz factor W
amd the fluid 3-velocity vl such that ul ¼ W ðnl þ vlÞ and vlnl ¼ 0, and the 3-
metric cab ¼ gab þ nanb. We then get

E ¼M abnanb ¼ JW 2 � 2W ðHanaÞ þ Labnanb ð84Þ

Fi ¼�M abnacbi ¼ JWui þWHi � uiðHanaÞ � Labnacbi ð85Þ

Pij ¼M abcaicbj ¼ Juiuj þ Hiuj þ Hjui þ Lij: ð86Þ
Alternatively, using hab ¼ gab þ uaub, we get

J ¼EW 2 � 2W 2 Fivi
	 
þW 2 Pijvivj

	 
 ð87Þ
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Ha ¼ EW �WFkvk
	 


na �Wuað Þ þWFa þW ðFkvkÞua
� gaiWvjP

ij � uaW
2ðPijvivjÞ

ð88Þ

Lcd ¼ Enanb þ Fanb þ naFb þ Pab
	 


hachbd: ð89Þ
We will not need this last expression, and thus do not provide a more explicit
expansion. We note that nl ¼ ð�a; 0; 0; 0Þ, with a the lapse function, which sim-
plifies many expressions when calculating E;Fa;Pab from J ;Ha; Lab. We also note
that Fa;Pab, va are all purely spatial tensors, e.g. Ft ¼ 0. Indices for these tensors can
be raised and lowered with the 4-metric using all indices, or with the 3-metric using
only spatial indices (e.g. vi ¼ cijv

j).
The second moment equation can now be recast as evolution equations for the

energy integrated moments weighted by
ffiffiffi
c

p
, with c the determinant of the 3-metric

cij. Defining ~X ¼ X
ffiffiffi
c

p
for any tensor X, and considering now energy-integrated

moments (i.e., all moments are integrated from m ¼ 0 to m ¼ 1), we get the
equations for a grey two-moment scheme in the simulation frame:

ot ~E þ oi a ~F
i � bi ~E

� �
¼a~P

ij
Kij � ~F

j
oja� a~S

l
nl ð90Þ

ot ~Fj þ oi a~P
i
j � bi ~Fj

� �
¼� ~Eojaþ ~Fkojb

k þ a
2
~P
ik
ojcik þ a~S

l
cjl ð91Þ

with Kij the extrinsic curvature of the underlying spacetime. These equations are
particularly convenient to use in general relativistic simulations using finite-differ-
ence or finite-volume conservative methods for the evolution of the fluid equations.
Indeed, the moment equations are now nearly identical to the ideal fluid equations
without neutrino–matter interactions (in a fluid, ~Pij ¼ ffiffiffi

c
p

Pcij, with P the fluid

pressure). The only new terms are the source terms involving ~Sl. For well chosen
closures (see below), these equations also form a well-posed system of hypebolic,
causal equations, an important property in order to obtain stable numerical evolutions
(Pons et al. 2000). We note that we have a separate system of equations for each
species of neutrinos and antineutrinos.

The back-reaction of the neutrinos onto the fluid is easily computed: energy-
momentum conservation requires that the source terms transfering energy and
momentum from the fluid to the neutrinos exactly cancel the source terms transfering
energy and momentum from the neutrinos to the fluid. Our evolution equations are,
for each neutrino species mi,

raT
ab
ðmiÞ ¼ SbðmiÞ ð92Þ

and thus

raT
ab ¼ raT

ab
fluid þ

X
i

raT
ab
ðmiÞ ¼ 0 $ raT

ab
fluid ¼ �

X
i

SbðmiÞ; ð93Þ

with the sum being over all species of neutrinos and antineutrinos. General
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relativisitic merger simulations relying on the evolution of the moments of fm have
evolved either ð~E; ~FiÞ while providing closures for ~Pij and the energy spectrum of the

neutrinos; or ~E with a closure for ~Fi, ~Pij, and the energy spectrum.
At this point, it is worth commenting on the use of grey schemes in general

relativistic merger simulations so far. As we will see over the course of this section,
the formalism for an energy-dependent moment scheme in general relativity has been
fully developed, and has been used e.g. in core-collapse simulations (Kuroda et al.
2016; Roberts et al. 2016). Why is it not used in merger simulations? One issue with
an energy-dependent scheme is of course that the moments of fm within each energy
bin have to be evolved, and thus the cost of the neutrino evolution scales at least
linearly with the number of energy groups evolved. This would be a steep price to
pay, even for simulations with relatively coarse energy resolution. More importantly,
however, neutron star mergers and their post-merger remnants include regions where
the fluid is moving at relativistic speed with respect to an observer at rest in the
simulation frame, as well as steep velocity gradients. This creates two important
issues. First, a neutrino propagating through the remnant may rapidly change energy
group, if the energy discretization is done in the fluid frame. If the discretization is
done in the simulation frame, on the other hand, transforming to fluid frame energies
to calculate the source terms is non trivial, as that transformation depends on the
unknown direction of propagation of the neutrinos (and neutrinos with the same
energy in one frame may have very different energies in the other). Rapid variations
of the neutrino energies can additionally lead to significant numerical diffusion in
energy space and to a smoothing of the neutrino energy spectrum. Second, the flux in
energy space Fa

m ¼ ðmM abcrcubÞ can be large enough that explicit time stepping
becomes unstable, at least for the time steps otherwise used for the evolution of the
equations of general relativistic hydrodynamics. This means that either the time step
has to be decreased (potentially drastically), or the energy flux has to be treated
implicitly, thus coupling in an implicit time step the evolution of all energy groups.
Either choice introduces a significant additional computational cost. This is not to say
that an energy-dependent scheme in merger simulations is impossible. However, the
development of a cost-effective and stable evolution scheme for an energy-dependent
moment algorithm applicable to general relativistic merger simulations remains an
unsolved problem, and thus any discussion of which scheme would be pratical is
currently based on conjecture only.

4.2.3 Number density evolution and lepton number conservation

If we want more information about neutrino energies without going all the way to an
energy-dependent scheme, a potentially useful extension of the standard grey two-
moment approach described in the previous section is to define number-weighted
moments in addition to the energy-weighted moments discussed so far, i.e., moments

N a1...anðt; xiÞ ¼
Z 1

0
d��2

Z
dXfm

	
t; xi; �;X


	
t̂
a1 þ la1



. . .

	
t̂
an þ lan



: ð94Þ

In this case, the first moment is independent of the choice of time vector t̂
l
, as
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N a ¼
Z 1

0
d��

Z
dXfm

	
t; xi; �;X



pa: ð95Þ

From the definition of Na, we see that in any given orthonormal frame, Nt̂ is the

number density of neutrinos, while Nî is the number flux of neutrinos. Taking the
covariant divergence of Na and combining with Boltzmann’s equation, we get

raN
a ¼ SN ; SN ¼

Z 1

0
dmm2

Z
dXS

	
t; xi; m;X; fm



: ð96Þ

This is simply expressing the conservation of neutrino number up to the contribution
of the source term SN . If we write Na ¼ Nna þ Fa

N with Fa
Nna ¼ 0, this is equivalent

to

ot ~N þ oi a ~F
i
N � bi ~N

� �
¼ a~SN : ð97Þ

Adding this evolution equation to the evolution of ~E and, possibly, ~Fi has two
important advantages. The first is that one can get some information about the
average energy of neutrinos from the local values of ~E; ~Fi; ~N . The other is that this
equation allows for explicit conservation of all lepton numbers. For example, for the
electron lepton number,

raN
a
l ¼ ra N a

e� � Na
eþ þ N a

me � N a
�me

� �
: ð98Þ

Transforming to the variables typically used in fluid simulations, the electron fraction
Ye and weighted energy density q


Ye ¼ ne� � neþ

np þ nn
; q
 ¼ mbðnp þ nnÞW ffiffiffi

c
p

ð99Þ

with ni the number density of species i in the fluid frame and mb an arbitrary
reference baryon mass, we get

otðq
YeÞ þ oi q
Yev
i
T

	 
 ¼ mba ~SN ;ð�meÞ � ~SN ;ðmeÞ
	 
 ð100Þ

with viT ¼ a�1vi � bi the transport velocity. This couples the evolution of the com-
position of the fluid to the evolution of electron type neutrinos in a way that guar-
antees conservation of electron lepton number. The main disadvantage, besides the
cost of evolving an additional variable (which is in practice minimal), is that we now

need a closure relation for the number flux ~F
i
N , and still have to make semi-arbitrary

assumption for the shape of the neutrino spectrum (Foucart et al. 2016b).
We note that whether the number density ~N is evolved or not, we need to calculate

~SN . Indeed, capturing the evolution of Ye due to neutrino–matter interactions is one
of the main objective of merger simulations including neutrino transport. Evaluating
the source terms in Eq. (100) is thus a necessity in any transport scheme.
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4.2.4 Source terms

As already mentioned, existing general relativistic simulations of neutron star
mergers typically assume a source term of the form

Saðt; xi; mÞ ¼ gua � jaJu
a � ðja þ jsÞHa ð101Þ

for neutrinos of energy m in the fluid frame, with g and ja calculated so that

gðmiÞ
ja;ðmiÞ

¼
Z

dXm3fðmÞ;eq ¼ 4p
m3

1þ exp
m�lðmiÞ
kBT

� � : ð102Þ

This assumes that emission is isotropic in the fluid frame, and guarantees that neu-
trinos reach their equilibrium energy density in optically thick regions.

We note that this is not the most general form that the source terms can take, and
in fact implicitly makes a number of important assumptions. Besides isotropic
emission, this choice assumes isotropic elastic scattering, and it is not an accurate
model for pair processes. We will discuss alternative methods to account for pair
processes in optically thin regions in Sect. 4.2.8. In optically thick regions, we tend to
rely on the fact that as long as neutrinos reach their equilbrium density on a time
scale short compared to the dynamical timescale of the system, imposing Eq. (102)
will be sufficient to approximately recover the correct physical behavior. We discuss
the limits of this approach in Sect. 4.2.8 as well.

The coefficients g; ja; js can be tabulated as functions of the fluid properties
ðq0; T ; YeÞ and the neutrino energy m [as in e.g. the NuLib library (O’Connor and Ott
2010)]. For grey schemes, we need instead the integrated emissivity and average
opacities, defined such that

Satot ¼
Z 1

0
dmSa ¼ gtot � hjaiJtot � ðhjai þ hjsiÞHa

tot ð103Þ

with Jtot and Htot the energy integrated energy density and flux. The calculation of the
total emissivity is trivial:

gtot ¼
Z 1

0
dmgðmÞ: ð104Þ

The calculation of the average opacities is however more complex. We would ideally
want

hjaiJtot ¼
Z 1

0
dmjaðmÞJðmÞ: ð105Þ

However, while we know jaðmÞ, we only evolve Jtot, not JðmÞ. Without information
about the neutrino energy spectrum, the simplest choice aims to guarantee that the
equilibrium neutrino energy density takes the expected value
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J eqtot ¼
gtot

c jeqah i ð106Þ

Unfortunately, this is only correct for the energy spectrum of neutrinos in equilibrium
with the fluid. As it is quite common for neutrinos in low-density regions to have
much higher energy than neutrinos in equilibrium with the fluid, and as ja / m2 for
many reactions, this can lead to severe underestimates of hjai.

Alternatively, given an average neutrino energy hmi, we may take advantage of the
approximate scaling of opacities with m to write

hjai ¼ hjeqa i
hmi2
hmeqi2

; ð107Þ

with hmeqi the average energy of neutrinos in equilibrium with the fluid,

hmeqi ¼ kBT
F3

l
kBT

� �
F2

l
kBT

� � : ð108Þ

Estimates for the average neutrino energy have been taken from leakage predictions
(Foucart et al. 2015), or from the evolution of N. For example, in Foucart et al.
(2016b) we used

hmi ¼ W
Etot � Fi;totvi

Ntot
: ð109Þ

This last equation is an approximation (it ignores differences between the energy-
weighted average energy of neutrinos and their flux-weighted average energy), yet it
should provide a significantly better estimate of hmi than the assumption of equi-
librium with the fluid. The scattering opacity can use the same rescaling:

hjsi ¼ jeqs
� � hmi2

hmeqi2
ð110Þ

with hjeqs i calculated assuming an equilibrium spectrum of neutrinos. We note
however that in using the same scaling for js and ja, we again implicitly assume the
same energy spectrum for J and Ha. This is generally not true in the diffusion regime
(see Sect. 4.2.7).

We additionally need the source terms entering the evolution of ~N and/or Ye. For
neutrinos of a given energy m, that source term is simply

SN ¼ �Saua
m

¼ g� jaJ
m

ð111Þ

and, if we know gðmÞ, we can define an integrated number emissivity
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gN ;tot ¼
Z 1

0
dm

g
m
: ð112Þ

As before, we would like to define hjN i such that

SN ;tot ¼
Z 1

0
dmSN ðmÞ ¼ gN ;tot � hjN iNtot: ð113Þ

Computing hjN i requires us to once more guess at the neutrino energy spectrum. In
Foucart et al. (2016b) we chose hjN i so that neutrinos properly thermalize to an
equilibrium spectrum at the fluid temperature if the optical depth is large enough, i.e.

hjN i ¼ hmeqihjai
gN ;tot

gtot

Jtot
hmiNtot

hmi2
hmeqi2

¼ hjai
gN ;tot

gtot

Jtot
Ntot

hmi
hmeqi ; ð114Þ

with hmi calculated as before, and the last term included to take into account the
energy dependence of the cross-sections. This choice is however far from unique.
One can e.g. also choose

SN ;tot ¼ gtot � hjaiJtot
hmi ð115Þ

with hmi being estimated either assuming equilibrium between the neutrinos in the
fluid (at the risk of strongly underestimating its value) or from a separate estimate of
neutrino energies (e.g., from the energy of neutrinos according to a leakage scheme;
Foucart et al. 2015).

We see that getting an accurate estimate of the source terms in a grey moment
scheme is thus quite difficult, particularly when estimating the source terms entering
into the evolution of Ye. As that is also one of the most important parameters to be
impacted by neutrino–matter interactions, this may certainly be a significant issue
limiting the accuracy of current merger simulations (see Foucart et al. 2016b and the
discussion of merger simulations here for the impact of inaccurate energy estimates).

4.2.5 Closures

The main approximations made by moment schemes are their choice of analytical
closure. Grey schemes need an energy closure specifying the neutrino spectrum.
Simulations evolving only ~E (1-moment schemes) additionally need a closure for ~Fi

and ~P
ij
, while simulations evolving ~E and ~Fi (2-moment schemes) need a closure for

~P
ij
. Energy-dependent schemes also have to specify ~M abc.
There is no unique prescriptions for these closures that work in all possible regions

of a simulation, but there are regimes in which they can be fairly easily calculated—
mainly regions where neutrinos are in thermal equilibrium with the fluid (optically
thick regime), as well as regions far away from a localized source of neutrinos, where
all neutrinos approximately propagate away from that source.

In the first case, we can assume that for an orthonormal tetrad in the fluid rest
frame
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Lîĵ 	 1

3
dîĵJ ; ð116Þ

as appropriate for a relativistic gas of neutrinos. In covariant form, this is

Llm 	 1

3
hlmJ : ð117Þ

Going back to an orthonormal tetrad in the fluid frame, we can write the moments
equations in the optically thick regime as

ot̂J þ oîH
î ¼g� jaJ ð118Þ

ot̂Hî þ
1

3
oîJ ¼� ðja þ jsÞHî ð119Þ

In this regime, neutrinos reach a quasi-equilibrium state on a time scale short
compared to the time step of the simulation, and thus

Hî 	 � 1

3ðja þ jsÞ oîJ ! Hl 	 � hlm

3ðja þ jsÞrmJ : ð120Þ

This gives us closure relations appropriate for a 1-moment scheme [Eq. (120)] and
for a 2-moments scheme [Eq. (116)]. We note however that these equations are
provided in the fluid frame. The more useful relations providing Fi or Pij as functions
of lower order moments can be recovered using the relationship between fluid-frame
and simulation-frame moments (see e.g., Shibata et al. 2011; Cardall et al. 2013;
Foucart et al. 2015). Applying this optically thick closure for all values of the opacity
corresponds to the diffusion approximation (Flick’s law). Such a choice is however
clearly problematic for low value of the opacities, as the flux becomes infinite when
ðja þ jsÞ ! 0.

For free-streaming neutrinos that all propagate in the same direction (as expected
far from a post-merger remnant), we expect instead

Fi ¼ Ef̂
i ð121Þ

with f̂
i
the unit vector pointing away from the remnant, and

Pij ¼ FiF j

E
¼ FiF j

FkFk
E ¼ FiF jffiffiffiffiffiffiffiffiffiffi

FkFk

p : ð122Þ

Any form of Eq. (122) is a valid closure for a 2-moment scheme. Equation (121)
could on the other hand only be used in a 1-moment scheme if we choose a direction
of propagation for the neutrinos, e.g., in a ray-by-ray transport scheme. For example,
the M0 scheme of Radice et al. (2016), which is only used to evolve free-streaming

neutrinos in their mixed moment-leakage scheme, takes f̂
i
to be the unit vector in the

t � r plane orthogonal to the fluid velocity (Fig. 3).
For 1-moment schemes, one way to combine these two limits is flux-limited

diffusion (see e.g. Levermore and Pomraning 1981), which sets
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Fi ¼ kðRÞJRi; Ri ¼ oiJ
ðja þ jsÞJ ð123Þ

for some function kðRÞ which asymptotes to 1/3 in optically thick regions (small R)
and 1 in optically thin regions (large R). For two-moment schemes, a number of
proposals have been made for the “optimal” choice of closure, e.g. Wilson et al.
(1975), Minerbo (1978), Levermore and Pomraning (1981) and Smit et al. (2000),
usually under the assumption of a preferred direction for the propogation of neutrinos
(spherical or planar symmetry). If we write Fi ¼ fEni, the tensorial closure above can
then be replaced by a prescription for the scalar Eddington factor p ¼ kPijnj=Ek.
Existing general relativistic simulations use the maximum entropy closure for p
derived by Minerbo (1978) for photon transport, and updated by Cernohorsky et al.
(1989) for neutrino transport. A closed-form expression for this closure was derived
by Cernohorsky and Bludman (1994). The full pressure tensor can be recovered from
p using the prescription of Levermore (1984), Dubroca and Feugeas (1999). Overall,
this results in the closure relation

Pij ¼ dthinP
ij
thin þ dthickP

ij
thick: ð124Þ

using the optically thick limit described earlier in this section (which is expressed in
the fluid frame, as discussed below), as well as

Fig. 3 Two neutrino beams crossing in a two-moment simulation using the Minerbo closure (Left), and in
a two-moment simulation in which the pressure tensor is taken from the result of a Monte-Carlo evolution
of the transport equations (Right). We see that the Minerbo closure leads to an artificial collision between
the beams.
Image reproduced with permission from Foucart (2018), copyright by the authors
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Pij
thin ¼

FiF j

FkFk
E ð125Þ

and

dthin ¼ 3v� 1

2
; dthick ¼ 3

2
ð1� vÞ; v ¼ 1

3
þ n2

6� 2nþ 6n2

15
; n ¼ HaHa

J 2
:

We see that in optically thick regions (n ¼ 0) we recover the optically thick closure

Pij
thick, while in free-streaming regions (n ¼ 1), we get Pij

thin. It is however worth
noting that while the former is asymptotically correct for large opacities, the latter is
not correct for free-streaming neutrinos: neutrinos in vacuum are generally not all
propagating in the same direction, and thus do not satisfy Eq. (122). When making
this choice, the interpolation between two well-defined asymptotic regime is thus not
the only source of error: we have to come to terms with the fact that the optically thin
regime uses a closure that is inaccurate in most regions where neutrino–matter
interactions are important. A well known consequence of that choice is the creation
of artificial radiation shocks whenever neutrino beams cross [see Fig. 3, and similar
results in the two-beam test performed by Sadowski et al. (2013)]. In neutron star
mergers, this also leads to an overdensity of neutrinos in the polar regions (see
discussion of simulations).

We also note that in the optically thin limit, we listed a number of closures that
were theoretically equivalent as long as FkFk ¼ E2, a condition satisfied if all
neutrinos propagate in the same direction. These expressions do however differ in
regimes when FkFk 6¼ E2. Shibata et al. (2011) show that the choice

Pij
thin ¼ E

FiF j

FkFk
ð126Þ

has the advantage to guarantee Pk
k ¼ E, but can lead to superluminal characteristic

speeds for the moment equations if used directly as a closure, i.e. for dthin ¼ 1,
dthick ¼ 0. On the other hand

Pij
thin ¼

FiF jffiffiffiffiffiffiffiffiffiffi
FkFk

p ð127Þ

leads to Pk
k 6¼ E when FkFk 6¼ E2. Their recommendation to prefer Eq. (126), con-

sistent with Levermore (1984), Dubroca and Feugeas (1999), has been followed in
merger simulations so far, and appears to lead to a system of equations that is both
hyperbolic and causal (Dubroca and Feugeas 1999; Shibata et al. 2011).

As n is a function of the fluid-frame moments ðJ ;HaÞ, which are themselves
functions of the evolved simulation frame moments ðE;Fi;PijÞ; and as Pij depends on
n, we see that our prescription for n is an implicit equation. We can solve for n by
searching for roots of the function
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RðnÞ ¼ J 2 � HaHa

E2
ð128Þ

with the known physical bounds n 2 ½0; 1�. As n changes relatively slowly, the value
of n at the end of a recent time step is usually a good initial guess for the current
value of n, allowing for rapid convergence of many root finding algorithms.

For grey schemes evolving ð~E; ~FiÞ, the above closure combined with a choice of
neutrino energy spectrum is sufficient to close the system of equations. When
evolving ~N as well, the situation is a little more complex, as we also need to estimate

the number flux ~F
i
N . For monoenergetic neutrinos, by definition,

Na ¼ Nna þ Fa
N ¼ Jua þ Ha

m
! Fi

N ¼ JWvi þ cilH
l

m
: ð129Þ

However, after integrating over neutrino energies, we should get

Fi
N ;tot ¼

JtotWvi

hmiJ
þ cilH

l
tot

hmiH
: ð130Þ

The first term in this flux is important to capture advection of neutrinos with the fluid,
while the second is important to capture neutrino propagation in the fluid frame. The
factor hmiJ is an energy-weighted average neutrino energy that can reasonably be
estimated using Eq. (109). On the other hand, hmiH is a flux-weighted average energy
that, in dense regions, is likely smaller than hmiJ . Indeed, low-energy neutrinos
diffuse faster than high-energy neutrinos, and thus HaðmÞ has a softer energy spec-
trum than JðmÞ. In fact, there is no particular reason to expect hmiH to be the same for
every component of Ha! Foucart et al. (2016b) developed a rather complex procedure
to estimate hmiH during a simulation, which involves a new evolution equation for the
spectral index of each neutrino species. While that procedure was calibrated to match
the result of energy-dependent radiation transport in specific test cases, and aims to
capture the transition from a soft spectrum for Ha in the diffusion regime to a thermal
spectrum close to the neutrinosphere, its accuracy for more complex physical con-
figurations is unknown. Radice et al. (2022), who also evolve ~N , make the simpler
approximation hmiH ¼ hmiJ ¼ hmi. Regardless of the choice made, the difficulty of

properly capturing the evolution of ~N in the diffusion regime, and thus the diffusion
of Ye through dense regions, is a limitation of existing moment schemes.

Finally, for completeness on the topic of closures in the context of general
relativistic simulations, it is worth mentionning that Shibata et al. (2011) and Cardall
et al. (2013) have provided closures for the third moment M abc. One method assumes
that the expansion of the distribution function in la is truncated at second order, in
which case the third moment is an explicit function of the first moment. An
alternative is to use the Minerbo closure to again interpolate between optically thick
and free-streaming estimates of Labc. These closures are not needed in existing grey
moment schemes, but would be necessary for energy-dependent schemes.
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4.2.6 Numerical implementation

In the previous sections, we covered most of the ingredients needed to evolve
moments of fm: the moment equations in the simulation frame, their coupling to the
fluid equations, and the required analytical closures for higher-order moments of fm
(and for the neutrino energy spectrum in grey schemes). These equations are very
similar to the equations of hydrodynamics in conservative form, i.e., they can be
expressed as

otU þ oiF iðUÞ ¼ SðUÞ ð131Þ
with U the vector of evolved variables (e.g. U ¼ ð~E; ~Fi; ~NÞ in a grey M1 scheme that
evolves the number density), F i the fluxes, and S the local source terms. These
equations can be evolved using the same high-order shock-capturing methods
developed for the equations of fluid dynamics, guaranteeing that conservation laws
are satisfied to round-off accuracy in our evolutions. The main complications will
come from the source terms, which can be extremely large for radiation transport,
thus requiring the right-hand side of this equation to be treated implicitly. The flux
terms, on the other hand, can be treated explicitly as long as the timestep satisfies the
usual Courant condition Dt.aCFLDx, with Dx the grid spacing and aCFL a constant of
order unity that depends on the exact numerical methods used to evolve these
equations. In practice, it is thus useful to consider split implicit–explicit time
evolutions

otU ¼ SexpðUÞ � oiF iðUÞ	 
þ SimpðUÞ ð132Þ
where Simp þ Sexp ¼ S, and Simp contains all terms that we choose to treat implicitly
(typically, neutrino–matter interactions). A first-order in time discretization would
then be the implicit equation

Unþ1 ¼ Un þ Dt SexpðUnÞ � oiF iðUnÞ	 
þ ðDtÞSimp Unþ1
	 


: ð133Þ
where upper indices ðn; nþ 1Þ refer to the beginning/end of the time step. In a
conservative scheme, the spatial discretization requires us to consider values of the
fields at grid points, and halfway between grid points. For example, in 1D,

Unþ1
i ¼ Un

i þ Dt Sexp Un
i

	 
� F 
 Un
iþ1=2

� �
� F 
 Un

i�1=2

� �
Dx

0
@

1
Aþ ðDtÞSimp Unþ1

i

	 


with the subscripts referring to grid points/cell centers (integer values) and half grid
points/cell faces (half-integer values). Many possible choices can be made for the
calculation of the numerical fluxes F 
, which will offer different orders of conver-
gence and shock-capturing capabilities. A simple, very dissipative choice would for
example be the Lax–Friedrich flux
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F 

iþ1=2 ¼

1

2
F i þ F iþ1ð Þ � c

2
Uiþ1 � Uið Þ: ð134Þ

Modern numerical simulations often use higher-order, less dissipative methods. In
those advanced methods, values of F ;U at ði; iþ 1Þ are replaced with left-biased and
right-biased stencils used to interpolate ðF ;UÞ on cell faces (van Leer 1977; Jiang
and Shu 1996; Borges et al. 2008), while the speed of light c is replaced by the
maximum characteristic speed of the system of equations. The general idea, however,
remains: the numerical fluxes include a first term estimating the flux at the mid-point,
and a second term providing numerical dissipation at shocks to smooth the solution
and avoid instabilities. Alternatively, the evolution equations can be projected onto
their characteristic fields, allowing for the use of even less dissipative methods [see,
e.g., Radice and Rezzolla (2012) for general relativistic fluid dynamics]. We will not
review here the extensive literature discussing choices for these numerical fluxes, but
note that the characteristic speeds for the two-moments algorithm can for example be
found in Shibata et al. (2011), and details of the calculation of F 
 for two-moment
algorithms used in merger simulations are available in Shibata et al. (2011), Foucart
et al. (2015), Weih et al. (2020b), Radice et al. (2022) and Sun et al. (2022). The only
difficulty specific to the radiation transport equations is the treatment of high-density
regions, discussed in more detail in Sect. 4.2.7.

The treatment of the implicit terms has steadily improved over the years, starting
from the hybrid leakage-moment schemes that do not require any implicit treatment
of the source terms (Shibata et al. 2011), to first approximate (Foucart et al. 2015),
and then full implicit–explicit time-stepping (Weih et al. 2020b) linearizing the
source terms around the zero-state ðE ¼ Fi ¼ N ¼ 0Þ, to most recently a lineariza-
tion of the problem around an arbitrary state for the neutrino radiation field (Radice
et al. 2022). We review here the latest methods of Radice et al. (2022). In that work,
the Jacobian matrix

JðUÞ ¼ oSimpðUÞ
oU

ð135Þ

is calculated explicitly for the Minerbo closure around an arbitrary state U. The
implicit equations for Unþ1 can then be solved using standard iterative methods for
the determination of the roots of a multi-dimensional function f(U), given f, of =oU ,
and a reasonable initial guess Ug for the solution (e.g., the value of U at the
beginning of a time step, or the equilibrium value of U). We note that in this case,
U ¼ ð~E; ~Fx; ~Fy; ~Fz). Each species of neutrinos is treated separately, and the evolution
of the number equation (if included) can be performed after the evolution of U [J(U)
is independent of ~N if U ¼ ð~E; ~FiÞ]. As J(U) is quite complex, we refer the reader to
Radice et al. (2022) for its exact form. Many older two-moment schemes however
use more approximate values of the Jacobian matrix in order to simplify the calcu-
lation of J at the cost of some accuracy in the implicit solve.

Finally, we note that most moment algorithms use a split operator method to
couple the fluid and neutrino evolution. Assuming that Ufl and Urad are the vectors of
evolved variables for the fluid and neutrinos respectively, the coupled problem is
evolved using equations of the form
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Unþ1;

fl ¼ffl U

n
fl ;Dt

	 
 ð136Þ

Unþ1
rad ¼frad Unþ1;


fl ;Un
rad;U

nþ1
rad ;Dt

� �
ð137Þ

Unþ1
fl ¼Unþ1;


fl þ Sfl=radDt: ð138Þ
The first line represents the usual evolution of the fluid equations without coupling to
the neutrinos. The second line represents the mixed implicit–explicit evolution of the
radiation equations on a given fluid background. Finally, the third line represents
backreaction of the radiation onto the fluid. It is also possible to improve on this

scheme by using a guess Unþ1;g
fl for the fluid variables on the second line. This is

particularly useful in dense regions, where we might use the expected state of the
fluid once neutrinos and matter equilibrate (see e.g., Foucart et al. 2016b). Using
such a guess is sometimes necessary to avoid numerical instabilities in regions where
the coupling between neutrinos and matter leads to stiff source terms in the evolution
of the fluid equations (i.e., in the Sfl=rad term), in addition to the stiff source terms that
nearly always exist in the evolution of the neutrino moments.

A more self-consistent method would be of course to use an implicit–explicit
solver to evolve jointly the fluid equations and the moment equations for all species
of neutrinos, but this would make the implicit part of the solver significantly more
costly. Indeed, the standard scheme solves, for each neutrino species, a system of 4
coupled non-linear implicit equations for ð~E; ~FiÞ and a single linear implicit equation
for ~N. A full implicit solve of the fluid and radiation equations, on the other hand,
would require solving a system of 6þ 5Nm non-linear implicit equations for the Nm

neutrino species and the fluid (assuming 6 fluid variables and 5 components of the
moments for a grey two-moment scheme). As long as the simpler method does not
lead to numerical instabilities, its significantly lower computational cost makes it
much more appealing.

4.2.7 Diffusion regime

In regions where ðja þ jsÞL � 1, with L a typical lengthscale of our system, we

expect the neutrino momentum density in the fluid frame to be / �ðja þ jsÞ�1rJ .
This leads to an evolution equation for the energy density in the fluid frame

ot̂J � dîĵoî
1

3ðja þ jsÞ oĵJ
� �

¼ jaðJ eq � JÞ: ð139Þ

i.e., a diffusion equation with diffusion coefficient D ¼ 3 ja þ jsð Þ½ ��1. However,
when evolving the two-moment equations with shock-capturing methods, the dis-
sipative terms in the numerical fluxes modify this optically thick solution. For
example, with a low-order numerical flux like Eq. (134), and ignoring spatial vari-
ations in the opacities, the discretized equation becomes (Audit et al. 2002)
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ot̂J � 1

3ðja þ jsÞ þ
cDx
2

� �
dîĵo2îĵJ ¼ jaðJ eq � JÞ: ð140Þ

We clearly see that in any region where ðja þ jsÞDxJ1, numerical diffusion will be
larger than physical diffusion. Higher-order fluxes will be more forgiving, but even
high-order shock capturing methods behave similarly to their low-order counterparts
near shocks or in underresolved regions. As J may vary rapidly in the hot, dense
regions of a merger remnant, the diffusion rate of neutrinos through that remnant
could plausibly be impacted by numerical dissipation.

To avoid this issue, two methods have been proposed so far. Audit et al. (2002)
suggest to effectively use a one-moment scheme in regions where ðja þ jsÞDxJ1, i.
e., to replace the numerical flux in the evolution of ~E by its value assuming that

Ha ¼ � hab

3ðja þ jsÞrbJ ; Lab ¼ hab

3
J : ð141Þ

This leads to neutrinos being advected with the fluid, with an additional slow dif-
fusion provided by Ha. A more detailed discussion of this method in the merger
context can be found in Foucart et al. (2015). As pointed out in Radice et al. (2022),
this method does however transform our evolution equations into a single diffusion
equation, which is known to be acausal and potentially unstable in general relativity.
Radice et al. (2022) thus propose an alternative, numerically simpler method: they
use a high-order flux without numerical dissipation (i.e., using finite difference
methods) in regions where ðja þ jsÞDxJ1. In both algorithms, one transitions
smoothly between the standard shock-capturing fluxes and the modified fluxes
around ðja þ jsÞDx� 1. For example, Radice et al. (2022) use

F 
 ¼ ð1� aÞFHO þ aFLO ð142Þ
with FLO given by Eq. (134) (replacing c by the value of the speed of light in the
simulation coordinates) and FHO using the simple second-order accurate prescription

FHO
iþ1=2 ¼

F i þ F iþ1

2
: ð143Þ

The transition coefficient is

a ¼ min 1;
1

Dxðja þ jsÞ
� �

ð144Þ

and the opacities are estimated using the average values of neighboring grid points.
Outside of the merger context, a conceptually similar correction limiting the use of
the dissipative fluxes in high-opacity regions had been used by Sadowski et al.
(2013).

Radice et al. (2022) show that the approximate linearization of the source terms
used in many existing two-moment schemes and their reliance on the solution of a
diffusion equation leads to inaccuracies in the evolution of the transport equations
(see Fig. 4) at the very least in regions where jsDx � 1, v=c� 1, and jaDx � 1 (i.e.,
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where advection and diffusion are important, and the evolution is not driven to the
equilibrium value of the moments by a high absorption rate). This regime is likely to
be relevant in the outer regions of a rotating post-merger neutron star remnant for
heavy-lepton neutrinos. Additionally, these approximations may lead to other sources
of errors in yet untested regimes. On the other hand, the use of non-dissipative fluxes
could, in theory at least, lead to issues at shocks in dense region—though this does
not seem to have been observed in simulations using these newer methods so far.

4.2.8 Pair annihilation

Pair processes pose a particular challenge for moment-based transport algorithms—
and, in fact, for many other types of radiation transport schemes—because they
naturally lead to non-linear source terms in the transport equations that couple the
distribution function of neutrinos and antineutrinos (see Sect. 3.2.2). On the other
hand, fully ignoring pair production and annihilation is not an option for muon and
tau neutrinos. In grey moment schemes, we thus typically calculate an emission rate
of ml�ml pairs and ms�ms pairs with blocking factors computed assuming an equilibrium
density of neutrinos, and model the inverse reaction (pair annihilation) through an
absorption opacity calculated using Kirchhoff’s law.

For a typical merger profile, we expect heavy lepton neutrinos to experience
higher scattering opacities than absorption opacities. Deep into the neutron star,
heavy lepton neutrinos are nonetheless in thermal equilibrium with the fluid, at least
as long as jatdiff � 1. Due to the slow diffusion rate through the dense matter, this
remains true even in regions where their absorption optical depth sa\1, as their
scattering optical depth ss � 1. In those regions, our assumptions for pair production
and annihilation may be inaccurate, but they should nonetheless practically capture
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Reference
THC M1: full sources
THC M1: O(v/c) sources
ZelmaniM1: approx. sources

Fig. 4 Advection of trapped neutrinos in a rapidly moving fluid (v ¼ 0:5c) with high scattering opacity,
and no absorption or emission. The different simulations use (i) the latest implementation of the Jacobian
matrix and high-order numerical fluxes from Radice et al. (2022) (blue), (ii) approximate sources and a
diffusion equation (ZelmaniM1 code, black), or (iii) only first order in v/c terms (green).
Image reproduced with permission from Radice et al. (2022), copyright by the authors
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the physics of neutrino diffusion quite well. Closer to the surface of the remnant,
however, we eventually reach regions where jatdiff\1 and ss [ 1. There, heavy
lepton neutrinos slowly diffuse out while out of thermal equilibrium with the fluid
(typically, neutrinos will be hotter than if they were in equilibrium at the fluid
temperature). In these regions, our assumptions likely underestimate the rate of pair
annihilation. The impact of this approximation has not been studied so far.

For electron type neutrinos, me and �me decouple from the fluid in different regions,
and the above assumptions would be even more problematic. However, in optically
thick regions, pair production and pair annihilation are expected to be subdominant
—except maybe in the hottest regions, where neutrinos will be in equilibrium with
the fluid regardless of the reactions included in a calculation. Accordingly, ignoring
pair production for electron-type neutrinos has often been considered safer than
including it in a very approximate manner.

This leaves us with one important issue, however: m�m annihilation is expected to be
an important process for energy deposition in low-density regions around the rotation
axis of a post-merger remnant, and may also deposit energy and momentum in low-
density matter outflows elsewhere. From Eq. (30), we get that the appropriate energy-
integrated source term for the moment equations is, for annihilation into eþe� pairs
and for the energy deposited by the neutrinos only,

SaðmÞ ¼ �
Z Z

d3pðmÞffiffiffiffiffiffiffi�g
p

ptðmÞh
3

d3pð�mÞffiffiffiffiffiffiffi�g
p

ptð�mÞh
3
fðmÞfð�mÞ paðmÞ

� �DG2
F

3p
�pbðmÞpbð�mÞc

2
� �2

¼� c4DG2
F

3p
Mbc;ð�mÞ

Z
d3pðmÞffiffiffiffiffiffiffi�g

p
ptðmÞh

3
fðmÞpaðmÞp

b
ðmÞp

c
ðmÞ:

ð145Þ

The integral over pðmÞ, however, does not match the moments used in our evolution
equations (it includes an extra power of the neutrino energy). A similar term should
also be included for the antineutrinos. Fujibayashi et al. (2017) propose the
approximation

SaðmÞ ¼ �h�ðmÞiua c
4DG2

F

3p
Mbc;ð�mÞM

bc
ðmÞ ð146Þ

with h�ðmÞi some appropriate average of the energy of annihilated neutrinos. Given
the scaling in the source term, the choice

h�ðmÞi ¼
F4ðgðmÞÞ
F3ðgðmÞÞ

kBTðmÞ ð147Þ

would be reasonable for a quasi-thermal spectrum at an estimated temperature TðmÞ.
This remains a significant approximation. Indeed, by using Sa / ua, the above

formula ignores momentum deposition in the fluid frame, even though neutrinos
leaving the remnant definitely have a preferred direction of propagation. Addition-
ally, the source term depends on the neutrino pressure tensor, which is estimated
through the chosen analytical closure. Polar regions where pair annihilations are
expected to be important (see Fig. 5) are also where that closure creates the largest
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errors. Despite these limitations, comparisons with Monte-Carlo transport results
(Foucart et al. 2018) indicate that Sa is at least order-of-magnitude accurate when
using this approximation—which is about the best that one can hope for in the
context of a grey moment scheme.

4.2.9 Discussion

As the main algorithms used so far for radiation transport in general relativistic
merger simulations, moment schemes have allowed us to greatly increase our
understanding of the role of neutrinos in mergers. In particular, moment simulations
showed that neutrino–matter interactions have a fairly dramatic impact on the
composition of hot matter outflows, with important consequences for r-process
nucleosynthesis (Wanajo et al. 2014). The cost and complexity of moment schemes is
however significantly larger than those of the simplest leakage schemes: the moment
equations without source terms are comparable in complexity to the evolution of the
fluid equations, and if large regions of the computational domain require the use of
implicit timestepping (as in most merger simulations that do not result in the
formation of a black hole), radiation transport can easily become the main
computational cost of a simulation. Mixed leakage-moment schemes can do away
with that last issue, but at the cost of a more approximate treatment of neutrino
diffusion in dense regions.

The most up-to-date moment schemes can likely capture very well the diffusion of
single-energy neutrinos in dense regions, yet as moment schemes used in general
relativistic merger simulations do not keep detailed information about the neutrino
energy spectrum, and the diffusion of neutrinos through a dense medium is strongly
energy dependent, their ability to properly capture the diffusion of both energy and
lepton number consistently is more difficult to assess. We will see that simulations
with different methods for estimating neutrino energies provide wildly different
answers for the emission of heavy-lepton neutrinos (Foucart et al. 2020)—which may
be in part because those neutrinos spend a significant amount of time in regions
where they are out of thermal equilibrium with the fluid, yet still experiencing high

Fig. 5 Density, velocity, and heating rate from neutrino absorption 20 ms after a neutron star merger in a
simulation using pair annihilation (Left), and a similar simulation ignoring that effect (Right). Note the
significant change in the velocity of the outflows, which persists up to the end of these simulations (300 ms
post-merger).
Image reproduced with permission from Fujibayashi et al. (2017), copyright by AAS
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scattering opacities. Approximate treatment of the source terms and the use of a
solution to the acausal diffusion equations in many moment schemes may also be a
source of uncertainty in that regime (Radice et al. 2022). In the semi-transparent and
optically thin regimes, moment algorithms offer a reasonable approximation to the
qualitative evolution of the composition and temperature of the outflows. However,
simulations have shown that the assumed energy spectrum of neutrinos in those
regions has a non-negligible impact on the final composition of the ejecta (Foucart
et al. 2016b). Energy-dependent moment schemes could do away with most of those
issues, but would be computationally expensive, even if difficulties related to the
choice of reference frame in which the neutrino energy is discretized were to be
solved.

In optically thin regimes, the pressure closure chosen in existing simulations is
also a source of concern. Factor of � 2 errors in the energy density of neutrinos in
the polar regions observed in comparisons with Monte-Carlo simulations (Foucart
et al. 2018) are very likely due to this approximate closure. Combined with the lack
of information about the exact distribution function of neutrinos, this limits the
ability of moment schemes to take into account the role of pair annihilation in the
development of a baryon-free region and of a relativistic jet along the remnant’s
rotation axis—even though existing simulations that are expected to capture the
importance of pair annihilation at least at the qualitative level indicate that pair
annihilation may significantly impact the properties of polar regions (Fujibayashi
et al. 2017; Foucart et al. 2018) (see also Fig. 5).

Despite these limitations, comparisons of moment schemes with simulations using
Monte-Carlo transport offer some reassurances regarding the validity of the moment
results (Foucart et al. 2020), with disagreements at the 10–20% level in most global
quantities, including the me and �me luminosities, the average energy of neutrinos, and
the mass and composition of the outflows. Given the difficulty of estimating errors
directly in moment simulations, further studies of the uncertainties associated with
the many different moment schemes currenlty used in the merger community are
certainly required, but the overall understanding of the most important neutrino
processes in merger simulations gathered from these simulations is likely accurate
(except for the potential role of neutrino oscillations).

4.3 Monte-Carlo radiation transport

Grey moment schemes are at this point the most commonly used algorithms to
approximately evolve Boltzmann’s equation in merger simulations. We have seen
however that one of their limitations is the strong assumptions that need to be made
about the energy spectrum of the neutrinos, and the impact of these assumptions on
neutrino–matter interaction rates. The use of an approximate closure for the pressure
also introduces an important approximation in simulations. As a result, even in the
limit of infinite resolution, a two-moment scheme does not converge to the correct
solution to Boltzmann’s equations.

Direct discretizations of Boltzmann’s equation in both position space and
momentum space using finite difference, finite volume, or spectral methods have not
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yet been used in general relativistic merger simulations, and are likely beyond our
current computational capabilities. While we wait for these methods to become
practical in the merger context, however, an interesting alternative is the use of
Monte-Carlo radiation transport. Monte-Carlo methods are particularly efficient for
low-cost evolutions of high-dimensional, highly inhomogeneous problems. Their
scaling with increasing computational resources is significantly worse than the other
methods mentioned so far, and they will thus nearly certainly become less efficient
than those other algorithms at some point in the future—but at the moment, they are
the only algorithms going beyond the moment formalism to have been implemented
in general relativistic merger (Foucart et al. 2020) and post-merger (Miller et al.
2019b) simulations.

As for moment schemes, the use of Monte-Carlo methods for the evolution of
radiation coupled to a fluid has a long history outside of the context of neutron star
mergers and general relativistic radiation hydrodynamics. Monte Carlo methods have
been developed to, among other applications, study stellar profiles (Lucy 1999),
stellar formation (Ercolano et al. 2003; Haworth and Harries 2012), black hole
accretion (Ryan et al. 2015), post-merger accretion disks (Richers et al. 2015),
supernova ejecta (Kasen et al. 2006; Noebauer et al. 2012; Wollaeger et al. 2013), or
core-collapse supernovae (Janka 1991; Abdikamalov et al. 2012). In this section, we
will first review the formalism of Monte-Carlo radiation transport in general
relativistic simulations (Sect. 4.3.1). We will then discuss technical issues related to
the coupling of the neutrinos to the fluid (Sect. 4.3.2), the treatment of optically thick
regions (Sect. 4.3.3), and the inclusion of non-linear source terms such as pair
processes (Sect. 4.3.4). As the use of Monte-Carlo methods in neutron star merger
simulations is significantly less mature than the use of leakage or moment schemes,
and the exact methods are likely to change rapidly in the next few years, we will keep
our discussion more general than in the previous section, focusing on the important
components of an algorithm and the main difficulties that have been encoutered so
far. We base our discussion of general relativistic Monte-Carlo transport in large part
on the methods developed for photon transport in black hole accretion disk by Ryan
et al. (2015), with modifications made for applications to the merger problem in
Foucart et al. (2021). We also comment on the recent development of another Monte-
Carlo code aimed at axisymmetric post-merger simulations by Kawaguchi et al.
(2022). That code generally makes less simplifying assumptions and aims for higher
order methods than Foucart et al. (2021), taking advantage of the expected lower cost
of axisymmetric simulations.

As in the previous section, we assume h ¼ c ¼ 1 unless noted otherwise.

4.3.1 Formalism

The general idea behind Monte-Carlo methods for radiation transport is to discretize
the distribution function of neutrinos using Monte-Carlo packets (or superparticles)
each representing a large number of neutrinos, i.e.
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fðmÞ ¼
X
k2P

Nkd
3 xi � xikðtÞ
	 


d3 pi � pki ðtÞ
	 


ð148Þ

with P the ensemble of all packets, xikðtÞ the position of packet k as a function of
time, and pki ðtÞ the spatial components of the momentum one-form of the neutrinos in
that packet. A Monte-Carlo algorithm needs prescriptions to create packets (emis-
sion), propagate them on the grid, destroy them (absorption), and handle non-de-
structive interactions with the fluid or other neutrinos (e.g. scattering events). The
propagation of neutrinos can simply be performed by moving packets along geo-
desics. All other processes have to be treated probabilistically, in such a way that the
ensemble of packets remains a good sampling of the true distribution function fðmÞ.

The finite number of packets in a Monte-Carlo simulation will inevitably lead to
sampling noise in fðmÞ, and in any variable derived from fðmÞ. We typically expect

relative errors in quantities obtained by summing over N packets to be �N�1=2. If
one wanted � 1% errors for the energy density of neutrinos within each cell of a
computational simulation at any given time, one would thus need � 104 packets per
cell... and scaling to smaller error bars is extremely expensive. A saving grace for
Monte-Carlo simulations in the merger context, however, is that neutrino–matter
interactions are generally not dynamically important, and tend to change the
properties of the fluid over relatively long time scales (with a few exceptions). In
practice, this means that we will be able to perform reasonably accurate Monte-Carlo
simulations by relying on averaging neutrino–matter interactions over time scales
significantly longer than our numerical time step in the vast majority of the
computational domain. Practically, many regions can in fact be evolved stably and
reliably with less than a packet per grid cell. This should be contrasted with
astrophysical systems where radiation is dynamically important (e.g. radiation-
dominated accretion disks). In those systems, sampling noise in e.g. the radiation
pressure can be problematic. The price to pay for the use of a small number of
packets, however, is that we lose the ability to get instantaneous estimates of the
neutrino distribution function.

Emission The creation of Monte-Carlo packets is theoretically simple to handle, as
long as we know the emission rate of neutrinos as a function of momentum, and are
provided with a prescription to choose the number of neutrinos represented by each
packet. For example, if we assume that each individual packet in a given grid cell of
coordinate volume DV represents a total neutrino energy Ep, and that the energy-
integrated emissivity is gtot, we create

N ¼ gtot
ffiffiffiffiffiffiffi�g

p
DVDt

Ep
ð149Þ

packets over a time step Dt in that cell. Non-integer values of N can be treated
statistically (e.g. N ¼ 0:2 implies a 20% chance of creating a single packet). The
direction of propagation of the packets is drawn from an isotropic distribution in the
fluid frame, and their energy from the distribution f ðmÞ ¼ gðmÞ=gtot. The initial time
and position of a packet can be drawn from an homogeneous distribution within the
4-volume ðDVDtÞ, or possibly from a spatial distribution more adapted to the
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problem (e.g. in axisymmetry, it is beneficial to assume that the volume element is
/ rdr, making it more likely that packets are created in the outer region of a cell than
in its inner region).

In many simulations, we have at our disposal tabulated values of gðmÞ within
specific energy bins, rather than a known continuous function gðmÞ. In that case, a
common strategy is to calculate within each bin the number of emitted packets Nb.
Packets can then be created in the fluid frame with the energy of the center of their
energy bin. Giving all packets the energy of the center of the bin guarantees that if we
have tabulated values of ja at the center of the same energy bins, the equilibrium
energy density of neutrinos will match its expeceted physical value to numerical
roundoff (Richers et al. 2015).

We see that the emission step is thus conceptually simple. However, it involves a
choice crucial to the efficiency of Monte-Carlo methods: that of the energy of a
packet Ep. That energy can vary from cell to cell, over time, and from energy bin to
energy bin, and is one of the main tool available to distribute computational resources
efficiently through a simulation. In neutron star mergers, for example, it is convenient
to choose Ep in optically thick regions in order to get a desired number of packets per
cell (and thus a desired statistical noise), while Ep in optically thin regions can be
chosen to obtain a desired number of packets over the entire simulation (setting the
overall cost of the simulation). Such an algorithm is detailed in Foucart et al. (2021).
We note however that many other choices of Ep are possible, and that the optimal
choice is problem dependent. Kawaguchi et al. (2022) instead propose to choose Ep

as a fraction of the energy of neutrinos in thermal equilibrium with the fluid in a cell,
with a prescription to destroy and resample low energy packets at the end of each
step to avoid the continuous evolution of a large number of low-energy packets in
optically thin regions. Simulation of accretion disks around black holes can rely on
simpler prescriptions for Ep (e.g. constant packet energy), as they do not need to deal
with the dense, hot regions observed in neutron star remnants.

Propagation Neglecting the finite mass of neutrinos, we expect packets to
propagate along null geodesics in between interactions with the fluid and other
neutrinos. Hughes et al. (1994) showed that to do so, it is convenient to evolve the
position xi and spatial components of the momentum one-form pi. The corresponding
geodesic equations were initially developed for ray-tracing and photon transport, but
are also appropriate for neutrinos:

dxi

dt
¼cij

pj
pt
� bi ð150Þ

dpi
dt

¼� aptoiaþ pjoib
j � 1

2
pjpkoicjk ð151Þ

pt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
cijpipj

p
a

: ð152Þ

The first two lines are evolution equations for xi, pi, while the third comes from the
constraint that plpl ¼ 0. Numerically, the main choices to make here are the time
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stepping algorithm, and a method for the computation of the metric and its deriva-
tives at the location of the packet. We note that as packets are either slowly diffusing
through the system (in which case we do not directly use these equations; see below)
or rapidly free-streaming out of the computational domain, even low-order methods
perform well enough that the propagation step is not a leading source of error in
simulations (see e.g., Foucart et al. 2021).

Additional interactions Finally, we have to allow packets to interact with the fluid
and/or other neutrinos. If we imagine that we have a set of processes with known

mean free path ki, or opacity ji ¼ k�1
i , then for each process we can randomly draw

the time to the next interaction from a Poisson distribution, e.g.

Dsi ¼ �ki ln ri ¼ �j�1
i ln ri ð153Þ

with ri a random number drawn from an homogeneous distribution in [0, 1) (the
repeated index i does not imply summation here). We note that Ds is in the reference
frame in which we provide ji. In simulations, this is usually the fluid frame.
Transforming to the coordinate time, we get (Ryan et al. 2015)

Dti ¼ �j�1
i

pt

m
ln ri: ð154Þ

The time to the next event is then Dtnext ¼ min ðDti;DtstepÞ with Dtstep the time step,
and with the minimum taken over all possible processes. If the minimum is Dtstep, a
packet is simply propagated for that time. Otherwise, whichever process provided the
minimum Dt occurs after that time interval. Existing simulations have considered an
absorption opacity ja and an isotropic elastic scattering opacity js, as in moment
schemes, but this method can be generalized to a larger number of interactions.
Absorption simply results in the packet being removed from the simulation, while
isotropic elastic scattering results in redrawing the direction of propagation of the
packet from an isotropic distribution in the fluid frame, under the constraint that the
fluid frame energy is conserved.

As for the propagation of packets, an important step here is how to interpolate the
opacities to the position of the packets and, if opacities are tabulated, in energy space.
Additionally, our estimate for Dti is only valid for a constant ji. If opacities are
changing rapidly, taking too large of a time step can introduce significant errors. The
existing simulation of a neutron star merger with Monte-Carlo transport used
constant ji within each grid cell (Foucart et al. 2020), which is numerically
convenient but may need to be improved. In addition to being low-order, this choice
leads to an algorithm that is sensitive to the time at which we determine a packet
leaves a cell, and thus recompute the opacities. As discussed in Foucart et al. (2021),
recovering accurate diffusion rates through high-opacity regions is then only possible
if the packets take fairly small time steps when close to a cell boundary. Higher-order
methods are desirable, but complicate calculations of the times-to-interaction Dti and,
to be consistent, also require the use of higher-order estimates of the emissivities, and
thus inhomogeneous production of packets within a single grid cell. A second-order
accurate scheme has recently been developed by Kawaguchi et al. (2022), for
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applications to axisymmetric systems, where the additional cost of a higher-order
scheme is more manageable than in full 3D merger simulations.

Potential issues We see that the main steps of a Monte-Carlo algorithm are fairly
straightforward, at least when using low-order methods. They also naturally follow
the expected behavior of individual neutrinos. Unfortunately, this simple algorithm
runs into a number of important roadblocks in practice. The simplest one to solve is
that the evolution still needs to be coupled to the fluid. Ideally, this would be done in
a way that satisfies conservation laws and avoids unnecessary shot noise in the fluid
evolution. We will see that in practice, there is a trade-off between these two
objectives (Sect. 4.3.2). A more significant issue is that the algorithm as proposed
would be extremely inefficient and potentially unstable in optically thick regions.
This is because we then expect rapid creation, annihilation, and scattering of
individual packets, requiring expensive calculations and potentially creating stiff
source terms in the evolution of the fluid equations. This is despite the fact that the
outcome of the evolution of neutrinos in that regime is known: they simply get into
statistical equilibrium with the fluid (if jaDtstep � 1), and/or slowly diffuse through
the fluid (if jsDtstep � 1). We discuss how one may deal with these issues in
Sect. 4.3.3. Finally, neutrino packets are very inhomogeneously distributed through
the computational grid. This is a desirable effect for optimal use of our computational
resources, but it means that we cannot simply divide our computational domain into
regions with roughly the same number of grid cells, and then distribute those regions
onto different processors. Parallelization is not a fundamental roadblock to the use of
Monte-Carlo transport, as packets can be distributed to processors in such a way that
the number of packets on each processor is well balanced. Doing so does however
require significant reorganization in merger codes that were not built with radiation
transport in mind, and thus tend to assume that the computational cost of evolving a
given grid cell is roughly the same regardless of the chosen cell.

Moments of fm Before getting into these issues, a useful additional piece of
formalism to discuss is the computation of moments of fðmÞ in a Monte-Carlo code.
Moments can be useful to compute neutrino–matter interactions, and of course to
compare Monte-Carlo results with moment transport algorithms. The Dirac d in the
definition of fðmÞ can be practically problematic when considering moments of fðmÞ,
and it is thus often preferable to consider the average moments within a volume V (e.
g. a grid cell), defined as

�M a1...an t; xi
	 
 ¼ Z

V

dV �3

V

Z
dXfm t; xi; �;X

	 

t̂
a1 þ la1

	 

. . . t̂

an þ lan
	 


: ð155Þ

For the second moment, this is

�M ab ¼
X
k2V

Nk
pakp

b
kffiffiffiffiffiffiffi�g

p
Vptk

ð156Þ

and similary for the number flux
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�Na ¼
X
k2V

Nk
pakffiffiffiffiffiffiffi�g

p
Vptk

: ð157Þ

In both cases, the sum is over all packets within the volume V. From these expres-
sions, calculating moments only requires tensor projections. For example, the energy
density in the fluid frame is

�J ¼
X
k2V

Nk
m2kffiffiffiffiffiffiffi�g

p
Vptk

ð158Þ

with mk ¼ �plk ul. We note that while this expression will turn out to be convenient
for numerical simulations, its theoretical interpretation is a little convoluted, as it
represents a moment in the fluid frame, averaged over a volume element in the
simulation frame at a constant simulation time.

4.3.2 Coupling to the fluid

In the moment formalism, the back-reaction of the neutrinos onto the fluid was
relatively easy to compute, because the moment equations are directly equivalent to
the equations of conservation of energy, momentum, and, if evolving the number
density, lepton number. A coupling scheme that explicitly conserves these quantities
can also be designed for Monte-Carlo methods, with a few additional calculations;
but we’ll see that it comes with some pitfalls.

To get a conservative scheme, we can keep track of changes in the momentum of
neutrinos due to emission, absorption, and scattering. If the Nk neutrinos in a packet
undergo a change of 4-momentum Dplk ¼ plafter � plbefore, then the fluid should
undergo a change of 4-momentum �NkDp

l
k as a reaction. While this change is

generally instantaneous, we can distribute it over a 4-volume element DVDt to get
the 4-force density (Ryan et al. 2015)

Gl ¼ �
X
events

NkDp
l
kffiffiffiffiffiffiffi�g

p
DVDt

; ð159Þ

with the sum being over all events changing a packet’s 4-momentum within the given
4-volume. We note that a single packet may be subject to no event, or to many
events, and that a packet may interact with the fluid in different volume elements
over the course of a time step; thus, properly computing that sum requires careful
bookkeeping. The fluid equations become

rlT
lm
fl ¼ Gm: ð160Þ

When using operator splitting, one might instead want to apply the total change of
momentum within the 4-volume to the evolved fluids variables as a postprocessing
step, after evolving the fluid and neutrinos. This requires a time integration of this
equation. The relevant changes for the evolved fluid variables within a volume V after
a time step Dt are
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D ~T
lm
nm

	 
 ¼ X
events

NkDp
l
k

DV
: ð161Þ

The most commonly evolved fluid variables in merger simulations are the internal

energy density ~s ¼ ~T
lm
nlnm � q
 and momentum density ~Si ¼ � ~T

l
i nl. For these

variables, we get

D~s ¼
X
events

NkDp
l
k nl

DV
ð162Þ

D~Si ¼�
X
events

NkDpki
DV

: ð163Þ

Similarly, for the evolution of the electron fraction,

Dðq
YeÞ ¼ �mb

X
events

Nksk
DV ð164Þ

with sk ¼ 0 for muon and tau neutrinos and for any scattering event, sk ¼ 1 for
emission of me and absorption of �me, and sk ¼ �1 for emission of �me and absorption of
me. The mass mb is again the reference baryon mass entering the definition of the rest
mass density. This method has the advantage of imposing exact conservation laws:
whatever the neutrinos gain, the fluid looses, and vice-versa. Its disadvantage is to be
fairly sensitive to shot noise. If a packet is emitted, absorbed, or scattered in a very
low density regions, that event would lead to extremely large changes in the tem-
perature, momentum and composition of the fluid. These changes may even lead to
unphysical values of the fluid variables after coupling to the neutrinos. It is best
suited to simulations with fairly homegeneous packet energies, or a sufficiently large
number of packets to avoid shot noise issues. This is the method adopted e.g. in
Miller et al. (2019a).

One alternative is to give up on exact conservation laws, counting instead on
conservation laws being statistically satisfied over many interactions. In such an
algorithm, described for example in Foucart et al. (2021), one may write the source
terms for the fluid equations as in the moment equations, i.e., for neutrinos of a given
energy and considering only emission, absorption, and elastic scattering,

Gl ¼ �ðg� jaJÞul þ ðja þ jsÞHl: ð165Þ
As when using exact conservation laws, we then need to integrate this source term
over a time step Dt and a small volume DV , as well as over the entire neutrino energy
spectrum. We then getZ

dm
Z

dV

Z
dtGl ¼ �gtotDVDtu

l þ
X
k;j

Dtk;jNkmkffiffiffiffiffiffiffi�g
p

ptk
ja;kp

l þ js;kp
a
kh

l
a

	 

:

In this expression, the sum is taken over all packets k, and all time intervals Dtk;j
during which packet k is propagating along a geodesic while inside of the volume DV

123

1 Page 60 of 83 F. Foucart



and time interval Dt (due to scattering events, a single packet may appear multiple
times in this sum). Converting to the change per unit volume in the evolved variables
over a time Dt, we get

D~s ¼� ~gtotaWDt þ
X
k;j

Dtk;jNkmk
DVptk

ðja;k þ js;kÞ�k � js;kWm
	 


ð166Þ

D~Si ¼� ~gtotauiDt þ
X
k;j

Dtk;jNkmk
DVptk

ðja;k þ js;kÞpki � js;kmui
	 


: ð167Þ

For the electron fraction, we get instead

Dðq
YeÞ ¼ mba ~gð�meÞN ;tot � ~gðmeÞN ;tot

� �
þ mb

X
k;j

skja;kDtk;jNk
mk

DVptk
ð168Þ

with sk ¼ 1 for me, sk ¼ �1 for �me, and sk ¼ 0 otherwise. With these choices, the
source terms in low-density regions (jDt � 1) are a lot less noisy. Indeed, every
packet passing through such a region contributes to the source terms exactly the
expectation value of these source terms, instead of creating large source terms when a
packet actually interacts with the fluid and none otherwise. Importantly, the time-
averaged value of the source terms is the same as in the previous method (Foucart
et al. 2021). We decrease the shot noise in the source terms at the cost of loosing
exact conservation laws. We note that in this latter technique, an important decision is
when to switch a packet from contributing to one grid cell to contributing to its
neighbor. The obvious answer would be to do so at the exact time a packet crosses a
cell boundary, but this is not necessarily trivial to predict in high-opacity and/or high-
curvature regimes. Any algorithm using this method thus has to consider a balance
between the cost of accurately determining the time at which a packet crosses a cell
boundary, and the cost of using approximate values for the Dtk;j.

An intermediate scheme, used e.g. by Kawaguchi et al. (2022), is to absorb full
packets in optically thick regions, but to damp Nk in optically thin regions, following
the method of Dolence et al. (2009). The number of neutrinos in a packet then
evolves as

dNk

ds
¼ �jaNk ð169Þ

with s the time in the fluid frame. In this case, the energy/lepton number absorbed
over a time step can easily be added to the fluid while guaranteeing that we exactly
satisfy the relevant conservation laws, but one may end up with a larger number of
packets as individual packets are no longer destroyed by default (an issue solved in
Kawaguchi et al. 2022 by resampling packets in optically thin regions at the end of a
step anyway).

As more Monte-Carlo simulations are performed in the future, other methods are
likely to be developed. At the moment, exact conservation appears preferable if the
neutrinos contain a significant fraction of the total energy/momentum of the system,
or are dynamically important to the evolution of the system, and if a lot of packets are
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used in the simulations. In mergers and post-merger remnants, where neutrinos are
not dynamically important and we tend to use few packets in low-density regions, the
second method may be preferable.

4.3.3 Optically thick regime

The optically thick regime poses a more fundamental problem for Monte-Carlo
methods. One issue is that if ðja þ jsÞDt ¼ N , we expect �N neutrino–matter
interactions per time-step. In dense or hot regions of mergers, we can easily get
N � 1, making evolutions costly. A related issue is that if we calculate g; ja; js
using the properties of the fluid at the beginning of a time step, and the source terms
lead to large changes in the fluid variables, the evolution can become numerically
unstable. To avoid taking extremely small time steps, we would then need to at the
very least obtain a good guess for the fluid variables at the end of the time step, or
even iteratively solve for these values. The latter would be costly for Monte-Carlo
simulations, as all packets have to be reevolved for every new guess of the fluid
variables. We note that in the merger context, these issues are mostly due to the
presence of a dense, hot neutron star remnant. For their simulations of post-merger
accretion disks, Miller et al. (2019a) simply require a time step smaller than the
cooling timescale of any given cell, and find that condition to be generally less
constraining than the Courant condition. Accordingly, the problem of very optically
thick regions has only really been encountered in the merger simulations of Foucart
et al. (2020), and handled with approximate methods inspired by the implicit Monte-
Carlo method of Fleck and Cummings (1971) for regions of high absorption optical
depth, and the random walk method of Fleck and Canfield (1984) for regions of high
scattering optical depth. We briefly summarize their methods here, as well as the
proposed algorithm of Kawaguchi et al. (2022), but note that given the relative
novelty of the problem, these methods remain poorly tested and understood.

A first change that can be made to the standard Monte-Carlo algorithm in dense
region, appropriate when jsDt � 1, is to once more rely on the idea that, in that
regime, neutrinos are slowly diffusing in the reference frame of the fluid. Richers
et al. (2017) and Foucart (2018) propose similar methods to treat this regime, based
on the work of Fleck and Canfield (1984). Both assume that in regions of sufficiently
high jsDt, neutrinos are advected with the fluid, while undergoing a slow random
walk away from the fluid’s motion. When determining the outcome of that random
walk, Richers et al. (2017) draw from the distribution of times needed for a neutrino
to diffuse a certain distance in the fluid frame. Foucart (2018) draws instead from the
distribution of distances that the neutrinos move in the fluid frame after a fixed time,
and additionally draws the final momentum of the diffusing neutrinos from a
distribution function calibrated to a solution of the full Boltzmann equation. Both
algorithms also correct the solution of the diffusion equation so that neutrinos cannot
move faster than the speed of light (i.e., effectively assume that if the diffusion
equation predicts superluminal motion, no scattering occurs and neutrinos just
propagate at the speed of light along a geodesic). We refer the reader to Richers et al.
(2017) and Foucart (2018) for the exact choices of distribution functions. When
using such an approximation, calculating the source terms for coupling to the fluid
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can be slightly more involved. If using the actual value of the momentum transfer, we
can still compute Dpl of each packet between the beginning and end of a step, but
should in theory correct that result for the natural change in pl due to the evolution of
a packet along a geodesic in curved spacetime. If using expectation values of the
interaction rates instead, Foucart (2018) uses the approximation that hpli ¼ mul for a
fraction fadv of the time step, and pl ¼ mðul þ llÞ for the remaining of the time step,
with fadv and ll chosen so that the packet ends at the desired location. The source
terms can then be computed as in the previous section, using these approximate
values of the neutrino 4-momentum. Overall, this process has been demonstrated to
work well even down to jsDt� 3 (Foucart 2018).

Regions with jaDt � 1 create a more difficult challenge. In these regions, we
expect neutrinos to reach statistical equilibrium with the fluid on a time scale
j�1
a � Dt, and the temperature and composition of the fluid themselves may quickly

change as more neutrinos or antineutrinos are emitted, absorbed, or diffuse away. In
these regions, we expect the energy density of neutrinos of a given energy to be set

by g=ja, and their diffusion timescale to be set by ðja þ jsÞ�1. Then, the evolution of
the system can be approximately captured if we accept that we cannot resolve what
happens on timescales much shorter than Dt (Foucart et al. 2021), and rely instead on
changes to the source terms inspired by Implicit Monte-Carlo methods (Fleck and
Cummings 1971). In Foucart et al. (2021), we propose the transformation

g0 ¼ag ð170Þ

j0a ¼aja ð171Þ

j0s ¼js þ ð1� aÞja ð172Þ
which guarantees that g0=j0a ¼ g=ja and ja þ js ¼ j0a þ j0s, but modifies the equi-

libration time scale of neutrinos from j�1
a to ðajaÞ�1. We then choose a such that

j0aDt.1, making all relevant time scales longer than the time step. We note that a
different value of a may be used for each energy bin and each neutrino species. This
method has the advantage of limiting the number of emissions and absorptions of
neutrinos to roughly what is needed to get to statistical equilibrium in a few time
steps, while avoiding stiff source terms in the fluid evolution equations. For neutron
star merger remnants, we find sub-percent errors in the neutrino luminosities when
comparing this method to the solution of Boltzmann’s equation (Foucart et al. 2021).
We note however that this method could easily impact the diffusion rate of neutrinos
within the densest regions if the neutrino spectrum changes on scales smaller than the
grid scale, and that its accuracy in the presence of significant inelastic scattering is
also uncertain. As opposed to the more complex method used by Fleck and Cum-
mings (1971), the method proposed here is not a direct discretization of the coupled
fluid-radiation equations, though deviations from those equations are all related to
sub grid scale and sub time step features of the solution. There is no doubt that
further improvements and/or tests of the method would be benefitial to properly
understand and potentially reduce the errors that it creates.

123

Neutrino transport in general relativistic neutron star... Page 63 of 83 1



In their proposed Monte-Carlo algorithm, Kawaguchi et al. (2022) adopt an
algorithm much closer to that of Fleck and Cummings (1971). A single parameter a
is chosen for all energy bins of a given neutrino species, and the additional scattering
opacity induced by the algorithm is assumed to be inelastic: the total energy of
scattered packets does not change, but the energy of individual neutrinos within the
packet samples the equilibrium energy distribution of neutrinos. With such an
algorithm, Implicit Monte-Carlo can be seen as just a specific discretization of the
original transport equations (Fleck and Cummings 1971), a significant theoretical
advantage. This comes at the cost of slightly less flexibility in our ability to reduce
absorption and reemission of packets, and more complexity in the treatment of
scattering events.

4.3.4 Pair processes and other non-linear source terms

In this last section discussing Monte-Carlo methods, we turn to pair processes as an
example of issues that may arise when non-linear terms in the neutrino distribution
functions come into play. In theory, Monte-Carlo methods provide us with a direct
discretization of the neutrino distribution functions in 6D. One could thus evaluate
blocking factors and non-linear source terms explicitly. However, in the presence of a
large number of packets, this is an expensive computation. If on ther other hand only
a small number of packets are present, sampling noise in the distribution function
may lead to large errors in the resulting reaction rates.

Consider for example the mi�mi ! eþe� reaction. The absorption cross section for
neutrinos of 4-momentum pa could be written, under the same assumptions as
Eq. (30) and assuming that each packet of antineutrinos represent a spatially uniform
distribution of neutrinos within a grid cell of volume V, as

jm�m ¼ DG2
F

3p
1ffiffiffiffiffiffiffi�g

p
Vpt

X
k;�mi2V

Nk
�pa�pa;k
	 
2

�ptk
ð173Þ

with �pak the 4-momentum of antineutrinos in packet k, and the sum covering all
antineutrino packets of the correct species in the chosen grid cell. We note that as
opposed to previous opacities, which were computed in the fluid frame, this opacity
is computed in the simulation frame, i.e., if we draw the time to the next annihilation
event, we should use Dtm�m ¼ j�1

m�m ln r with r 2 ½0; 1Þ. While the mathematical
expression is relatively simple, this requires for each packet iteration over all packets
of antineutrinos in the same cell. This is costly if the number of packets is large, and
sensitive to shot noise if the number of packets is small. We note however that
according to our earlier expression for the stress-energy tensor in Monte-Carlo, this is
equivalent to

jm�m ¼ DG2
F

3p
papb

pt
�T ab ð174Þ

with �T ab the stress-energy tensor of the antineutrinos. This allows for faster calcu-
lations for large numbers of antineutrinos if we precompute �Tab (the algorithm will
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scale linearly with the number of packets, instead of scaling with the number of
packets squared). Additionally, this method allows us to approximate �Tab in other
ways in regions where few packets are available, e.g., using an average over a larger
spatial region, or a longer time interval, in order to gather information from a larger
number of packets at the cost of a smoothing of the neutrino distribution function.
Quite importantly however, as the opacity depends explicitly on the 4-momentum of
the neutrinos, we have to recompute it for each packet, at each time. To avoid costly
contractions with the metric, a code that stores pt and pi would ideally express this
opacity as

jm�m ¼ DG2
F

3ppt
pta½ �2 �E � 2 pta½ � pi �Fi

h i
þ pipj �P

ij
� �

ð175Þ

and thus specifically precompute �E; �Fi
; �Pij to minimize computations. These

expressions have however not been used in general relativistic merger simulations so
far.

A potential complication is that if pair processes are included in the emission rate
of neutrinos (as is typically done for muon and tau neutrinos), and the absorption
opacity is calculated according to Kirchoff’s law, then the opacity for pair
annihilation is already included in the simulations under the assumption that
neutrinos and antineutrinos are both in equilibrium with the fluid. So simply adding
the opacity calculated here to a simulation would double count pair annihilation in
optically thick regions. On the other hand, we know that when assuming equilibrium
we underestimate the rate of pair annihilations by many orders of magnitude in low-
density regions above the remnant. Without a fully self-consistent calculation of pairs
everywhere (which would require the inclusion of blocking factors in the emissivity,
and thus make the emission step dependent on the current distribution of neutrinos),
the method to calculate pair annihilation outlined here should only be used in
optically thin regions.

4.3.5 Discussion

The use of Monte-Carlo algorithms in merger and post-merger simulations is a
relatively novel development, with few simulations published so far. Early results
however indicate that Monte-Carlo methods can be used at a surprisingly low cost,
comparable to or lower than that of the most complex moment schemes, while
automatically taking into account the energy dependence of the distribution function
fm. Monte-Carlo simulations have already allowed important tests of the accuracy of
moment schemes, and will certainly continue to remain a valuable tool until the
evolution of Boltzmann’s equations with higher-order methods becomes a realistic
prospect. Nevertheless, these methods have their own drawbacks. For monoenergetic
neutrinos, they are certainly less accurate than moment schemes in high-density
regimes, were approximations are currently made to avoid the use of implicite time
stepping and the calculations of a large number of interactions. For more realistic
neutrino spectra, existing tests of these approximations indicate that they are
probably subdominant sources of error in current merger simulations, but only a few
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of these tests have been performed so far. Further improvements to the behavior of
Monte-Carlo algorithms in dense regions, possibly combined to the use of implicit
methods for their coupling to the fluid, may be desirable in the future.

Additionally, one of the main supposed advantage of an evolution of the full
Boltzmann equations is the availability of fm. For existing Monte-Carlo scheme, this
availability is doubtful. Current simulations use a very small number of packets in
low-density regions, so that fm can only be recovered with reasonably low statistical
noise if one averages over long time scales and/or spatial scales. We have noted the
importance of this problem for pair annihilation, but this could also be an issue for
calculations of oscillations due to fast flavor instabilities. The FFI is typically
triggered due to changes in the sign of the net lepton flux (flux of me minus flux of �me),
and calculations of that net flux from existing Monte-Carlo simulations would be
entirely dominated by statistical noise. While Monte-Carlo simulations are certainly
an important step forward in our modeling of radiation transport, they are thus far
from a one-size-fit-all solution to the problem of radiation transport in merger
simulations.

5 General relativistic merger simulations

In the previous sections, we provided a detailed discussion of the three broad classes
of algorithms used in general relativistic simulations of neutron star binary mergers
so far. These algorithms have been used in a large number of simulations, and
discussing each of these results goes beyond the scope of this review. However, in
order to put these algorithms in context, and provide examples of their limitations
and known sources of errors, it is useful to discuss at least two aspects of these
simulations: what they broadly tell us about neutrino physics in neutron star mergers,
and how different algorithms compare when used to simulate the same physical
configuration.

5.1 Neutrinos in neutron star merger simulations

Neutrinos play two major roles in the evolution of the properties of post-merger
remnants: cooling the remnant disk and, if present, the remnant neutron star, and
modifying the composition of the fluid. There is broad agreement that, for systems
that rapidly collapse to a black hole, or for black hole–neutron star systems, shock
heating during the merger and the circularization of the accretion disk will lead to
bright neutrino emission peaking at 1053�54 erg/s. That emission however rapidly
decays on � 10 ms timescale (Deaton et al. 2013; Sekiguchi et al. 2016; Radice et al.
2022). Late time emission depends on the relatively poorly constrained heating due
to magnetically-driven turbulence in the post-merger disk, as well as on the mass of
the disk itself (Fernández et al. 2020; Shibata et al. 2021; Fujibayashi et al. 2022). It
may remain as high as � 1052�53 erg/s for O(100 ms). This emission is not sufficient
to create a thin disk (the disk aspect ratio remains � 0:2), but simulations that do
include cooling find remnant disks that are significantly more compact than
simulations without cooling, indicating a loss of gravitational binding energy. Once
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the mass accretion rate drops sufficiently [to roughly _M.10�3 M� /s (De and Siegel
2021)], neutrino emission is no longer sufficient to cool the disk, which becomes an
advection dominated accretion flow.

For systems with a massive neutron star remnant, the peak emission is at a level
comparable to the black hole-disk remnant, but emission from the neutron star can
continue over much longer timescales. For example, the long axisymmetric
simulations of Fujibayashi et al. (2020) find neutrino luminosities of
� 1052�53 erg/s more than 5 ms post-merger, with no sign of the luminosity
decreasing on those timescales. The neutron star remnant will thus be the dominant
source of neutrinos after O(100 ms) (see Fig. 6).

In both cases, simulations generally agree on an energy hierarchy �mx [ ��me [ �me,
with average energy of � 10 MeV for me but potentially above 20 MeV for mx. This
is simply due to the higher absoption opacity of the fluid to me, which puts the me
neutrinosphere farther out in the remnant than the �me neutrinosphere (and even more
the mx neutrinosphere). As the temperature of the remnant close to the neutrinosphere
increases with density, heavy-lepton neutrinos have higher energies.

Weak reactions during the merger and early post-merger evolution are typically
well out of equilibrium, and existing simulations find an initial overabundance of �me
emission over me emission as the remnant’s electron fraction rapidly increases—for
both NSBH and BNS mergers, and regardless of whether a remnant black hole is
formed or not. After formation of an accretion disk, however, different regimes can
be found. Long simulations of accretion disks with mild electron degeneracy using a
leakage scheme have found that weak interactions can lead to self-regulation of the
composition of the disk midplane to Ye � 0:1 (Siegel and Metzger 2018), with a
lower density outer disk and hotter at significantly higher Ye (Fig. 7). Simulations of
accretion disks with moment transport find that neutrino absorption in the disk can
lead to higher electron fractions Ye � 0.15–0.2 (Foucart et al. 2015; Just et al. 2021).
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Fig. 6 Total neutrino luminosity from the neutron star (solid curves) and accretion disks (dashed curve) in
three long simulations of NSNS merger remnants in which the central object remains a neutron star. We
observe both the decay of the disk emission on O(100 ms) timescales and the sustained emission from the
neutron star
Image reproduced with permission from Fujibayashi et al. (2020), copyright by AAS
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These values can also be significantly impacted by irradiation of the disk by a central
neutron star (Fig. 7). Farther out in the disk, or once neutrino emission becomes
inefficient and the disk becomes advection dominated, the electron fraction largely
freezes out. The initial density and mass accretion rate of the disk thus plays a role in
determining the composition of post-merger outflows (Fernández et al. 2017), and
that composition is also affected by the location from which the matter is ejected
(midplane vs. corona). In that respect, it is worth noting that outflows produced from
self-consistent MHD simulations and outflows produced by simulations using a
viscosity models as a subgrid model to capture angular momentum transport and
heating from magnetically-driven turbulence (Shakura and Sunyaev 1973), even
when they agree on the amount of matter ejected, make very different predictions for
the history of the fluid elements ejected from an accretion disk—which may impact
predictions of the final Ye of the outflows. MHD simulations starting with different
magnetic field configurations can also produce very different amounts of outflow,
indicating that predictions for matter outflows in post-merger remnants are likely to
depend on the unknown large scale properties of magnetic fields in the post-merger
remnant (Christie et al. 2019; Hayashi et al. 2022b).

All of the above features are found in simulations using leakage, moments, or
Monte-Carlo transport, although disagreements between methods can be found on
the exact neutrino luminosity and composition of the remnant (see below).
Simulations that include reabsorption of neutrinos in the matter outflows also find
that hot outflows originating from the colliding cores of two neutron stars or the hot
corona of an accretion disk rapidly evolve to electron fractions Ye � (0.2–0.4)
(Wanajo et al. 2014; Foucart et al. 2015; Sekiguchi et al. 2016; Radice et al. 2018;
Foucart et al. 2020; Radice et al. 2022; Camilletti et al. 2022), though the exact value
of Ye can vary significantly depending on the chosen numerical algorithm (see
below). Faster and colder outflows associated with the tidal disruption of a low-mass
neutron star by a more massive companion (in either NSBH or BNS mergers) do not
capture enough neutrinos to undergo sigificant changes of composition, and thus
remain very neutron-rich (Ye.0:05), even in simulations that include neutrino
absorption (Sekiguchi et al. 2016; Foucart et al. 2017; Radice et al. 2018; Camilletti
et al. 2022). There is higher uncertainty on the composition of the post-merger
outflows. Neutrino-driven outflows observed in post-merger simulations that do not

Fig. 7 Electron fraction in post-merger remnants. We show a vertical slice through a NSBH merger (Left)
and a BNS merger (Right). The BNS merger is evolved using two different choices for the energy closure
in a two-moment scheme.
Images reproduced with permission from Foucart et al. (2015) and Foucart et al. (2016b), copyright by APS
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include magnetic fields tend to have very high Ye, but fairly low mass Moutflow 	
10�ð3�4ÞM� (Just et al. 2015; Foucart et al. 2015) (see e.g. polar regions of Fig. 7).
They are likely to be dominated by magnetically-driven winds (Siegel and Metzger
2018; Fernández et al. 2019), if those winds are significant (see above), and by
viscous outflows in the advection-dominated phase (Fernández and Metzger 2013).
In the absence of strong magnetically-driven winds, neutrino-driven winds could
however impact kilonova signals, as they might be geometrically separated from both
the dynamical ejecta and the viscously-driven winds. Magnetically-driven outflows
are faster (� 0:1c), and have less time to absorb neutrinos, while viscous outflows
are slower (� 0:03c) and have a composition set by the electron fraction of the fluid
at the time at which weak interactions freeze-out. Long 3D simulations including
magnetic fields and approximtely accounting for neutrino absorption in post-
processing find outflows with Ye � 0.15–0.25, starting from very neutron-rich initial
conditions (Siegel and Metzger 2018). Shorter simulations using an advanced Monte-
Carlo transport scheme and including magnetic fields (Miller et al. 2019b), with
similar initial conditions, find a broader distribution of Ye peaking just below Ye � 0:2
and extending up to Ye � 0:4. Similarly, long simulations of a NSBH merger remnant
with a moment scheme and magnetic fields (Hayashi et al. 2022a), initialized from
the outcome of a merger simulation, find a broad Ye � 0.15–0.4 distribution peaking
just above Ye � 0:2. Very few long 3D simulations including both magnetic fields and
neutrinos are however available. Parameter space exploration with axisymmetric
simulations (using artificial viscosity instead of evolving the magnetic field) find a
significant sensitivity of the results on the compactness of the disk (Fernández et al.
2020), the lifetime of the massive neutron star remnant (if present) (Metzger and
Fernández 2014), and the initial composition used in the simulation (Fernández et al.
2017). 3D simulations have also demonstrated the importance of the large scale
structure of the post-merger magnetic field both with a black hole remnant (Christie
et al. 2019) and a neutron star remnant (de Haas et al. 2022). Given our limited
understanding of the properties of post-merger remnant as a function of the initial
binary configuration, it is thus fairly difficult at this point to build reliable models of
post-merger outflows.

Finally, in the previous sections we already emphasized the difficulties of properly
implementing m�m pair annihilation in relativistic merger simulations. Fujibayashi et al.
(2017), using the approximate moment method described in Sect. 4.2.8, finds that
pair annihilation can accelerate the matter in the polar regions to mildly relativistic
speeds (Lorentz factor C� 2)—sufficient to be important to the dynamics of the fluid
in those low-density regions, but not enough to power SGRBs (see Fig. 5). In NSBH
remnants with very little matter in the polar regions, Just et al. (2016) even find
relativistic outflows powered by pair annihilation, but not with enough energy to
power the brightest SGRBs. Foucart et al. (2018) find that the energy deposition
predicted by the approximate moment scheme is likely accurate within a factor of
� 2–3. More advanced transport calculations had earlier been performed on a
prescribed fluid background (Popham et al. 1999; Kneller et al. 2006; Zalamea and
Beloborodov 2009; Dessart et al. 2009; Perego et al. 2017). These simulations find
that at most a few percents of the neutrino luminosity is deposited in the polar region
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through neutrino annihilation, with a rapid drop in efficiency as the accretion rate
decreases. These two sets of results are qualitatively consistent, indicating that while
neglecting pair annihilation may be acceptable when considering only the low-
velocity outflows powering kilonovae, it may be important to take into account when
attempting to resolve the evolution of the polar regions, and in particular the
formation of jets in that region.

5.2 Comparisons of numerical algorithms

To finish our discussion of general relativistic transport methods for neutron star
mergers, let us look into a few direct comparisons of numerical algorithms to gauge
their accuracy.

A direct comparison of a leakage scheme (whithout absorption) and a two-
moment scheme (with Minerbo closure, evolving ~E and ~Fi) was performed in the
context of a low-mass neutron star merger in Foucart et al. (2016a). In that
simulation, leakage and moment schemes agreed quite well on the �me luminosity,
while other luminosities varied by factors of 2–3 in the first 10 ms following the
merger. The inclusion of neutrino absorption led to the production of a neutrino-
driven wind that did not exist in the leakage simulation, but the mass outflow rate
was only _M � 10�2 M�=s, i.e., less than what one might expect at that time from
magnetically-driven winds. Outflows in the moment simulation were also signifi-
cantly hotter and less neutron-rich than in the leakage simulation (hYei ¼ 0:2 vs.
hYei ¼ 0:1, and hsi ¼ 20kB vs. hsi ¼ 10kB per baryon). This confirms that neutrino
luminosities are only order-of-magnitude accurate in simple leakage schemes, and
the crucial impact of neutrino absorption on the properties of matter outflows.

In Radice et al. (2022), the authors consider two neutron star mergers, one for
which the remnant collapses to a black hole a few milliseconds after contact, and one
forming a long-lived neutron star remnant. They compare results using a hybrid
moment-leakage scheme, the standard two-moment scheme with Minerbo closure, as
well as a two-moment scheme using the Eddington closure (i.e., the optically thick
closure everywhere). The hybrid schemes overestimates neutrino luminosities by a
factor of � 2 with respect to the moment simulations, while the two-moment
simulations with different closures are in much better agreement (10–30%
differences, see Fig. 8). All three schemes agree very well on the average energy
of escaping neutrinos for me�me, while early emission of higher energy heavy-lepton
neutrinos is predicted by the two-moment scheme but not the hybrid scheme. The
two-moment scheme also predicts � 30% less mass ejected than the hybrid scheme,
and significantly higher electron fractions (DYe � 0:1). The use of the Eddington or
Minerbo closure had again a much smaller effect (� 10% relative error in mass,
shifts of a few percents in Ye). Differences between the hybrid and two-moment
scheme are thus slightly lower than between a pure leakage and a two-moment
scheme, but nonetheless significant. The fact that the Minerbo and Eddington closure
are in much closer agreement is however quite encouraging, as a reasonable proxy
for the error due to the use of an approximate closure in semi-transparent regions.
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The impact of the chosen energy closure in grey two-moment schemes was
investigated in Foucart et al. (2016b), for the same physical configuration as in
Foucart et al. (2016a). In that manuscript, two energy closures are considered. In the
first, the average energy of neutrinos is taken from a black-body distribution at
temperature Tm ¼ max ðTleak; TÞ, with Tleak the temperature predicted by a leakage
scheme (globally) and T the temperature of the fluid. In the second, the neutrino
number density is evolved to obtain a local estimate of Tm, and the neutrino spectral
index is evolved to attempt to accounting for softer spectra in the regions optically
thick to scattering but optically thin to absorption. The luminosity of neutrinos
initially is in reasonable agreement in both schemes (20–30% differences), but
differences increase over time to � 50% at the end of the evolution (8 ms post-
merger). This is less than the difference between leakage and two-moment schemes,
but still quite significant. One likely source of error here is divergence in the
evolution of Ye in the remnant, due in part to the fact that the scheme that does not
evolve the number density cannot explicitly conserve the total lepton number of the
system. As in Radice et al. (2022), the average energy of electron-type neutrinos is
reasonably close in both schemes, but calculations based on the leakage scheme un-
derestimate the initial energy of heavy-lepton neutrinos. Both schemes have similar
outflow masses, but difference in electron fraction DYe � (0.05–0.1) (see Fig. 7). We
note that this is despite the fact that the estimated average neutrino energies are
similar in both simulations, and mostly due to the fact that polar neutrinos (which
interact with hot outflows) have higher energy than equatorial neutrinos (which do
not), and are thus more strongly absorbed than when opacities are computed using a
global estimate of the average energy. Using the local fluid temperature to estimate
the neutrino energies would lead to significantly larger errors: factors of a few
changes in the neutrino energies instead of tens of percent.

One can also take a broader view of these comparisons between transport
schemes. Instead of directly comparing numerical simulations, Nedora et al. (2022)
compare datasets of simulations using different microphysical inputs, and provide
numerical fits for the outcome of these simulations. Their results are consistent with
the direct comparisons discussed above, and show that the choice of neutrino
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Image reproduced with permission from Radice et al. (2022), copyright by the authors
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transport algorithm in merger simulations remain an important source of error in
outflow modeling.

Finally, comparisons of a Monte-Carlo transport scheme with a two-moment
scheme evolving the number density were performed without back-reaction of the
Monte-Carlo code to the fluid (i.e., using the same fluid evolution as in the moment
evolution) (Foucart et al. 2018) as well as with coupling to the fluid (Foucart et al.
2020) in a neutron star merger simulation. In the fully coupled simulation, the
luminosity of me and �me and the energy of neutrinos was in better agreement (10–20%
differences) than in other comparisons between transport methods discussed so far,
with the exception of the comparison between different choices of closure relations
performed by Radice et al. (2022). The heavy-lepton luminosity showed � 50%
changes, showing once more the difficulty of properly capturing the evolution of
those neutrinos. Similarly, the composition of the outflows was in much better
agreement than in other comparisons discussed in this section, with the average Ye
changing by DYe � 0:03, and the maximum Ye by DYe � 0:05—not necessarily
negligible changes, but a significantly better agreement than in other comparisons
(see Fig. 9).

The simulation that does not fully couple the Monte-Carlo algorithm to the fluid
evolution, thus avoiding any drift of the fluid variables over time due to small
differences between the algorithms, shows similar differences in the neutrino
energies, but better agreement for the mx luminosity. A more detailed study of the
spatial distribution of neutrinos however indicates that the moment scheme greatly
overestimates the density of neutrinos close to the pole (by � 50–100%), and
underestimates their density farther out—an important consequence of the choice of
closure made for the pressure tensor (see Fig. 10). That simulation also computed the
rate of neutrino pair annihilation using the moment scheme and the Monte-Carlo
methods. We note that, as shown in Sect. 4.2.8, the moment calculation requires the
use of both an approximate average energy for the pairs and of the approximate
pressure closure in a regime in which it is inaccurate. Additionally, it is naturally
impacted by errors in the estimated energy density of neutrinos close to the poles.
Interestingly, for the specific numerical algorithms studied here, those errors partially

Fig. 9 Comparison of the electron fraction Ye in a vertical slice of a post-merger remnant for simulations
using Monte-Carlo methods (Left) and a two-moment scheme (Middle). The right panel shows the Ye
distribution of matter outflows in both simulations.
Image reproduced with permission from Foucart et al. (2020), copyright by AAS
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cancelled out, leaving us with factors of 2–3 errors in the actual annihilation rate for
the moment scheme. There is however now guarantee that this would also be true for
a different binary configuration, or with different estimates for the neutrino energy, as
individually some of these errors can modify the annihilation rate by close to an order
of magnitude.

Overall, we thus note that there has been a significant improvement in the
magnitude of those errors, with the more modern moment (Foucart et al. 2016b;
Radice et al. 2022) and Monte-Carlo (Foucart et al. 2020) schemes getting estimated
relative errors in the � 10–20% range for the variables that most significantly impact
astrophysical observables—by which point neutrino transport is certainly a
subdominant source of error when compared to the underresolved evolution of
magnetic fields, the nuclear physics uncetainties in kilonova modeling, or maybe
even the impact of neglected/poorly modeled neutrino physics (oscillations, inelastic
scattering, pair process).

6 Conclusions

The inclusion of radiation transport algorithm in neutron star merger simulations has
taken significant step forward over the last decade. The development of improved
two-moment schemes and Monte-Carlo algorithms, in particular, allows for
reasonably accurate evolution of the transport equations for relatively simple
neutrino physics.

This leaves us however with a few important challenges. First, very few
simulations have made use of these new methods, and thus efforts to model the
observable counterparts to neutron star mergers still heavily rely on results obtained
with simpler microphysics. As a result, current model are often unreliable (Henkel
et al. 2022), and dependent on the algorithms used for neutrino evolution in the
simulations used to calibrate them (Nedora et al. 2022). Second, we know that a
number of potentially important processes are not included in existing simulations, or

Fig. 10 Left: Energy spectrum of the mx neutrinos 14 ms after a BNS merger, according to a Monte-Carlo
simulation. Vertical lines show the average energy esimated using Monte-Carlo (Solid line) or a two-
moment scheme (dashed line). Right: Angular distribution of the neutrinos in the same simulations, using a
Monte-Carlo evolution (black) or a two-moment evolution (red).
Image reproduced with permission from Foucart et al. (2018), copyright by APS
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are poorly modeled in those simulations. This include at least neutrino oscillations,
pair annihilation, inelastic scattering, and potentially direct and modified URCA
processes. Finally, neutrino transport is only one part of the problem when modeling
neutron star mergers. Magnetic fields are crucial to the evolution of neutron star
mergers and their post-merger remnants. The growth of large scale magnetic fields
due to MHD instabilities is not sufficiently resolved even in simulations that do not
include neutrinos, or that include them very approximately. Combining high-
resolution MHD simulations with our most advanced neutrino transport schemes
over the seconds time scales needed to follow the evolution of a post-merger
remnants remains an extremely difficult problem that will likely remain an important
source of uncertainty in our modeling of electromagnetic signals from neutron star
mergers for years to come.
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