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Abstract
The theory and numerical modelling of radiation processes and radiative transfer play
a key role in astrophysics: they provide the link between the physical properties of
an object and the radiation it emits. In the modern era of increasingly high-quality
observational data and sophisticated physical theories, development and exploitation
of a variety of approaches to the modelling of radiative transfer is needed. In this
article, we focus on one remarkably versatile approach: Monte Carlo radiative transfer
(MCRT). We describe the principles behind this approach, and highlight the relative
ease with which they can (and have) been implemented for application to a range
of astrophysical problems. All MCRT methods have in common a need to consider
the adverse consequences of Monte Carlo noise in simulation results. We overview a
range of methods used to suppress this noise and comment on their relative merits for
a variety of applications. We conclude with a brief review of specific applications for
which MCRT methods are currently popular and comment on the prospects for future
developments.
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1 Introduction

1.1 The role of radiative transfer in astrophysics

Much of astrophysics is at a disadvantage compared to other fields of physics. While
normally theories can be tested and phenomena studied by performing repeatable
experiments in the controlled environment of a lab, astrophysics generally lacks this
luxury. Instead, researchers have to mainly rely on observations of very distant objects
and phenomena over which they have no control. The vast majority of information
about astrophysical systems is gathered by observing their emitted radiation over the
electro-magnetic spectrum. Other messengers, such as neutrinos, charged particles
and recently gravitational waves, are also used but typically restricted to specific
astrophysical phenomena.

Given that the observation and interpretation of electro-magnetic radiation is there-
fore the cornerstone of astrophysical research, a firm understanding of how the
observed signal forms and propagates is crucial. The framework of radiative trans-
fer (RT) builds the theoretical foundation for this problem. It combines concepts from
kinetic theory, atomic physics, special relativity and quantummechanics, and provides
a formalism to describe how the radiation field is shaped by the interactions with the
ambient medium.

Finding an analytic solution for RT problems is usually very challenging, a process
that typically requires approximations and quickly reaches its limits as the complexity
of the problem increases. Thus, numerical methods are normally employed instead.
In such cases, one considers a discretized version of the transfer equation, e.g. by
replacing differentials with finite differences, and uses sophisticated solution schemes
to minimize the inevitably introduced numerical errors. While being an established
approach, this often leads to very complex numerical schemes and faces some par-
ticular challenges when scattering interactions have to be included or when problems
without internal symmetries require a fully multidimensional treatment.

MC methods offer a completely different approach to RT problems. Instead of dis-
cretizing the RT equations, the underlying RT process is “simulated” by introducing
a large number of “test particles” (later referred to as “packets” in this article). These
test particles behave in a manner similar to their physical counterparts, namely real
photons. In particular, particles move, can scatter or be absorbed during aMC calcula-
tion. In the simulations, decisions about the propagation behaviour of a particular test
particle, e.g. when, where and how it interacts, are taken stochastically. Seemingly,
this leads to a random propagation behaviour of the individual particles. However,
as an ensemble, the particle population can provide an accurate representation of the
transfer process and the evolution of the radiation field, provided that the sample size
is chosen sufficiently large.

Given its design, the MC approach to RT offers a number of compelling benefits.
Due to its inspiration from the microphysical interpretation of the RT process, devis-
ing a MC RT scheme is very intuitive and conceptually simple. This often leads to
comparably simple computer programs and involves moderate coding efforts: basic
MCRT routines to solve simple RT problems can be coded in only a few lines that
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Monte Carlo radiative transfer 5

combine a random number generator with a number of basic loops (we provide a
number of simple examples of how this can be done as part of our discussions later
in this article). From a physical standpoint, a significant advantage of MC methods is
the ease with which scattering processes are incorporated, a task which proves much
more challenging for traditional, deterministic solution approaches to RT problems. In
addition, MCRT calculations can be generalised with little effort from problems with
internal symmetries to problems with arbitrarily complex geometrical characteristics.
This feature makes MCRT techniques often the preferred choice for multidimensional
RT calculations. Finally, the MCRT treatment is often referred to as “embarrassingly
parallel” to describe its ideal suitability for modern high performance computing in
which theworkload is distributed on amultitude of processing units. Just as the photons
they represent, the individual MC particles are completely decoupled and propagate
independently of each other. Thus, each processing unit can simply treat a subset of
the entire particle population without the need for much communication.1

Of course, theMCapproach is notwithout its downsides. Themost severe disadvan-
tage is a direct consequence of the probabilistic nature of MC techniques: inevitably,
any physical quantity extracted from MC calculations will be subject to stochastic
fluctuations. This MC noise can be decreased by increasing the number of particles,
which naturally requires more computational resources. Consequently, MC calcula-
tions are often computationally expensive. These costs further increase if the optical
thickness of the simulated environment is high. Since the propagation of each particle
has to be followed explicitly, the efficiency of conventional MCRT schemes suffers
greatly if the number of interactions the particles experience increases. Consequently,
MCRT approaches are typically ill-suited for RT problems in the diffusion regime.
Furthermore, as pointed out by Camps and Baes (2018), care has to be taken when
interpreting results of MCRT simulations applied to environments with intermediate
to high optical depth. The need to explicitly follow the propagation of the individual
MC particles is the cause for yet another drawback of MCRT approaches. In deter-
ministic solution strategies to RT, implicit time-stepping is often used to improve
numerical stability in situations with short characteristic time scales. By design, con-
ventionalMCRT schemes require following the propagation of the individual particles
in a time-explicit fashion. It is thus very challenging to devise truly implicit MCRT
approaches to overcome numerical stability problems. In the course of this review,
we will highlight a variety of different techniques which have been devised to address
and alleviate each of these drawbacks.

1.2 Scope of this review

MC techniques have become a popular and widely-used approach to address RT
problems in many disciplines of physical and engineering research. Covering all the
different aspects and applications of MCRT is beyond the scope of this article and we

1 Note, however, that this situation changes when the data structures holding for example atomic data or
the computational grid become too large to fit into the memory of a single computing node. Then these
data structures have to be split and communicating MC particles between threads becomes the performance
bottleneck (see, e.g. Harries 2015, for more details on possible parallelization schemes for such situations).
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6 U. M. Noebauer, S. A. Sim

refer readers to existing surveys of the respective fields. Among these, we highlight the
recent overview ofMCRT in atmospheric physics byMayer (2009), the seminal report
by Carter and Cashwell (1975) and the book by Dupree and Fraley (2002), which both
discuss MCRT techniques to solving neutron transport problems, and to the article by
Rogers (2006), who reviews MCRT methods in the field of medical physics. In this
article, we aim to provide an introduction to MC techniques used in astrophysics to
mainly address photon transport problems. While attempting to provide a general and
comprehensive overview, we take the liberty to put some emphasis on specific tech-
niques used in our own field of research, namely RT in fast outflows, i.e. supernova
(SN) ejecta, accretion disc and stellar winds. We feel that this approach is appropriate
given that dedicated overviews of MCRT methods for specific fields of astrophysical
research already exist. In particular, we refer the reader to the reviews by Whitney
(2011) and Steinacker et al. (2013) on MCRT for astrophysical dust RT problems.

1.3 Structure of this review

We have structured this review as follows: in Sect. 2 we briefly review some funda-
mentals of radiative transfer theory that are relevant for our presentation. We begin
the actual discussion of MCRT methods with a brief look at their history and review
of their astrophysical applications in Sect. 3, and by introducing the basic concepts
of a random number generator and random sampling in Sect. 4. In the following part,
Sect. 5, the basic discretization into MC quanta or packets will be introduced before
their propagation procedure is explained in Sect. 6. In Sect. 7, we discuss how emissiv-
ity by thermal and/or fluorescent processes can be incorporated inMCRT simulations.

Having introduced the basicMCRT principles, the complications arising in moving
media, in particular the need to distinguish reference frames, are discussed in Sect. 8. In
Sect. 9 we detail various techniques to reconstruct important radiation field quantities
from the ensemble of MC packet trajectories and interaction histories. Here, partic-
ular emphasis is put on methods that reduce the inherent stochastic fluctuations in
the reconstructed quantities, such as biasing and volume-based estimators. In Sect. 10
advancedMC techniques, such as Implicit Monte Carlo (IMC) and Discrete Diffusion
Monte Carlo (DDMC), are described which can be used to improve the numerical
stability of MCRT calculations and their efficiency in optically thick environments.
We conclude this review by touching upon the challenge of coupling MCRT to hydro-
dynamical calculations in Sect. 11 and by presenting a hands-on example of applying
MCRT to SN ejecta in Sect. 12.

2 Radiative transfer background

Before turning to the main focus of this review, a brief overview of the fundamentals
of RT is in order to introduce the necessary nomenclature and to define the basic
physical concepts underlying MCRT calculations. We assume the reader is already
familiar with the principles of RT and so will not present a complete derivation. More
rigorous presentation of these principles are available in the literature, for example in
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the books by Chandrasekhar (1960), Mihalas (1978), Rybicki and Lightman (1979),
Mihalas and Mihalas (1984) and Hubeny and Mihalas (2014).

From a macroscopic perspective, RT calculations rest on the transfer equation2

(
1

c

∂

∂t
+ ∇ · n

)
I (x, t;n, ν) = η(x, t;n, ν) − χ(x, t;n, ν)I (x, t;n, ν), (1)

which encodes how the radiation field, expressed in terms of the specific intensity I ,
varies with time, t and in space, x. The specific intensity is defined in terms of the
monochromatic energy dE in the frequency range [ν, ν + dν] streaming through a
surface element dA during the time dt into the solid angle dΩ about the direction n:

dE(x, t;n, ν) = I (x, t;n, ν) dν dt dΩ dA · n. (2)

The transfer equation can be interpreted as capturing the changes in the radiation
field induced by an imbalance of in- and outflows (left hand side) and by interactions
with the ambient material (source and sink terms on the right hand side). This coupling
to the surrounding material is described by two material functions. The emissivity η

encodes howmuch energy is added to the radiation field due to emission processes. The
second term on the right hand side of Eq. (1), which involves the opacity χ , captures
the opposite effect, namely how much radiation energy is removed by absorptions.
Emissivity and opacity are often combined into the source function

S = η

χ
. (3)

The opaqueness of a medium along a given ray is usually quantified in terms of the
optical depth

τ(l) =
∫ l

0
dsχ(x(s), t;n, ν), (4)

which essentially measures the mean number of interactions a photon would undergo
along a trajectory s from x(s = 0) to x(s = l).

Scatterings can be incorporated into this description by formally splitting the scat-
tering process into an absorption which is immediately followed by an emission. It
should be noted, however, that the RT problem is often significantly complicated by the
presence of scattering interactions since these processes redistribute radiation in both
frequency and direction and introduce a non-local coupling to the ambient material.

It is often insightful to describe the radiation field not only in terms of the specific
intensity but also consider its moments. These involve a solid angle average over the
specific intensity and different powers of the propagation direction. From the zeroth to
the second moment, these quantities have a clear physical interpretation. In particular,
the zeroth moment is identical to the mean intensity

J (x, t;n, ν) = 1

4π

∫
dΩ I (x, t;n, ν), (5)

2 We neglect general relativistic effects in this article.
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8 U. M. Noebauer, S. A. Sim

which in turn is closely related to the energy density of the radiation field

E(x, t;n, ν) = 4π

c
J (x, t;n, ν). (6)

The next higher moment is the vector quantity

H(x, t;n, ν) = 1

4π

∫
dΩ I (x, t;n, ν)n (7)

and captures the radiation field energy flux

F(x, t;n, ν) = 4πH(x, t;n, ν). (8)

Analogously, the second moment becomes a tensor

Ki j (x, t;n, ν) = 1

4π

∫
dΩ I (x, t;n, ν)ni n j (9)

and relates to the radiation pressure

Pi j (x, t;n, ν) = 4π

c
K i j (x, t;n, ν) (10)

with each entry describing the flux of the radiation field momentum component i into
the direction j .

We conclude this brief overview of basic RT concepts by introducing two important
reference frames. As the name suggests, the laboratory frame (LF) is defined such that
the laboratory is at rest. Consequently, it lends itself naturally for convenient measure-
ments of space and time. However, from the perspective of interaction physics, a more
natural frame is one in which the interaction partner, i.e. the ambient material, is at rest.
This frame is typically referred to as the comoving frame (CMF). In general, it cannot
be defined globally whenever gradients in the fluid velocity are encountered. However,
a local definition of the CMF, which is advected by the fluid flow, can be performed.3

Throughout this work, we adopt the nomenclature that quantities defined or measured
in the CMF are designated with a subscribed zero. When changing between these
reference frames, certain transformation rules have to be obeyed. Most importantly,
these transformations lead to the Doppler effect

ν0 = γ ν(1 − β·n) (11)

and induce aberration

n0 =
(

ν

ν0

)[
n −

(
1 − γβ·n

γ + 1

)
γβ

]
, (12)

3 Due to the local definition of the CMF, it is not an inertial frame (see e.g. detailed discussion of this in
Mihalas and Mihalas 1984).
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Monte Carlo radiative transfer 9

where β = v/c is the ratio of the local velocity to the speed of light and γ =
(1− β2)−1/2 (with β = |β|). Transformation rules for the other quantities introduced
in this section, such as the specific intensity, the opacity and emissivity

I0(x0, t0;n0, ν0) = I (x, t;n, ν)
(ν0

ν

)3
, (13)

χ0(x0, t0;n0, ν0) = χ(x, t;n, ν)
ν

ν0
, (14)

η0(x0, t0;n0, ν0) = η(x, t;n, ν)
(ν0

ν

)2
, (15)

have been first derived by Thomas (1930) and are also discussed by Mihalas and
Mihalas (1984), for example.

3 Historical sketch of theMonte Carlo method

When Nicholas Metropolis suggested a name for the statistical method just invented
to study neutron transport through fissionable material (Metropolis 1987), he clearly
drew inspiration from the game of chance which is always played at the heart of MC
calculations. From a historical perspective, Georges-Louis Leclerc, Comte de Buffon,
is commonly credited as having devised the first MC experiment (cf. House and Avery
1968; Dupree and Fraley 2002; Kalos andWhitlock 2008). He considered a plane with
a superimposed grid of parallel lines and was interested in the probability that a needle
which is tossed onto the plane intersects one of the lines (Buffon 1777). It was later
suggested, by Laplace, that such a scenario may be used to experimentally determine
the value of π (Laplace 1812). In 1873, the astronomer Asaph Hall reports in a short
note to the Messenger of Mathematics the successful execution of this experiment,
carried out in 1864 by his friend Captain O. C. Fox (Hall 1873). A detailed description
of what is known today as “Buffon’s needle problem” is for example provided by
Dupree and Fraley (2002) or Kalos and Whitlock (2008).

Notwithstanding these early rudimentary applications, the MC method in its mod-
ern form to solve transport problems has been established and shaped in the 1940s,
mostly by Stanisław Ulam and John von Neumann (see e.g. Metropolis 1987). Recog-
nising the immense potential and utility of the first large-scale electronic computers,
which became operational at the time, they harnessed the mathematical concept of
“statistical sampling” to solve the neutron transport problems in fissionable material,
thus launching the MC method.4

With the growing availability of computational resources, which accompanied the
rapid development of computers, MC methods became increasingly popular and their
application spread across many different scientific disciplines. In the late 1960s, MC
calculations finally entered the astrophysics stage, for example with the works by
Auer (1968), Avery and House (1968) and Magnan (1968, 1970). House and Avery

4 According to Emilio Segrè, Enrico Fermi already used statistical sampling to address neutron diffusion
problems in the 1930s in Rome. Doing the calculations by hand, he thus independently developed the
modern MC method (cf. Anderson 1986; Metropolis 1987).
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10 U. M. Noebauer, S. A. Sim

(1968) review the status of these early MC-based RT investigations. In the time since,
MC methods have become established, successful and reliable tools for the study of
a variety of astrophysical RT phenomena. These range all the way from planetary
atmospheres (e.g. Lee et al. 2017) to cosmological simulations of reionization (e.g.
Ciardi et al. 2001; Baek et al. 2009; Maselli et al. 2009; Graziani et al. 2013). The
wide range of applications indicates the broad utility of MCmethods for astrophysical
applications. Many of these fields have in common needs that involve a sophisticated
treatment of scattering, complex (i.e. non-spherical) geometries and/or complicated
opacities. For example, many astrophysical MCRT studies involve stellar winds (e.g.
Lucy 1983, 2007, 2010, 2012a, b, 2015; Abbott and Lucy 1985; Lucy and Perinotto
1987; Hillier 1991; Lucy and Abbott 1993; Schmutz 1997; Vink et al. 1999, 2000,
2011; Harries 2000; Sim 2004; Watanabe et al. 2006; Müller and Vink 2008, 2014;
Muijres et al. 2012a, b; Šurlan et al. 2012, 2013; Noebauer and Sim 2015; Vink 2018),
mass outflows from disks (e.g. Knigge et al. 1995; Knigge and Drew 1997; Long and
Knigge 2002; Sim 2005; Sim et al. 2005, 2008, 2010, 2012; Noebauer et al. 2010;
Odaka et al. 2011; Higginbottom et al. 2013; Kusterer et al. 2014; Hagino et al. 2015;
Matthews et al. 2015, 2016, 2017; Tomaru et al. 2018), or supernovae (e.g. Lucy
1987, 1999b, 2005; Janka and Hillebrandt 1989; Mazzali and Lucy 1993; Mazzali
2000; Stehle et al. 2005;Kasen et al. 2006; Sim2007;Kromer andSim2009; Jerkstrand
et al. 2011, 2012, 2015; Abdikamalov et al. 2012; Wollaeger et al. 2013; Kerzendorf
and Sim 2014; Wollaeger and van Rossum 2014; Bulla et al. 2015; Fransson and
Jerkstrand 2015; Roth and Kasen 2015; Botyánszki et al. 2018; Ergon et al. 2018;
Sand et al. 2018). In these environments a treatment of multiply overlapping spectral
lines in high-velocity gradient flows are crucial. Others depend on accurate simulations
of scattering, be it for high-energy processes (e.g. Pozdnyakov et al. 1983; Stern et al.
1995; Molnar and Birkinshaw 1999; Cullen 2001; Yao et al. 2005; Dolence et al.
2009; Ghosh et al. 2009, 2010; Schnittman and Krolik 2010; Tamborra et al. 2018)
or from dust-rich structures (e.g. Witt 1977; Yusef-Zadeh et al. 1984; Dullemond and
Turolla 2000; Bjorkman and Wood 2001; Gordon et al. 2001; Misselt et al. 2001;
Juvela and Padoan 2003; Niccolini et al. 2003; Jonsson 2006; Pinte et al. 2006, 2009;
Bianchi 2008; Jonsson et al. 2010; Baes et al. 2011; Robitaille 2011; Whitney 2011;
Lunttila and Juvela 2012; Camps et al. 2013; Camps and Baes 2015; Gordon et al.
2017; Verstocken et al. 2017). Many of the applications primarily aim to calculate
synthetic observables but MCRT methods are also used to determine physical and/or
dynamical conditions in complex multidimensional geometries, such as star forming
environments, disc-like structures, nebulae or circumstellar material configurations
(e.g. Wood et al. 1996; Och et al. 1998; Bjorkman and Wood 2001; Ercolano et al.
2003, 2005, 2008; Kurosawa et al. 2004; Carciofi and Bjorkman 2006, 2008; Altay
et al. 2008; Pinte et al. 2009; Harries 2011, 2015; Haworth and Harries 2012; Hubber
et al. 2016; Lomax and Whitworth 2016; Harries et al. 2017). MCRT schemes have
also found use in astrophysical problems that require a general relativistic treatment
of radiative transfer processes (e.g. Zink 2008; Dolence et al. 2009; Ryan et al. 2015).
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4 Monte Carlo basics

At the heart of MCRT techniques lies a large sequence of decisions about the fate of
the simulated quanta. These decisions reflect the underlying physical processes and,
as an ensemble, provide a representative description of the transport process. On an
individual level, this is realised by selecting from the pool of possible outcomes based
on a set of probabilities that encode the underlying physics. This procedure is typically
referred to as “random sampling” and will be discussed below.

4.1 Random number generation

Critical to the outline above is that some form of randomness is required to perform
the sampling, and thus the MCRT calculation, on a computer. True randomness is
difficult to achieve on a machine which is inherently deterministic, but for many
purposes “pseudo-randomness” is sufficient which can be obtained via a so-called
(pseudo) Random Number Generator (RNG). Based on a starting value (referred to
as the seed), these algorithms provide sequences of numbers, ξ , typically uniformly
distributed over the interval [0, 1[. Such sequences are referred to as “pseudo” random
since they share statistical properties with true randomness but are still generated by
relying on deterministic prescriptions. A well-known example of such algorithms is
the family of linear congruential methods. Based on a previous draw, ξi , and a set of
large numbers, a, c and M , a new random number is generated by5

ξi+1 = (aξi + c) mod M (16)

For the purpose of MCRT applications, the “pseudo”-randomness is not problem-
atic as long as the RNG period, i.e. the lengths after which repetitions occur,6 is
large and as long as the RNG exhibits a good lattice structure. The latter implies
that s-tuples of successive RNG draws, (ξn, ξn+1, . . . , ξn+s−1), are evenly distributed
within the s-dimensional hypercube (see e.g. Kalos and Whitlock 2008), a property
which a number of early multiplicative congruential methods—algorithms of the fam-
ily Eq. (16) but with c = 0—lacked (first pointed out by Marsaglia 1968). Figure 1
illustrates some possible shortcomings of poorly performing RNGs. Popular exam-
ples for RNGs, which fulfil the above requirements and are well-suited for MCRT
applications include for example the Mersenne Twister (Matsumoto and Nishimura
1998) or members of the xorshift family (Marsaglia 2003).

4.2 Random sampling

With the help of RNGs, random numbers7 can be rapidly produced on the computer
and used for sampling physical processes by mapping them onto the target probabil-
ity distribution. To illustrate the different sampling schemes, we first introduce some

5 The resulting numbers can be mapped onto the unit interval [0, 1[ by dividing by M .
6 For the linear congruential methods as defined by Eq. (16), the period can at most reach M .
7 For the sake of brevity we will omit the attribute “pseudo”.
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Fig. 1 Illustration of two “bad” RNGs that are based on the linear congruential scheme of Eq. (16). The
upper left panel shows pairs, (x, y) = (ξi , ξi+1), of (normalised) sequential draws from an RNG with a
deliberately short period (a = 3, c = 1, M = 257 and ξ0 = 11). The lower panels contain draws from
an RNG with a much longer period of M = 231 based on sequential pairs (left) and triples ((x, y, z) =
(ξi , ξi+1, ξi+2), right) . Due to the short period, the first RNG performs poorly, exhibits strong correlations
between successive draws and does not fill the unit square uniformly as seen in the upper left panel. The
RNG with the significantly longer period seems to perform much better: the unit square is filled evenly and
no obvious correlations stand out when considering two successive draws (lower left panel). However, if
three successive draws from this RNG are examined, strong correlations become apparent as seen in the
lower right panel. The infamous RANDU (a = 65,539, c = 0, M = 231) was used to generate the data for
this demonstration and illustrates an RNG that fails lattice tests (e.g. Fishman and Moore 1982)

basic concepts from statistics. For the sake of brevity, we again refrain from a rigor-
ous mathematical presentation and instead refer the interested reader to the standard
literature on the topic, e.g. Kalos and Whitlock (2008).

4.2.1 Sampling from an inverse transformation

Consider a physical process with outcomes described by the random variable X . We
further assume, that X is continuous and can take values from [0,∞[. In this case, the
probability that a certain event occurs, i.e. that X takes a value within [x, x + dx], is
given by the so-called Probability Density Function (PDF) ρX (x)dx , which fulfils the
normalisation

1 =
∫ ∞

0
dx ρX (x). (17)
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With the density, the probability that X takes any value less or equal to x can be
calculated, resulting in the Cumulative Distribution Function (CDF)

fX (x) =
∫ x

0
dx ′ρX (x ′). (18)

Unlike theprobability density,which is alwayspositive but not necessarilymonotonous,
the cumulative distributed function (by definition) is always monotonous. Conse-
quently, it can be used to establish a mapping between two probability distributions
via

fY (y) = fX (x). (19)

This is the fundamental concept of sampling one probability distribution ρX (x) using
draws from another, ρY (y). Using the random numbers ξ provided by the RNG, which
are uniformly distributed between 0 and 1 and thus have fξ (ξ) = ξ , this simplifies to

ξ = fX (x), (20)

which, after inversion, results in the sampling rule

x = f −1
X (ξ). (21)

Below, we illustrate this sampling process via examples of relevance to a number
of physical process in MCRT applications.

Example 1: Selecting directionsConsider the situation of isotropic scattering of a pho-
ton (using a spherical polar coordinate system). In this case, no propagation direction
after the interaction is preferred and the probability that the photon escapes into a
specific solid angle element dΩ = dφdθ sin θ (with φ ∈ [0, 2π ] and θ ∈ [0, π ]) is
constant

ρ(φ, θ)dφdθ sin θ = const. (22)

Since the two angles are independent, and after the introduction of the directional
parameter

μ = cos θ, (23)

this reduces to

ρ(φ)dφ = const, (24)

ρ(μ)dμ = const. (25)

and finally results in the sampling rules

φ = 2πξ1, (26)

μ = 2ξ2 − 1. (27)
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14 U. M. Noebauer, S. A. Sim

Thus to randomly select a direction of propagation, we draw two independent random
numbers (ξ1, ξ2) from the RNG sequence and use them to determine the direction via
Eqs. (26) and (27).
Example 2: Selecting interaction points A critically important application of random
sampling is the decision when photons interact. The probability that a photon interacts
within dl after having covered a distance l along its trajectory is given by the probability
density

ρ(l) = χ(l) exp

(
−

∫ l

0
dl ′χ(l ′)

)
. (28)

We omit a rigorous deviation of this result and refer to the literature instead, in partic-
ular to Kalos and Whitlock (2008, Sec. 6.3). However, the physics of this result can
be quickly appreciated by recognising it as the product of the probability of having
travelled distance l with no interaction (given by the exponential term) and the prob-
ability per unit length (χ ) of undergoing an interaction at the position reached after
travelling l. The inverse transformation technique can be combined with Eq. (28) to
determine the distance a photon will travel to the next interaction event leading to

− ln ξ =
∫ l

0
dl ′χ(l ′). (29)

Here,weused the fact that 1−ξ is equally distributed as ξ . In the case of a homogeneous
medium, χ is constant and the sampling rule simplifies to

l = − ln ξ

χ
. (30)

4.2.2 Alternative sampling techniques

In the examples above, the inverse transformation technique was used to sample the
involved physical processes since the underlying cumulative distribution function
could easily and analytically be inverted. Naturally, this is not always feasible and
in such cases, one has to rely on other sampling methods. However, even if determin-
ing the cumulative distribution function is analytically challenging, it can be done by
means of numerical integration and values for fX (x) pre-calculated for a number of
monotonically increasing xi . Once these values, fX (xi ), are available, the distribution
can be sampled by first selecting a grid interval [xi , xi+1] according to8

i = max
{
j; fX (x j ) ≤ ξ

}
. (31)

Since ξ now lies between fX (xi ) and fX (xi+1), the final sampling is performed by
linear interpolation (see e.g. Carter and Cashwell 1975)

x = xi+1 − fX (xi+1) − ξ

fX (xi+1) − fX (xi )
(xi+1 − xi ). (32)

8 This is a common procedure to sample discrete probabilities (see e.g. Carter and Cashwell 1975).
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Naturally, this approach only approximates the underlying probability distribution and
the accuracy increases with the number of grid points at which fX is evaluated.

Another popular sampling technique which is applicable also to complex distribu-
tions is the so-called rejection sampling method (see, e.g. Carter and Cashwell 1975;
Kalos and Whitlock 2008, for a detailed description). This approach is closely related
to MC-based integration. We briefly illustrate its basic principles for the example of
one-dimensional distributions. In this case, pairs of random numbers (x, y) = (ξ1, ξ2)

are generated.9 If
ξ2 ≤ ρX (ξ1) (33)

the trial ξ1 is accepted as a valid sample of ρX (x), otherwise it is rejected and the
procedure repeated until the desired number of samples is obtained. This technique
involves a certain level of unpredictability since not every trial draw produces an
accepted sample.

In addition to the general sampling techniques outlined above, a number of specific
schemes tailored to probability distributions of particular interest are available. In
the context of RT, a prominent example is the sampling of frequencies for a thermal
radiation field from the normalized Planck distribution,

bν = 15

π4

x3

exp(x) − 1
, (34)

ν = kBT

h
x . (35)

For this problem,Barnett andCanfield10 have proposed an efficient sampling technique
based on the series expansion of the Planck function. This technique, which has been
reviewed numerous times in the literature (for example Fleck and Cummings 1971;
Carter and Cashwell 1975; Bjorkman and Wood 2001), relies on five uniform random
numbers ξ0, . . . , ξ4. The first one is used in the minimization process

L = min

{
l;

l∑
1

j−4 ≥ ξ0
π4

90

}
, (36)

providing L , which in turn is combined with the remaining random numbers to give
the final non-dimensional frequency

x = −L−1 ln(ξ1ξ2ξ3ξ4). (37)

According to Fleck and Cummings (1971), 1.1 trials [in terms of elements in the
summation in Eq. (36)] per calculated frequency are on average required, resulting in
an efficient and accurate algorithm for sampling a thermal radiation field.

9 We assume that min ρX (x) = 0 and max ρX (x) = 1. Otherwise, the draws for ξ2 have to be scaled and
shifted appropriately.
10 Unpublished Lawrence Radiation Laboratory internal report, cf. Fleck and Cummings (1971).
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5 Monte Carlo quanta

Unlike traditional approaches to RT problems, MCRT calculations do not attempt
to solve the RT equation directly. Instead, a simulation of the RT process is per-
formed. Specifically, the radiation is discretized so that it may be represented by a
large number of MC quanta. During the initialization of such a simulation, each quan-
tum is assigned a position, an initial propagation direction, an energy and frequency,
if desired, a polarization vector, and some measure of importance or weight. This last
property essentially determines the contribution of the individual quanta to the final
results.After the discretization and initialization, the quanta are propagated through the
computational domain to simulate the RT process. In the following sections, we high-
light two discretization paradigms, namely the photon packet and the energy packet
scheme. These derive from different interpretations of what the quanta represent and
provide different prescriptions for the choice and treatment of their weights. We then
discuss packet initialization. The process of propagating packets during the simulation
is described in Sect. 6.

5.1 Discretization into photon packets

Historically,MCRT applications drew inspiration fromnature’s inherent discretization
of radiation and thus interpreted the fundamental MC quanta as photons. Indeed, in
many early MCRT studies performed in astrophysics, such as Auer (1968), Avery and
House (1968) and Caroff et al. (1972), the quanta are simply referred to as “photons”.
Although the number of MC photons that are introduced and considered is usually
large in a statistical sense, it is completely insignificant compared to the actual number
of real photons constituting the physical radiation field. Thus, it is inherent to this
discretization scheme that theMC photons, ormachine photons as they are sometimes
called (cf. House and Avery 1968), actually represent a large number of physical
photons instead of individual ones. As a consequence, the MC quanta are typically
referred to as photon packets or simply packets.

From this discretization perspective, packet weights can be interpreted as encod-
ing that the individual MC packets represent many physical photons. However, the
weights are practically never assigned uniformly or held constant during the simula-
tion in MCRT schemes that rely on the photon packet discretization approach. These
manipulations of packet weights lead to an often dramatic reduction in variance (i.e.
increase of statistics and reduction of MC noise) and belong to the more generic class
of biasing techniques (see Sect. 9.4). ConsideringMCRT applications in astrophysics,
the majority relies on the photon packet discretization scheme with non-uniform and
variable packet weights. Prominent examples certainly include the manyMCRT simu-
lations performed in dust RT problems (see, e.g. reviews byWhitney 2011; Steinacker
et al. 2013).
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5.2 Energy packets and indivisibility of packets

The energy packet discretization approach has been mainly developed and shaped
by L. Lucy. The basic interpretation was already given by Abbott and Lucy (1985),
but it was only after extending the approach and applying it to radiative equilibrium
(RE) calculations (Lucy 1999a), that its full potential and benefits were explored. The
scheme was further generalized to include the possibility of non-resonant interactions
and of realising statistical equilibrium (Lucy 1999b, 2002, 2003, see Sect. 7 for further
details).

Compared to the photon packet scheme introduced above, the energy packet
approach rests on a different interpretation of what MC quanta fundamentally rep-
resent: packets are now primarily thought of as parcels of radiant energy and the
packet energy also acts as its weight. Again, these parcels of radiant energy represent
many physical photons. At this point, the difference between the photon and energy
packet schemes seems very subtle, almost semantic. However, the distinctiveness of
this discretization scheme becomes apparent once the treatment of packet weights is
included into the consideration.

The primary attraction of viewing the quanta as packets of radiation energy, rather
than bundles of photons, is the ease (and accuracy) which with energy flows can be
tracked during a simulation. For example, in RE problems, the combination of an
energy packet discretization and an indivisible packet algorithm allow strict energy
conservation to be imposed (Lucy 1999b). While all other packet properties, in partic-
ular its frequency, can change during the simulation, the packet energy, i.e. its weight,
is strictly held constant after the initial assignment (i.e. the packets are indivisible, and
also indestructible, excepting that they can exit through the boundaries of the compu-
tational domain). The indivisibility property can readily be applied to all interactions,
even those that on first sight seem to require the splitting of packets or adjustment of
weights. Instead of splitting, such events are handled by probabilistically sampling
the different outcome channels (see the downbranching scheme by Lucy 1999b or the
macro atom approach by Lucy 2002, 2003 which will both be described in detail in
Sect. 7.4). In this process, a change in frequency assigned to the packets may occur,
but the CMF energy will always stay constant. A noteworthy property of indivisible
energy packet schemes is that aMCpacketmay represent a varying number of physical
photons during its lifetime: the scheme does not enforce conservation of photon num-
ber (and nor should it: many physical radiation–matter processes e.g. recombination
cascades or fluorescence do not conserve the number of photons).

Relying on this indivisible energy packet formalism offers a number of advantages
as pointed out by Abbott and Lucy (1985) and Lucy (1999a). Most importantly, it
enforces strict local energy conservation in RE applications by construction. How-
ever, we note that this energy conserving property does not restrict the scheme to
RE problems: well posed sources and sinks of radiative energy can be readily incor-
porated while maintaining strict energy conservation (see Sect. 11). In addition, the
packet indivisibility naturally controls the number of quanta tracked in an MCRT cal-
culation and avoids the need to incorporate an elimination scheme for quanta with
small weights which may otherwise accumulate and slow-down the calculation. The
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18 U. M. Noebauer, S. A. Sim

indivisible energy packet scheme has been widely used inMCRT calculations of RT in
mass outflows (e.g. Abbott and Lucy 1985; Vink et al. 1999; Long and Knigge 2002;
Sim 2004, 2005; Carciofi and Bjorkman 2006, 2008; Noebauer et al. 2010) and in SN
ejecta (e.g. Lucy 2005; Kasen et al. 2006; Sim 2007; Kromer and Sim 2009; Noebauer
et al. 2012; Kerzendorf and Sim 2014).

We note that many of the advantages of indivisible energy packet schemes can
still be retained when strict indivisibility is relaxed. In particular, splitting of energy
packets can be introduced in attempts to improve statistics (e.g. Harries 2015; Ergon
et al. 2018) where strict energy conservation is retained (i.e. the algorithm is free
to split an energy packet at any point, provided that the sum of the energies of the
newly created packets matches that of the original unsplit packet). Similarly, there is
no requirement of the scheme that all packets have the same energy as each other:
the only rule is that the combined packet energies correctly sum to the total energy /
energy flow of the process under consideration.

Example: Packet scheme applied to Compton scattering To illustrate the manner in
which physical processes are described in the different packet approaches, we use
the example of Compton scattering, following Lucy (2005). Specifically, we consider
Compton scattering of an ensemble of high-energy photons by a population of low-
temperature free electrons (i.e. near-stationary in the CMF). Each single Compton
scattering process can be roughly described (in the CMF) as

e−
i + γi → e−

f + γf , (38)

where the electron initial state (e−
i ) has close to zero kinetic energy but the final

state (e−
f ) has non-zero kinetic energy (associated with the recoil). Conversely, the

post-scattering photon (γf ) will have less energy (Eγ
f < Eγ

i ) and lower frequency
(νγ

f < ν
γ
i ) than the initial photon state (γi).

In a photon packet scheme, the manner in which this process can be simulated is
obvious:whenever one of theMCphoton packets undergoes such aCompton scattering
event, the number of photons it represents remains fixed but the frequency of the
photons represented by the packet is reduced (accordingly, the packet then represents
less energy).

For an indivisibly energy packet scheme, the treatment is more subtle (Lucy 2005).
Here we consider how energy flows through the problem: from the initial energy of the
incoming photon population (γi) to the combination of final photon population (γf )
and final electron kinetic energy (e−

f ). In particular, a fraction Fγ = Eγ
f /Eγ

i of the
incident photon energy is passed to the outgoing photon while Fe = Ee

f /E
γ
i = 1−Fγ

goes to the electron. Thus, adopting the indivisible energy packet principle, an initial
MC (γi) packet is converted to an outgoing γf packet with probability Fγ or to a
packet representing the electron kinetic energy with probability Fe. In either case, the
energy represented by the packet remains fixed (i.e. strict energy conservation), but
the nature of the energy has changed: in the first case the energy is still being carried
by photons, but now of lower photon frequency (in accordance with the γf state); in
the second case, the energy has been passed to the electron kinetic pool from where
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its role in powering further emission of the material can be followed using e.g. the
k-packet formalism of Lucy (2002, see also Sect. 7.4).

This example primarily serves to illustrate the subtle difference between photon-
packet and energy-packet schemes but it is natural towonder which scheme is better. In
general, there is no absolute statement to bemade: both approaches are valid andwhich
is better suitedwill depend on the problem in question. However, the relativemerits are
clear and can be stated fairly simply for our example: the photon packet scheme will
rigorously conserve photon number (as does the physical Compton scattering process)
and is well suited if the aim of the simulation is to calculate the Comptonized pho-
ton spectrum (e.g. Pozdnyakov et al. 1983; Laurent and Titarchuk 1999), potentially
following many scattering events. On the other hand, multiple scattering in the pho-
ton packet approach may lead to a proliferation of low-frequency photon packets that
carry very little energy, but still require the same computational effort per scattering
to simulate. This may not be ideal for e.g. applications in which the primary interest
in high-energy Compton scattering lies in its role as a heating process (such as the
modelling of SN ejecta powered by radioactive decay, as discussed by Lucy 2005).
For such a problem, the indivisible energy packet scheme provides a simple means to
determine the rate at which energy flows into the electron pool with the computational
effort being invested in proportion to the energy carried by the photons, rather than to
the photon number.

5.3 Initialisation of packets

Closely related to the fundamental discretization of the radiation field into discreteMC
packets is the initialization process. Here, the initial packet properties are assigned by
drawing from the spatial, directional and spectral distribution of the radiation field by
relying on the sampling techniques presented in Sect. 4.2. The instantaneous values of
these properties,11 i.e. the position, direction, frequency,12 energy and weight,13 fully
describe the packet state during the entire MC simulation. If the effect of polarization
is included inMCRT simulations, packets are additionally assigned appropriate values
for the Stokes vectors (see, e.g. Kasen et al. 2006; Whitney 2011; Bulla et al. 2015).

In the following, we briefly sketch the initialization process within the indivisible
energy packet scheme.Note that the corresponding procedure is not fundamentally dif-
ferent within the photon packet scheme. In the following presentation, we distinguish
between the initial assignment of properties for packets that represent the radiation
field in the domain at the onset of the MC simulation and for packets that represent
the inflow of radiation into the domain through the boundaries.

We substantiate these concepts by highlighting the initialization of N packets rep-
resenting an initial thermal radiation field, at temperature T , which is assumed to be

11 For the moment, we neglect polarization.
12 Throughout this review we generally assume monochromatic packets for simplicity. Some of the tech-
niques presented here can also be generalized to polychromatic packets (see, e.g. Steinacker et al. 2013, for
more information on polychromatism).
13 We note that packet energies and weights are somewhat interchangeable concepts. Thus, we will make
use of both terminologies in this review.
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uniform within a cuboid volume ΔV . Despite its simplicity, this situation is often
encountered in MCRT calculations. In the energy packet scheme, a commonly used
practise involves assigning a uniform packet energy. Thus, if N packets are initialized,
each packet carries an energy of

ε = ΔVaRT 4

N
, (39)

where aR is the radiation constant. The thermal radiation field is isotropic and as a
consequence the initial propagation direction of a packet can be assigned using pre-
viously presented sampling rules, namely Eqs. (26) and (27). Since we have assumed
that the initial radiation field is uniform over the volume ΔV , locating the packets is
trivially done by

x = x0 + ξ1(x1 − x0),

y = y0 + ξ2(y1 − y0),

z = z0 + ξ3(z1 − z0), (40)

where (x0, y0, z0) and (x1, y1, z1) are opposite corners of the cuboid volume. Finally,
the packet frequency is obtained from sampling the Planck function, for example by
relying on the technique given by Eqs. (36) and (37). The initialization process has
been implicitly performed in the CMF. Their LF properties are obtained by applying
the appropriate frame transformations (see Sect. 2). This procedure will be revisited
when discussing MCRT in expanding media (see Sect. 8).

In applications for which radiation is streaming into the domain, MC packets are
continuously created to represent the inflowof energy.A frequently encountered exam-
ple is that of a photosphere being located at the inner boundary of a spherical domain
which emits as a black body with temperature Tphot (used for example in the MCRT
approaches of Mazzali and Lucy 1993; Kerzendorf and Sim 2014 for studying SN
ejecta). In this, case

N = 4πR2
photσRT

4
photΔt

ε
(41)

packets with energy ε are initialized during the time interval Δt (here, σR is the
Stefan–Boltzmann constant). Since these packets are launched from the photosphere,
their initial position is simply

r = Rphot. (42)

If limb-darkening can be neglected, packets leave the photosphere along directions
drawn by14

μ = √
ξ . (43)

Finally, the initial packet frequency is again drawn from the Planck function.
We conclude this description by noting that inMCRT applications packets may also

be initialized to represent the continuous radiative cooling of the ambient material or

14 The difference between this case and the isotropic initialization of the initial radiation field is that the
procedure is based on the flux in the former and on the energy density in the latter case.
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to represent the emission from other sources within the domain (e.g. in radiative non-
equilibrium applications). The basic initialization principles highlighted remain the
same and can be simply transferred to these applications.

6 Propagation of quanta

The discretization paradigms and the initialization principles outlined above (see
Sect. 5) provide rules for the creation and launching of MC packets. The bulk of
the computational effort involved in a MCRT calculation is spent in tracing the move-
ment of these packets through the ambient material to simulate the RT process. During
the propagation, their trajectories are interrupted as the packets experience radiation–
matter interactions.Depending on the nature of these interactions, the packet properties
may change or the propagation may even be terminated. The MC packets are thus
followed until certain termination conditions are met, e.g. the packet leaves the com-
putational domain or has been active for a pre-defined time (this aspect will be treated
in detail in Sect. 6.6). The propagation procedure of a MCRT simulation is complete
when all packets representing the initial radiation field and the effects of sources of
radiative energy (e.g. inflows through boundaries, internal sources in radiative non-
equilibrium applications, etc.) have been processed this way. In the following, we
first outline the fundamental propagation principles (Sect. 6.1) and then detail how
basic absorption and scattering interactions are handled (Sect. 6.2–6.5) before finally
turning to the inclusion of time dependence (Sect. 6.6).

6.1 Basic propagation principle

In the absence of general relativistic effects (which we neglect in this review), a MC
packet propagates on a straight path in its propagation direction n. In the simplest
version of a MC packet propagation algorithm, the packet properties do not change
along these straight-flight elements of its path: interactionswith themedium are treated
as discrete interaction events, and the primary aim of theMC algorithm is to determine
where those interaction events occur.

Finding the interaction points depends on the opacity in the medium. Along its
trajectory, measured by l, a packet (p), continuously accumulates optical depth

τp(l) =
∫ l

0
dl ′χ(l ′). (44)

Here the specific functional form of the opacity depends on the physical interaction
processes that are taken into consideration and can, in principle, be very complicated.
When the accumulated optical depth surpasses a threshold value, τ , the packet will
undergo an interaction at the corresponding location l. As anticipated in Sect. 4.2, this
threshold value is determined for each packet individually and probabilistically. In
particular, at the beginning of each packet trajectory segment, the packet is assigned
a randomly sampled optical depth distance to the next interaction by
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τ = − ln ξ. (45)

Whenever a packet experiences an interaction, its properties may change depending
on the nature of the interaction process. In general, these interactions can be broadly
divided into scatterings and absorptions. In the former, the packet is deflected and
continues its propagation in a different direction, possibly with a different energy
and/or frequency. Depending on the nature of the scattering process, the assignment
of emergent packet properties may become quite complex (e.g. in dust scattering
applications). Alternatively, if absorption occurs, the propagation is terminated and
the packet removed from the active pool.15

For locating packet interactions using Eq. (45), we highlight an important property
of the exponential distribution, namely its infinite divisibility (see for example Bose
et al. 2002). Probability distributions with this property can be replaced by the “dis-
tribution of the sum of an arbitrary number of independent and identically distributed
random variables”.16 For the purpose of MCRT, this implies that, as long as the packet
has not interacted, one is at liberty to reset the comparison between accumulated and
interaction optical depth arbitrarily often. I.e. one can opt to redraw the optical depth
distance to the next interaction with Eq. (45) and reset the tracking of accumulated
optical depth, Eq. (44), at the current packet location. This property is often used when
performing MCRT simulations on numerical grids (see Sect. 6.3).

Following the generic propagation principles outlined above, each packet is moved
through the domain until a termination condition is reached. Depending on the prob-
lem, this may be an absorption interaction, or the packet intercepting a transparent
domain surface throughwhich it escapes to infinity, or simply that a pre-defined amount
of physical time has elapsed. The propagation process, which is visually summarized
in Fig. 2, is complete after all MC packets have been processed in this manner. Dur-
ing the propagation process, various events may be recorded or the change of certain
packet properties tracked. These may then be used to reconstruct physical properties
of the radiation field (see Sect. 9).

6.2 Absorption as continuous weight degradation

The general scheme outlined in the previous section can be applied to find discrete
interaction events for any physical contribution to the opacity. It is particularly impor-
tant (and widely used) for addressing scattering problems: an accurate treatment of
scattering is most easily formulated as an ensemble of discrete interactions where the
properties of the packets are changed at the interaction point in accordance with the
physics of the scattering process. The scheme is also widely applied to true absorp-
tion processes, and this is particularly attractive in applications that aim to exploit the
energy-conserving qualities of radiative equilibrium problems (see Sect. 7).

However, in some applications (see, e.g. the treatment of continuum absorption
used by Long and Knigge 2002 and references in Steinacker et al. 2013) an alternative

15 Note that in the indivisible energy packet scheme proposed by Lucy (1999a) for RE applications, packets
are immediately re-emitted.
16 https://en.wikipedia.org/wiki/Infinite_divisibility_(probability).
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Fig. 2 Illustration of the packet propagation process. At its core, themain processing loopworks through the
entire packet population, propagating each packet individually. In this loop, each packet is moved through
the domain until a termination event occurs. Depending on the specific MCRT application, this may for
example be an absorption interaction, escaping through one of the domain boundaries or reaching the end
of a pre-defined time interval. The instruction “update estimators” refers to all activities related to recording
packet properties that are used to reconstruct physical information about the radiation field from the packet
ensemble. This procedure will be discussed in more detail in Sect. 9
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treatment of absorption is used. Specifically, rather than treating absorption via discrete
interaction events it is simulated by continuous reduction of the energy carried by a
MC packet as it propagates along its flight path. Specifically, whenever a packet travels
along a trajectory of length l, the energy it carries (weight, w) is reduced according to

w(l) = w(l = 0)e−τp,a , (46)

where

τp,a(l) =
∫ l

0
dl ′χa(l

′) (47)

is the optical depth associatedwith the absorption component of the opacity (χa). Con-
ceptually, the energy removed from the MC packet in this way is being transferred out
of the radiation field by whichever physical process(es) contribute to χa. For example,
this might represent energy invested in heating or ionising the ambient medium.

There are several advantages for this approach to absorption compared to the dis-
crete scheme outlined above. First, it can reduce the MC noise since it replaces the
stochastic identification of specific interaction points with a smooth degradation of
packet weight. This seems especially attractive if considering small contributions to
the opacity (e.g. background continua): using the discrete event algorithm to simulate
such interactions would be noisy since the number of events associated with a low
opacity will be small.17 Second, it can greatly simplify the MC algorithm for applica-
tions in which pure absorption is dominant: in such cases, pure weight attenuation of
packets on straight trajectories may be sufficient to solve the problem.18

However, there are some limitations associatedwith continuousweight degradation.
In particular, if the interaction processes is associated (at the microphysical level) with
some radiative re-emission process, such as effective scattering/fluorescence in atomic
or molecular line transitions, this approach loses a direct connection between the
absorption and re-emission process. If important, the re-emission must be simulated
by injecting new MC packets to represent it (see Sect. 7.1). For this reason, MCRT
applications that depend on simulating e.g. atomic line interactions have found it
more practical to use a discrete interaction approach for this process (similar to e.g.
Abbott and Lucy 1985).We note, however, that hybrid schemes have been successfully
employed where the continuous attenuation approach is used for smooth continuum
absorption opacity while a discrete interaction algorithm is applied for atomic line
absorption and electron scattering (e.g. Long and Knigge 2002). Throughout most of
this review we will focus on methods that adopt the discrete interaction approach for
treating both scattering and absorption but note thatmany of the principles discussed in
later chapters can be applied to simulations that employ aweight-degradation approach
to absorption, or a combination of both.

17 However, as we shall discuss later (see Sect. 9), various techniques are available to alleviate the issue of
MC noise in determining rates for rare physical processes.
18 In such cases, the issue of how to handle the computational cost of packets with weights attenuated to
the point where they may become negligible can be handled using strategies such as Russian Roulette (see
Sect. 9.4).
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6.3 Material properties and numerical discretization

To perform the packet propagation process, the local material state, such as velocity,
density and temperature, has to be accessible. It sets the local opacity and thus deter-
mines the rate at which optical depth is accumulated along the propagation path [cf.
Eq. (44)]. Moreover, the material state dictates the re-emission characteristics in scat-
tering interactions. Ideally, the material state is directly accessible in closed analytic
form such that the optical depth integration can be performed analytically. In practise,
however, the complex local dependence of the material properties calls for a numerical
integration. In addition, the continuous material state is often not available but instead
only a discrete representation. This could, for example, be the snapshot of a hydro-
dynamical simulation. Consequently, the packet propagation is typically realised by
introducing a computational grid, dividing the domain into cells on which the mat-
ter state is discretely represented. Often, the material properties are approximated as
constant throughout the grid cells (although interpolation can be used).

The packet propagation process can then proceed on the numerical grid along
the basic principles outlined above. If the material state is assumed to be constant
throughout the individual grid cells, determining the rate of accumulation of τ is
generally simple.19 However, one does need to track when packets cross over grid
cell boundaries: at such points, quantities that depend on the material state, such
as opacities, have to be recalculated. Some codes, for algorithmic convenience, also
exploit the infinite indivisibility property of the exponential distribution and re-draw
the random optical depth from the usual sampling law, Eq. (45), when cell crossing
occurs.

6.4 Absorption and scattering

Having outlined the principles of how packets can be propagated through the simu-
lation domain, we now discuss how interactions are handled. In any real application,
the details of how interaction events are to be processed will depend on the particulars
of the radiation–matter physics being simulated. To illustrate the general principles
here, we adopt a number of simplifications, namely that the medium is static and that
all material functions are frequency independent and isotropic. We also restrict the
presentation to basic absorption20 and coherent and isotropic scattering interactions.
Lifting these simplifications, in particular, including more complex interaction pro-
cesses, naturally complicates the individual steps of the propagation process but the
basic structure of the procedure remains the same.

We start by considering the packet propagation process in the presence of only
true absorptions, described by the opacity χa. As detailed above, a packet interacts
after accumulating the optical depth τ , assigned according to Eq. (45). This decision
in optical depth space has to be translated into a physical location within the com-

19 Additional complications can arise from the frequency dependence of the opacity in fast flows (see
Sect. 8).
20 In this illustration, we deviate from the indivisible energy packet scheme introduced by Lucy (1999a)
and do not immediately re-emit absorbed packets.
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putational domain by inverting Eq. (44). This is a critical part of the MC algorithm
that can be very challenging when the material functions are complicated functions of
location, frequency and direction. For our example, however, the translation is trivial
since optical depth and physical distance only differ by the opacity coefficient, which
is constant within a grid cell. Thus, a packet interacts after covering the distance

l = τ

χa
. (48)

For pure absorption, the propagation would end at this point with the packet being
discarded and the next packet of the active pool being treated. Note, however, that
many implementations, including those that enforceREbased on the indivisible energy
packet formalism of Lucy (1999a) do not terminate the packet at the absorption point:
instead absorption is immediately followed be re-emission, as will be elaborated in
Sect. 7.4.

Unlike in deterministic RT approaches, where scattering generally introduces com-
plex non-local couplings (see, e.g. Hubeny and Mihalas 2014, sec. 11.1), including
scattering does not pose any conceptual difficulties forMCRT approaches. In this case,
the total opacity is a sum of absorption and scattering terms:

χtot = χa + χs. (49)

The exercise of locating packet interaction points is as trivial as before: it follows from
Eq. (48) adopting the total opacity

l = τ

χtot
. (50)

Once the interaction point is found, an additional random number experiment has to
be performed to decide the nature of the interaction. In particular, the packet scatters
if

ξ ≤ χs

χs + χa
. (51)

Otherwise it is absorbed and is treated as detailed above. We note that this procedure
can easily be extended to situations in which more than two outcomes are possible
(e.g. if multiple mechanisms with different scattering properties were relevant) by
subdividing the interval [0, 1[ into bins with sizes proportional to the relative strengths
of the different processes and sampling from this discrete set. If the packet scatters
it continues its propagation along a new direction with any relevant properties (e.g.
photon frequency) set by rules that describe the scattering process. For example, in the
simple case of isotropic coherent scattering, a new propagation direction is assigned
by the sampling rule

μ = 2ξ1 − 1,

φ = 2πξ2, (52)

123



Monte Carlo radiative transfer 27

while the photon frequency would remain unchanged. Of course, realistic scattering
processes may be neither isotropic nor coherent: but this merely requires that the
sampling procedures be altered to reflect the true directional dependence and that the
frequency be changed in the interaction.

After the scattering event, the packet continues its propagation along the new direc-
tion. A new distance to the next interaction event is drawn from Eq. (45) and the
tracking of the accumulated optical depth of Eq. (44) is re-initialized. In this manner,
the flow of packets can be followed including multiple scatterings in arbitrary media.
We emphasise that the ease with which scattering interactions can be treated is a major
benefit of MCRT approaches.

6.5 Propagation example

Using the principles described so far, simple MCRT simulations can be built using
only a few lines of code. As one example, consider calculating the escape probability
of photons from a homogeneous sphere (uniform density and uniform emissivity) in
which radiation may be absorbed or scattered (for simplicity we assume opacities and
emissivities that are independent of frequency and direction). For the analytic solution
to this test problem, see Appendix A.1. A simple Python implementation of theMCRT
simulation for this problem is part of our code repository distributed on GitHub (see
Appendix B). In the outline of the MCRT procedure below, we specifically refer to
the respective parts of the Python code by providing the corresponding line numbers.
The elements of this calculation are:

– The MCRT simulation begins by initialising N packets and uniformly distributing
them throughout the sphere. As this is a one-dimensional problem and since we are
only interested in the escape probability, the packet state is essentially described
by r and μ. The initial location in the uniform sphere is assigned by

r = Rξ
1
3 , (53)

where R is the outer radius of the sphere (code line 90), and the initial direction is
chosen isotropically (code line 92)

μ = 2ξ − 1. (54)

– After initialisation, the pool of packets is processed with each being propagated
through the sphere following the principles outlined above. This includes draw-
ing the random interaction τ -values (code line 143) and calculating distances to
boundary crossing (code line 145). Packet interaction occurs when the randomly
drawn optical depth is reached before the boundary of the simulation (code line
149). Whenever a packet interacts, Eq. (51) is used to decide whether the packet is
absorbed (destroyed in this case) or scattered. Following scattering, a newdirection
(code line 172) is drawn with Eq. (52) and the propagation continues.

– Each packet is followed until it either is absorbed or escapes through the surface of
the sphere, and the entire MCRT simulation ends when all packets are processed
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Fig. 3 Results of a number of MCRT simulations for the homogeneous sphere test problem. The escape
probability is shown as a function of total optical depth of the sphere, cf. Eq. (55), for different scattering
to absorption strengths. For comparison, the analytic solution to the problem with pure absorption is shown
as a solid line

in this manner. Finally, the escape probability is calculated by dividing the number
of escaped packets by the total number of packets which have been initialised.

Figure 3 shows the result of a number of such MCRT simulations with varying total
optical thickness of the sphere

τ = R(χs + χa) (55)

and different scattering to absorption strengths. In the case of χs = 0, the MCRT
results agree very well with the analytic predictions from Eq. (A.11). As the scattering
opacity increases, the escape probability grows since the absorption probability is
smaller for a given optical thickness of the sphere. Figure 4 further illustrates the
packet propagation process by showing a small number of packet trajectories for two
MCRT simulations at τ = 2, with χs = 0 and χs = χa.

6.6 MCRT: time-dependent applications

The presentation so far has been centred on time-independent MCRT applications,
i.e. on finding a steady-state solution. For many applications, however, obtaining the
detailed time-dependent evolution of the radiation field is required. Conceptually, only
few changes in the MCRT techniques outlined so far have to be made to include time
dependence. Fundamentally, eachMC quanta is assigned a time stamp, t , which tracks
the current simulation time. During the initialisation process, the internal clock of each
packet is set depending on the physical process responsible for the packet emission. If
the packet represents the initial radiation field, t is simply set to the starting time of the
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Fig. 4 Illustration of the packet propagation process in the MCRT simulations for the homogeneous sphere
problem shown in Fig. 3. A small subset of packet trajectories is visualized for the case χs = 0 (left panel)
and χs = χa (right panel). The total optical depth of the sphere is in both cases τ = 2. Starting points for
the trajectories are marked by small filled circles. The fate of the packet is either marked by a star symbol
(absorption) or by a cross (escape)

current phase of the MCRT simulation. If the packet models the effect of a particular
source of radiative energy, the time is sampled from the temporal emission profile of
the source. In the simplest case of a continuous emitter, t is uniformly drawn from
the duration of the current MCRT simulation step. After initialisation, as the packet
propagates, this time stamp is continuously updated. In particular, after covering the
distance l, the internal clock of the packet is advanced by

Δt = l

c
. (56)

In time-dependent problems, a discretization of time is commonly introduced, similar
to the spatial grid covering the computational domain. On the one hand, this defines
time intervals over which packet properties will be tallied to discretely reconstruct
the time evolution of radiation field properties (see Sect. 9 for more details). On
the other hand, the time discretization is used to represent changes in the material
state, which in general will vary in time-dependent problems. In analogy to the spatial
discretization procedure, thematerial state in the different grid cell is typically assumed
to be constant during a time step. Before the start of the next time step, the material
state is then updated. This topic will be revisited in more detail in Sect. 11, when
describing the coupling of MCRT schemes with full hydrodynamic calculations. Also
in a later part of this review, namely in Sect. 10, we discuss problems arising from
very rapid changes in the material state and how to best address these within MCRT
framework.

In addition to tracking the current time for each packet the basic propagation scheme
as outlined in Sects. 6.1–6.4 has to be further extended to account for the subdivision
of the MCRT simulation into a series of time steps. Whenever the internal clock of
a MC packet has progressed to the end of the current simulation time step, tn+1,
the packet’s propagation is interrupted. The instantaneous state of the packet, i.e. its
position, current frequency, energy, propagation direction and any further properties,
is stored and the next packet of the active population is treated. At the end of the
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propagation process, all packets stored are transferred to the next simulation cycle and
the packets continue their propagation at t = tn+1 with the saved properties.

7 Thermal and line emission in MCRT

The treatment of absorption and pure scattering processes as outlined above are rel-
atively standard and the principles used are very well established. In contrast, the
manner in which emission is handled in MCRT schemes is relatively varied and much
of the sophistication and ongoing developments in theMCRTfield relate to themanner
in which this is done.

In this section we aim to review some of the approaches to treating emissions within
a computational domain. To be clear, this is distinct from questions of howMC quanta
might be injected at some computational boundary: in Sect. 5.3 we already reviewed
how e.g. a population of packets might be injected to represent a seed blackbody
radiation field as might be appropriate as an initial condition in a time-dependent
simulation. Likewise, we described how packets might be injected at some boundary
surface to represent a radiation source external to the simulation domain, for example a
photospheric boundary condition. Here, instead, our focus is on how emissivity within
the computational domain can be taken into account.

7.1 Known emissivity

The most obvious case to handle is any for which the emissivity is externally known
(or can be easily estimated) without prior knowledge of the RT process within the
domain. One such example might be a non-equilibrium plasma that is predominantly
heated and ionized by non-radiative processes.

In this case, the emissivity can simply be sampled using standard sampling tech-
niques (Sect. 4.2) to create a population of packets with properties that represent
the emission process (i.e. photon frequency, weights/energies, propagation directions
etc.). This population is simply injected alongside any packets due to external radia-
tion field boundary conditions, and their subsequent propagation followed in the same
manner.21

7.2 Radiative equilibrium (RE)

For several of the applications to which MCRT has been applied, the emissivity is not
known a prior. Indeed, for many astronomical RT problems (e.g. stellar/disk atmo-
spheres, winds, SNe etc.), RE is a good approximation and the emissivity is effectively
determined by the radiation field itself (i.e. near-equilibrium is achieved between
absorption and emission of radiation). In such cases, the emissivity usually cannot be
anticipated independently of a radiation transport simulation, which poses a challenge

21 In a time-dependent simulation, packets representing ongoing emissivity can be gradually injected during
the course of a numerical time step (i.e. the time at which they are injected to the simulation is also a property
to be sampled).
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for consistent modelling. In the following sections we review methods that can be
applied to problems with this requirement.

7.3 Radiative equilibrium inMCRT by iteration

One approach forREproblems is to use an iteration scheme to determine the conditions
of the medium (temperature, ionization state, level populations etc.) on which the
emissivity depends.Here, an iterative sequence ofRT simulationswould be performed:
in each iteration the current best estimate of the conditions in the medium would be
adopted to calculate the emissivity, and the outcome of the RT calculations22 used
to make an improved estimate for those conditions in the next cycle. This approach
can be applied to schemes based on photon packets and/or energy packets and it has
been used for modelling at least some part of the emissivity (e.g. the part associated
with radiative cooling by Long and Knigge 2002) and works well provided that the
complexity of the problem is not too severe.

However, as is well known from the history of modelling stellar atmospheres
(cf. Hubeny and Mihalas 2014), the non-local character of RT problems can lead
to significant convergence problems for this type of iteration scheme, especially when
considering regions associated with high optical depth. In particular, in its pure form,
this scheme suffers from the issue that energy conservation is only achieved asymp-
totically (i.e. once/if a converged equilibrium solution is found). As a result, during
the iteration process, over- or under-estimated emissivities (due e.g. to unconverged
temperatures) will lead to spurious sources and sinks of radiation that might slow or
inhibit convergence.

7.4 “On-the-fly” radiative equilibrium inMCRT via indivisible energy packets

As described/developed in the works of Lucy (Abbott and Lucy 1985; Lucy 1999a,
2005), it is actually very simple to rigorously enforce the conservation of energy
required by RE via an indivisible23 energy packet MCRT scheme. The principle is
straight forward: RE implies that at all points there is (local) balance between the
rates of absorption and emission of energy from/to the radiation field. Since, in an
energy packet discretizaion the MC quanta already represent (local) bundles of radia-
tive energy, the condition of RE is trivially enforced by insisting that the MC quanta
are never destroyed, or otherwise degraded in weight, in the course of the simulation.
Thus, all interactions between MC packets and the medium—even those representing
pure absorption processes—become effective scatterings controlled by rules devised
for the MCRT simulation. The rules for how packets should be altered in these effec-
tive scattering events depend on the physical process(es) being simulated (Lucy 2002,
2003, 2005): commonly, considerations of statistical equilibrium and/or thermal equi-
librium (TE) will form the basis for formulating these rules. In the following sections

22 See Sect. 9 for further details of how such information can be optimally extracted from a MCRT
simulation.
23 One might argue that the key property here is that the packets are indestructible rather than indivisible,
but we retain the more usual name for this approach for consistency.
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Fig. 5 Energy level diagram:
two-level atom with
bound-bound transitions (Rlu
and Rul )

Upper level, u (energy εu)

Lower level, l (energy εl)

Rlu Rul

we will elaborate these principles more generally, but for concreteness we first discuss
one of the simplest specific examples.

7.4.1 Example: effective resonant scattering in a two-level atom

To illustrate the principle, we consider one of the simplest possible radiation–matter
interactions that might be of relevance to a radiative/statistical equilibrium problem,
that of absorption by a spectral line in a two-level atom (see Fig. 5). For further
simplicity we restrict our discussion to the regime in which radiation dominates both
the rate of excitation and de-excitation and we assume that the emissivity is isotropic.
If stimulated emission is treated as negative absorption, the emissivity of the spectral
line (photon frequency ν) can simply be written (cf. Hubeny and Mihalas 2014, p.
118)

ηul = hν

4π
ψul(ν)Rul (57)

where the rate Rul

Rul = nu Aul (58)

depends on the population of atoms in the upper level (nu) and the Einstein-A coeffi-
cient for the transition (Aul ). ψul(ν) is the emission profile function that determines
the line shape (details of this function are not pertinent to our discussion here except to
note that this function is normalised over all frequencies). Thus to evaluate ηul directly
we need to know the upper level population (nu). If the radiation field itself controls
excitation to u, however, we cannot reliably determine nu until after the radiation field
has been simulated. Provided that statistical equilibrium applies, however, we do know
that the rate of absorption of energy from the radiation field (Rlu) is equal to the rate
of emission:

Rlu = Rul . (59)

This statement can effectively be used to replace a direct evaluation of Eq. (58) by
imposing it as a rule of an indivisible energy packet MCRT simulation: whenever a
MC packet is absorbed by the line, it is immediately (in situ) re-radiated by the line.
In essence, this is interpreting Eq. (59) as a traffic flow problem in which absorption
of MC packets is the realisation of the Rlu term and re-emission is described by Rul .

This particular example is almost trivial but, as will be elaborated below, the basic
idea of combining RE (indivisible packets) with statistical equilibrium (traffic flow
rules to process packet interactions) can be extended to much more sophisticated
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cases. Before discussing more general cases, however, we pause to comment on some
of the key features that this simple example already highlights.

7.4.2 Fluorescence and thermal emissivity via redistribution parameters

Early MCRT implementations, such as Abbott and Lucy (1985), applied the two-
level effective resonance line treatment of opacity, essentially as outlined above. The
two-level approximation is relatively well-justified for many of the strong metal lines
in the ultraviolet (UV, such as C iv 1550 Å or N v 1242 Å) that were relevant to
studies of stellar winds (Abbott and Lucy 1985) and also later studies of accretion
disk winds (Long and Knigge 2002; Kusterer et al. 2014). However, the two-level
atom approximation has limited utility and is not realistic for problems in which flux
redistribution via fluorescence and/or thermal reprocessing of radiation is important.

Various methods, with differing degrees of sophistication, can be employed to
simulate flux redistribution in indivisible packet MCRT. One approach is to assume
that the radiation–matter interactions can be modelled as a combination of resonance
scattering and some form of complete flux redistribution across the spectrum. In this
approach, a redistribution parameter, Λ, is introduced and used to determine the out-
come of each packet interaction by drawing a random number (ξ ) and comparing:
if ξ > Λ then the MC packet is assumed to undergo coherent scattering (i.e. a new
direction is assigned but the CMF frequency is conserved as it would be in electron
scattering or resonance line scattering); otherwise an incoherent (effective) scattering
is executed in which a new random direction of propagation is assigned along with
a new frequency. When the incoherent case is selected, the new frequency must be
drawn from some suitable normalised emissivity distribution. One simple possibility
is the local thermodynamic equilibrium (LTE) thermal emissivity (χνBν), but alter-
native choices could be made. The redistribution parameter (Λ) can be set globally or
made a function of the interaction process (e.g. for line-scattering problems it might
be estimated by comparing the relative importance of collisional and radiative de-
excitation, similar to the considerations by Long and Knigge 2002). The effectiveness
of this approach naturally depends on the problem under consideration. However, at
least for some applications studied with MCRT it has been shown that this scheme
is effective. In particular, as demonstrated by Baron et al. (1996), Pinto and Eastman
(2000a, b) and Kasen et al. (2006), flux redistribution in Type Ia Supernova (SN Ia)
modelling can be quite effectively approximated via a simple (thermal) redistribution
parameter, achieving good agreement with more detailed treatments without too much
sensitivity to the particular value of Λ adopted (see also Magee et al. 2018). We note
that, in the limit Λ → 1, it may appear that this type of approach seems very similar
to that outlined in Sect. 7.1: selecting post-interaction properties of the MC packets
depends on knowing the material state sufficiently well to estimate an emissivity dis-
tribution from which to draw e.g. photon frequencies. However, the notable difference
is that here the absolute normalisation of the emissivity is not used: i.e. although the
emissivity distribution is used to select most properties, the packet energies remain
fixed by the indivisible packet principle. As a consequence, strict RE is still enforced
in the radiation/matter interactions.

123



34 U. M. Noebauer, S. A. Sim

7.4.3 Fluorescence and redistribution: macro atommethod

Approaches similar to those outlined above (i.e. that treat interactions as either coherent
or fully redistributive) are easy to implement, fast to run and, with appropriate parame-
ter choices, can capture many of the essential features of scattering and redistribution.
However, not all physical processes are readily captured this way: for example fluo-
rescence (and cascades) between energy levels in an atom or ion certainly leads to a
coupling of emission in different parts of the spectrum, but it cannot be well described
via a single “redistribution emissivity” that can be sampled for all interactions. In gen-
eral, we must acknowledge that every distinct radiation–matter interaction can lead to
its own distinct set of outcomes. For example, consider a three-level atom in a problem
for which statistical and RE are assumed (cf. Fig. 6): if a MCRT packet is absorbed in
the transition from the lowest level (1) to the highest (3), it is expected that the range
of outcomes following that event should at least include a combination of re-emission
in the 3 → 1 transition plus the cascade 3 → 2 and 2 → 1. It is therefore desirable
to construct sets of rules for processing packet interactions in MCRT simulations that
can accurately describe this physics.

One way to handle the three-level atom example would simply be to split the
original interacting packet, whether a photon or energy packet, in proportion to the
number of emitted photons or corresponding energy flow for each of the outgoing
channels and continue the simulation. For the three-level case, this is quite feasible
but the drawback of such an approach in general is that, for interactionswith verymany
possible outcomes (e.g. atomic models with large numbers of levels) this can lead to
a proliferation of packets that is computationally too expensive to follow. Moreover,
it is non-trivial to generalise that approach to handle e.g. the inverse: our three-level
atom ought to also be able to absorb 1 → 2 and 2 → 3, and then emit 3 → 1 (inverse
fluorescence). How can this process be captured in such a redistribution scheme?

Following Lucy (1999b), key steps towards finding a general solution stem from
the procedural approach outlined for the two-level atom above (see Sect. 7.4.1). In
particular, a first generalisation of the effective resonance scattering treatment tomulti-
level atoms is to extend the traffic flow interpretation to include all possible transitions
out from an excited atomic state. Specifically, when an energy packet is absorbed by
a transition to some upper level u of an atom, our MC rule is to re-emit that energy
packet in any of the transitions out of that level to a lower level l with probability ql
proportional to the rate of energy flow in the transition:

qu→l = Rulεul∑
k<u Rukεuk

, (60)

where εuk is the difference in the energies of the levels (εuk = εu − εk). Note that
we use the energy flow rates (rather than the pure transition rates) since our quanta
are considered parcels of fixed energy (not photons). As shown by Lucy (1999b) and
Mazzali (2000), this downbranching scheme already provides a huge improvement
to the modelling of flux redistribution in SN spectra over a resonance scattering
approximation. Indeed, as demonstrated by later studies (e.g. Kerzendorf and Sim
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2014), this scheme performs extremely well even when compared to more complete
treatments such as the full macro atom approach described below.

Nevertheless, the Lucy (1999b) downbranching scheme is still not complete and
does not address all the issues raised even by our simple three-level atom example (e.g.
while it will reproduce flux redistribution between the 1 → 3 and 2 → 3 transitions—
because they share an upper level—it does not connect the 1 → 2 transition to the
cascade). A more complete solution that can incorporate all transitions in multi-level
atoms was later devised by Lucy (2002, 2003) via what he called the macro atom
method. This approach provides a generalised approach to formulating rules to process
interactions ofMCenergy packets in accordancewith the requirements of radiative and
statistical equilibrium. In essence, we can view all of the possible excited levels of the
matter as energy pools. Energy flows into/out of each pool via the set of transitions into
that energy level and the equilibrium condition (namely that the energy associatedwith
each such pool is stationary) is satisfied by imposing a traffic flow set of rules to process
interactions for each possible energy level. The extra sophistication compared to the
downbranching scheme is that we include the fact that physical processes represent not
only energy flow to and from the radiation field, but also between the various energy
pools associated with the different available levels of the atoms/ions/molecules in the
medium. Expressions for the general macro atom transition probabilities and their
interpretation are derived by Lucy (2002). We will not repeat the general case here
but, in the example below, illustrate its application to our example three-level atom in
order to clarify the principles.

7.4.4 Example and discussion: macro atom scheme for a three-level atom

Here we illustrate how the macro atom transition probabilities can be obtained for
a three-level atom assuming radiative and statistical equilibrium (see Fig. 6). For
simplicity we consider only bound-bound processes here and assume that all rates are
dominated by radiation processes (i.e. neglect collisions and the associated coupling
to the thermal energy pool; see Lucy 2003 and Sect. 7.4.5 for the more general case).
Our aim is to formulate a set of rules to use during an indivisible energy packet
MCRT simulation whenever the random walk experiment determines that a packet is
absorbed by one of the three spectral lines (which have frequencies ν12, ν13 and ν23,
where νi j = εi j/h).

We start from the equations of statistical equilibrium applied to levels 1, 2 and 3 of
the three-level atom. These can be expressed as:

R21 + R31 − R12 − R13 = 0, (61)

R12 + R32 − R21 − R23 = 0, (62)

R13 + R23 − R31 − R32 = 0. (63)

For each of the transitions we can also specify the rate at which energy is being
transferred into or out of the population of atoms in each of the energy states (i.e. the
rates of energy flow into and out of the pool of excitation energy associated with that
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Fig. 6 Energy level diagram for
the simple three-level atom used
as an example for the
formulation of macro atom rules

state). Specifically, we identify

Ȧ12 = ε12R12, Ȧ13 = ε13R13, Ȧ23 = ε23R23 (64)

as the rates of energy flow from the radiation energy pool to the corresponding excita-
tion energy pool for each of the three transitions. Similarly, the rates at which energy
is converted back from excitation to radiation can be written

Ė21 = ε12R21, Ė31 = ε13R31, Ė32 = ε23R32. (65)

Multiplying Eqs. (61)–(63) by ε1, ε2 and ε3 respectively, and using the definitions
from Eqs. (64) and (65) leads, following some rearrangement,24 to

ε1R21 + ε1R31 = ε1R12 + ε1R13, (66)

Ȧ12 + ε1R12 + ε2R32 = Ė21 + ε2R23 + ε1R21, (67)

Ȧ13 + Ȧ23 + ε1R13 + ε2R23 = Ė31 + Ė32 + ε2R32 + ε1R31. (68)

We now make a traffic flow interpretation of these equations to formulate rules for the
interaction of packets in a MCRT simulation. In particular, by definition, Ȧ12, Ȧ13
and Ȧ23 are the rates of energy flow from the radiation field to the atom levels via
the specific transitions: thus absorption of radiation MC packets in our simulation is
interpreted as the realisation of these terms. Similarly, each of the Ė terms represents
the flowof energy to the radiationfield in the corresponding transition: i.e. in theMCRT
simulation, these terms correspond to injecting radiation packets. The interpretation
of the remaining terms (all of form “energy × rate”) can be made by recognising
that each such term appears twice: always once on the left hand side (LHS) of one
equation and once on the right hand side (RHS) of another. I.e. each of these terms can
be regarded as a source term for energy in one level of the macro atom (appearing as
an “incoming” energy term on the LHS, alongside the absorption from the radiation
field) but simultaneously a sink term for another energy level. Accordingly, these terms
are viewed as driving internal (radiationless) transitions between levels of the macro

24 We make the specific rearrangement such that all terms are positive: this is to facilitate interpretation of
the resulting equation in terms of energy flow probabilities.
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atom—they facilitate the energy flowbetween states such that the underlying equations
of statistical equilibrium are conserved. These equations can thus be embedded in our
MCRT simulation via the following algorithm:

(A) Whenever an active radiation packet is absorbed by any of the three transitions we
view this as a discrete realisation of the corresponding Ȧ term in the macro atom
equation.We say that this process has activated amacro atom in the corresponding
energy level.

(B) We then inspect the sink terms (i.e. RHS terms) for the activated level of the
macro atom and use a random number to select an outcome with probabilities
proportional to the energy flows implied by the system of macro atom equations.
Thus, for example, if the macro atom is activated to level 2, with probability
Ė21/D2 we select emission in the 2 → 1 transition, and with probabilities of
ε2R23/D2 and ε1R21/D2 we select internal macro atom transitions 2 → 3 and
2 → 1, respectively (D2 = Ė21 + ε2R23 + ε1R21 is selected to normalise the
probabilities correctly).

(C) (i) If the selection corresponds to an emission Ė term, the macro atom deactivates
and the radiation packet is returned to the main MC simulation with new prop-
erties (photon frequency, direction etc.) set in accordancewith the properties of
the corresponding emission process. The total energy carried by the packet (in
the CMF) remains equal to that when the packet was absorbed (in accordance
with the requirements of RE).

(ii) Alternatively, if an internal transition term is selected, the macro atom remains
active but is switched from its current state to a new state in accordance with
the selected term [e.g. selecting the ε2R23/D2 term results in a transition from
macro atom state 2 to state 3, conceptually representing the “sink” on the RHS
of Eq. (67) into the matching “source” term on the LHS of Eq. (68)]. The
algorithm then returns to step B and processes the activated macro atom again.
This continues until deactivation occurs.

By repeated application of these rule for packet interactions, the activation and deac-
tivation of macro atoms will encode both radiative and statistical equilibrium on the
effective emissivity in the simulation. Several specific features of this macro atom
algorithm are noteworthy of consideration for its appropriateness to a range of appli-
cations. We comment on some of these in the following.

First, we note that all rates Ri j are directly proportional to the level population ni ,
which would imply that, like the normal line emissivity, Eq. (58), determining the
terms in the macro atom equations depends on already knowing the level populations.
However, because of the normalisation process in step (B), this leading dependence
cancels out from the transition probabilities. Of course, additional effects (e.g. cor-
rections for stimulated emission to absorption rates or introduction of Sobolev escape
probabilities; see Sect. 8.2) can still lead to dependencies on the populations. Never-
theless, cancelling of the leading-order effect means that the macro atom transition
rates can be relatively well determined even in the absence of a converged set of
level populations. This property can be rather powerful when treating complex sys-
tems for which exact calculations of excited state level populations (and therefore a
direct evaluation of absolute emissivities) is challenging: as shown by Lucy (2002, fig.
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5), even for a complicated ion such as Fe ii the macro atom scheme produces fairly
accurate excited state effective emissivities without any iteration to determine level
populations.25

Second,wenote that thefirst of the set ofmacro atom traffic flow equations [Eq. (66)]
involves no activation ( Ȧ) terms and no deactivation (Ė) terms: it is a balance only
between internal transition rates. This makes sense because it follows from the equa-
tion of statistical equilibrium for the lowest energy state: there are no channels for
absorption of energy directly to that state nor emission of energy directly from it.
Moreover, we note that the choice ε1 = 026 trivially satisfies Eq. (66) and also elim-
inates the corresponding internal transition terms from Eqs. (67) and (68). Making
use of this definition will therefore (slightly) simplify the macro atom algorithm by
effectively removing the need to explicitly consider the ground state.

Third, it can be seen that both of the simpler treatments introduced earlier for
handling atomic line interactions are special cases of the full macro atom. Specifically,
the effective resonance scattering approach used in several early studies (example in
Sect. 7.4.1) is a two-level macro atom with ε1 = 0. The downbranching scheme
by Lucy (1999b) outlined in Sect. 7.4.3 is the macro atom scheme with all internal
transition terms suppressed (formally, this can be derived from the general macro atom
algorithm by assuming (i) downwards transition rate coefficients dominate and (ii) for
all transitions between upper level u and lower level l, εu 	 εl ).

Repeated cycling through steps (B) and (C)(ii) in the algorithm above can make it
computationally inefficient, particularly when the scheme is extended to also include
coupling to the thermal pool. This can be addressed in several ways, however. As noted
by Lucy (2002), the macro atom algorithm can be viewed as recursive application
of the set of transition/deactivation probabilities and recently, Ergon et al. (2018)
have presented a Markov-chain approach to the macro-atom machinery. This method
effectively solves the problem without the need to follow internal macro-atom state
transitions which can be a substantial advantage in terms of computational efficiency.

7.4.5 The thermal energy pool

The macro atom scheme is readily generalisable to include additional energy pools
relevant to the simulation. In particular, the thermal pool of particle kinetic energies. In
the nomenclature of Lucy (2002), interactions with the thermal pool are described as
kinetic packet (k-packet) events, and the processing rules are derived by considering
energy flow into and out of the k-packet pool. Here, the relevant “transition” processes
are all heating and cooling rates corresponding to a flow of energy into and out of the
thermal pool. These include, in particular, direct radiative heating rate (HR), which
includes processes such as free-free absorption, heating by collisional de-excitation
of e.g. atomic states (HC), and their inverse cooling processes (rates CR and CC).

25 Of course, the macro atom scheme can also be coupled to an iterative solution for the level populations
to provide accurate level populations upon convergence. Depending on the problem, it may be anticipated
that the use of the macro atom scheme in such an approach can aid convergence since it gives a relatively
good estimate of the true emissivity even before convergence of the level populations has been achieved.
26 This is, of course, the standard definition for the zero of (excitation) energy—namely that the energy of
the lowest lying level (ground state) is defined to be zero.
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Energy flow through the thermal pool is governed by an assumption of TE (analogous
to the assumption of statistical equilibrium for the atomic energy levels descried in
the macro atom scheme):

HR + HC = CR + CC. (69)

Thus, whenever a physical process representing the flow of energy into the thermal
pool (e.g. absorption of a MC radiation energy packet via a heating process which is a
realisation of the HR term), the process governing the fate of that energy is determined
by randomly sampling all available cooling processes with probabilities proportional
to their respective rates. This can lead either to direct remission of a radiation energy
packet with photon-frequency, direction etc. randomly assigned by one of the radiative
cooling processes (i.e. simulating part of theCR term) or by activation of amacro atom
(associated with the collisional cooling process,CC).We note that the scheme can also
be applied to physical processes that involve cross-talk betweenmultiple energy pools:
for example, bound-free processes, which involve both changes in the populations of
atomic states and heating/cooling (see Lucy 2003).

7.5 Indivisible energy packets beyond radiative equilibrium

In the preceding sections we have discussed how equilibrium assumptions (radiative,
statistical, thermal) can be used to devise rules for MCRT algorithms that can handle
complicated non-resonance scattering/fluorescent processes without sacrificing rigor-
ous conservation of energy. Formulated in this way, however, such approaches will not
be immediately suitable for problems in which the corresponding equilibrium assump-
tion is not satisfied. Nevertheless, the scheme can be generalised to include appropriate
source or sink terms. Consider, for example, material in a stellar outflow that is irra-
diated (e.g. by the stellar photosphere) but is also heated by external non-radiative
(HE) processes (examples might include hydrodynamical or magnetohydrodynamical
heating) and cooled by expansion (CE). In such a case, radiation processes may still
be important but RE is no longer well justified. If cooling time scales are sufficiently
short that TE can be sustained, the heating and cooling balance might be expressed at
every point in the medium:

HR + HC + HE = CR + CC + CE. (70)

In an indivisible energy packet MCRT scheme, the HR and HC (local radiative and
collisional heating) terms are realised via the absorption of radiation energy packets
via radiation–matter processes that directly transfer radiative energy to the kinetic
particle pool (HR) and collisional deexcitation of atomic states (HC). The HE term
can then be added to the problem as an external source of packets injected in the course
of the simulation—the rate of injection being determined by knowledge of the external
process responsible for HE. In this particular case, because the external source is a
heating term, the energy of those new packets is initially injected directly to the pool
of kinetic energies (i.e. k-packet pool) and the subsequent properties of those packets
followed via the usual traffic flow interpretation of the equation.
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As before, the three terms on the RHS of Eq. (70) are the sink terms for the k-packet
pool and so they are sampled to determine the manner in which the energy flow out of
the k-packet pool behaves. CR and CC can be simulated just as before: packets are fed
back to the radiation field (CR) or to the excitation energy of macro atom pools via
collisional excitation (CC). The additional term, CE, can be treated as a true external
sink term: i.e. with probability CE/(CR +CC +CE) energy packets that flow into the
thermal pool are terminated. Alternatively, this term could be treated via a reduction in
packet energies: i.e. one could opt to sample the RHS of Eq. (70) only considering CR
and CC but reduce the energy of all packets processed through this channel by a factor
of (CR +CE)/(CR +CE +CC). We note that, in the limit where the external sources
and sink term (HE and CE above) become dominant, an indivisible energy packet
simulation performed with this machinery will essentially reproduce the elementary
scheme explained in Sect. 7.1.

The example above illustrates how the indivisible packet scheme can be altered to
take account of specific departures from RE, and this is done in many of the exist-
ing implementations of this method, particularly to account for adiabatic cooling (e.g.
Long andKnigge 2002; Kasen et al. 2006; Kromer 2009; Vogl et al. 2019). In principle
a similar logic could be employed to deal with departures from statistical equilibrium
(affecting the macro atom transition rules) or TE (further affecting the k-packet tran-
sition rules). Specifically, if the inflow and outflow rates are not in balance such that
there is a net rate-of-change of the energy reservoir, then terms representing the ongo-
ing accumulation (or loss) of energy from the pool could be built into the formulation
(i.e. retain terms including the derivatives of the level populations and/or the kinetic
temperature). Provided that values for those derivatives are known they could also then
be included in the packet flow. To our knowledge, however, extensions of the macro
atom/k-packet schemes that consider such terms have not yet been implemented.

8 MCRT: application in outflows and explosions

A prominent field in astrophysics, in which MCRT methods are very popular and
successful, is the study of fast mass outflows. For example, MCRT schemes can be
used to calculate mass-loss rates and the structure of hot-star winds (see e.g. Abbott
and Lucy 1985; Lucy and Abbott 1993; Schaerer and Schmutz 1994; Schmutz 1997;
Vink et al. 1999, 2000; Sim 2004; Müller and Vink 2008; Muijres et al. 2012b;
Lucy 2012b; Noebauer and Sim 2015; Vink 2018), to determine synthetic light curves
and spectra for SNe (see e.g. Mazzali and Lucy 1993; Lucy 1999a, 2005; Mazzali
2000; Kasen et al. 2006; Sim 2007; Kromer and Sim 2009; Wollaeger et al. 2013;
Wollaeger and van Rossum 2014; Kerzendorf and Sim 2014; Bulla et al. 2015; Magee
et al. 2018) or to treat RT in winds emanating from accretion discs of cataclysmic
variables (Knigge et al. 1995; Long and Knigge 2002; Noebauer et al. 2010; Kusterer
et al. 2014; Matthews et al. 2015) or active galactic nuclei (Sim 2005; Sim et al.
2010, 2012; Higginbottom et al. 2013; Matthews et al. 2016, 2017; Tomaru et al.
2018). In applications such as these, our current implicit assumption, namely that RT
occurs in static media or in environments with material velocities low enough to be
safely ignored, can no longer be maintained. Instead, special relativistic effects play
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an important role and have to be taken into account. In the following, we outline
some important aspects of performing MCRT in moving media. While many of the
described concepts are generic, the treatment of line interactions using the Sobolev
approximation (see Sect. 8.2) is specific to MCRT in expanding media, such as SN
ejecta or winds.

8.1 Themixed-frame approach

As introduced in Sect. 2, there are two fundamental frames of reference for RT, namely
the LF and the local rest frame (CMF). Until this point, we have largely ignored the
distinction between these frames since RT was assumed to occur in static media or in
low-velocity environments. When the material velocities become large, however, this
simplification is no longer justified. In these situations, MCRT schemes often rely on
a so-called mixed-frame approach (see for example Lucy 2005). This exploits the fact
that the handling of different tasks involved in MCRT simulations is easier in one or
other of the two frames. Specifically, the spatial and temporalmesh is usually defined in
the lab frame, making it most convenient for measuring distances and thus for tracking
packets and simulating their propagation. Radiation–matter interactions, on the other
hand, are more easily described in the local rest frame of the material. Here, the
material functions take their simplest form. Consequently, MCRT schemes adopting
the mixed-frame approach propagate packets in the LF but treat all interactions in the
CMF.

The inclusion of relativistic effects during the LF–CMF transformation can be per-
formed to varying degrees of accuracy. We first focus on arguably the most important
effect in the presence of matter flows, namely the Doppler effect. For this illustration,
we again assume a simplified situation of coherent and isotropic scattering. In moving
media, these assumptions will only ever hold in the CMF. Whenever a MC packet
interacts, its properties are transformed into the CMF, where the interaction is simu-
lated and post-interaction properties are assigned. Adopting the convention introduced
in Sect. 2 and denoting quantities measured in the CMF by a 0 subscript, the incident
CMF frequency of an interacting packet is

ν0,i = γ νi (1 − β·ni) . (71)

Likewise, it carries an energy

ε0,i = γ εi (1 − β·ni) (72)

in the CMF. Here, the additional subscripts (i and e) are used to denote incident and
emergent packet properties with respect to the interaction. Performing interactions
in the CMF has the benefit that, for our example of coherent scattering, energy is
conserved in this frame and thus

ε0,e = ε0,i. (73)
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Similarly, the packet frequency remains constant during the interaction in the
CMF27

ν0,e = ν0,e. (74)

After drawing an emergent propagation direction, the packet is re-transformed into
the LF and continues its propagation there with

εe = γ ε0,e
(
1 + β·n0,e

)
, (75)

νe = γ ν0,e
(
1 + β·n0,e

)
. (76)

In many applications, the frequency shifts due to the Doppler effect will be the most
significant consequence of the material motion. However, for a detailed relativistic
treatment, achieving at leastO(v/c) accuracy, additional effects have to be taken into
account. In particular, aberration affects the propagation direction of packets and has
to be taken into account when transforming the incident direction into the CMF

n0,i =
(

ν

ν0

) [
ni − γβ

(
1 − 1

c

γ

γ + 1
ni · v

)]
, (77)

and the emergent direction back into the LF (cf. Mihalas and Auer 2001)

ne =
(

ν

ν0

) [
n0,e + γβ

(
1 + 1

c

γ

γ + 1
n0,e · v

)]
. (78)

Also, care has to be taken when calculating the accumulated optical depth. Since the
propagation is carried out in the LF, the integration is best performed in this frame as
well. For this, opacities have to be properly transformed into the LF using Eq. (14).
The optical depth integration is further complicated in the presence of matter flows by
the continuous change in CMF frequency as packets propagate through material with
varying velocities. Thus, Eq. (44) becomes

τ(l) =
∫ ν0(l)

ν0(0)
dν0

dl

dν0

ν0

ν
χ0(ν0), (79)

which accounts for the CMF frequency change along the trajectory by dl/dν0 and
includes a Doppler factor (ν0/ν) due to the transformation of the opacity into the CMF.
Performing this integration for non-trivial opacity laws andgeneral flowpatterns is very
challenging and computationally demanding since it has to be carried out frequently
during the propagation process of each packet. However, for an important class of
astrophysical applications of MCRT, the Sobolev approximation can be adopted and
drastically reduces the complexity of the integration by turning it into a purely local
problem. We elaborate on this approach in Sect. 8.2.

Finally, we note that one also has to decide in which frame the MC packets are
launched during the initialisation. Often, the CMF is the natural choice for this process,

27 For more complicated cases involving incoherent scattering and/or departures from equilibrium, the
principles discussed in Chapter 7 can all be applied to the packet energy and frequency in the CMF.
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e.g. when representing a thermal radiation field. In such cases, packet properties are
drawn in the CMF and then transformed into the LF using the rules given here and in
Sect. 2 before starting the propagation.

8.2 Line interactions in outflows

As described above, treating frequency-dependent opacities in the presence of large
material velocities is challenging. However, in the case of bound-bound processes,
the situation can be significantly simplified with the so-called Sobolev approximation
(Sobolev 1960). Indeed, RT through fast expanding mass outflows is the classical
example for the use of the Sobolev approximation. We refrain from a detailed descrip-
tion of Sobolev theory since it is a widely used technique in astrophysical RT problems
(see e.g. Castor 2007 for a general overview of the approximation and Rybicki and
Hummer 1978, 1983; Hummer and Rybicki 1985; Jeffery 1993, 1995 for various
extensions of the original formulation) but highlight some key aspects and describe
how a Sobolev line interaction scheme can be easily incorporated into MCRT simu-
lations for fast outflows. An illustrative overview of this approximation can be found
in Lamers and Cassinelli (1999).

Bound-bound processes are fundamentally resonant processes in the sense that
only photons, and thus MC packets, with CMF frequencies in a small window can
perform these interactions. The frequency dependence of the bound-bound opacity is
encoded in the line profile function, ψ , which is narrowly peaked about the natural
line frequency

νlu = 1

h
(εu − εl), (80)

corresponding to the energy separation of the two atomic levels, εl and εu , connected
by the line transition. The width of the line transition is mainly a result of the turbulent
and thermal motion of the atoms. Together with the local gradient of the velocity field
it can be translated into a characteristic length scale, the so-called Sobolev length, over
which the photon shifts into and out of resonancewith the line in the CMF. This scale is
compared with the typical length over which the plasma state, and thus the frequency-
independent parts of the line opacity change. If the Sobolev length is much smaller, the
line profile can be approximated by a delta-distribution around νlu . As a consequence,
the optical depth integration in Eq. (79) collapses and turns into an expression that only
depends on the material state at the so-called Sobolev point. At this location, the CMF
frequency of the photon exactly equals νlu . We note that in addition to the condition
concerning plasma state changes, the traditional Sobolev approximation can only be
applied to environments with a monotonous velocity gradient.28

Whenever the Sobolev approximation can be adopted, MCRT simulations that
include line interactions are dramatically simplified. In addition to reducing the calcu-
lation of the line optical depth to a local problem, line overlaps are eliminated within
the Sobolev approximation. Since photons continuously red shift in monotonously
expanding flows (or blue shift in compression flows), they successively scan over the
possible line transitions in the CMF one-by-one. This reduces the book-keeping effort

28 See Rybicki and Hummer (1978) for an extension to non-monotonous flows.
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in MCRT simulations and suggests storing the line transitions in a frequency-ordered
list (Lucy 1999b). In outlining the basic MCRT propagation routine for such cases,
which has been developed by Abbott and Lucy (1985) and Mazzali and Lucy (1993),
we assume that in addition to line interactions, only frequency-independent contin-
uum processes, such as electron scattering in the Thomson limit, contribute to the total
opacity. As the packet propagates, it continuously accumulates optical depth due to
continuum processes (see Sect. 6.1).Whenever the packet reaches the Sobolev point of
the next line transition, i.e. when its local CMF frequency equals the natural frequency
of the line, the accumulated optical depth is instantaneously incremented by the full
line opacity of the transition

τs = πe2

mec
flunl

(
1 − nu

nl

gl
gu

)
rs

(
dl

dν0

)
rs

. (81)

Here, e and me denote the elementary charge and the mass of the electron, flu is
the absorption oscillator strength of the transition from the lower to the upper energy
lever, l → u, and nl,u and gl,u are the population numbers and statistical weights of
these levels. The subscribed rs denotes that the plasma state entering the optical depth
calculation is evaluated locally at the Sobolev point. In one-dimensional geometries,
the derivative in Eq. (81) simplifies to

(
dl

dν0

)
rs

= c

νlu

(
1

(1 − μ2)v/r + μ2dv/dr

)
rs

. (82)

The optical depth accumulation procedure is further illustrated in Fig. 7. The decision
about the nature of the next interaction a MC packet experiences is based on whether
the assigned optical depth value is surpassed between Sobolev points or during the
instantaneous increments at one of these resonance points. In the former, the packet is
simply moved by the distance l given by Eq. (44), which now only involves continuum
opacity. At the interaction site, the packet properties are changed according to the
specific continuum process. If the optical depth value is reached at a Sobolev point,
however, the packet is moved to this location and performs the corresponding line
interaction. It should be noted that the re-emission direction for the packet should be
assigned according to the Sobolev escape probability

ρ(n) ∝ 1 − exp(−τs(n))

τs(n)
. (83)

For the particular case of an homologous flow,

v

r
= dv

dr
= const., (84)

the Sobolev optical depth becomes independent of direction and the escape probability
is isotropic. However, in more general velocity fields the Sobolev escape probability
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l1 lS,1 l3 lS,2

l

τ 1
τ 2

τ 3
τ 4

τ

Fig. 7 Illustration of the optical depth accumulation process devised byAbbott andLucy (1985) andMazzali
and Lucy (1993) for MCRT simulations relying on the Sobolev approximation. At the Sobolev points, S1
and S2, the accumulated optical depth is instantaneously incremented by the full line optical depth. In
addition four possible outcomes of the decision process about the next interactions are shown. For τ1 and
τ3, the packet would experience a continuum interaction at l1 and l3 respectively. In the remaining cases,
i.e. for τ2 and τ4, the packet undergoes a line interaction at the respective Sobolev points lS,1 and lS,2. This
figure is loosely adapted from Mazzali and Lucy (1993, Fig. 1)

will vary with direction and must be sampled whenever directions for re-emission of
packets are needed.

ManyMCRT applications in outflows adopt the Sobolev approximation and follow
a line interaction scheme similar to the one just outlined. Examples include the studies
by Abbott and Lucy (1985), Lucy and Abbott (1993), Vink et al. (1999), Sim (2004),
Noebauer and Sim (2015) dealing with hot star winds, or the works by Long and
Knigge (2002) performingMCRT in discwinds andMazzali andLucy (1993),Mazzali
(2000), Kasen et al. (2006), Sim (2007), Kromer and Sim (2009), Kerzendorf and
Sim (2014) who use MCRT in SN ejecta. There are several studies that treat line
interactionswithout relying on the Sobolev approximation such asKnigge et al. (1995)
and Kusterer et al. (2014). Here, the conceptual and computational effort is, however,
significantly higher.

To demonstrate the use of the Sobolev approximation in MCRT, we describe a
simple test simulation to calculate the H Lyman α line profile formed in a homologous
flow composed of only neutral hydrogen in Appendix A.2. This leads to the line
profile shown in Fig. 8. For comparison, the analytic solution for this test problem is
included.29 The collection of tools available as part of this review contains a simple
Python implementation of this MCRT simulation (see Appendix B).

29 It was obtained by a formal integration of the RT problem according to the scheme outlined by Jeffery
and Branch (1990).
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Fig. 8 H Lyman α-line profile determined by a simple mixed-frame MCRT simulation for the test setup
described in Sect. 8.1 and Appendix A.2. The analytic prediction (blue) is obtained by a formal integration
of the RT problem according to the principles outlined by Jeffery and Branch (1990). Note that the emergent
spectra have been normalized by dividing by the incident thermal radiation field Fcont

ν

8.3 MCRT and expansion work

In RE, packet energy is conserved in the CMF during interactions, which partly moti-
vates the introduction of the mixed-frame approach for MCRT in moving media. We
emphasize, however, that packet energy conservation does not necessarily hold in the
LF. In fact, depending on the flow of radiation relative to the moving ambient mate-
rial, photons may either lose or gain energy in interactions. This is a crucial process in
astrophysical applications involving strongmass outflows, for example hot-star winds.
Here, photons collectively lose energy in interactions by performing expansion work,
ultimately driving and maintaining the outflow (cf. Lamers and Cassinelli 1999; Puls
et al. 2008). In the following, we briefly demonstrate that MCRT schemes adopting
the mixed-frame approach readily capture this work term (indeed this was one of the
original motivating factors for the approach; Abbott and Lucy 1985).

When a packet interacts, the mixed-frame MCRT approach switches to the local
CMF to perform the interaction and update the packet properties before returning
into the LF and continuing the propagation. Considering again isotropic and resonant
scatterings for illustrative purposes, the LF energy of a packet changes during the
interaction from εi to εe according to

εe = εi
1 − β · ni
1 − β · ne . (85)
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Depending on the orientation of the propagation direction prior and after the scattering
relative to the material flow, the packet thus gains or loses energy in the LF.

In astrophysical mass outflows, radiation is typically emitted from a source at the
base of the flow, for example by a central star or an accretion disc. As a consequence,
photons predominantly propagate in the direction of the flow before they interact.
Electron scatterings in the Thomson limit or resonant line interactions, two processes
playing important roles in mass outflows, are either approximately isotropic or exhibit
at least a re-emission profile that is forwards-backwards symmetric. Thus, a radiation
field that is initially predominantly aligned with the expanding flow will be partly
diffused by the interactions and packets, on average, lose energy in the LF. This
process can be further illustrated by considering the mean packet energy, ε̄e, after
the first interaction, which is obtained by averaging over all re-emission directions.
Specifically, in terms of the incident and emergent direction cosines (μi and μe),

ε̄e = 1

2
εi

∫ 1

−1

1 − μiβ

1 − μeβ
dμe, (86)

where, for simplicity, we have assumed spherical symmetry and have neglected aber-
ration. Performing the integration gives

ε̄e = 1

2β
εi(1 − μiβ) (log(1 + β) − log(1 − β)). (87)

For small values of β, this reduces to

ε̄e

εi
= 1 − μiβ + O(β2), (88)

but in general,
ε̄e

εi
< 1 for β > 0 (89)

holds for incident photons propagating in the direction of the flow, i.e. with μi = 1.
As a final illustration for the energy loss experienced by MC packets in MCRT

calculations in mass outflows, we present the model SN calculation described by Lucy
(2005). This test, which is described in detail in Appendix A.3, constitutes a simplified
and idealised view of RT in SN Ia ejecta. We use the code Mcrh (see Noebauer
et al. 2012) to perform the MCRT simulation for this test problem as described in
Appendix A.3. In Fig. 9, the synthetic bolometric light curve from this test calculation
is shown. Following Lucy (2005), we illustrate the different energy flow terms in the
simulation in Fig. 10. In particular, the energy currently stored in the radiation field,
ER(t), is shown. In addition, the total energy that has escaped through the ejecta
surface, E∞(t), the total energy generated in radioactive decays, Eγ (t), and the total
work performed by the radiation field,W (t), are given. These three quantities represent
cumulative measures over the time interval from 0 to t . All quantities are simply
reconstructed from the MCRT simulation by counting appropriate packet energies. In
particular, the work term is obtained by summing up the difference between incident
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Fig. 9 Bolometric light curve obtained with the code Mcrh (Noebauer et al. 2012) for the test problem
devised by Lucy (2005). In addition to the evolution of the radiation emerging from the model SN (blue),
the rate of energy released in the radioactive decay chain of 56Ni (orange) and the rate at which γ packets
deposit their energy in the ultraviolet-optical-infrared radiation field (green) are shown. See Appendix A.3
for more details on the test problem setup and the MCRT calculation

and emergent packet energies in the LF during each scattering. In addition, Fig. 10
contains the imbalance between the source and sink terms of radiation energy, i.e.
between Eγ (t) on the one hand and E∞(t) and ER(t) on the other hand. This quantity
perfectly follows the reconstructed work term, W . For more technical details about
this test, we refer to the original works by Lucy (2005) and Noebauer et al. (2012).

9 Extracting information fromMCRT simulations

With the algorithms outlined above, the flight paths of MC quanta can be determined
and tracked during MCRT simulations. In general, the individual trajectories are not
of primary interest. Rather, meaningful information that effectively represents the
radiation field needs to be extracted from them. In some cases, only radiation escaping
from the simulation boxmaybe of interest to construct synthetic spectra, light curves or
images. For other applications, the most important outcome may be a characterisation
of the radiation field internal to the system. In this part of the review, we present
a number of common approaches that can be used to extract physical information
from MCRT simulations. We preface this by a brief discussion of MC noise, which
is a fundamental, often undesired property of MCRT simulations that motivates the
design of the extraction techniques described below.

9.1 MC noise

MCRT simulations are probabilistic by nature. Consequently, results obtained with
these approaches will generally be subject to stochastic fluctuations. This fundamental
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Fig. 10 Energy flows in the test problem devised by Lucy (2005). Eγ shows the energy that has been
released by radioactive decays, ER indicated the energy currently stored in the radiation field, and E∞
is the energy that has escaped to infinity. In addition to the work term, W (t) obtained directly from the
MCRT simulation by balancing the emergent and incident LF packet energies in the interactions (red), the
imbalance between Eγ and E∞ and ER is shown (dashed black). These two quantities agree very well,
demonstrating the mixed-frame MCRT approach captures the expansion work term and conserves energy

and inherent property of MC calculations is often referred to as Monte Carlo noise
or simply noise. Here, we briefly present the basic behaviour of this noise component
and discuss the implications for devising techniques to extract or reconstruct physical
information from a MC simulation. More details about this subject may be found in
the standard literature, e.g. in Kalos and Whitlock (2008).

In general, one exploits the lawof large numberswhen reconstructingphysical infor-
mation from MCRT calculations. To illustrate this, we consider extracting a specific
physical property from the simulation (e.g. the escape probability from a homogeneous
sphere: see Appendix A.1). This quantity has to be related to a particular behaviour
or property of the MC quanta (e.g. a packet emerges from the sphere or not). We
now assume that the process of the quanta performing this behaviour or its property
taking a specific value is expressed by the random variable X with a probability den-
sity of ρX (x). Considering the fate or measuring a property of an individual packet
will not result in conclusive statements about X (i.e. we cannot make meaningful
statements about the escape probability by considering whether one particular packet
emerged from the sphere or not). However, if this process is repeated and performed
for the entire packet population, the law of large numbers ensures that the resulting
average converges towards the expectation value of X .30 Consequently, the extrac-
tion of physical information from a MCRT calculation can typically be described
mathematically by

30 The law of large numbers states that this convergence proceeds almost surely (cf. Kalos and Whitlock
2008).
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GN = 1

N

N∑
i=1

Xi . (90)

To estimate the uncertainty associatedwith such anMCestimate, we rely on the central
limit theorem.31 According to this statement, the MC estimator process GN will be
governed by a normal distribution in the limit of infinite contributions (N → ∞) and
its standard deviation or standard error will follow

σG = σX√
N

. (91)

Here, σX denotes the standard error of the individual process Xi . The first natural
implication of this fundamental MC error behaviour is that the accuracy improves
when the number of contributions to the estimator given by Eq. (90) increases. This
is typically achieved by increasing the number of MC quanta in the simulation and
is illustrated in Fig. 11 by the example of determining the escape probability for the
homogeneous sphere problem (see Appendix A.1). However, since this improvement
scales onlywith N−1/2, efficient and effective reconstruction techniques strive towards
maximising the number of contributions to the estimator procedure for a given com-
putational effort, which is often equivalent to considering a certain number of MC
quanta in a simulation. These methods are also often referred to as acceleration tech-
niques since they achieve a certain signal-to-noise level with fewer quanta and thus
by spending less computational effort. In the following, a variety of such strategies
for the extraction of physical information from MCRT calculations and reducing the
stochastic fluctuations are presented. We focus first on simple counting techniques,
then turn to the volume-based estimator approaches introduced by Lucy (1999a) and
finally introduce the widely-used acceleration concept of biasing.

9.2 Direct counting of packets

Undoubtedly themost obvious and straight-forward approach to reconstruct a physical
property of the radiation field (or any associated RT process) from the ensemble of
packet trajectories is to simply count the relevant packet properties or packet interaction
events. For example, a simple synthetic image of an astrophysical system can be
produced by recording all packets emerging from the domain through the surface
elementΔSi during a time intervalΔt then binning themaccording to their propagation
directions

L(ΔSi ,ΔΩ j ) = 1

Δt

∑
k

εk . (92)

Here, the summation only involves packets that escape through the surface element
ΔSi into the solid angle element ΔΩi .

Likewise, internal properties can be reconstructed by querying the positions of all
packets at a given instant during a time-dependent simulation and then summing up

31 The applicability of this theorem is not a necessity. Qualitatively equivalent estimates can be derived
when only weaker statements can be made about the random processes (Kalos and Whitlock 2008).
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Fig. 11 Illustration of the fundamental MC noise behaviour, Eq. (91), in case of determining the escape
probability from a homogeneous sphere (cf. AppendixA.1). In particular a spherewith optical depth τsp = 1
was considered and the escape probability determined for different numbers of MC quanta. The standard
error σ1000 was determined after repeating each experiment 1000 times and follows the expected behaviour
almost perfectly

the relevant properties of all packets that are currently located within a certain control
volume ΔV . In particular, the radiation field energy density in a grid cell i with the
volume ΔVi can be determined by

Ei = 1

ΔVi

∑
j

ε j , (93)

following this strategy. Here, the summation over j involves all packets that at t = tn

are within cell i . By analogy, any quantity that involves radiation–matter interactions,
such as the amount of absorbed radiant energy, can be determined by counting all
absorptions packets perform during a certain time interval (e.g. the duration of a sim-
ulation time step). While this reconstruction approach is very intuitive, it is also the
least sophisticated and does not optimally use the information contained in MCRT
simulations. In general, a large number of packets will be needed to achieve accept-
able results since the approach requires that a sufficient number of packets propagate
into the desired direction, are at a certain location or have performed a particular inter-
action (or combination of all these). Fulfilling this requirement becomes even more
challenging when fully three-dimensional and/or frequency-dependent calculations
are performed. As a consequence, the utility of the direct packet counting technique
is often limited due to strong noise in the reconstructed quantities. Still, this approach
can be of use as a reference when testing and verifying more complex reconstruction
techniques. Moreover, the quality of direct counting estimates can be vastly improved
when combined with biasing techniques, which will be introduced below.
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9.3 Volume-based estimators

Lucy (1999a) introduced a technique to reconstruct properties of the internal radiation
field that is less vulnerable to noise than direct counting approaches since information
along the entire packet trajectory is used instead of only a momentary snapshot of
the packet distribution. These techniques have been refined by Lucy (1999b, 2003,
2005) and are often referred to as volume-based estimators.32 The effective use of such
estimators has been a key consideration for many MCRT studies relying on Lucy’s
approach (e.g. Sim 2004, 2007; Kasen et al. 2006; Kromer and Sim 2009; Harries
2011, 2015; Noebauer et al. 2012; Kerzendorf and Sim 2014).

The volume-based estimator approach rests on the idea that instead of considering
packets at certain discrete instances, time-averaged estimates of radiation field proper-
ties can be constructed by incorporating information from the full packet propagation
path. The fundamental notion is that the packet flight histories form an ensemble of
trajectory elements that statistically represent the radiation field. To better illustrate
this principle, we follow Lucy (1999a) and repeat the formulation of a volume-based
estimator for the radiation field energy density.

9.3.1 Example: formulation of volume-based estimator for the radiation energy
density

We consider the trajectory of a packet with energy ε propagating during a simulation
time interval of Δt .33 In general, this trajectory will consist of multiple separate
segments that correspond to the flight of the packet between events in the simulation
(i.e. neglecting general relativistic light bending, the photon packet trajectory will be a
sequence of straight line segments between scattering/interaction points, cell boundary
crossing events etc.). We denote the time the energy packet spends on any particular
segment j by δt j . Each packet trajectory segment contributes to the total radiation
energy content with its packet energy, weighted by the relative time spent on that
trajectory: i.e. ΔE = δt j

Δt ε j . Thus the implied total energy density for a grid cell i
of volume ΔVi in a simulation may be constructed from a volume-based estimator
obtained by summing over all trajectory elements of all packets that were active in the
cell:

Ei = 1

ΔVi

∑
j∈ΔVi

δt j
Δt

ε j . (94)

As packets propagate at the speed of light, the estimator can be expressed in terms of
trajectory segment length l = cδt

32 Och et al. (1998) presented reconstruction schemes which use control surfaces.
33 For a time-dependent calculation, the appropriate Δt will be the duration of the current time step. In a
time-independent/steady-state calculation, it will be the implied length of the time interval being simulated.
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Ei = 1

ΔtcΔVi

∑
j∈ΔVi

l jε j . (95)

Here and in Eq. (94), the summation includes the trajectory segments j of all packets
that lie within the cell i . We stress that the ensemble of segments contributing to these
sums includes all packet trajectories between events, both physical interactions, like
scatterings, and numerical events, such as grid cell boundary crossings. We also note
that, although our presentation derives from a time-based formulation, the resulting
estimator depends only on the ratio ε j/Δt and so can be applied without adjustment
to steady-state RT problems (i.e. where time steps need not explicitly appear in the
algorithm). In such cases the problem will involve a fixed luminosity, and the packet
energieswill be normalised to correspond to a pre-determinedor arbitrary time interval.
In Eq. (94), the choice of this normalisation time interval will be inconsequential: the
value of the estimator will depend only on the ratio of the packet energies to the
duration of the simulation time interval (i.e. sensitive to the luminosity but neither to
the absolute packet energies nor absolute time interval).

The advantage of the volume-based estimator scheme compared to simple direct
counting measurements is two-fold. First, a single packet can contribute to the estima-
tors in multiple cells, provided that its trajectory intersects these cells during the time
step. Second, the same packet can in principle contribute repeatedly to the estimator
in a specific cell, if it is scattered in the cell or backscattered from a different cell.
Both features of the volume-based estimator scheme drastically increase statistics and
thus reduce the amount ofMC noise in the reconstructed quantity. Also, this technique
reduces the risk of obtaining undetermined results. In the direct counting approach, at
least one packet must reside in the cell at the instant considered to obtain a non-zero
result. This condition is mitigated to the much less restrictive requirement that at least
one packet has resided in the cell at any point during the time step.

9.3.2 Constructing volume-based estimators: radiation field quantities

Having established a volume-based estimator reconstruction scheme for E and having
appreciated the benefits such an approach offers, other radiation field properties can
be determined in a similar manner. For this purpose, the relationship

E = 4π

c
J (96)

can be used together with Eq. (95) to obtain an estimator for the mean intensity (cf.
Lucy 1999a)

Ji = 1

4πΔViΔt

∑
j∈ΔVi

l jε j . (97)

Once the summation is restricted to contributions of trajectory segments which point
into a certain solid angle element ΔΩk ,
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Ii,kΔΩk = 1

4πΔViΔt

∑
j∈ΔVi ,ΔΩk

l jε j , (98)

the specific intensity can be reconstructed by means of a volume-based estimator
(see e.g. Lucy 2005). Similarly, a further restriction to segments of packets with a
frequency in the interval [ν, ν +Δν], allows monochromatic radiation field properties
to be determined. For example the monochromatic specific intensity

Ii,k,pΔΩkΔνp = 1

4πΔViΔt

∑
j∈ΔVi ,ΔΩk ,Δνp

l jε j . (99)

Volume-based estimators for moments of the specific intensity (J , H and K ) can now
be easily formulated by including powers of the propagation direction and summing
over all directions. Following this procedure, for example the total radiation flux can
be estimated with (see e.g. Noebauer et al. 2012)

Fi = 1

ΔViΔt

∑
j∈ΔVi

n j l jε j . (100)

To demonstrate the capabilities of the volume-based estimator approach to accu-
rately track the characteristics of the radiation field, we perform a MCRT test
simulation of the homogeneous sphere problem presented in Appendix A.1. Adopting
the parameters suggested byAbdikamalov et al. (2012) and listed in Appendix A.1, we
perform a simple time-independent MCRT simulation in spherical symmetry, inject-
ing packets according to the local emissivity and following them until they either
escape from the computational domain or are absorbed. During their propagation
paths, volume-based estimators for J , H , and K are continuously incremented. These
first three moments of the specific intensity are shown in Fig. 12. Within the inherent
MC noise (indicated by uncertainty bands34), the estimators agree very well with the
analytic solution as outlined in Appendix A.1. An example implementation of how the
reconstruction of the moments may be achieved within the volume-based estimator
formalism can be found in the Python program designed for this test problem and dis-
tributed with the tools repository (cf. Appendix B). Specifically, this task is performed
by the routine update_estimators in the mcrt_hom_sphere.py program.
Note that due to spherical geometry, not the instantaneous value of the direction cosine
but its mean value along the trajectory segment (mu_mean) appears in the estimator
increments.

9.3.3 Constructing volume-based estimators: extracting physical rates

For many problems, simulation of the radiation field serves not only to predict syn-
thetic observables but also to determine thermodynamic conditions of the astrophysical

34 Note that the increase in uncertainty in the inner regions is simply a consequence of the numerical setup.
Since the grid has been chosen equidistant in r and since the packets carry all the same energy ε, fewer
packets are spawned in inner regions.
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Fig. 12 Volume-based estimators for J , H , and K in the homogeneous sphere test (see Appendix A.1).
These are shown relative to the adopted source function, S, which is assumed to be uniform throughout the
sphere (see Appendix A.1). The 1 σ and 2 σ confidence bands (dark and lightly-shaded regions) have been
constructed by performing tenMCRT simulations with 105 packets each and different RNG seeds. The open
symbols represent the mean values for the radiation field moments in the different shells. Additionally, the
analytic solution according to Eqs. (A.5)–(A.10) is included in dashed black. The Python tool with which
these MCRT simulations have been performed is part of the source code repository distributed with this
work (see Appendix B)

plasma: e.g. often the radiation field is crucial for determining the ionization/excitation
state and heating (e.g. Mazzali and Lucy 1993; Bjorkman and Wood 2001; Long and
Knigge 2002; Ercolano et al. 2003, 2005, 2008). In such cases, we therefore wish to
extract information on the relevant rates of physical processes in the simulations. Fol-
lowing the principle outlined in Sect. 9.2, this could be achieved simply by counting
the rate at which individual packet events corresponding to the process in question
occur during the simulation. However, such an approach relies on a sufficient number
of such interactions happening to achieve acceptable statistics and an accurate result.
This becomes very challenging in optically thin regions since very few packets or even
none interact.

Again, the volume-based estimator approach offers a significant improvement since
it takes a broader view and includes the information encoded in the entire packet prop-
agation paths instead of only considering a series of isolated snapshots. In particular, a
volume-based estimator can be formulated for any quantity that depends on the radia-
tion field by applying constructions similar to those outlined in Sect. 9.3. The general
principle will be that the rate of energy extracted from the radiation field by some
process can be described in terms of a sum over packet trajectories weighted by the
appropriate absorption coefficient. These energy flow rates can then be recast in other
forms (e.g. transitions rates), as required.
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Fig. 13 Illustration of the benefits of the volume-based estimator approach (right panel) compared to direct
counting techniques (left panel). The trajectory of a single packet is shown (blue), which is absorbed at
the location denoted by a filled circle after passing trough a number of cells. While in the direct counting
approach this packet only contributes to the heating rate estimator in the final grid cell, it adds to the local
heating rate in all cells it passed through in the volume-based estimator scheme. The relative contribution
to the heating rate in each cell is encoded by the color transparency in this sketch

9.3.4 Example: photoionization rate estimators

As a concrete example, we illustrate the case of extracting a particular photoionization
rate from a simulation. In particular, the photoionization rate coefficient35 can be
written

γ = 4π
∫ ∞

νth

σ(ν)

hν
Jν d˚ (101)

where νth is the threshold frequency and σν the cross section for photoionization at
photon frequency ν. Into this expression we substitute our expression for the MC
volume-based estimator for the relevant moment of the radiation field, in this case
Eq. (97), and immediately obtain our estimator for γ

γ = 1

ΔViΔt

∑
j∈ΔVi ,ν>νth

σ(ν)

hν
l jε j . (102)

We note that the estimator runs over all packet trajectories on which the packet fre-
quency is above the photoionization edge (ν > νth) and each contribution to the
sum is multiplied by a factor that depends on the cross-section of the process for the
contributing packet.

With the possibility that all packet propagation segments can in principle contribute
to the estimator, the reconstruction of interaction-based radiation field properties yields
non-zero results as long as at least one packet entered the grid cell of interest. This
significant advantage of the volume-based estimator approach (compared to estimating
rates of processes by direct counting) is illustrated in Fig. 13.

9.3.5 Volume-based estimators for energy andmomentum flow

The principle outlined above, and illustrated by the photoionization example is readily
generalised to provide estimators for the rate of any physical process of interest (see

35 γ gives the number of photoionization events per second per unit volume per photoionization target
atom/ion.
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e.g. Lucy 2003) that can be cast in terms of energy transfer from the radiation field.
The principle is always the same: the optical depth of each segment is calculated which
can be interpreted as the expected number of interactions a packet would on average
experience when propagating this distance. This information is then used to scale the
contribution of each segment to the estimator and determine the amount of radiant
energy that is absorbed by the process. Of particular relevance to many problems,
including radiation hydrodynamics, is the total rate at which energy is transferred
from the radiation field into the ambient material, i.e. the heating rate. If the heating
process is for example described by a pure absorption coefficient χ , then the amount
of radiant energy absorbed is (see Lucy 1999a)

ΔĖi = 1

ΔVicΔt

∑
j∈ΔVi

χl jε j . (103)

We note that the form of this estimator is very similar to that used to reconstruct J
itself, Eq. (97), which is to be expected given the close relationship of J to the rate of
any radiative heating processes.

This idea also readily generalises to provide volume-based estimators for momen-
tum transfer (see e.g. Noebauer et al. 2012; Roth and Kasen 2015), which are instru-
mental for MC-based Radiation Hydrodynamics (RH) calculations (see Sect. 11). For
continuum driving, the form of these estimators is very similar to the F estimator,
Eq. (100).

Lucy (1999b) used similar considerations for the formulation of estimators in appli-
cations which are dominated by atomic line interactions that are treated in the Sobolev
limit, such as stellar winds or the ejecta of thermonuclear SNe. Here, the formulation
is slightly more complicated and the form of the energy/momentum flow rate esti-
mators is different from those outlined above: they are formed as summations over
all packets that have come into Sobolev resonance within a grid cell (see also Sim
2004; Noebauer and Sim 2015). The principal advantage compared to direct counting
still applies since all resonances contribute, regardless of whether the packet actually
undergoes interaction. Given the potential importance of forests of weak lines to heat-
ing/driving of outflows, as is for example the case in hot star winds where many weak
iron lines drive the outflow (Vink et al. 1999), this is a critical advantage.

9.4 Biasing

In many MCRT applications, only a subset of the packet population is of interest.
For example, when creating a synthetic image, only packets that escape towards the
virtual observer are relevant. It is therefore desirable to selectively invest more effort
into propagating packets that are crucial for the determination of the quantity or process
of interest instead of treating packets that do not contribute. This selective increase in
statistics can be achievedwith the help of so-called biasing techniques. The underlying
basic principle is known as importance sampling in the field of MC integration.

The key concept of biasing techniques is to increase the occurrence of desired packet
properties by introducing a new, biasing PDF, q(x), that emphasises the correspond-
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ing regions in the parameter space. We then sample from this PDF rather than from
the physical one, ρ(x), in the random processes governing the MCRT procedure. In
order to ensure physical consistency, the packet weights have to be adjusted to coun-
terbalance the artificial over- (and under-) representation of samples from particular
parameter space regions. In particular, the packet weight in the absence of biasing,
wnb, is replaced by

w(x) = ρ(x)

q(x)
wnb. (104)

Biasing techniques are among themost popular andwidely-used variance reduction
methods (see e.g. Carter and Cashwell 1975; Dupree and Fraley 2002). In the follow-
ing, some of the popular biasing techniques used in astrophysical applications are
briefly described. Most of the presented schemes are designed to address challenges
commonly encountered in dust RT, since biasing techniques are heavily used in this
branch of astrophysical research (see e.g. the overview by Steinacker et al. 2013).

9.4.1 Biased emission

Biased emission is a simple but powerful illustration of a biasing scheme. This
approach helps in problems where we wish to accurately describe the emission from
sources with very different emissivities. These can be external sources, such as stars
irradiating some environment, or simply the internal emissivity of the ambient mate-
rial occupying grid cells of a computational mesh. Biased emission is frequently used
in dust RT, for example by Yusef-Zadeh et al. (1984) and Juvela (2005). A detailed
account of the technique is given by Baes et al. (2016).

For illustrative purposes,we consider a problem that only involves two sources,with
luminosities L1 and L2, and wish to study the case where L1 � L2. One approach to
simulate the emission, is to spawn N MC packets, each with equal energy (i.e. weight)

w = ε = LΔt

N
. (105)

Here, the total luminosity (L = L1 + L2) and the physical duration corresponding to
the MCRT simulation (Δt) appear. Each of these packets is now associated with one
of the two sources according to the discrete probabilities

pi = Li

L
for i ∈ [1, 2]. (106)

For L1 � L2, this leads to a very uneven distribution of packets, with the weaker
source being represented by very few packets. In the biased emission approach, an
alternative PDF is introduced that increases the association with the weaker source.
One possibility would be to choose the uniform distribution

p1 = p2 = 1

2
. (107)
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In this case, equal numbers of packets represent the emissions from both sources. This
has to be balanced by adjusting the packet weights according to Eq. (104), leading to
packets from the first source representing less energy

w1 = 2
L1

L
ε = 2

L1Δt

N
, (108)

and packets from the second source more energy

w2 = 2
L2

L
ε = 2

L2Δt

N
(109)

than in the unbiased case. In addition to addressing imbalances in source luminosi-
ties, biased emission often involves preferentially launching packets into directions of
particular interest (cf. Baes et al. 2016).

9.4.2 Forced scattering

A well-established biasing technique, already discussed in the context of neutron
transport by Cashwell et al. (1957), is the forced scattering scheme. This method is
often used in dust RT applications (see e.g. Mattila 1970; Witt 1977; Steinacker et al.
2013; Baes et al. 2011, 2016) to increase the efficiency in optically thin regions. Here,
packets would otherwise escape without interacting leading to a low dust-scattering
efficiency and challenges in determining heating rates. To circumvent these difficulties,
the interaction probability for packets is biased such that they are guaranteed to interact
before reaching the edge of the computational domain.Denoting the optical depth from
the current packet position to the point of escape as τedge, the interaction location is
drawn from the biased PDF (cf. Steinacker et al. 2013)

q(τ )dτ =
{

exp(−τ)
1−exp(−τedge)

dτ if τ ≤ τedge

0 if τ > τedge
(110)

instead of using Eq. (45). This ensures that the interaction location lies between 0 and
τedge. Following Eq. (104), the packet weight is modified by

w(τ) = 1 − exp(−τedge). (111)

If continuously applied in time-independent applications without an absorption com-
ponent, this scheme allows packets to propagate indefinitely, with a continuously
decreasing weight. Thus, a termination mechanism (e.g. Russian Roulette, see below)
has to be introduced to stop the propagation at a certain point, typically once the packet
weight has dropped below some pre-defined threshold. Alternatively, forced scattering
can also only be applied once for each packet thus ensuring at least one interaction
but leaving the normal propagation termination mechanism (escape through domain
edge) intact. We note, however, that particular care has to be taken when information
is extracted from MCRT simulations employing this technique that also require the
contribution from free-streaming packets.
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9.4.3 Peel-off

Constructing properties of the emerging radiation field by simply examining the
properties of escaping packets often yields unsatisfactory results, particularly in mul-
tidimensional simulations: typically only a small fraction of the packet population
escapes towards the observer meaning that the reconstruction will suffer from strong
noise. Here, the so-called peel-off technique (sometimes also referred to as next event
estimate) helps (e.g. Yusef-Zadeh et al. 1984; Wood and Reynolds 1999; Baes et al.
2011; Steinacker et al. 2013; Lee et al. 2017). In the context of MCRT in fast mass
outflows, this method is sometimes referred to as viewpoint technique or virtual packet
scheme (Woods 1991; Knigge et al. 1995; Long and Knigge 2002; Kerzendorf and
Sim 2014; Bulla et al. 2015).

The peel-off approach introduces ray tracing concepts into the MC simulation.
At every interaction point in the simulation, the probability is calculated that the
interaction could have given rise to a packet that propagated in the direction of the
observer and successfully emerged from the simulation (and so could contribute to the
synthetic observables). Specifically, theweight contributed to the synthetic observables
associated with the interaction of a packet with weight w can be written

wobs = w p(nobs) exp(−τobs). (112)

where p(nobs) is the probability that the interaction led to reemission of the packet
in the direction of the observer (nobs) and exp(−τobs) describes the attenuation of the
packet as it travels through the total optical depth from the interaction point to the
observer (τobs). The optical depth is obtained by casting a ray towards the observer
and integrating the opacity along this path.

Since every interaction any packet performs contributes to the reconstruction, the
improvement in statistics in peel-off methods is substantial. However, the ray tracing
exercise of the peel-off technique adds significantly to the overall computational effort
of the MCRT calculation, sometimes even dominating the computational costs.

We note that variants of methods similar to peel-off have been used in specific
applications. Lucy (1991, 1999b) introduced a ray tracing technique for variance
reduction specifically designed for applications in which a photosphere approximation
can be adopted and in which the medium is freely expanding, e.g. SN ejecta. During
the MCRT simulation the source function is reconstructed from the packet interaction
histories and then used in a formal integration step to calculate the emergent radiation
field along cast rays. By relying on this technique, virtually noise-free spectra can
be determined.36 Also, as described by Bulla et al. (2015), the peel-off technique
can be applied not only to interaction events but instead to all MC packet trajectory
elements. Here, packets can contribute to the synthetic observation even when no
interactions occur: the synthetic observables are obtained by a sum over contributions
from all packet trajectories weighted similar to Eq. (112) but including an additional
multiplicative term that gives the probability that an interaction event could have
happened along the trajectory element.

36 Note, however, that the resulting spectrum will still vary once a different RNG seed is chosen since the
source function used in the formal integration is determined within a MCRT simulation.
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9.4.4 Further biasing techniques

In addition to the schemes outlined so far, a variety of other biasing techniques have
been developed and are actively used. Among them are, for example, techniques called
path length stretching (Baes et al. 2016), continuous absorption (known also as packet
splitting or survival biasing Carter and Cashwell 1975; Steinacker et al. 2013; Lee
et al. 2017) or polychromatism (Jonsson 2006; Steinacker et al. 2013). We refer the
reader to the literature for example to the review by Steinacker et al. (2013) and the
book by Dupree and Fraley (2002) for detailed accounts.

9.4.5 Limitations—Russian Roulette and composite biasing

Naturally, biasing techniques are not a universal remedy and are also afflicted by draw-
backs. Here, we highlight some of the more severe limitations and discuss techniques
that have been proposed and developed to alleviate them.

By design, the increase in statistics in some regions of the parameter space comes
at a cost, namely the decrease of statistics in other regions. Specifically, the loss of
statistics occurs in regions where the biased PDF q(x) is smaller than the original
one, ρ(x). This has the immediate consequence that biasing techniques should be
only used if the loss in statistics happens for packets that are not relevant for the
result one is interested in. In addition, the packets associated with draws from these
regions experience an increase in their weight, which in principle is unbound. This
poses numerical problems, since a few high-weight packets may then dominate the
MC noise. To alleviate this deficit of biasing approaches, a technique called composite
biasing has been proposed (Baes et al. 2016). Here, samples are drawn from a linear
combination of the biased and the original PDF:

q�(x) = (1 − ζ )ρ(x) + ζq(x). (113)

As a consequence, the weight adjustment

w� = ρ(x)

q�(x)
= 1

(1 − ζ ) + ζq(x)/ρ(x)
(114)

is limited to

w� <
1

1 − ζ
. (115)

If, for example ζ = 1/2, is chosen (as suggested by Baes et al. 2016), the weight
increase can at most be a factor of two. Note, however, that in some biasing techniques
(e.g. packet splitting) weights are potentially modified repeatedly. Then, composite
biasing limits each consecutive weight change but as a consequence of the continuous
application of biasing, the weights can in principle still become very large.

When applying biasing techniques that can act multiple times on the same packet,
also small packet weights can become a hindrance. Packets with very small weights
only contribute insignificantly to the reconstructed property but roughly the same com-
putational effort has to be invested to follow their propagation as for important packets.
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Based on this cost-benefit argument, it is advisable to terminate the propagation once
the weight and thus importance of a packet has decreased beyond some predefined
threshold. In this context, the so-called Russian Roulettemethod provides a stochastic
framework to remove low-weight packets from the simulation, while still retaining
energy conservation in a statistical sense (see e.g. Carter and Cashwell 1975; Dupree
and Fraley 2002). In its simplest form, a termination probability pT is defined. When-
ever a packet enters the roulette, the termination probability is sampled and the packet
propagation is terminated if the sampling outcome is positive. Otherwise, the packet
survives and its weight increases to w/pT . This way, the weights of the terminated
packets are distributed probabilistically onto the surviving ones and energy/weight
conservation is ensured statistically. A detailed description of the Russian Roulette
technique, and more sophisticated realisations, is given by Dupree and Fraley (2002).

10 Implicit and diffusionMonte Carlo techniques

Conventional MCRT methods, built upon the techniques outlined so far, inherently
rely on explicitly tracking packet flight paths. Although this has a range of compelling
benefits, not least the conceptual ease with which it can be developed, it has limita-
tions particularly in regard to efficiency for many applications. For example, MCRT
calculations become prohibitively slow when applied in optically thick media since
the number of physical and numerical events that has to be explicitly tracked increase
drastically. Another challenge is posed in Thermal Radiative Transfer (TRT) appli-
cations where successive absorptions and re-emissions occur frequently. Achieving a
stable and accurate solution of the evolution of the ambient medium and of the radi-
ation field typically requires a drastic reduction of the size of the physical time step.
In the following, we outline a number of developments and techniques that have been
proposed and are actively used to alleviate these shortcomings.

10.1 Implicit Monte Carlo

Standard explicit MC techniques face challenges when dealing with TRT problems
since these involve a rapid succession of absorption and emission processes. In this
situation sufficiently short time steps have to be used so that the ambient conditions
(temperature etc.) can properly react to absorption–emission imbalances. Otherwise,
the radiation source term may deplete the internal energy reservoir of the ambient
material between successive temperature updates and lead to unphysical conditions
(e.g. negative temperatures).

These difficulties are addressed by the so-called Implicit Monte Carlo (IMC)
method, introduced in the seminal work by Fleck and Cummings (1971). Here, the
sequence of absorption and emission events is replaced by an effective scattering
prescription and only the net imbalance remains as a true absorption and emission
contribution. Despite the name, the IMC method does not constitute a truly implicit
solution approach, comparable to techniques encountered in the field of solving dif-
ferential equations. Instead, a semi-implicit recasting of the discretized RT equation is
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performed. This procedure leads to the main advantage of the IMC approach, namely
the introduction of unconditional stability. In the following, we briefly outline the for-
mulation of the IMC technique and discuss some important properties of this approach.
For an in-depth discussion of the method, we refer to the original work by Fleck and
Cummings (1971) and to the recent detailed review byWollaber (2016) on the subject.

Following Fleck and Cummings (1971), we introduce the IMC approach for the
example of the one-dimensional grey TRT problem in the absence of scattering inter-
actions. The derived equations can be easily modified to account for scatterings and a
generalisation to frequency-dependent and multidimensional problems is possible.37

With these simplifications, the governing equations are

1

c

∂

∂t
I + μ

∂

∂x
I + χ I = 1

2
χcaRT

4, (116)

∂

∂t
U = χ

∫ −1

−1
dμI − χcaRT

4 + S, (117)

describing the change in specific intensity and internal energy densityU in the presence
of a grey, pure-absorption opacity χ and of an additional generic source term S. Note
that due to the assumption of a one-dimensional slab geometry, the angle-integrated
specific intensity

∫ 2π
0 dφ I is denoted as I for simplicity. In a first step, this system is

slightly modified by introducing the equilibrium radiation energy, E , and its relation
to the internal energy of the ambient material by

E = aRT
4, (118)

β = ∂E

∂U
, (119)

resulting in

1

c

∂

∂t
I + μ

∂

∂x
I + χ I = 1

2
χcE, (120)

1

β

∂

∂t
E = χ

∫ −1

−1
dμI − χcE + S. (121)

At the heart of the IMC method lies a semi-implicit recasting of Eq. (121) to approx-
imate E and thus the emission term in Eq. (120). For this purpose, a discrete version
of Eq. (121) is considered, in which all time-continuous quantities are replaced by
appropriate time averages, which we denote by bars38:

1

β̄

En+1 − En

Δtn
+ χ̄cĒ = χ̄

∫ 1

−1
dμ Ī + S̄. (122)

37 Indeed, Fleck and Cummings (1971) introduce the IMC approach both for grey and non-grey applica-
tions.
38 Fleck and Cummings (1971) point out that different time-averaging prescriptions can in principle be
chosen for the various quantities.
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Here, the time discretization Δtn = tn+1 − tn has been introduced. As proposed by
Fleck and Cummings (1971), this equation is solved for En+1 by invoking the specific
time-centering scheme

Ē = αEn+1 + (1 − α)En (123)

for the radiation energy with the time-centering parameter 0 ≤ α ≤ 1. Here, α = 0
would revert back to the traditional, fully explicit MC scheme. Finally, all remaining
time-averaged values are re-interpreted as their time-continuous counterparts and re-
inserted into Eq. (120), yielding the modified RT equation

1

c

∂

∂t
I +μ

∂

∂x
I + f χ I + (1− f )χ I = 1

2
(1− f )χ

∫ 1

−1
dμI + 1

2
f χcE + 1

2
(1− f )S,

(124)
after introducing the so-called Fleck factor

f = 1

1 + αβcΔtχ
. (125)

Compared to the original RT equation, Eq. (116), the IMC semi-implicit recasting
reduces the importance of physical absorption interactions by the factor f . At the
same time, this reduction is compensated by the introduction of terms that formally
behave as a scattering contribution whose strength is governed by (1− f )χ . From the
definition of the Fleck factor it is apparent that, as the time steps become large or as the
coupling between the internal and radiation energy pool becomes strong (i.e. β and/or
χ become large), the contribution of the true absorption–emission interactions to the
transfer process are reduced and replaced by effective scatterings. This behaviour of
the IMC scheme is illustrated in Fig. 14 and leads to unconditional stability (i.e. also
holds for Δt → ∞) as long as a time-centering parameter 0.5 ≤ α ≤ 1 is chosen.

This unconditional stability constitutes themain advantage of IMCand a substantial
improvement over conventional MCRT approaches. This beneficial property has led
to widespread adoption of the IMC scheme. In the astrophysics community, IMC
schemes are predominantly applied in the field of RT in SN ejecta. Abdikamalov
et al. (2012) have incorporated the method in a MCRT scheme for neutrino transport,
Wollaeger et al. (2013), Wollaeger and van Rossum (2014) have developed a MC
tool for RT in SNe based on IMC and recently Roth and Kasen (2015) have included
IMC into the MCRT code Sedona (Kasen et al. 2006) and demonstrated its utility in
one-dimensional radiation hydrodynamical calculations.

The stability benefit of IMC does, however, come at a cost and some of the less
desirable features of this technique should not go unmentioned. In general, the con-
struction of the governing IMC equations introduces a time discretization error which
is formally ofO(Δt). As a consequence, the scheme becomes increasingly inaccurate
as the time step becomes larger.Moreover,Wollaber (2016) cite the so-calledmaximum
principle violation which can occur within IMC calculations as its main weakness.
Here, temperatures within a computational domain can non-physically exceed the
imposed boundary temperatures in the absence of internal sources. Larsen andMercer
(1987) formulate a time step constraint under which these violations may be avoided.
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Fig. 14 Illustration of the main consequence of the IMC scheme, namely the introduction of effective
scatterings at the cost of true absorptions as a function of βcΔtχ . For large values of βcΔtχ [i.e. long time
steps (large Δt) or strong radiation-matter coupling (large β)] , the effective scattering opacity χ scat

eff =
(1 − f )χ can become orders of magnitudes larger than the remaining “net” absorption term, χabs

eff = f χ .
The illustration shows the behaviour for two choices for the time-centering parameter α

However, these conditions are very restrictive and limit the applicability of IMC.More
information about the maximum principle violation, and about efforts to alleviate it
within the IMC framework as well as other drawbacks, such as accurately reproducing
the diffusion limit, the introduction of damped oscillations or teleportation errors, are
summarized by Wollaber (2016).

Finally, we note that the linearisation, semi-implicit recasting and discretisation
proposed by Fleck and Cummings (1971) and reviewed here constitutes only one pos-
sibility to improve numerical stability. The recent review byWollaber (2016) provides
a comprehensive overview of a number of alternative approaches. In particular, we
draw attention to the family of techniques, mainly shaped by Brooks and collabora-
tors (e.g. Brooks 1989; Brooks et al. 2005), denoted Symbolic Implicit Monte Carlo
(SIMC), which leave the thermal emission term formally unknown by introducing
unknown symbolic packet weights. This technique may be denoted as a truly implicit
MC method in the same sense as applied in the field of solving differential equations
(see Wollaber 2016).

10.2 Efficient Monte Carlo techniques in optically thick media

While conventionalMC techniques arewell suited for problemswith amoderate or low
optical depth, their efficiency decreases dramatically in optically thick applications. In
a pure scattering environment, packets are frequently deflected by collisions and their
propagation effectively becomes a random walk. Explicitly following and treating
the multitude of interactions as is required in conventional MC approaches becomes
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very inefficient and computationally expensive. The situation is similar in problems
with high absorption opacities. At first glance the short packet trajectories due to rapid
truncation by frequent absorption events seem to argue for a efficient application ofMC
techniques in this regime. However, in equilibrium/steady-state problems this would
need to be countered by very large numbers of quanta to describe the propagation
while in explicit time-dependent MC treatments, small time steps are required to
ensure numerical stability (see discussion in Sect. 10.1). As detailed above, the IMC
approach offers a solution to the time-step problem since it ensures unconditional
stability. However, the IMC approach suffers equally in efficiency in the optically thick
regime since the Fleck factor is very small in such situations and the vast majority of
interactions proceed as effective scatterings.

A number of authors have developed techniques that improve the efficiency of
MC calculations in optically thick regimes. These acceleration techniques replace
the conventional MC transport process by a diffusion treatment that efficiently trans-
ports MC quanta through regions of high optical depth. The appropriate probabilities
for these transport processes are found by a stochastic interpretation of the diffusion
equation that constitutes the correct physical limit for RT processes in the presence of
high opacities. Typically, these MC diffusion techniques are interfaced with a conven-
tional, often IMC transport approach to yield a hybrid scheme that efficiently solves
RT in problems with varying optical thickness. In the following, we briefly outline two
popular flavours of these diffusion techniques, which predominantly differ in how the
diffusion regions, in which the normal transport simulation is switched off, are treated.
These are the so-called random walk or Modified Random Walk (MRW) techniques
originally developed by Fleck and Canfield (1984) and the Discrete Diffusion MC
(DDMC) methods (see e.g. Densmore et al. 2007, and references therein).

10.2.1 Modified randomwalk

The Random Walk (RW, or MRW as coined by Min et al. 2009) was developed
by Fleck and Canfield (1984) as an extension to their IMC method (see Sect. 10.1)
to improve the computational efficiency in applications with regions of high optical
depth. Themain idea underlying this approach is the introduction of spherical diffusion
regions whenever the optical depth is high. Instead of following the multitude of
effective scatterings in these regions with IMC, the conventional packet transport
process is switched off and replaced by a diffusion procedure. Here, packets are able
to traverse the diffusion regions in one-step processes. The probabilities governing
this propagation mode are derived by Fleck and Canfield (1984) by examining the
statistical properties of the random walk process and the solution to the diffusion
equation. While the original MRW scheme has been derived for IMC applications, it
naturally applies to explicit MC approaches as well after setting the Fleck factor to 1.

We briefly outline the MRW procedure and refer to the original work by Fleck
and Canfield (1984) for a detailed derivation. Diffusion spheres, originating from the
current location of all packets are constructed. The radii R0 of the spheres are chosen
such that they entirely lie within their host grid cells but occupy the largest possible
volume (see illustration in Fig. 15). In these homogeneous and isothermal spheres,
the explicit MC packet transport may be replaced by a diffusion solution. However,
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this replacement is only accurate if the packets are expected to perform a multitude
of interactions as they propagate in the sphere so that the diffusion approximation
becomes valid. Fleck and Canfield (1984) translate this requirement into the following
criteria for the activation of the diffusion process:

R0 > λR, (126)

lcol < R0. (127)

Here, λR denotes the Rosseland mean free path39 and lcol the physical distance the
packet has to cover to the next interaction as determined in the standard MC transport
propagation procedure (see Sect. 6). These conditions ensure that packets are expected
to perform multiple interactions40 within the sphere and are guaranteed to interact at
least once. As soon as these conditions apply, the normal IMC transport of packets is
stopped in the sphere and a diffusion procedure is started (see Fig. 15). This process is
govern by transport rules obtained from considering how far packets could propagate
under diffusion conditions as a function of time. Specifically, the probability of finding
a packet at distance r from its initial position (which is by construction at r = 0) after
time t is given by

ψ(r , t) = 1

R2
0

∞∑
n=1

(n
r

)
exp

[
−

(
πn

R0

)2

Dct

]
sin

(
nπr

R0

)
. (128)

Here, D is the diffusion constant for the process (see Fleck and Canfield 1984, Eq. 21).
This result can be used to determine the probability that the packet still resides within
the sphere after time t , which is

PR(t) = 4π
∫ R0

0
ψ(r , t)r2dr . (129)

Consequently, at any given time (e.g. the end of a time step), the fate of the packet can
be decided by the random number experiment

0 < ξ ≤ PT(t) packet escapes sphere, (130)

PT(t) < ξ ≤ 1 packet remains in sphere, (131)

with the escape probability
PT(t) = 1 − PR(t). (132)

If the packet escapes, its position is updated to a location uniformly drawn from the
surface of the diffusion sphere. A new direction is assigned by sampling the cosine

39 See e.g. Hubeny and Mihalas (2014) for definition and discussion of the Rosseland mean opacity.
40 Fleck and Canfield (1984) argue that the Rosseland mean free path tends to be much smaller than the
Planck mean free path, which describes the typical distance between collisions.
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Fig. 15 Illustration of the construction of diffusion spheres in the MRW approach. The sketch illustrates
the current packet location as a thick black dot. With this location as the origin, a sphere with radius R0
that fully fits into the current grid cell (defined in the plane-parallel case by the boundaries xi and xi+1)
and has maximum volume is constructed. Two possible packet propagation paths in the normal transport
scheme are shown. In the first case (a), the packet leaves the sphere without interacting while in the second
case (b) the packet scatters inside the sphere after covering the distance lcol. Since λR is smaller than R0
in the illustrated situation, the MRW diffusion scheme would be switched on in case (b) while the packet
would be transported normally in case (a). This illustration is adapted from Fleck and Canfield (1984, Fig.
3)

distribution about the normal to the surface of the sphere and finally the propagation
time is advanced to the time of escape which is found by

PT(t) = ξ. (133)

This identity is solved using the same random number that determined the deci-
sion about the escape from the diffusion sphere, i.e. in the experiment described by
Eq. (130). If the packet remains in the sphere after time t has elapsed, it is moved
within the diffusion sphere. A new direction is drawn uniformly and its location is
updated by determining a new sphere with radius R1

4π
∫ R1

0
ψ(r , t)r2dr = ξ PR(t) (134)

and placing the packet randomly onto its surface.
Once the packet resumes its propagation (either in a new time step or after escaping

froma diffusion sphere), the criteria in Eqs. (126) and (127) are again used to determine
whether the packet is transported via normal (I)MC procedures or by defining a new
diffusion sphere. This technique is schematically illustrated in Fig. 16. Following
such a MRW scheme can significantly increase the efficiency of MCRT calculations
in optically thick regimes (Fleck and Canfield 1984). However, it still faces efficiency
problems if packets are close to grid cell boundaries. In this region, the diffusion
spheres can become too small to allow the criteria in Eqs. (126) and (127) to activate the
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a b

Fig. 16 Illustration of the MRW propagation process. On the left hand side, the situation in an optically
thick cell is shown if only a conventional MC transport scheme (in this case IMC) is shown. The packet
will scatter multiple times which is time consuming to simulate directly. Instead, when the IMC approach
is coupled with a MRW scheme, packets can much more efficiently step through optically thick regions, as
illustrated in the right panel. As long as the applicability criteria for MRW, Eqs. (126), (127), are met the
explicit packet transport procedure (denoted by thick solid lines) is switched off and the packet can traverse
the diffusion spheres in simple one-step processes (denoted by the thin dotted lines). In the illustration
shown here, it is assumed that the packet escapes the diffusion spheres by virtue of the MC experiment in
Eq. (130) during the time step. At this point, it is placed randomly (according to a uniform distribution)
onto the surface of the sphere (black dots). Only close to the cell boundaries (xi and xi+1), the diffusion
spheres are often too small to activate MRW and the normal MC transport scheme has to be used (cf. last
segment of the depicted packet trajectory)

diffusion procedure. Thus, the inefficient transport scheme has to be used to propagate
packets in these situations (see comments by Densmore et al. 2012).

Recently, the MRW approach has been applied in astrophysical RT problems by
Min et al. (2009) and Robitaille (2010). There, the scheme is incorporated into MC
approaches to dust RT and specifically helps to transport packets through optically
thick parts of dusty discs. However, it seems very challenging to adapt this scheme
to applications in which complex opacities, particularly Sobolev-type line opacities,
have to be taken into accounted.

10.2.2 Discrete diffusion Monte Carlo

In the MRW scheme, only spherical subregions of grid cells are designated diffusion
zones. As outlined above, constraints imposed on the size of the sphere lead to effi-
ciency problemswhen packets are located close to grid cell boundaries. This drawback
is eliminated in otherMC diffusion approaches. In so-called Discrete DiffusionMonte
Carlo (DDMC) techniques, entire grid cells are treated as diffusion regions. Within,
DDMC packets are generated that can traverse these cells efficiently in one-step pro-
cesses. The propagation rules for this procedure are again extracted fromaprobabilistic
interpretation of the discretized diffusion equation. In analogy to the MRW method,
DDMC schemes are commonly used in hybrid approaches in combination with IMC
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transport techniques to ensure an efficient applicability to problems with regions of
different optical thickness (see e.g. Gentile 2001; Densmore et al. 2007).

DDMC techniques have their origin in neutron transport problems (see overview
by Densmore et al. 2007) but a popular variant designed for photon RT has been pre-
sented by Densmore et al. (2007). Another flavour of the diffusion technique has been
developed by Gentile (2001) and is often referred to as Implicit Monte Carlo Diffusion
(IMD).41 The main difference with respect to the DDMC approach by Densmore et al.
(2007) lies in the treatment of how time is tracked by the DDMC packets. While both
DDMCand IMDhave originally been presented for grey problems,multi-group exten-
sions appropriate for frequency-dependent applications have already been devised, in
particular by Densmore et al. (2012) and Cleveland et al. (2010) respectively.

Of the DDMC schemes, the variant of Densmore et al. (2007, 2012) seems to
currently have experienced themost attention in the astrophysical community. Abdika-
malov et al. (2012) have developed a hybrid DDMC-IMC approach for neutrino
transport in core-collapse SNe and Wollaeger et al. (2013) and Wollaeger and van
Rossum (2014) have introduced aMCmethod for RT in SN ejecta, constructed around
a DDMC-IMC core. Consequently, we only focus on the DDMC scheme of Densmore
et al. (2007) in the following, where we briefly highlight the guiding principles of dis-
crete diffusion techniques. We refer the reader to Gentile (2001), Cleveland et al.
(2010) and Cleveland and Gentile (2015) for details about the closely related IMD
approach.

The DDMC scheme as presented by Densmore et al. (2007) is formulated for
grey and static diffusion problems. Extensions for frequency dependent problems and
moving media are introduced by Densmore et al. (2012) and by Abdikamalov et al.
(2012) respectively. The DDMC approach begins with the designation of a subset
of grid cells in the computational domain, which are considered sufficiently optically
thick, as DDMCdiffusion zones. For simplicity in presenting the governing principles,
we assume that there is one continuous subregion in the domain in which DDMC is
active and which consists of N cells. The interfaces of these cells lie at x j−1/2 and
x j+1/2 for j = 1 . . . N . The diffusion cells are logically separated into interior cells
(i.e. cells with neighbouring DDMC cells at both sides) and interface cells (i.e. cells
which lie at the interface between DDMC and transport regions or lie at the domain
boundary). In the diffusion cells, DDMC particles are generated at the beginning of
each simulation (time) step based on the active radiation field from the previous time
step, internal emission due to source terms or, in the interface cells, due to influx of
normal IMC packets or due to inflow imposed by the domain boundary conditions.
The magnitude of all these processes and rules for how the DDMC particles propagate
are obtained from a discretized diffusion equation. For this purpose, the basic IMC
transport equation, Eq. (124), is considered as the starting point in the DDMC, and its
zeroth moment is discretized in space, yielding

1

c

d

dt
φ j + 1

Δx j
(Fj+1/2 − Fj−1/2) − fn, jσn, jφ j = fn, jσn, j acT

4
n, j . (135)

41 Densmore et al. (2007) still classifies the IMD approach as a member of the class of DDMC techniques.
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Here, cell-averaged scalar intensities

φ j (t) = 1

Δx j

∫ x j+1/2

x j−1/2

dx
∫ 1

−1
dμI (x, t;μ) (136)

and cell-edge fluxes

Fj+1 = F(x j+1/2, t) =
∫ 1

−1
dμμI (x j+1/2, t;μ) (137)

are used. Equation (135) is closed by using Fick’s diffusion law (Fick 1855)

Fj+1/2 = − 1

3σn

∂φ

∂x

∣∣∣∣
x=x j+1/2

. (138)

An appropriate representation of the spatial derivative is found by finite-differencing.
This leads to a time-continuous diffusion equation, discretized in space, which takes
the form

1

c

d

dt
φ j + (σL, j + σR, j + fn, jσn, j )φ j = fn, jσn, j acT

4
n, j

+ 1

Δx j
(σL, j+1φ j+1Δx j+1 + σR, j−1φ j−1Δx j−1) (139)

for interior cells. Here, left and right leakage opacities

σL, j = 2

3Δx j

1

σ+
n, j−1/2Δx j + σ−

n, j−1/2Δx j−1
, (140)

σR, j = 2

3Δx j

1

σ−
n, j+1/2Δx j + σ+

n, j+1/2Δx j+1
, (141)

are defined in terms of the face-averaged opacitiesσ+
j−1/2 andσ−

j+1/2. In this nomencla-
ture, the superscripts denotewhichneighbouring cell is used for the opacity calculation.
In particular, σ−

j+1/2 is based on thematerial properties of cell j and conversely, σ+
j+1/2

uses the information from cell j + 1. According to Densmore et al. (2007), this pro-
cedure is necessary to avoid propagation problems in cases where one of the opacities
becomes very large. As the authors point out, in addition to relying on the material
properties of the appropriate neighbouring cell, the use of a common cell-edge tem-
perature is vital for overcoming these problems (see discussion by Densmore et al.
2007).

Equation (139) builds the foundation of theDDMCscheme and sets the propagation
behaviour of DDMC particles after a probabilistic interpretation has been performed.
It describes a time-dependent42 evolution equation for the scalar intensity and thus for

42 A crucial difference in the IMD scheme is that the time-derivative in the diffusion equation is discretized
by finite differences as well (cf. Gentile 2001).
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the population of DDMC particles. In this view, the terms on the RHS of Eq. (139)
describe processes that increase φ j , and thus the population of DDMC particles in cell
j . This can either be by emission (first term on RHS) or by leakage of DDMC particles
from neighbouring cells (second and third terms on RHS). Conversely, the term on
the LHS captures all processes which reduce φ j and thus remove DDMC particles
from cell j . Again, this can occur via leakage into one of the neighbouring cells or
through an absorption event. In this interpretation, DDMC packets are not associated
with explicit location or direction information but only with their current host grid
cell. They are propagated by considering the time to the end of the time step and the
time to the next collision, which can be determined analogously to the corresponding
procedure in conventional MC transport by

tcol = −1

c

1

σL, j + σR, j + fn, jσn, j
log ξ. (142)

Here, collisions can either refer to an absorption or leakage event. The exact nature of
the collision can be established in a random number experiment similar to the decision
between scattering and absorption in conventional MC transport (see Sect. 6.4) based
on the relative magnitudes of the terms appearing in the denominator of Eq. (142). In
the case of absorption, the propagation of the DDMC particle is terminated, otherwise
its internal clock is advanced by tcol and it continues its propagation in the new cell
until the end of the time step is reached or it is absorbed.

An equation similar to Eq. (139) is found for DDMC interface cells, which are at the
edge of the diffusion regions, after imposing appropriate boundary conditions. Instead
of relying on the Marshak boundary condition, Densmore et al. (2007) propose a con-
dition inspired by the asymptotic diffusion-limit. This ensures an accurate behaviour
of the DDMC scheme in situations in which the incoming transport packet population
has a very anisotropic angular distribution too (see Densmore et al. 2007). The result-
ing space-discretized diffusion equation has the same structure as for interior cells
apart from an additional source term that describes the influx of radiation from the
transport region (or from outside of the computational domain if the interface is at the
domain edge). This source term can be converted into a probability which is sampled
every time aMC packet from the transport region or from the domain boundary condi-
tion impinges onto the diffusion region to decide whether the packet is converted into
a DDMC particle or reflected back. The complementary process of DDMC packets
leaking out of the diffusion region is handled by placing them isotropically onto the
interface. Such packets then continue propagating according to the conventional MC
transport scheme.

11 MCRT and dynamics

In Sect. 9 we reviewed how estimators can be constructed to determine the rate of
transfer of energy and momentum from the radiation field to the ambient medium.
This transfer can become dynamically important and drastically affect the evolution
of a system. In the astrophysical realm, prominent examples for such circumstances
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include radiatively driven mass outflows from hot stars (see review by Puls et al. 2008)
or accretion discs (e.g. Proga et al. 1998, 2000; Proga and Kallman 2004), the star
formation process (see review byMcKee and Ostriker 2007, and references therein) or
the shock outbreak phase in SNe (see e.g. overview in Mihalas and Mihalas 1984). In
situations such as these, a decoupled treatment of hydrodynamics and RT is no longer
accurate but a coupled RH solution approach has to be followed.

Historically, RH studies have been typically performed with deterministic solution
techniques. But particularly in the field of line-driven winds from hot stars, there is
a substantial literature based on MC studies by Abbott and Lucy (1985) and, among
others, Lucy and Abbott (1993), Vink et al. (1999, 2000) andMüller and Vink (2008).
The main motivation for relying on MC schemes certainly lies in their ease of treating
the Sobolev-type line opacities encountered in these winds. Specifically, a MC calcu-
lation is used to determine themomentum deposition in the outflowmaterial according
to which a steady-state wind structure is calculated. In addition, fully dynamic RH
approaches which rely on MC methods have been developed and applied. For exam-
ple, Nayakshin et al. (2009) and Acreman et al. (2010) coupled Smoothed Particle
Hydrodynamics (SPH) approaches with MCRT calculations. Haworth and Harries
(2012) investigated triggered star formation with a RH approach in which the gas
temperature is adjusted by a MC-based photo-ionization calculation. Harries (2015)
and Harries et al. (2017) continued the development ofMC-based RHmethods for star
formation problems. Noebauer et al. (2012) and Roth and Kasen (2015) introduced
MC-based RH techniques with a general-purpose scope, with a particular focus on
IMC techniques in the latter. Implicit MC diffusionmethods were coupled with hydro-
dynamics calculations by Cleveland and Gentile (2015). This limited list of examples
illustrates that the possibility of usingMCRT techniques in fully dynamic applications
is actively researched and developed. In the following, we briefly sketch how energy
and momentum transfer terms may be reconstructed from MCRT calculations and
included in fluid dynamics calculations.

11.1 Reconstructing energy andmomentum transfer terms

The full RH problem can be formulated in terms of the normal fluid dynamical equa-
tions describing mass, momentum and energy conservation but modified by terms
capturing the energy and momentum exchange mediated by radiation–matter interac-
tions. Following Mihalas and Auer (2001), we present the equations in the LF and
refer the reader to the standard literature, in particular to Mihalas and Mihalas (1984),
for more details and full derivations:

∂ρ

∂t
+

∑
i

(ρvi )

∂xi
= 0, (143)

∂(ρvi )

∂t
+

∑
j

∂

∂x j
(ρviv j + pδi j ) = Gi − vi

c
G0, (144)

∂

∂t

[
ρ

(
1

2
v2 + e

)]
+

∑
i

∂

∂xi

[
ρvi

(
1

2
v2 + e

)
+ pvi

]
= cG0. (145)
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Here, the material density ρ, pressure p and specific internal energy e appear. Also,
the Kronecker delta δi j is used. On the right-hand side of the energy and momentum
equation, the components of the so-called radiation force appear,G0 andGi , encoding
energy and momentum exchange between the radiation field and the ambient material.
These are defined by

−cG0 =
∫ ∞

0
dν

∫
dΩ(ην − χν Iν), (146)

−cGi =
∫ ∞

0
dν

∫
dΩ(ην − χν Iν)n

i . (147)

Relying on similar techniques as outlined in Sect. 9.3, the radiation force compo-
nents can be reconstructed from the ensemble of MC packet histories. This procedure
is particularly simple if we adopt a thermal equilibrium emission coefficient43 and
treat the emission and scattering processes as isotropic in the CMF. In this case, the
radiation force in the CMF is given by

cG0
0 =

∫ ∞

0
dν0 χa,0(ν0)(cE0ν − 4πBν0), (148)

cGi
0 =

∫ ∞

0
dν0 χtot,0(ν0)F

i
0ν, (149)

where χtot,0(ν0) and χa,0(ν0) are the total and absorption parts of the opacity (see
Sect. 6.4) in the CMF. E0ν and Fi

0ν are, respectively the CMF specific radiation energy
density and flux, and Bν0 is the Planck function.

For grey opacities, this simplifies further to

cG0
0 = c χa,0

(
E0 − aRT

4
0

)
, (150)

cGi
0 = χtot,0F

i
0 (151)

where aR is the radiation constant and T0 the temperature. In this case, the radiation
force may be reconstructed using the efficient volume-based estimators for the radia-
tion energy density and flux E0 and F0 which already have been presented in Sect. 9.3.
For frequency-dependentmaterial functions, onemay introduce appropriate frequency
averages of the opacities, as for example done by Roth and Kasen (2015) and retain
the analogous equations as above. Alternatively, the opacities may be included in the
volume-based averaging process.

G0
0 = 1

ΔVcΔt

∑
χa,0(ν0)l0ε0 − 4π

∫ ∞

0
dν0 χa,0(ν0)Bν0 , (152)

Gi
0 = 1

ΔVcΔt

∑
χtot,0(ν0)l0μ0ε0. (153)

43 I.e. assume ην = χaBν .
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This may be interpreted as summing packet energies and momenta, and weighting
the individual contributions by the probability that a packet interacts along the tra-
jectory element li (see also the discussion about reconstructing heating rates with
volume-based estimators in Sect. 9.3). In the above formulation, we evaluate the
frequency-dependent opacity at the beginning of each individual packet trajectory
element according to the instantaneous packet frequency. This naturally assumes that
the opacity varies only mildly along the trajectory segment. In situations, in which this
is not fulfilled, alternative formulations have to be devised. In astrophysical applica-
tions, this occurs for example whenever bound-bound processes, i.e. interactions with
atomic line transitions, are important, as in line-driven mass outflows from hot stars
or in SN Ia ejecta (cf. Sect. 8.2). Here, the opacity varies strongly whenever photons
resonate with a line transition. For such applications, the energy and momentum trans-
fer terms may be reconstructed as proposed by Lucy (1999b) and Noebauer and Sim
(2015).44

Reconstructing the momentum deposition based on Eq. (151) as sketched above
relies on the radiation flux in the CMF. As pointed out by Roth and Kasen (2015),
volume-based estimators as derived previously involve the cancellation of contribu-
tions from packets propagating in opposite directions. In particular in the diffusion
regime, in which the net flux is expected to be very small, such estimators suffer from
highMC shot noise. Thus, Roth and Kasen (2015) proposed an alternative reconstruc-
tion scheme for this regime, based on the first moment of the transfer equation, which
reduces to

Gi = −
∑
j

∂Pi j

∂x j
(154)

under diffusive conditions (Mihalas and Auer 2001). Now, the momentum deposition
depends on the radiation pressure tensor which can be easily reconstructed without
relying on cancellation effects.

As an alternative to the CMF-based reconstruction approaches detailed above,
the radiation force components can also be determined in the LF. A corresponding
reconstruction procedure within the volume-based estimator approach was outlined
by Noebauer et al. (2012).

11.2 Coupling to fluid dynamics

Once the energy and momentum transfer terms are available via the radiation force
components they can be coupled to a fluid dynamical calculation. Typically, an
operator-splitting approach (see e.g. LeVeque 2002, for a detailed explanation of the
operator splitting principle) is used to tackle the RH problem. This is a widely used
technique to deal with source terms in hydrodynamical equations (e.g. gravity, nuclear
energy release, etc.) and is part ofmanyMC-basedRHapproaches (e.g. Noebauer et al.
2012; Roth and Kasen 2015). Implementing the simplest incarnation of this technique,
the so-called Godunov splitting (cf. LeVeque 2002), a RH time step would then pro-

44 Note, however, that the applicability of the Sobolev approximation (1960) to line opacity is assumed in
these radiation force estimators.
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Fig. 17 Illustration of a simple Godunov-splitting approach to MC-based RH

ceed as outlined in Fig. 17. It begins with a pure hydrodynamical solver call, assuming
the absence of any source terms on the right hand side of Eqs. (144), (145) due to RT.
The new fluid state thus determined is then used to solve the RT problem using MC
techniques. From the ensemble of packet trajectories, energy and momentum transfer
between the ambient material and the radiation field can be reconstructed using the
concepts detailed above. According to these transfer terms, the fluid momentum and
energy are updated and the time step is complete.

11.3 Example application

Asoriginally suggested byEnsman (1994), solving the structure of radiative shocks has
become a standard test problem for RH solution techniques. In these shocks, a radiative
precursor emerging from the shocked domain penetrates the upstream material pre-
heating and compressing it (for a detailed overview of these phenomena, we refer the
reader to Zel’dovich and Raizer 1969). Depending on the strength of the pre-heating,
sub- and super-critical shocks are distinguished. The temperature in the precursor
region remains below that of the shocked material in the sub-critical case but reaches
it in super-critical shocks. Thanks to the seminal works by Lowrie and Rauenzahn
(2007) and Lowrie and Edwards (2008), analytic steady-state solutions are available
for these shocks.

As a test of the methods, Noebauer et al. (2012) and Roth and Kasen (2015) have
used operator-splitting techniques to successfully calculate the structure of radiative
shocks with MC-based RH approaches. Here, we discuss the success of these tests—
further details about the physical and numerical setup of these simulations are given
in Appendix A.4.

Figure 18 shows the time evolution of the structure of sub- and supercritical non-
steady radiative shocks solved with the MC-based approach Mcrh (Noebauer et al.
2012), compared with the results of calculations performed with the finite-difference
approachZeus- Mp2 (Hayes andNorman 2003;Hayes et al. 2006). In addition, Fig. 19
shows the structure of a steady radiative shock with Mach number M = 5 obtained
withMcrh in comparison with the analytic predictions following the solution strategy
developed by Lowrie and Edwards (2008).45 In both cases, the results of theMC simu-

45 A Python implementation for this task can be found at https://github.com/unoebauer/public-astro-tools.
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Fig. 18 The temperature structure of sub-critical (top panel) and supercritical radiative shocks (bottom
panel), calculatedwithMcrh (orange) andZeus- Mp2 (blue). Thegas (solid lines) and radiation temperature
(dashed and dotted lines) are shown for 4 different snapshots. These are 5.5 × 103, 1.7 × 104, 2.8 × 104

and 3.8× 104 s for the subcritical and 8.6× 102, 4.0× 103, 7.5× 103 and 1.3× 104 s for the supercritical
case. This illustration is adapted from Noebauer et al. (2012, figs. 5 and 6). More details about the setup
are provided in Appendix A.4

lation agree very well with the reference calculation and the semi-analytic predictions
respectively.

11.4 Challenges and limitations

Despite being conceptually simple and easily implemented, MC-based radiation
hydrodynamical approaches relying on the operator splitting techniques suffer from
limitations. For a successful application of operator-splitting, strict limits have to be
set on the duration of the time step. These restrictions are imposed by the charac-
teristic time scales of the source terms, most notably the heating and cooling terms
in the energy equations. The difficulties arising from these time-scale limits are best
illustrated at the example of TRT (see also Sect. 10.1). If thermal emission is stronger
than the corresponding absorption of radiation, a characteristic cooling time can be
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Fig. 19 Comparison between the semi-analytic solution (blue solid) for the steady radiative shock with
M = 5 according to Lowrie and Edwards (2008) and the corresponding Mcrh results (orange dashed).
From top left in clockwise direction, velocity, density, radiation temperature and gas temperature are shown.
All quantities are displayed in their non-dimensional form. For details on this process and the numerical
setup, consult Appendix A.4

formulated46 (see Harries 2011, for an analogous definition)

tcool = ρe

cG0 . (155)

If a global time step larger than this value is chosen, thermal emission during the RT
sub-step will completely deplete the internal energy content of the ambient material
and unphysical states with negative internal energy are induced in the final step. This
restriction renders the simple time-explicit operator splitting MC RH approach inef-
ficient in the stiff source term regime, i.e. in situations in which the characteristic
radiative time scales are much shorter than the typical fluid-flow time scales, which in
explicit schemes are given by the Courant criterion (Courant et al. 1928).47

The stiff source term problem is not unique to the MC RH problem but a gen-
eral challenge when dealing with source terms in hydrodynamical calculations (cf.
LeVeque 2002). A common approach to address this problem is to rely on implicit
solution techniques. In this context, the IMC techniques outlined in Sect. 10.1 seem
very promising. In fact, Roth and Kasen (2015) coupled an IMC RT scheme with
a fluid dynamical calculation and successfully applied it to test problems in which
the radiative time scales are smaller than the fluid-flow time scales. Nevertheless, as
stressed in Sect. 10.1, IMC methods are not truly implicit in the traditional sense

46 ToO(v/c).
47 The Courant condition essentially limits the duration of a simulation time step relative to the grid-cell
crossing time for the characteristic fluid waves.
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and also suffer from other potential downsides, e.g. maximum principle violation (cf.
Wollaber 2016).

A completely different approach to the stiff source term problem was suggested by
Miniati and Colella (2007). An unsplit Godunov scheme was developed, consisting of
a modified predictor and a semi-implicit corrector step which incorporates the effects
of the source term. This method was adapted to RH by Sekora and Stone (2010) and
Jiang et al. (2012). In principle, the hybrid Godunov approach could also be utilised in
MC-based RH calculations, but a successful application of this scheme in conjunction
with MCRT methods has yet to be demonstrated.

Notwithstanding the challenges, MC-based techniques constitute a valuable alter-
native approach to RH. Such methods offer the possibility to benefit from the same
advantages that MC techniques already bring to pure RT calculations, namely a
straightforwardgeneralization tomultidimensional geometries and the easewithwhich
complex interaction processes are incorporated.

12 Example astrophysical application

We conclude this article by presenting a concrete example from our own experience
of how MCRT methods can be used to solve RT problems in astrophysics. In this first
version of our Living Review, we will focus on a discussion of calculating synthetic
spectra for SNe Ia. This example, makes use of many techniques outlined in this
review, particularly, the indivisible energy packet scheme (cf. Sect. 5.2), a variant of
the macro-atom scheme (cf. Sect. 7), volume-based estimators (cf. Sect. 9.3) and the
peeling-off technique for variance reduction (cf. Sect. 9.4). Throughout the discussion
we make use of the open source code Tardis (Kerzendorf and Sim 2014; Kerzendorf
et al. 2018), which is readily available48 for inspection (or use) by the interested reader.

In future verstions of this Reviewwe will plan to gradually extend our discussion of
examples. In particular, we aim to summarise closely related work on the modelling of
fast outflows for other classes of astrophysical sources such as hot stars and accretion
disk winds (see references in Sect. 3). Such applications also make use of many of the
techniques outlined in this review and are generally quite closely related to themethods
used in the SN Ia example discussed here. The most important difference, arguably, is
that the SN problem often requires only an homologous velocity law, which leads to a
number of simplifications (see Sect. 8.2). In contrast, more general stellar/disk wind
applications require that more complicated velocity fields are considered.

12.1 Type Ia supernovae

SNe Ia are transient events that have been instrumental in establishing our currently
accepted cosmological standardmodel and are stillwidely used in precision cosmology
(see e.g. Goobar andLeibundgut 2011). In particular, Riess et al. (1998) and Perlmutter
et al. (1999) pioneered theuse ofSNe Ia as standardisable distance indicators tomapout
the recent expansion history of our Universe, finding an accelerated expansion. Apart

48 The code can be obtained from https://github.com/tardis-sn/tardis.
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from their relevance in cosmological studies, SNe Ia play an important role in many
other branches of astrophysics as well, for example in galactic chemical evolution
(e.g. Kobayashi et al. 1998; Seitenzahl and Townsley 2017). Notwithstanding the
importance of SNe Ia, a full understanding of the exact nature of these transients
still remains elusive and a range of proposed models remain under study (see e.g.
Hillebrandt and Niemeyer 2000; Hillebrandt et al. 2013; Röpke 2017; Röpke and Sim
2018). One important strategy to study SNe Ia is to model their observed spectra with
the aim of inferring the ejecta composition and structure as a means to understand
the explosion itself. Tardis, which we use for this demonstration, is a tool aimed at
this problem in which highly parameterized and flexible RT simulations are used to
interpret observations.

MCRTmethods arewell-suited for calculating synthetic observables in SNe Ia. Due
to the absence of hydrogen and helium and the dominance of heavy elements in the
ejecta of SNe Ia, RT is mainly driven by bound-bound interactions. As a consequence,
SN Ia spectra show no true continuum but rather a pseudo-continuum, generated by
the flux redistribution achieved in a multitude of non-resonant line interactions. This
property in combination with the fact that many models predict anisotropies in the
overall morphology and chemical structure of SN Ia ejecta make MCRT an attractive
choice for treating RT. Popular numerical approaches relying on MCRT for SN Ia
studies includeArtis (Kromer and Sim 2009), Sedona (Kasen et al. 2006), SuperNu
(Wollaeger et al. 2013; Wollaeger and van Rossum 2014), Tardis (Kerzendorf and
Sim 2014; Kerzendorf et al. 2018; Vogl et al. 2019), the scheme developed byMazzali
and Lucy (1993) and Mazzali (2000) and Sumo (Jerkstrand et al. 2011, 2012).

12.2 Model type Ia supernova

Since Tardis was specifically designed as a highly parameterized MCRT approach
for spectral synthesis in SNe Ia, it adopts a number of simplifications. For a detailed
overview we refer to the original publication by Kerzendorf and Sim (2014) and the
publicly available documentation.49 Here, we only highlight some of the key aspects
of the MCRT machinery of Tardis.

Similar to the approach byMazzali and Lucy (1993), Tardis adopts the elementary
SNmodel of Jeffery andBranch (1990).Here, the SNejecta are approximated as spher-
ically symmetric and divided into two domains, the continuum-forming region and the
atmosphere. A photosphere separates both regions. It is assumed that thermalization
processes are only relevant below the photosphere and that interactions in the atmo-
sphere are either electron scatterings in the Thomson limit or line interactions. Tardis
follows the spectral synthesis process in the atmosphere with a time-independent,
frequency-dependent MCRT approach. Packets are launched from the photosphere
at the inner computational boundary from a thermal distribution according to the
photospheric temperature and followed as they propagate through the envelope until
escaping through either boundary. An important aspect of the Tardis approach is the
determination of a self-consistent plasma state and photospheric temperature, which is
achieved using volume-based estimator techniques akin to those outlined in Sect. 9.3

49 http://tardis.readthedocs.io/en/latest/.
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in an iterative process. Only after a converged plasma state has been found, the final
synthetic spectrum is calculated.Tardis includes electron scattering and bound-bound
interactions relying on the Sobolev-approximation (see Sect. 8.2). Fluorescence can
be treated either using the downbranching scheme by Lucy (1999b) or a simplified
version of the macro atom scheme by Lucy (2002, 2003, see Sect. 7). To reduce the
MC noise in the synthetic spectra, a variant of the peel-off technique can be used,
referred to as virtual packet scheme (see Sect. 9.4). Different assumptions about the
ioniziation and excitation state can be adopted but for the Tardis simulations pre-
sented below, a modified nebular approximation (see Mazzali and Lucy 1993) was
used together with a dilute-Boltzmann excitation treatment. Finally, Tardis relies
on a discrete representation of the ejecta state in terms of density and velocity on a
spherical grid. For each grid cell, the mass density, the velocity at the cell interfaces
and the chemical composition have to be specified. Internally, perfect homology is
assumed, for example when progressing through the Sobolev line interaction scheme
(see Sect. 8.2).

12.3 Spectral synthesis with MCRT

As an illustration, we use Tardis to calculate a synthetic spectrum for the SN Ia
SN 2005bl.50 We consider the epoch three days before maximum light in the B-
band which corresponds to 14 d after explosion. We adopt the stratified chemical
composition derived by Hachinger et al. (2009) and use a density profile similar to
the famous W7 explosion model by Nomoto et al. (1984). This setup, which is shown
in Fig. 20, has been previously used by Barbosa (2016) to establish the suitability of
Tardis for abundance tomography studies. All necessary configuration and data files
to repeat the Tardis calculations are included in the repository published as part of
this review (see Appendix B).

Figure 21 shows the main product of a Tardis calculation, namely the synthetic
spectrum for themodel setup. Since the optical depth of the constructed SNatmosphere
is rather high, many MC packets injected at the lower boundary are back-scattered
onto the photosphere and lost for the spectral synthesis process. Only a small fraction
of the launched packets reach the ejecta surface and contribute to the emergent spec-
trum, leading to a substantial amount of MC noise. This situation can be significantly
improved by using the implemented virtual packet scheme. Whenever a MC packet
is launched or interacts, a pre-defined number of virtual packets (ten in the current
Tardis simulation) are spawned and propagated towards the ejecta surface along rays
that are cast in directions drawn from the emission profile of the corresponding pro-
cess. The optical depth to the surface is calculated along these rays and the energy
of the virtual packet decreased by a corresponding attenuation factor (see Sect. 9.4
or Kerzendorf and Sim 2014 for more details). Figure 21 also includes the synthetic

50 This sub-luminous SN Ia belongs to a peculiar sub-class of these transients, which is named after the
prototypical event, SN 1991bg. SN 2005bl is well-studied and a spherically symmetric approximation to its
ejecta structure has been previously estimated by Hachinger et al. (2009) using the abundance tomography
method developed by Stehle et al. (2005).
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Fig. 20 Density and composition of the input model used in the Tardis calculation for SN 2005bl. The
mass fractions (X ) of all elements that are present in the model are shown. . This setup has been adapted
by Barbosa (2016) from Hachinger et al. (2009)

spectrum generated from the virtual packets which has a much lower noise level than
the spectrum that is based on the real packet population.

One advantage of MCRT lies in the diagnostic possibilities this approach offers.
Details about the interactions packets experienced can be easily recorded and used
to examine the radiation–matter coupling or to investigate the origin of particular
features in the SED of the emergent radiation field. In the following, we highlight
only some possible applications of these capabilities. For simplicity, we will only
focus on the last interaction MC packets performed before escaping through the outer
boundary.51 Figure 22 illustrates the importance of non-resonant line interactions
when calculating synthetic spectra for SNe Ia. All emergent packets have been binned
according to their incident and emergent wavelengths in their last line interaction.
In the Tardis simulations shown here, the macro atom scheme is used to treat non-
resonant interactions within the indivisible energy packet paradigm. While Fig. 22
shows that many packets have interacted resonantly (cf. diagonal where λin = λout),
the fluorescence and inverse-fluorescence regions above and below the diagonal are
also densely populated.

In analogy to extracting information about the wavelength redistribution, details
about the interaction process can be recorded just as easily. Figure 23 shows which
ions predominantly contribute to the last line interactions MC packets experience in
the Tardis simulation of SN 2005bl. It clearly illustrates, that singly- and doubly-
ionized iron-group elements are the dominant interaction partners, followed by the
intermediate-mass elements in the same ionization state.

51 This limitation has only book-keeping reasons. There are no conceptual obstacles to record and diagnose
the entire interaction histories of all packets.
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Fig. 21 Tardis synthetic spectra for the SN model constructed for SN 2005bl at 3 d before B-band
maximum. The spectrum constructed from the escaping MC packets is shown in blue and exhibits high MC
noise. In addition, the synthetic spectrum which is generated from the virtual packets and which suffers
from much less MC noise, is shown in orange

Fig. 22 Histogram of the incident and emergent wavelength of all escaping MC packets in the last line
interaction from the Tardis simulation of SN 2005bl. Resonance interactions can be found on the diagonal,
fluorescence above it and inverse-fluorescence process below it. The macro atom scheme of Lucy (2002,
2003) was used in this simulation (see also Sect. 7)
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Fig. 23 Contribution of the different ions (note that ionization stage I corresponds to neutral atoms) to the
last line interactions escaping MC packets experienced in the Tardis simulation of SN 2005bl

Finally, we combine the information about the interaction partner and the wave-
length change into a visualization proposed by M. Kromer (see e.g. Kromer and Sim
2009). This provides detailed information about the spectrum formation process. The
contribution of each escaping packet to the emergent spectrum is colour-coded accord-
ing to the atomic number of the last interaction partner and plotted at the location of
the emergent wavelength. This procedure can be performed on the level of individual
elements, or as we chose to do here for simplicity, by elemental groups. Figure 24
shows the synthetic spectrum calculated with Tardis and how the different elemental
groups, fuel (C, N, O, Ne), intermediate-mass elements (Na through Sc) and iron-peak
elements, contribute.

13 Summary and conclusions

In this work, we provide an overview of some of the MCRT techniques used in astro-
physics. We have presented a variety of evidence that this approach has evolved into a
competitive and very successful method to solve radiative transfer problems. With its
probabilistic approach, MCRT offers a number of compelling advantages that make
this technique ideal for a variety of astrophysical applications. Whenever irregular
multidimensional geometries are encountered or complex interaction processes, par-
ticularly scatterings, have to be accounted for, MCRT methods are typically a good
choice for addressing radiative transfer problems. For this reason, the MCRT frame-
work finds wide-spread application in astrophysics, from modelling mass-outflows
from stars and accretion discs, to simulating radiative transfer through dusty environ-
ments or studying ionization on cosmological scales. Recently, MCRT schemes have
even been included in fully dynamic radiation hydrodynamics calculations.
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Fig. 24 Illustration of the contributions of the various elemental groups to the final emergent spectrum in
the Tardis simulation of SN 2005bl. In particular, the contribution of each escaping (virtual) MC packet to
the final spectrum is colour-coded according to the last interaction partner. In addition to the contributions
of the different elemental groups, packets that escaped without interacting straight from the inner boundary
are shown as well (“photosphere”), together with packets that performed electron scatterings as their last
interactions

Relying on MCRT approaches, however, always comes at the cost of introducing
statistical fluctuations into the solution process. Nevertheless, a variety of variance
reduction techniques have been developed over the years to keep this noise compo-
nent under control—many of these methods have been reviewed in this work. Also,
conventional MCRT approaches are ill-suited for the application to optically thick
environments and to problemswith short cooling time scales. Extensions andmodifica-
tions, particularly MC diffusion schemes and the IMC approach, have been developed
to alleviate these deficiencies and have already found their application in astrophysical
MCRT calculations.

Finally, we want to emphasize an important aspect of MCRT methods, the value
of which should not be under-rated: the MCRT approach of performing a simulation
of radiative transfer by following the propagation of packets is very intuitive since
it closely resembles the microphysical processes realised in nature. Furthermore, the
fundamental MCRT concepts are quite simple and basic computer programs can be
developed quickly with only a handful of instructions. The directness of the physics
and simplicity of the algorithms also mean that it is typically fairly easy to develop
codes by gradually upgrading the physics: incorporating new physical processes rarely
requires any fundamental overhaul. All this, together with the fact that many state-
of-the-art MCRT simulation codes for astrophysical applications are open source and
freely available, makes the entrance barrier quite low for the adoption of MCRT. As
the continuous increase in the availability of computational resources seems to hold
and since MC calculations can easily be distributed over multiple computation units,
it seems more than likely that the success MCRT will continue.
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Test problems

For this review,weuse a number of simple test problems to illustrate various techniques
relevant for MCRT calculations. In the following, we introduce these test problems.

Homogeneous sphere

A frequently used test setup to verify and validate numerical approaches to RT is
that of radiation emerging from a homogeneous sphere (see e.g. Smit et al. 1997;
Abdikamalov et al. 2012). In particular, we consider a homogeneous sphere of radius
R composed of a material with constant opacity χ and emissivity η (and thus with
a constant source function S). The sphere is assumed to be surrounded by vacuum.
The structure of the steady-state radiation field inside and outside of the sphere can be
obtained from the formal solution to the transfer equation (cf. Smit et al. 1997) and
follows

I (r , μ) = S (1 − exp[−χs(r , μ)]) (A.1)

with

s(r , μ) =
⎧⎨
⎩
rμ + Rg(r , μ) if r < R
2Rg(r , μ) if r ≥ R, μ� ≤ μ ≤ 1
0 else

(A.2)

and

g(r , μ) =
√
1 −

( r

R

)2
(1 − μ2), (A.3)

μ� =
√
1 −

(
R

r

)2

. (A.4)
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After performing the appropriate angle averaging (cf. Sect. 2), the moments of the
specific intensity are obtained. Inside the sphere (r < R), they follow (cf. Smit et al.
1997)

J (r) = S

[
1 −

∫ 1

0
dμ cosh(χrμ) exp(−χRg(r , μ))

]
, (A.5)

H(r) = S
∫ 1

0
dμμ sinh(χrμ) exp(−χRg(r , μ)), (A.6)

K (r) = S

[
1

3
−

∫ 1

0
dμμ2 cosh(χrμ) exp(−χRg(r , μ))

]
, (A.7)

while outside (r ≥ R), they are given by

J (r) = 1

2
S

[
(1 − μ�) −

∫ 1

μ�

dμ exp(−2χRg(r , μ))

]
, (A.8)

H(r) = 1

2
S

[
1

2
(1 − μ2

�) −
∫ 1

μ�

dμμ exp(−2χRg(r , μ))

]
, (A.9)

K (r) = 1

2
S

[
1

3
(1 − μ3

�) −
∫ 1

μ�

dμμ2 exp(−2χRg(r , μ))

]
. (A.10)

For the test calculations presented in this work, specifically in Sect. 9, we adopt
the parameters suggested by Abdikamalov et al. (2012). In particular, a homogeneous
sphere with radius R = 10 km and the constant absorption opacity χ = 2.5 ×
10−4 cm−1 and source function S = 10 erg.cm−2 s−1 on the inside is considered. In
the MCRT test simulations the sphere is embedded in a computational domain that
extends out to r = 50 km and is divided into 100 equidistant shells. Figure 25 shows
the analytic solution for this homogeneous sphere test problem in terms of J , H , and
K according to Eqs. (A.5)–(A.10).

The homogeneous sphere problem is often discussed from a slightly different view-
point, namely when the probability of photons escaping from such a sphere is of
interest. This question has been discussed in detail by Osterbrock (1974, Appendix 2)
and Osterbrock and Ferland (2006, Section 4.5) in the context of gaseous nebulae and
an analytic expression is derived and presented there. By considering the emergent
flux at the surface of the sphere [i.e. Eq. (A.9), evaluated at r = R] and relating it to
the expected flux in the absence of absorption (i.e. χ = 0), the escape probability as
a function of optical depth (τ )

p(τ ) = 3

4τ

[
1 − 1

2τ 2
+

(
1

τ
+ 1

2τ 2

)
exp(−2τ)

]
(A.11)

is obtained (see also Fig. 26). Throughout Sects. 6 and 9, we determine the escape
probability from the homogeneous sphere with MCRT simulations and compare the
results to the predictions according to Eq. (A.11).
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Fig. 25 The first three moments of the specific intensity for the steady-state radiation field in the homoge-
neous sphere problem as given by Eqs. (A.5)–(A.10). The extent of the homogeneous sphere is indicated
by a dashed grey line and the moments are expressed in units of the source function, S

Fig. 26 Escape probability from a homogeneous sphere according to Eq. (A.11) as a function of its optical
depth, τ = χR

Line profile for a sphere in homologous expansion

To test the line formation process implemented in Sobolev-based MCRT schemes in
Sect. 8.2 we use a simple setup, which aims at predicting the H Lyman α line profile
emanating from a homologous flow composed of neutral hydrogen. Specifically, we
consider a spherical domain with an inner and outer boundary at Rinner and Router.
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The material is assumed to be in perfect homologous expansion, i.e. v = r/t , and we
set the extent of the domain by choosing the time t = 13.5 d and the minimum and
maximum material velocities vmin = 10−4 c and vmax = 10−2 c. We neglect time-
dependence and follow the propagation of N = 105 packets that are emitted from the
lower boundary at Rinner. Their initial frequency is uniformly drawn from the interval
corresponding to the wavelength range λmin = 1185 Å to λmax = 1255 Å.We assume
that line interactions proceed resonantly at the natural wavelength λline = 1215 Å and
that their strength throughout the flow is given by a constant Sobolev optical depth
τs = 1. All packets are followed until they either escape through the outer domain
edge at Router and contribute to the line profile or are back-scattered onto the inner
boundary and are discarded. For this illustration, we only include the Doppler effect
and further simplify the transformations by working in the weakly-relativistic limit,
thus setting γ = 1.

The MCRT simulation starts by launching the packets at the inner boundary. These
packets are initialized with rini = Rinner, a frequency sampled from

ν = νmin + ξ(νmax − νmin), (A.12)

a distance to the next interaction, τ , given by Eq. (45) and an initial propagation
direction drawn fromEq. (43). At the beginning of the packet propagation, the distance
to the outer domain edge is calculated

ledge = −μinirini +
√

(μinirini)2 − r2ini + Router, (A.13)

together with the distance to the Sobolev point

ls = ct
(
1 − νline

ν

)
− riniμini. (A.14)

If ledge < ls, the packet escapes without interacting and contributes to the emergent
spectrum with νesc = ν. Otherwise, it reaches the Sobolev point where its properties
are updated to

rs =
√
r2ini + ls + 2lsriniμini, (A.15)

μ = ls + μini
rini
r

, (A.16)

and it comes into resonance with the line transition. If

τ < τs, (A.17)

the packet interacts at the Sobolev point. In this case, the LF frequency is updated
according to the energy conservation principles outlined in Sect. 8.1:

ν = ν
1 − βμi

1 − βμe
. (A.18)
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Here,μi is the incident propagation direction determined by Eq. (A.16) andμe denotes
the direction into which the packet emerges after scattering. In homologous flows, the
Sobolev escape probability is (approximately) direction independent. Thus, a new
propagation direction can be drawn isotropically and the packet propagation then
continues. In this simple illustration, the ensuing propagation process is trivial. Since
the packet only redshifts in a homologous flow, it cannot come into resonance and
interact with the line transition again.What remains is to determine whether the packet
has been backscattered or if it propagates towards the outer domain boundary. If

μ < −
√
1 −

(
Rinner

rs

)2

, (A.19)

the packet intersects the inner boundary and is discarded. Otherwise, it escapes and
contributes with νesc = ν to the line profile. The final line profile is determined after
all packets have been processed by binning the frequencies of the escaping ones.

Model supernova

Lucy (2005) presented a simple but powerful test problem to verify the performance
of RT schemes for the calculation of SN Ia light curves. In this spherically symmetric
setup, radiative energy is non-uniformly generated throughout the calculation. This
simulates the energy liberated in the decay of non-uniformly distributed 56Ni. In
particular, spherically symmetric ejecta in homologous expansion with a total mass
of Mtot = 1.39M
 and uniform density are considered. The maximum material
velocity is assumed to be vmax = 104 km s−1 and the composition is chosen as
follows: the inner ejecta regions up to Mr = 0.5M
 are entirely made up from
56Ni. Its abundance then drops linearly until it reaches zero at Mr = 0.75M
. The
remaining mass is composed of carbon and oxygen in equal parts. The energy released
in the decay of radioactive material is first distributed into MC packets representing
γ -rays, which are propagated through the model SN. For these γ -packets, a purely
absorptive specific cross section, κ = 0.03 cm2 g−1 is assumed. When γ -packets are
absorbed, they are instantly converted into MC packets representing the ultraviolet-
optical-infrared radiation field.52 Interactions for these packets are treated as isotropic
resonant scatterings and their strength is given by a uniform specific cross section
σ = 0.1 cm2 g−1. A time-dependent MCRT simulation is performed by following the
packets which represent the energy release from the decay until they leave through
the ejecta surface. We note that we do not start the MCRT simulation promptly after
explosion but at t = 3 d. This is advised since the ejecta are initially very optically
thick and virtually opaque, rendering an application of a conventionalMCRT approach
(without the techniques outlined in Sect. 11) to determine the emergent radiation
field inefficient and unnecessary. We simply expand the ejecta in accordance with
the homologous velocity law to the start time of the simulation and keep track of the
radioactive energy release up to this point. After accounting for adiabatic cooling, this

52 Note that this test is performed without a specific frequency association.
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energy constitutes the seed radiation field at the start of the MCRT simulations. We
refer the reader to Lucy (2005) and Noebauer et al. (2012) for more details on the
physical and numerical setup of this test problem.

Radiative shocks

Determining the structure of radiation-dominated shocks has become a standard test
problem toverify andvalidate the performance of numerical schemes forRH.The theo-
retical foundations for an understanding and description of these phenomena have been
laid out by Raizer (1957a) and Zel’dovich (1957a).53 Their findings are summarized
in the text book by Zel’dovich and Raizer (1967). In contrast to their hydrodynamical
counterparts, radiation flows from the hot shocked domain into the cold unshocked
region and pre-heats and pre-compresses the flow there. As a consequence, the sharp
shock front becomes washed out. Depending on the amount of pre-heating one dis-
tinguishes between sub- and supercritical radiative shocks. In the latter, the material
right in front of the hydrodynamic shock is heated to the temperature of the shocked
material beyond the relaxation region. For more details, we refer to the standard liter-
ature on this subject, for example Zel’dovich and Raizer (1967), Sincell et al. (1999),
and Lowrie and Edwards (2008).
Non-steady radiative shocks: Ensman (1994) examined a number of different test
problems to verify and validate numerical approaches to RT and RH. In particular, it
was proposed to solve the time-dependent structure of non-steady radiative shocks.
Over the years, this original suggestion has become a standard test to validate new
numerical RH approaches (e.g. Turner and Stone 2001; Hayes and Norman 2003;
Hayes et al. 2006; Commerçon et al. 2011; Noebauer et al. 2012; Kolb et al. 2013;
Roth and Kasen 2015; Sijoy and Chaturvedi 2015).

The non-steady radiative shock calculations presented in this work follow closely
the suggestion by Ensman (1994). Specific details about the setup are given by
Noebauer et al. (2012). The shock calculations are carried out in a plane-parallel
computational domain of size L = 7 × 1010 cm. The shock is generated by directing
the flow, which has a uniform grey absorption opacity of χ = 3.1 × 10−10 cm−1

and initial uniform density of ρ = 7.78 × 10−8 g cm−3, towards the left, reflecting
boundary. Typically, two realisations of the test problem are considered that differ in
the bulk velocity of the flow.With v = −6×105 cm s−1, a subcritical shock emerges,
while a super-critical shock is generated with v = −2×106 cm s−1. Finally, an initial
temperature structure with a slight gradient is chosen54:

T (x) = 10 K + L − x

L
75 K. (A.20)

53 The original publications in Russian are Raizer (1957b) and Zel’dovich (1957b).
54 Ensman (1994) found it necessary to include this slight gradient to avoid numerical problems in their
calculations.
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Following the suggestion by Hayes and Norman (2003), the shock structure calculated
is displayed as a function of a pseudo-Lagrangian coordinate:

z = x − vt . (A.21)

This allows us to easily compare with the results of Ensman (1994) who used a
Lagrangian code.
Steady radiative shocks:While the calculation of the evolving structure of non-steady
radiative shocks has become a standard test problem for radiation hydrodynamics,
its value is somewhat limited by the lack of an analytic solution to the test prob-
lem. Thanks to the developments by Lowrie and Rauenzahn (2007) and Lowrie and
Edwards (2008), this is not the case for steady radiative shocks: an analytic solution
technique, first based on the equilibrium diffusion description of radiative transfer
(Lowrie and Rauenzahn 2007) and later generalized by relying on non-equilibrium
diffusion (Lowrie and Edwards 2008), has been presented. Following the original
work, solving the structure of steady radiative shocks and comparing it to the predic-
tions obtained with the solution technique of Lowrie and Edwards (2008) has quickly
become an integral part of the standard test suite for RH approaches (e.g. Sekora and
Stone 2010; van der Holst et al. 2011; Zhang et al. 2011; Davis et al. 2012; Jiang et al.
2012; Ramsey and Dullemond 2015; González et al. 2015; Roth and Kasen 2015).

Lowrie and Rauenzahn (2007) and Lowrie and Edwards (2008) based their solution
strategy on the non-dimensional form of the radiation hydrodynamical equations. In
particular, reference length, mass density, material temperature and material sound
speeds are used to convert the relevant physical quantities into their non-dimensional
counterparts, which we denote with the tilde symbol:

x̃ = x

x̂
spatial coordinate (A.22)

ρ̃ = ρ

ρ̂
material density (A.23)

ṽ = v

â
material velocity (A.24)

T̃ = T

T̂
material temperature (A.25)

θ̃ = θ

T̂
radiation temperature (A.26)

σ̃ = σ x̂c

â
cross section (A.27)

κ̃ = c

3σ â x̂
radiation diffusivity, (A.28)

where reference values for each quantity are denoted by a hat symbol. While not
required for the applicability of the solution approach, the steady radiation shock test
problem is typically set up assuming a uniform absorption cross section. In this case, a
particular shock realisation can be specified by choosing values for the dimensionless
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quantity

P̃ = aR T̂ 4

ρ̂â2
(A.29)

the radiation diffusivity κ̃ , an adiabatic index γ , an absorption cross section σ̃ , a value
for the shock Mach number M and a reference length. By convention, the pre-shock
state is given by θ̃ = 1, T̃ = 1, ρ̃ = 1 and ṽ = M .

In Sect. 11, we present the results of a M = 5 test calculation, with P̃ = 10−4,
κ̃ = 1, σ̃ = 106 and x̃ = 1, obtained with the MC-based RH approach Mcrh (Noe-
bauer et al. 2012). For the numerical setup in Mcrh, which relies on the dimensional
form of physical quantities, the reference values x̂ = 1 cm, â = 1.7310×107 cm s−1,
ρ̂ = 0.3449 g cm−3 and T̂ = 1.0810 × 106 K were used. A plane-parallel compu-
tational domain was chosen in which a central discontinuity separates two regions
with constant fluid states. The jump fulfils the jump conditions of the radiation-plus-
matter system as given by Lowrie and Rauenzahn (2007). Simple outflow boundary
conditions are used for the hydrodynamic sub-system and MC packets reaching the
boundaries freely escape. To counteract this outflow, inflow boundary conditions are
set up for the radiative subsystem. Specifically, inflowing radiation is imposed with
a rate corresponding to that of a thermal radiation field at the temperature given by
the jump conditions and integrated over one hemisphere. The system is then followed
until a steady-state has established which is then compared to the analytic predictions
according to Lowrie and Edwards (2008).55

Software collection

As part of this review, we freely distribute a number of MCRT Python programs used
in the test calculations together with the configuration files for the Tardis simulation
presented in Sect. 12. The interested reader can find all these in the GitHub repository
at https://github.com/unoebauer/mcrtreview-tools.git. It contains the following tools
and data files:

– Python tool mcrt_hom_sphere.py to perform simple, time-independent
MCRT simulations for the homogeneous sphere problem (cf. Appendix A.1)

– Python script mcrt_escape_prop.pywith which a simpleMCRT simulation
to determine the escape probability from a homogeneous sphere can be performed
(cf. Appendix A.1 and Sect. 6.4)

– Python script mcrt_pcyngi.py to determine the P-Cygni line profile formed
in a homologously expanding spherical flow (cf. Appendix A.2 and Sect. 8.2)

– Tardis setup files for the spectral synthesis calculations presented in Sect. 12. The
setup consists of

– the configuration file tardis_sn2005bl_m3_config.yml
– the density structure file tardis_sn2005bl_m3_density.dat
– the chemical compositionfiletardis_sn2005bl_m3_abundances.dat

55 We use a Python implementation of the solution strategy which is available at https://github.com/
unoebauer/public-astro-tools.
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– text file containing information about the Tardis simulation facilitating repro-
duction; info.rst.
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