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Abstract

Hamiltonian formalisms provide powerful tools for the computation of approxi-
mate analytic solutions of the Einstein field equations. The post-Newtonian
computations of the explicit analytic dynamics and motion of compact binaries
are discussed within the most often applied Arnowitt—Deser—Misner formalism.
The obtention of autonomous Hamiltonians is achieved by the transition to
Routhians. Order reduction of higher derivative Hamiltonians results in standard
Hamiltonians. Tetrad representation of general relativity is introduced for the
tackling of compact binaries with spinning components. Compact objects are
modeled by use of Dirac delta functions and their derivatives. Consistency is
achieved through transition to d-dimensional space and application of dimensional
regularization. At the fourth post-Newtonian level, tail contributions to the
binding energy show up for the first time. The conservative dynamics of binary
systems finds explicit presentation and discussion through the fifth post-Newtonian
order for spinless masses. For masses with spin Hamiltonians are known through
(next-to)*-leading-order spin-orbit and spin-spin couplings as well as through next-
to-leading order cubic and quartic in spin interactions. Parts of those are given
explicitly. Tidal-interaction Hamiltonians are considered through (next-to)>-leading
post-Newtonian order. The radiation reaction dynamics is presented explicitly
through the third-and-half post-Newtonian order for spinless objects, and, for spin-
ning bodies, to leading-order in the spin-orbit and spinl-spin2 couplings. The most
important historical issues get pointed out.
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1 Introduction

Before entering the very subject of the article, namely the Hamiltonian treatment of
the dynamics of compact binary systems within general relativity (GR) theory, some
historical insight will be supplied. The reader may find additional history, e.g.,
in Damour (1983a, 1987b), Futamase and Itoh (2007), Blanchet (2014), Porto
(2016), Levi (2020).

1.1 Early history (1916-1960)

The problem of motion of many-body systems is an important issue in GR (see, e.g.,
Damour 1983a, 1987b). Earliest computations were performed by Droste, de Sitter,
and Lorentz in the years 1916-1917, at the first post-Newtonian (1PN) order of
approximation of the Einstein field equations, i.e., at the order n = 1, where (1/c?)"
corresponds to the nth post-Newtonian (PN) order with n = 0 being the Newtonian
level. Already in the very first paper, where Droste calculated the 1PN gravitational
field for a many-body system (Droste 1916), there occurred a flaw in the definition of
the rest mass m of a self-gravitating body of volume V' (we follow the Dutch version;
the English version contains an additional misprint), reading, in the rest frame of the
body, indicated in the following by =,

Toste . 3U
m ° t:1916/d3xgz/d3xg*(l ——2), (1.1)
14 14 €

where the “Newtonian” mass density ¢, = /—gou’/c [g = det(g,), u° is the time
component of the four-velocity field u*, u*u, = —c?] fulfills the metric-free conti-
nuity equation

di0. +div(o.v) = 0, (1.2)

where v = (/) is the Newtonian velocity field (with v = cu’/u®). The Newtonian
potential U is defined by

AU = —4nGo,, (1.3)

with the usual boundary condition for U at infinity: lim),_. U(r,t) = 0. Let us
stress again that the definition (1.1) is not correct. The correct expression for the rest
mass contrarily reads, at the 1PN level,
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m—'/’/d3xg*<l+cl—2(ﬂ—%>>, (1.4)

with specific internal energy I1. For pressureless (dust-like) matter (for a dust-like
body IT = 0, but then the potential term U has to disappear too, because of the
internal pressure-gravity balance: a pressureless body cannot show up internal
gravity), the correct 1PN expression is given by

m= d3xg* ——'/ d3xy/det gi)o= / dVo, 1.5
/V p \/ (&) p (1.5)
where dV = \/det(gy) d*x.

The error in question slept into second of two sequential papers by de Sitter
(19164, b, 1917) when calculating the 1PN equations of motion for a many-body
system. Luckily, that error had no influence on the de Sitter precession of the Moon
orbit around the Earth in the gravitational field of the Sun. The error became
identified (at least for dusty matter) by Eddington and Clark (1938). On the other
side, Levi-Civita (1937b) used the correct rest mass formula for dusty bodies.
Einstein criticized the calculations by Levi-Civita because he was missing pressure
for stabilizing the bodies. Hereupon, Levi-Civita argued with the “effacing
principle”, inaugurated by Brillouin, that the internal structure should have no
influence on the external motion. The 1PN gravitational field was obtained correctly
by Levi-Civita but errors occurred in the equations of motion including self-
acceleration and wrong periastron advance (Levi-Civita 1937a; Damour and Schéfer
1988). Full clarification was achieved by Eddington and Clark (1938), letting aside
the unstable interior of their dusty balls. Interestingly, in a 1917 paper by Lorentz and
Droste (in Dutch), the correct 1PN Lagrangian of a self-gravitating many-body
system of fluid balls was obtained but never properly recognized. Only in 1937, for
the edition of the collected works by Lorentz, it became translated into English
(Lorentz and Droste 1937). A full-fledged calculation made by Einstein et al. (1938)
—posed in the spirit of Hermann Weyl by making use of surface integrals around
field singularities—convincingly achieved the 1PN equations of motion, nowadays
called Einstein—Infeld—Hoffmann (EIH) equations of motion. In the publication
seamless following FEinstein et al. (1938), Robertson (1938) derived the 1PN
periastron advance based on the EIH equations of motion. Some further refining
work by Einstein and Infeld appeared in the 1940s. Fichtenholz (1950) computed the
Lagrangian and Hamiltonian out of the EIH equations. A consistent fluid ball
derivation of the EIH equations has been achieved by Fock (1939), Petrova (1949)
(delayed by World War II), and Papapetrou (1951a) (see also Fock 1959).

In the 1950s, Infeld and Plebanski rederived the EIH equations of motion with the
aid of Dirac d-functions as field sources by postulating the properties of Infeld’s
“good” d-function (Infeld 1954, 1957; Infeld and Plebanski 1960; see Sect. 4.2 of our
review for more details). Also in the 1950s, the Dirac d-function became applied to
the post-Newtonian problem of motion of spinning bodies by Tulczyjew (1959),
based on the seminal work by Mathisson (1937, 2010), with the formulation of a
general relativistic gravitational skeleton structure of extended bodies. Equations of
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motion for spinning test particles had been obtained before by Papapetrou (1951b)
and Corinaldesi and Papapetrou (1951). Further in the 1950s, another approach to the
equations-of-motion problem, called fast-motion or post-Minkowskian (PM)
approximation, which is particularly useful for the treatment of high-speed scattering
problems, was developed and elaborated by Bertotti (1956) and Kerr (1959a, b, ¢), at
the 1PM level. First results at the 2PM level were obtained by Bertotti and Plebanski
(1960).

1.2 History on Hamiltonian results

Hamiltonian frameworks are powerful tools in theoretical physics because of their
capacity of full-fledged structural exploration and efficient application of mathemat-
ical theories (see, e.g., Holm 1985; Alexander 1987; Vinti 1998; Boccaletti and
Pucacco 2004, 2002). Most importantly, Hamiltonians generate the time evolution of
all quantities in a physical theory. For closed systems, the total Hamiltonian is
conserved in time. Together with the other conserved quantities, total linear
momentum and total angular momentum, which are given by very simple universal
expressions, and the boost vector, which is connected with the Hamiltonian density
(which defines “centre-of-energy vector”) and the total linear momentum, the total
Hamiltonian is one of the generators of the globally operating Poincaré¢ or
inhomogeneous Lorentz group. A natural ingredient of a Hamiltonian formalism is
the (3+1)-splitting of spacetime in space and time. Consequently Hamiltonian
formalisms allow transparent treatments of both initial value problems and
Newtonian limits. Finally, for solving equations of motion, particularly in
approximation schemes, Hamiltonian frameworks naturally fit into the powerful
Lie-transform technique based on action-angle variables (Hori 1966; Kinoshita 1978;
Vinti 1998; Boccaletti and Pucacco 2004, 2002; Tessmer et al. 2013). Lie series are
also very useful when treating canonical transformations with usual canonical
variables (see, e.g., Bliimlein et al. 2020a, c, 2021b).

Additionally we refer to an important offspring of the Hamiltonian framework, the
effective-one-body (EOB) approach, which will find its presentation in an upcoming
Living Reviews article by Thibault Damour. References in the present article referring
to EOB are particularly Buonanno and Damour (1999, 2000), Damour et al.
(2000a), Damour (2001), Damour et al. (2008b), Damour et al. (2015), Damour
(2016).

The focus of the present article is on the Hamiltonian formalism of GR as
developed by Arnowitt, Deser, and Misner (ADM) (Arnowitt et al. 1959, 1960a, b),
with its Routhian modification (Jaranowski and Schifer 1998, 2000c) (where the
matter is treated in Hamiltonian form and the field in the Lagrangian one) and
classical-spin generalization (Steinhoff and Schéfer 2009a; Steinhoff 2011), and with
application to the problem of motion of binary systems with compact components
including proper rotation (spin) and rotational deformation (quadratic in the spin
variables); for other approaches to the problem of motion in GR, see the reviews
by Futamase and Itoh (2007), Blanchet (2014), Porto (2016). The review article
by Arnowitt et al. (1962) gives a thorough account of the ADM formalism (see also
Regge and Teitelboim 1974 for the discussion about asymptotics). In this formalism,
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the final Hamiltonian, nowadays called ADM Hamiltonian, is given in form of a
volume integral of the divergence of a vector over three-dimensional spacelike
hypersurface, which can also naturally be represented as surface integral at flat spatial
infinity .

It is also interesting to give insight into other Hamiltonian formulations of GR,
because those are closely related to the ADM approach but differently posed. Slightly
ahead of ADM, Dirac (1958, 1959) had developed a Hamiltonian formalism for GR,
and slightly afterwards, Schwinger (1963a, b). Schwinger’s approach starts from
tetrad representation of GR and ends up with a different set of canonical variables
and, related herewith, different coordinate conditions. Dirac has developed his
approach with some loose ends toward the final Hamiltonian (see Sect. 2.1 below and
also, e.g., Deser 2004), but the coordinate conditions introduced by him—nowadays
called Dirac gauge—are often used, mainly in numerical relativity. A subtle problem
in all Hamiltonian formulations of GR is the correct treatment of surface terms at
spacelike infinity which appear in the asymptotically flat spacetimes. In 1967, this
problem has been clearly addressed by DeWitt (1967) and later, in 1974, full
clarification has been achieved by Regge and Teitelboim (1974). For a short
comparison of the three canonical formalisms in question, the Dirac, ADM, and
Schwinger ones, see Schifer (2014).

The first authors who had given the Hamiltonian as two-dimensional surface
integral at i° on three-dimensional spacelike hypersurfaces were ADM. Of course,
the representation of the total energy as surface integral was known before,
particularly through the Landau-Lifshitz gravitational stress-energy-pseudotensor
approach. Schwinger followed the spirit of ADM. He was fully aware of the
correctness of his specific calculations modulo surface terms only which finally
became fixed by asymptotic Lorentz invariance considerations. He presented the
Hamiltonian (as well as the other generators of the Lorentz group) as two-
dimensional surface integrals. Only one application of the Schwinger approach by
somebody else than Schwinger himself is known to the authors (apart from Faddeev
1982 who presented Einstein’s theory of gravitation in the Schwinger canonical
variables). It is the paper by Kibble in 1963 in which the Dirac spin-1/2 field found a
canonical treatment within GR (Kibble 1963). This paper played a crucial role in the
implementation of classical spin into the ADM framework by Steinhoff and Schéafer
(2009a) and Steinhoff (2011) (details can be found in Sect. 7 of the present article).

The ADM formalism is the most often used Hamiltonian framework in the
analytical treatment of the problem of motion of gravitating compact objects. The
main reason for this is surely the very well adapted coordinate conditions for explicit
calculations introduced by Arnowitt et al. (1960c) (generalized isotropic coordinates;
nowadays, for short, often called ADMTT coordinates, albeit the other coordinates
introduced by Armowitt et al. 1962, are ADMTT too), though also in Schwinger’s
approach similar efficient coordinate conditions could have been introduced (Schéfer
2014). Already Kimura (1961) started application of the ADM formalism to
gravitating point masses at the 1PN level. In 1974, that research activity culminated
in a 2PN Hamiltonian for binary point masses obtained by Ohta et al. (1974a, b),
based on earlier work by Hiida and Okamura (1972). However, one coefficient of
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their Hamiltonian was not correctly calculated and the Hamiltonian as such was not
clearly identified, i.e., it was not clear to which coordinate system it referred to. In
1985, full clarification has been achieved in a paper by Damour and Schéfer (1985)
relying on the observation by Schifer (1984) that the perturbative use of the
equations of motion on the action level implies that coordinate transformations have
been applied; also see Barker and O’Connell (1984, 1986). In addition, Damour and
Schiifer (1985) showed how to correctly compute the delicate integral (UTT) which
had been incorrectly evaluated by Hiida and Okamura (1972), Ohta et al. (1974a, b),
and made contact with the first fully correct calculation of the 2PN dynamics of
binary systems (in harmonic coordinates) by Damour and Deruelle (1981), Damour
(1982) in 1981-1982. The 2PN periastron advance for binary systems has been
obtained for the first time by Damour and Schéfer (1987); generalized by adding to it
the effect of the leading-order spin-orbit coupling, in 1988 (Damour and Schéfer
1988).

In Schéfer (1983b), the leading-order 2.5PN radiation reaction force for n-body
systems was derived by using the ADM formalism. The same force expression had
already been obtained earlier by Schifer (1982) within coordinate conditions closely
related to the ADM ones—actually identical with the ADM conditions through 1PN
and at 2.5PN order—and then again by Schéifer (1983a), as quoted in Poisson and
Will (2014), based on a different approach but in coordinates identical to the ADM
ones at 2.5PN order. The 2PN Hamiltonian shown by Schifer (1982) and taken
from Ohta et al. (1974b), apart from the erroneous coefficient mentioned above, is the
ADM one as discussed above (the factor 7 in the static part therein has to be replaced
by 5), and in the definition of the reaction force in the centre-of-mass system, a
misprinted factor 2 is missing, i.e. 2F = F; — F,. The detailed calculations were
presented in Schéfer (1985); and in Schifer (1986), a further ADM-based derivation
by use of a PM approximation scheme has been performed. At 2PN level, the
genuine 3-body potential was derived by Schéfer (1987). However, in the reduction
of a 4-body potential derived by Ohta et al. (1973, 1974a, b) to three bodies made
by Schéfer (1987) some combinatorical shortcomings slept in, which were identified
and corrected by Lousto and Nakano (2008), and later by Galaviz and Briigmann
(2011) in different form. The n-body 3.5PN non-autonomous radiation reaction
Hamiltonian' was obtained by the authors in Jaranowski and Schifer (1997),
confirming energy balance results in Blanchet and Schéfer (1989), and the equations
of motion out of it were derived by Konigsdorfter et al. (2003).

Additionally within the ADM formalism, for the first time in 2001, the
conservative 3PN dynamics for compact binaries has been fully obtained by
Damour and the authors, by also for the first time making extensive use of the
dimensional regularization technique® (Damour et al. 2001) (for an earlier
mentioning of application of dimensional regularization to classical point particles,
see Damour 1980, 1983a; and for an earlier n-body static result, i.e. a result valid for

' In such a particle Hamiltonian, the field degrees of freedom are treated as independent from the particle
variables, rendering the particle Hamiltonian an explicit function of time.

2 Dimensional regularization was originally introduced by Bollini and Giambiagi (1972a, b) and ’t Hooft
and Veltman (1972).
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vanishing particle momenta and vanishing reduced canonical variables of the
gravitational field, not based on dimensional regularization, see Kimura and Toiya
1972). Only by performing all calculations in a d-dimensional space the regular-
ization has worked out fully consistently in the limit d — 3 (later on, a d-dimensional
Riesz kernel calculation has been performed too, Damour et al. 2008a). In purely 3-
dimensional space computations two coefficients, denoted by @xinetic and gagic,
could not be determined by analytical three-dimensional regularization. The
coefficient wyinetic Was shown to be fixable by insisting on global Lorentz invariance
and became thus calculable with the aid of the Poincaré algebra (with value 41/24)
(Damour et al. 2000c, d).3 The first evaluation of the value of gy (namely
Wstatic = 0) was obtained by Jaranowski and Schafer (1999, 2000b) by assuming a
matching with the Brill-Lindquist initial-value configuration of two black holes. The
correctness of this value (and thereby the usefulness of considering that the Brill-
Lindquist initial-value data represent a relevant configuration of two black holes) was
later confirmed by dimensional regularization (Damour et al. 2001). Explicit
analytical solutions for the motion of compact binaries through 2PN order were
derived by Damour and Schéfer (1988) and Schéfer and Wex (1993b, c), and through
3PN order by Memmesheimer et al. (2005), extending the seminal 1PN post-
Keplerian parametrization proposed by Damour and Deruelle (1985).

Quite recently, the 4PN binary dynamics has been successfully derived, using
dimensional regularization and sophisticated far-zone matching (Jaranowski and
Schéfer 2012, 2013; Damour et al. 2014; Jaranowski and Schifer 2015). Let us
remark in this respect that the linear in G (Newtonian gravitational constant) part can
be deduced to all PN orders from the 1PM Hamiltonian derived by Ledvinka et al.
(2008). For the first time, the contributions to 4PN Hamiltonian were obtained by the
authors in Jaranowski and Schifer (2012) through G? order, including additionally all
log-terms at 4PN going up to the order G°. Also the related energy along circular
orbits was obtained as function of orbital frequency. The application of the Poincaré
algebra by Jaranowski and Schéfer (2012) clearly needed the noncentre-of-mass
Hamiltonian, though only the centre-of-mass one was published. By Jaranowski and
Schifer (2013), all terms became calculated with the exception of terms in the
Hamiltonian linear in the symmetric mass ratio v = mymy/(m; + m2)2 (where m;
and m, denote the masses of binary system components) and of the orders G°, G*,
and G°. Those terms are just adding up to the log-terms mentioned above. However,
taking a numerical self-force solution for circular orbits in the Schwarzschild metric
into account, already the innermost (or last) stable circular orbit could be determined
numerically through 4PN order by Jaranowski and Schéfer (2013).

The computations by Jaranowski and Schifer (2012, 2013, 2015) are all based on
a straightforward use of the PN expansion, and are thereby a priori only valid in the

3 L. Blanchet (private communication) and P. Bizon and A. Staruszkiewicz (private communication)
suggested to the authors of Damour et al. (2000d) that the coefficient wyinetic Should be fixable by insisting
on global Lorentz invariance. It found explicit verification by Jaranowski and Schéfer (2000b). L. Blanchet
had obtained the analytical value of wginetic and communicated the three-digit approximate value 1.71 of
Wxinetic before completion of Damour et al. (2000d). Derivation of @ginetic in harmonic coordinates
by Blanchet and Faye (2000b, 2001a) crucially relies on the extended Hadamard regularization method,
see Sect. 4.3 below.
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near zone. The formal extension of the 4PN-level near-zone computation to the full
space implies the appearance of infrared (IR) divergences (linked to the formal limit
r — o0). The regularization of these IR divergences is unambiguous, except for a
single 4PN-level ambiguity coefficient, denoted by C in Damour et al. (2014), linked
to the arbitrariness in the IR regulator scale s entering within a logarithm (see
Eq. (3.7) in Damour et al. 2014). The value of C (C = —1681/1536) was, however,
uniquely determined in Damour et al. (2014) by combining several other previous
results: (1) the understanding that the IR effect responsible for this logarithmic
ambiguity was in precise agreement with a nonlocal 4PN tail effect discovered long
ago Blanchet and Damour (1988)—and recovered within the ADM formalism
by Damour et al. (2016); (2) the “first law of binary black-hole mechanics”
by Le Tiec et al. (2012) allowing one to link the energy-angular-momentum function
E(j, v) to the redshift along circular orbits; and, most importantly from the conceptual
point of view, (3) a computation, at first order in the symmetric mass ratio v, of the
redshift by Bini and Damour (2013), obtained by using an analytical representation
of the (linear in v) metric perturbation in terms of series of hypergeometric functions
(Mano et al. 1996). The crucial point is that the latter analytical representation
incorporated a precise matching between the near-zone metric and the far-zone one,
thereby providing the “beyond-PN” information needed for the analytical determi-
nation of the value of C. Previous results obtained by Le Tiec et al. (2012)
and Barausse et al. (2012a), based on numerical self-force computations (Blanchet
et al. 2010b), had given an approximate numerical knowledge of a PN expansion
coefficient equivalent to the knowledge of C. Applications of 4PN Hamiltonian
dynamics for bound and unbound orbits were performed by Damour et al.
(2015), Bini and Damour (2017).

For spinning bodies, counting spin as 0.5PN effect, the 1.5PN spin-orbit and 2PN
spin-spin Hamiltonians were derived by Barker and O’Connell (1975, 1979), where
the given quadrupole-moment-dependent part can be regarded as representing spin-
squared terms for extended bodies (notice the presence of the tensor product of two
unit vectors pointing each to the spin direction in the quadrupole-moment-dependent
Hamiltonians). For an observationally important application of the spin-orbit
dynamics, see Damour and Schifer (1988). In 2008, the 2.5PN spin-orbit
Hamiltonian was successfully calculated by Damour et al. (2008c), and the 3PN
spinl-spin2 and spinl-spinl binary black-hole Hamiltonians by Steinhoff et al.
(2008a, b, c). The 3PN spinl-spinl Hamiltonian for binary neutron stars was
obtained by Hergt et al. (2010). The 3.5PN spin-orbit and 4PN spinl-spin2
Hamiltonians were obtained by Hartung and Steinhoff (2011a, b) (also see Hartung
et al. 2013 and Levi and Steinhoff 2014). The 4PN spinl-spinl Hamiltonian was
presented in Levi and Steinhoff (2021). Based on the Dirac approach, the
Hamiltonian of a spinning test-particle in the Kerr metric has been obtained
by Barausse et al. (2009, 2012b). The canonical Hamiltonian for an extended test
body in curved spacetime, to quadratic order in spin, was derived by Vines et al.
(2016). Finally, the radiation-reaction Hamiltonians from the leading-order spin-orbit
and spinl-spin2 couplings have been derived by Steinhoff and Wang (2010)
and Wang et al. (2011).
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1.3 More recent history on non-Hamiltonian results

At the 2PN level of the equations of motion, the Polish school founded by Infeld
succeeded in getting many expressions whereby the most advanced result was
obtained by Ryten (1961) in her MSc thesis from 1961 using as model for the source
of the gravitational field Infeld’s “good d-function”. Using the same source model as
applied by Fock and Petrova, Kopeikin (1985) and Grishchuk and Kopeikin (1986)
derived the 2PN and 2.5PN equations of motion for compact binaries. However,
already in 1982, Damour and Deruelle had obtained the 2PN and 2.5PN equations of
motion for compact binaries, using analytic regularization techniques (Damour
1982, 1983a, b) (for another such derivation see Blanchet et al. 1998, who
additionally got the metric coefficients at the 2.5PN accuracy). Also Ohta and
Kimura (1988) should be mentioned for a Fokker action derivation of the 2PN
dynamics. Regarding the coordinate conditions used in the papers quoted in the
present subsection, treating spinless particles, all are based on the harmonic gauge
with the exceptions of the ones with a Hamiltonian background and those by Ryten
or Ohta and Kimura.

The two-point-mass equations of motion at 3PN order in harmonic coordinates
were obtained complete with the exception of one parameter called A (equivalent to
Wstatic, €€ above) by Blanchet and Faye (2000a, b) (see also de Andrade et al. 2001
and Blanchet and Iyer 2003). The derivation used the modified version of the
Hadamard regularization called the extended Hadamard regularization (Blanchet and
Faye 2001a, b, see Sect. 4.3 of our review for more details). This regularization was
not able to resolve the problem of the ambiguity parameter /, but gives a final result
physically equivalent to that of dimensional regularization, except for the unknown
value of this parameter. Using the technique of Einstein, Infeld, and Hoffmann (EIH),
Itoh and Futamase (2003) and Itoh (2004) succeeded in deriving the 3PN equations
of motion for compact binaries, and Blanchet et al. (2004) derived the same 3PN
equations of motion based on dimensional regularization.

The 3.5PN equations of motion were derived within several independent
approaches: by Pati and Will (2002) using the method of direct integration of the
relaxed Einstein equations (DIRE) developed by Pati and Will (2000), Nissanke and
Blanchet (2005) applying Hadamard self-field regularization, by Itoh (2009) using
the EIH technique, and by Galley and Leibovich (2012) within the effective field
theory (EFT) approach. Radiation recoil effects, starting at 3.5PN order, have been
discussed by Bekenstein (1973), Fitchett (1983), Junker and Schéfer (1992), Kidder
(1995), Blanchet et al. (2005).

Bernard et al. (2016) calculated the 4PN Fokker action for binary point-mass
systems and found a nonlocal-in-time Lagrangian inequivalent to the Hamiltonian
obtained by Damour et al. (2014). On the one hand, the local part of the result
of Bernard et al. (2016) differed from the local part of the Hamiltonian of Damour
et al. (2014) only in a few terms. On the other hand, though the nonlocal-in-time part
of the action in Bernard et al. (2016) was the same as the one in Damour et al.
(2014, 2015), Bernard et al. (2016) advocated to treat it (notably for deriving the
conserved energy, and deriving its link with the orbital frequency) in a way which
was inequivalent to the one in Damour et al. (2014, 2015). It was then shown
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by Damour et al. (2016) that: (i) the treatment of the nonlocal-in-time part in Bernard
et al. (2016) was not correct, and that (ii) the difference in local-in-time terms was
composed of a combination of gauge terms and of a new ambiguity structure which
could be fixed either by matching to Damour et al. (2014, 2015) or by using the
results of self-force calculations in the Schwarzschild metric. In their recent articles
(Bernard et al. 2017a, b) Blanchet and collaborators have recognized that the
criticisms of Damour et al. (2016) were founded, and, after correcting their previous
claims and using results on periastron precession first derived by Damour et al.
(2015, 2016), have obtained full equivalence with the earlier derived ADM results.
Let us emphasize that Marchand et al. (2018) (also see Bernard et al. 2017a) have
presented the first self-contained calculation of the full 4PN dynamics (not making
any use of self-force results), which confirms again the correctness of the 4PN
dynamics first obtained by Damour et al. (2014). That calculation is based on
asymptotic expansion of the radiative gravitational field in d dimensions with
matching equations to be regularized first analytically and then dimensionally. An
application of the 4PN dynamics for bound orbits was performed by Bernard et al.
(2017b).

The application of EFT approach to PN calculations, devised by Goldberger and
Rothstein (2006a, b), has also resulted in PN equations of motion for spinless
particles up to the 3PN order (Gilmore and Ross 2008; Kol and Smolkin 2009; Foffa
and Sturani 2011). At the 4PN level, Foffa and Sturani (2013a) calculated a quadratic
in G higher-order Lagrangian, the published version of which was found in
agreement with Jaranowski and Schéfer (2012). The quintic in G part of the 4PN
Lagrangian was derived within the EFT approach by Foffa et al. (2017) (with its
2016 arXiv version corrected by Damour and Jaranowski 2017). Galley et al. (2016)
got the 4PN nonlocal-in-time tail part. Then Porto and Rothstein (2017) and Porto
(2017) performed a deeper analysis of IR divergences in PN expansions.
Recently, Foffa and Sturani (2019) and Foffa et al. (2019b) succeeded for the first
time with a purely d-dimensional derivation of the 4PN dynamics, without use of any
additional regularizations. This again shows the power of dimensional regularization
in PN calculations, which have been established for the first time at 3PN order
by Damour et al. (2001).

The 1.5PN spin-orbit dynamics was derived in Lagrangian form by Tulczyjew
(1959) and Damour (1982). The 2PN spin-spin equations of motion were derived
by D’Eath (1975a, b), and Thorne and Hartle (1985), respectively, for rotating black
holes. The 2.5PN spin-orbit dynamics was successfully tackled by Tagoshi et al.
(2001), and Faye et al. (2006), using harmonic coordinates approach. Within the EFT
approach, Porto (2010) and Levi (2010a) succeeded in determining the same
coupling (also see Perrodin 2011). The 3PN spinl-spin2 dynamics was successfully
tackled by Porto and Rothstein (2008b, 2010b) (based on Porto 2006; Porto and
Rothstein 2006) and by Levi (2010b), and the 3PN spinl-spinl one, again by Porto
and Rothstein (2008a), but given in 2010 only in fully correct form (Porto and
Rothstein 2010a). For the 3PN spinl-spinl dynamics, also see Bohé et al. (2015).
The most advanced results for spinning binaries can be found in Levi (2012), Marsat
et al. (2013), Bohé et al. (2013), Marsat (2015), Levi and Steinhoff (2016a, b, 2021),
reaching 3.5PN and 4PN levels (also see Steinhoff 2017). Finally, the radiation-
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reaction dynamics of the leading-order spin-orbit and spinl-spin2 couplings have
been obtained by Wang and Will (2007) and Zeng and Will (2007), based on the
DIRE method (Will 2005) (see also Maia et al. 2017a, b, where the EFT method
became applied). For a review of spin effects in the radiation field, see Blanchet
(2014).

1.4 Most recent history since 2019

The year 2019 can be regarded as the beginning of the epoch of the calculation of
conservative PN approximations beyond 4PN. These calculations have been
dominated by the EFT approach in the treatment of the gravitational field, working
with Lagrangians and action functionals based on harmonic coordinates. Only at the
end of the field calculations, having at hand effective Lagrangians and actions for the
matter sources, the transition to effective Hamiltonians for the particles takes place.
Hereof the effective EOB Hamiltonians can be constructed which are extremely
useful objects for applications and comparisons of different approaches. Bound
binary systems were the first to be addressed at SPN with calculations of static
potential contributions by Foffa et al. (2019a) and Bliimlein et al. (2020a). Bliimlein
et al. (2020b) checked their approach by calculating the complete 4PN Hamiltonian
for the binary dynamics.

For the calculation of binary dynamics at SPN and beyond a new strategy was
devised by Bini et al. (2019), later coined “tutti frutti” (TF) approach (Bini et al.
2021). This strategy combines various analytical approximation methods: PN (post-
Newtonian), PM (post-Minkowskian), MPM (multipolar post-Minkowskian), EFT
(effevtive field theory), SF (gravitational self force), EOB (effective one body), and
Delaunay averaging. Binary Hamiltonians at SPN order have been derived by Bini
et al. (2020a) and by Blimlein et al. (2021b, 2022b). Up to three rational numbers,
the results do agree. Details are given in Sect. 6.3.3. The TF approch has become
leading through the 6PN order presenting almost complete (with 4 coefficients still
unknown) 6PN effective EOB Hamiltonian (Bini et al. 2020b, ¢, 2021); also
see Bliimlein et al. (2021a, 2020c¢). In Sect. 6.3.5, PN-knowledge through 6PN order
can be found.

Based on the PM approach, scattering calculations became more and more
important in the determination of the binary Hamiltonian. Here, a new powerful
approach entered, based on advanced calculations of scattering amplitudes using
generalized unitarity, double-copy construction, eikonal resummation, and advanced
multiloop integration methods, in the beginning resulting straight with an ordinary
centre-of-mass 2PM binary Hamiltonian in isotropic gauge (isotropic coordinates for
the canonical momentum) (Cheung et al. 2018), followed by the first computation of
the 3PM two-body Hamiltonian in Bern et al. (2019a, b); also see Kilin et al.
(2020a), using standard EFT techniques. Quite recently, the 4PM binary Hamiltonian
became available, see Bern et al. (2021a, 2022); also see Dlapa et al. (2022a, b).
Evidently, the nPM-order level controls all terms in the corresponding PN
approximation through (n — 1)PN order. Binary scattering is usually treated in the
action language, so Hamiltonians are close by. The problem is to make sure that the
PN parts of the straightforwardly obtained PM Hamiltonians are a priori applicable to

@ Springer



Hamiltonian formulation of GR and PN dynamics of compact binaries Page 13 of 139 2

bound binary systems because of different boundary conditions, see, e.g., Kélin et al.
(2020a).

Recently, the NNNLO quadratic-in-spin (Mandal et al. 2023a; Kim et al. 2023a),
the NLO cubic-in-spin (Levi et al. 2021b, 2023), as well as the quartic-in-spin NLO
(Levi and Teng 2021; Levi and Yin 2023) Hamiltonians were derived; also the spin-
orbit gravitational couplings got obtained through the NNNLO level (Antonelli et al.
2020; Levi et al. 2021a; Mandal et al. 2023b; Kim et al. 2023b), all based on EFT
methods. The complete Hamiltonian for spinning binary systems at |PM order, exact
to all orders in momentum and spin expansions, was derived in Chung et al. (2020)
(also see Lee and Lee 2023 for comparison of Chung et al. 2020 with other results).
At the 2PM order, binary dynamics through the fifth power of spin was considered
in Bern et al. (2023).

Regarding tidal interactions, Hamiltonians through NNLO post-Newtonian
(Henry et al. 2020a, b) and NLO post-Minkowskian (Cheung and Solon 2020;
Kilin et al. 2020b) order corrections are available, again based on EFT (see also Bern
etal. 2021b). The Wilson coefficients for rotational deformations, our Cy,, are called

Cg)s)z by Mandal et al. (2023a) and for tidal ones, C<E22>, CI(EOZ)SZ'
coefficient starts at the 2PN level [i.e. at O(c2c" ') = O(c™*), where spins are
counted of order O(c!)], whereas tidal coefficients enter from NNNLO on [i.e. at
O((c2)’c2¢71e™t) = O(c 1), what corresponds to the 5PN level]. Relativistic
theory of tidal Love numbers was presented in Binnington and Poisson (2009); in a
post-Newtonian setting, including Hamiltonian constructions, the leading-order
relativistic theory of tides has been developed by Vines and Flanagan (2013).
Effective one-body description of tidal effects was given in Damour and Nagar
(2010); dynamical tides in general relativity were treated in Steinhoff et al. (2016).
More details on tidal interactions can be found in Sect. 8.

The rotational

1.5 Notation and conventions

In this article, Latin indices from the mid alphabet are running from 1 to 3 (or d for an
arbitrary number of space dimensions), Greek indices are running from 0 to 3 (or d
for arbitrary space dimensions), whereby x° =ct. We denote by x = (x)
@i€{l,...,d}) a point in the d-dimensional Euclidean space R? endowed with a
standard Euclidean metric defining a scalar product (denoted by a dot). For any
spatial d-dimensional vector w = (w') we define |[w| = W -w = /d;w'w, so | - |
stands here for the Euclidean length of a vector, J;; = 5} denotes Kronecker delta.
The partial differentiation with respect to x* is denoted by 0, or by a comma, i.e.,
0u¢ = ¢ ,,, and the partial derivative with respect to time coordinates 7 is denoted by

0; or by an overdot, 0;¢p = (j) The covariant differentiation is generally denoted by
V, but we may also write V,(-) = (-), for spacetime or V;(-) = (-), for space
variables, respectively. The signature of the (d + 1)-dimensional metric g, is
+(d — 1). The Einstein summation convention is adopted. The speed of light is

denoted by ¢ and G is the Newtonian gravitational constant.
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We use the notion of a fensor density. The components of a tensor density of
weight w, k times contravariant and / times covariant, transform, when one changes
one coordinate system to another, by the law [see, e.g., p. 501 in Misner et al. (1973)
or, for more general case, Sects. 3.7-3.9 and 4.5 in Plebanski and Krasinski (2006),
where however definition of the density weight differs by sign from the convention
used by us; note the primed notation is on the indices, not on the main symbol]

o w ) ,
Ty = (ax> Xy g T (1.6)

where (0x'/0x) is the Jacobian of the transformation x — x’(x). For example,
determinant of the metric g = det(g,,) is a scalar density of weight +2. The
covariant derivative of the tensor density of weight w, k times contravariant and /
times covariant, is computed according to the rule

OO oclmock 001 .0
Vil =0T g — I Tp

0 1Pt Tk
Zrﬂ 77 BB Zrﬂﬂ BywpjeeBr (17)

For the often used case when 7 " = |g v/ 2T 55 (where Tj!¢t is a tensor k times

contravariant and / times covariant), Eq. (1.7) 1mp11es that the covariant derivative of
T ;17{[ can be computed by means of the rule,

VT = To i Valgl ™ + g, T = g, TR (18)
because
Vilel"? = oyl —w Jel" = 0. (19)

Letters a, b (a,b = 1,2) are particle labels, so x, = (x/,) € R? denotes the position of
the ath point mass. We also define r, = x — X,, 1, = |r,|, n, = r,/r,; and for a # b,
Yup = Xy — Xp, Tap = |Yapl|, Nap = Yap/rap. The linear momentum vector of the ath
particle is denoted by p, = (p.), and m, denotes its mass parameter. We abbreviate
Dirac delta distribution d(x — x,) by J, (both in d and in 3 dimensions); it fulfills the
condition [d’xd, = 1.

Thinking in terms of dimensions of space, d has to be an integer, but whenever
integrals within dimensional regularization get performed, we allow d to become an
arbitrary complex number [like in the analytic continuation of factorial n! =
I'(n+1) to I'(z)]. A thorough introduction to dimensional regularization can be
found in Chapter 4 of Collins (1984).

2 Hamiltonian formalisms of GR

The presented Hamiltonian formalisms do all rely on a (3 + 1) splitting of spacetime
metric g, in the following form:
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ds* = gudx'dx’ = —(Nedr)? + y,(d' + N'e dr) (& + Ne d), 2.1)
where
Vi =8 N= (_goo)—1/27 N'=9/N; with N; = g, (2.2)

here 77 is the inverse metric of Vi (ay¥ = (3?), 7 = det(y;); lowering and raising of
spatial indices is with y;. The splitting (2.1), and the associated explicit 3+1
decomposition of Einstein’s equations, was first introduced by Fourés-Bruhat (1956).
The notations N and N’ are due to Arnowitt et al. (1962) and their names, respec-
tively “lapse” and “shift” functions, are due to Wheeler (1964). Let us note the useful
relation between the determinants g = det(g,,) and y:

g=—N?y. (2.3)

We restrict ourselves to consider only asymptotically flat spacetimes and we employ
quasi-Cartesian coordinate systems (t,x') which are characterized by the following
asymptotic spacelike behaviour (i.e., in the limit » — oo with r = Vxix' and t =
const) of the metric coefficients:

N=1+0(1/r), N =0(1/r), p;=25;+0(1/r), (2.4)

Ni=0(1/r?), N;=0(01/r), v =001/r). (2.5)

DeWitt (1967) and later, in a more refined way, Regge and Teitelboim (1974)
explicitly showed that the Hamiltonian which generates all Einsteinian field equa-
tions can be put into the form,

Hlyy,n? N N' g mq) = / d*x (NH — ¢N'H,)

C4

* @j{ dSi 0 (v — 0y (2.6)

0

wherein N and N’ operate as Lagrangian multipliers and where H and H; are
Hamiltonian and momentum densities, respectively; i denotes spacelike flat infinity.
They depend on matter canonical variables ¢*,m, (through matter Hamiltonian
density H,, and matter momentum density H,;) and read

4
_ ¢ 172 1 7 1,
H:%[—/ R+m(“/ik/jlnyn 37 )] + Hum, 2.7)
&3
872G
where R is the intrinsic curvature scalar of the spacelike hypersurfaces of constant-in-
time slices ¢ = x°/c = const; the ADM canonical field momentum is given by the

H[ = ijvknjk + Hmi’ (28)

. 3 i
density &=, where
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;= =2 (Ky — Ky;), (2.9)

with K = 77K}, where K;; = —NT'y, is the extrinsic curvature of # = const slices, Iy
denote Christoffel symbols; 7 = y,-jn” ; Vi denotes the three-dimensional covariant
derivative (with respect to y;). The given densities are densities of weight one with

respect to three-dimensional coordinate transformations. Let us note the useful for-
mula for the density of the three-dimensional scalar curvature of the surface # = const:

\/§R — Z \/";((’/U“/lm _ "/llylm)“/kn + 2(Vzlykm _ “/lk lm)“/”)yij,kylm,n
4o (y*l/zaj(yy”)). (2.10)

The matter densities H,, and H,, are computed from components of the matter
energy-momentum tensor 7*” by means of formulae

Hu = /7 T nyn, = /yN*TY, (2.11)
Huni = =7 Tf'ny = JINTY, (2.12)

where n, = (=N, 0,0,0) is the timelike unit covector orthogonal to the spacelike
hypersurfaces ¢ = const. Opposite to what the right-hand sides of Egs. (2.11)—(2.12)
seem to suggest, the matter densities must be independent on lapse N and shift N’ and
expressible in terms of the dynamical matter and field variables ¢?, m, 7; only (n¥
does not show up for matter which is minimally coupled to the gravitational field).
The variation of (2.6) with respect to N and N’ yields the constraint equations

H=0 and H;=0. (2.13)

The most often applied Hamiltonian formalism employs the following coordinate
choice made by ADM (which we call ADMTT gauge),

il =0, 36,-;)47 — E)iyjj =0 or y;= Vo + hUT»T, (2.14)

where the TT piece /' is transverse and traceless, i.c., it satisfies ajhgT =0 and

hiT = 0. The TT piece of any field function can be computed by means of the TT
projection operator defined as follows

S5 %(Pilpjk + PyPy — PuPy), Py=6;—0:0;47", (2.15)
where 47! denotes the inverse of the flat space Laplacian, which is taken without
homogeneous solutions for source terms decaying fast enough at infinity (in 3-
dimensional or, if not, then in generalized d-dimensional space). The nonlocality of
the TT-operator 5;“‘1 is just the gravitational analogue of the well-known nonlocality
of the Coulomb gauge in the electrodynamics.

Taking into account its gauge condition as given in Eq. (2.14), the field

momentum { gZG n/ can be split into its longitudinal and TT parts, respectively,
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nl =& 4 1, (2.16)

where the TT part 7, fulfills the conditions ajﬂT =0 and 7%, = 0 and where the
longitudinal part 77 can be expressed in terms of a vectorial function V7,

.. . 2
7 :aiV/+6jV’f§5U6ka. (2.17)

It is also convenient to parametrize the field function  from Eq. (2.14) in the
following way

Y= <1+%¢>>4. (2.18)

The independent field variables are n% and h;T Already Kimura (1961) used just

this presentation for applications. The Poisson bracket for the independent degrees of
freedom reads

(F(x), Gly)} = 279 / d3z{;hl;(’(2) <5§Tk1(z) IG(y) )

c3 onkl(z)

oG OF (x
mres)) o

where 0F(x)/(0f (z)) denotes the functional (or Fréchet) derivative. ADM gave the
Hamiltonian in fully reduced form, i.e., after having applied (four) constraint
equations (2.13) and (four) coordinate conditions (2.14). It reads

i ct
Hyealhy," wls ¢ 4] = %ﬁ dSi 0i(vy — 0yym)

C4

~ 167G

/ &x0:0,(y; — Syvu)- (2.20)

The reduced Hamiltonian generates the field equations of the two remaining metric
coefficients (eight metric coefficients are determined by the four constraint equations
and four coordinate conditions combined with four otherwise degenerate field
equations for the lapse and shift functions). By making use of (2.18) the reduced
Hamiltonian (2.20) can be written as

&x AGT mhrs g ). (2.21)

Hred[h;Tvnq;T;qunA] = [/

_c
167G
2.1 Hamiltonian formalisms of Dirac and Schwinger

Dirac had chosen the following coordinate system, called “maximal slicing” because
of the field momentum condition,

n=yp;n’ =0, o, (y'3y") = 0. (2.22)
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The reason for calling the condition © = 2Ky'/? = 0 “maximal slicing” is because
the congruence of the timelike unit vectors #* normal to the ¢ = const hypersurfaces
(slices)—as such irrotational—is free of expansion (notice that V,n* = —K). Hereof
it immediately follows that a finite volume in any slice gets unchanged by a small
timelike deformation of the slice which vanishes on the boundary of the volume, i.e.
an extremum principle holds (see, e.g., York 1979). The corresponding independent
field variables are (no implementation of the three differential conditions!)

i L, . _
# = (= )y, gy =Py, (223)

with the algebraic properties yijﬁi’ = 0 and det(g;) = 1. To leading order linear in the
metric functions, the Dirac gauge coincides with the ADM gauge. The reduction of
the Dirac form of dynamics to the independent tilded degrees of freedom has been
performed by Regge and Teitelboim (1974), including a fully satisfactory derivation
of the Hamiltonian introduced by Dirac. The Poisson bracket for the Dirac variables
reads

mG 5. L 5 (3FX) 3G _ 9G(y) OF (v
{F(x),G /d {5 ( () 07k (z)  0g,(z) 5nk’(z)>
oG

+§ (P @) - @) oo

—~

2!1
N/\
—
N=
H/—’
—
[\
[\
~
=

with
~ 1 o ;
% =5 (5"5’ +007) —38,8% &=y, gt = (2.25)

The Hamiltonian proposed by Dirac results from the expression

4
.. . C
Hyls. 7 = | & "H,
D[glj7n 7qA7nA] /d i 167G

which itself results from Eq. (2.6) under imposing the Hamiltonian constraint H = 0
[see Eq. (2.13)] as identity, replacing in (2.6) the surface term with another but
equivalent surface term, and implementing the Dirac variables from Eq. (2.23),
which are the independent variables under the maximal slicing condition. The further
reduction, the one with implementing the coordinate conditions on the hypersurfaces,
goes via the Dirac brackets as follows.

The fixation of the coordinates in the hypersurface through ;g7 = 0 results in
Dirac brackets in phase space of the form (Dirac 1959)

(F(x),Gy)}p = {F(x),G(y)} + / &z / ¢ Cl(n,7)
x ({F(x), " @) {1(2), G} — {F ), 1(2) H{ag" (), 6 }),

(2.27)

x0 (7 2(m),  (2.26)
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where the matrix C’,(z,7') is defined by
/d3z’ C (2" 7){(H)(Z), " (2)} = "5(z —2"). (2.28)
It obeys the differential equation
&7 (x)0;0,C" (¥, x) + %g"k(x)aka,cfn(x’, x) = 8" 5(x — x'). (2.29)

When using Dirac brackets the momentum constraint reads [see Eq. (2.13)]
3

Hi=o G(n" 3Gy — 204(7*g;)) + Hui = 0, (2.30)

and the corresponding coordinate conditions 9;¢7 = 0 can be treated as strong
equations, because for an arbitrary functional F’

{F,H;}, =0, {F,9g"},=0. (2.31)

Thus, applying Dirac brackets,

~  ~f C4 _ i
HD[g[j7 njqu7TCA] = - 167TG/ d3x a,('}) l/zaj(y2/3gj)) (232)

holds.

For the determination of the surface term in Eq. (2.32) only the determinant y of
the metric must be expressed by independent field variables (2.23). This can be done
through the differential equation

c* ¢t | 6
~ Gg’@@rc Ton G(ngfgk]n 7 +B) + Hm, K> =7, (2.33)

resulting from the Hamiltonian constraint, first equation in Eq. (2.13), with

B = 1k(08,)(02,)8" ("8 —28"¢") ~ 2 (@m@. (234

Schwinger proposed still another set of canonical field variables (¢7, IT;;), for which

the Hamiltonian and momentum densities have the form

C4 1 0 kla mn
167'CG Y b q4imOmq Orq

- Eqklak In(g"/*)3/In(q'?) + 0:dyq” + ¢ " Iy ITxs — (qijﬂij)z) + Hom,

-1/2 ( 1 qmnamqklanqkl

(2.35)

C3 i . )
Hy =1 (= 0" +8,2M10g") = 0 (20ing™) ) + Hu,  (236)
where I1; = —y'(ny —Lny,), ¢" =17, g =7 Schwinger’s canonical field
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momentum %H,; is just 16“;0 y~1/2K;;. The Poisson bracket for the Schwinger

variables does have the same structure as the one for the ADM variables. The
Schwinger’s reduced Hamiltonian has the form

b - Vo
Ho= —— O.gl =
s 16nG7i{o d5: 0 167G

If Schwinger had chosen coordinate conditions corresponding to those introduced
above in Eq. (2.14) (ADM also introduced another set of coordinate conditions to
which Schwinger adjusted), namely

a similar simple technical formalism convenient for practical calculations would have

resulted with the independent field variables H;T and fT”T To our best knowledge,
only the paper by Kibble (1963) delivers an application of Schwinger’s formalism,
apart from Schwinger himself, namely a Hamiltonian formulation of the Dirac spinor
field in gravity. Much later, Nelson and Teitelboim (1978) completed the same task
within the tetrad-generalized Dirac formalism (Dirac 1962).

Notice that the Dirac Hamiltonian (2.32) shows first derivatives of the metric
coefficients only, plugging in the Hamiltonian constraint. The same holds with the
Hamiltonian proposed by Schwinger, see Eq. (2.37) and the Eq. (2.35) on-shell, i.e.
after application of the Hamiltonian constraint. The Hamiltonians (2.20), (2.32), and
(2.37) are identical as global objects because their integrands differ by total
divergences which do vanish after integration.

2.2 Derivation of the ADM Hamiltonian

The ADM Hamiltonian was derived via the generator of field and spacetime-
coordinates variations. Let the generator of general field variations be defined as (it
corresponds to the generator G = p; ox' of the point-particle dynamics in classical
mechanics with the particle’s canonical momentum p; and position x°)

e "
Gfield = 16nG/d3X7TU5Vij' (2.39)

Let the coefficients of three space-metric y; be fixed by the relations (2.14), then the
only free variations left are

&3
Gt = o / &x o + 16 G / xSy (2.40)
or, modulo a total variation,
¢ T e 3
=—— i 2.41
Gfield T6nC anTéh Tem G/d xyord. (2.41)

It is consistent with the Einstein field equations in space-asymptotically flat space-
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time with quasi-Cartesian coordinates to put [the mathematically precise meaning of
this equation is detailed in the Appendix B of Arnowitt et al. (1960a)]

of — _%Aqnjj’ (2.42)

which results in, dropping total space derivatives,

&
xfpoh " + e G/d3xAxﬁ5t (2.43)

c

Gfield = T6nC

Hereof the Hamiltonian easily follows in the form
4

c 3
H = 2.44
~ %G d’x Ay, ( )

which can also be written, using the form of the three-metric from Eq. (2.14),
4

~ 167G

[ 0, - o) (2.45)
This expression is valid also in case of other coordinate conditions (Arnowitt et al.
1962). For the derivation of the generator of space translations, the reader is referred
to Arnowitt et al. (1962) or, equivalently, to Schwinger (1963a).

3 The ADM formalism for point-mass systems

3.1 Reduced Hamiltonian for point-mass systems

In this section we consider the ADM canonical formalism applied to a system of self-

gravitating nonrotating point masses (particles). The energy-momentum tensor of
such system reads

o%,B
T“ﬁ (x") myc / Halla S (e —xh(1,))d1a, 3.1
=2 me | =g ) (3.1)
where m, is the mass parameter of ath point mass (¢ = 1,2, ... labels the point

masses), u* = dx*/dz, (with cdr, = \/—gndxzdx)) is the four-velocity along the
worldline x* = x!(7,) of the ath particle. After performing the integration in (3.1)
one gets

T(x, 1) Zma 3)(x—x,,(t)), (3.2)

where x, = (x) is the position three-vector of the ath particle. The linear four-
momentum of the ath particle equals p% = m,u”, and the three-momentum canoni-
cally conjugate to the position x, comes out to be p, = (pu;), where py; = mgug;.

The action functional describing particles-plus-field system reads

ll
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¢ 3. j i
S:/dt<%/d xnfatylj-—s—za:paixa—Hg), (3.3)

where X/, = dx! /dz. The asymptotic value 1 of the lapse function enters as prefactor
of the surface integral in the Hamiltonian H,, which takes the form

i c*
H() = /d3x (NH — CN H,) + %é) dSl @j(“/,j — 5ifykk)5 (34)

where the so-called super-Hamiltonian density H and super-momentum density H;
can be computed by means of Eqgs. (2.7)—~(2.8), (2.11)—~(2.12), and (3.2). They read

[here we use the abbreviation 8, for 6 (x — x,)]

ct 1 o1 i 1/2
H= [W <7;,.7zf,. - Enz) - yl/zR] + 3 c(mic® + 9ipapay) P50 (3.5)
a

3
C .
Hj = %VJTL{ + Za:paiéa, (36)

where 77 = yé{ig(xa) is the finite part of the inverse metric evaluated at the particle

position, which can be perturbatively and, using dimensional regularization, unam-
biguously defined (see Sects. 4.2, 4.4 below and Appendix A 4 of Jaranowski and
Schéfer 2015).

The evolutionary part of the field equations is obtained by varying the action
functional (3.3) with respect to the field variables y;; and 7. The resulting equations
read

1
Vo = 2Ny-1/2 (TCij — ETC))[j) + ViN; + V;N;, (3.7)

N U 1 . 1
n'{o = —Ny'/? (RU — Ey”R) —|—§Ny71/2“/’/ (nm"nm,, — Enz)

— 2Ny~1/2 (n””nfm - Enn”) + Vu(n/N™) — (V,,N )"

~1/2

- (VmN])nml + E Z Nay?pakygpul (yzmpampan + micz) 0Oq- (38)

The constraint part of the field equations results from varying the action (3.3) with
respect to N and N'. It has the form
H=0, H; = 0. (3.9)

The variation of the action (3.3) with respect to x, and p, leads to equations of
motion for the particles,
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0
hu =3 / x (NH — eN“Hy)

oN/ 1/2 ON,
= CPaqj a (m C + 'Yupakpal> O
¢cN, oM
— 1/2 a lpakpala (310)

2(m2c® + Y pamPan )

. 0
X, = apai/d3x (NH — cNk'Hk)

Na i aj i
- PaVaba — N, (3.11)

1/2
(mﬁcz + Vladpakpal) /

Notice the involvement of lapse and shift functions in the equations of motion. Both
the lapse and shift functions, four functions in total, get determined by the application
of the four coordinate conditions (2.14) to the field equations (3.7) and (3.8).

The reduced action, which is fully sufficient for the derivation of the dynamics of
the particles and the gravitational field, reads (only the asymptotic value 1 of the shift
function survives)

¢ 3 TT
S:/dt 167[G/d anTah +Zpa,x red ) (312)

where both the constraint equations (3.9) and the coordinate conditions (2.14) are
taken to hold. The reduced Hamilton functional H,q is given by

i c*
Heea[Xa, Py " ] = %/d3xA¢[Xa,pu,hZT,nTT] (3.13)
The remaining field equations read
e i OH, c oH,
oAl = — 5TTU red TT _ T.Tkl red 314
167G " Hoonirt tenG T Y sall G-14)

and the equations of motion for the point masses take the form

0H, red
Pai

p _ 6I_]red xi
at ax; ? a

(3.15)

Evidently, there is no involvement of lapse and shift functions in the equations of
motion and in the field equations for the independent degrees of freedom (Arnowitt
et al. 1960b; Kimura 1961).

3.2 Routh functional

The Routh functional (or Routhian) of the system is defined by
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3
R[xa,pa,hZT,ahTT} = Hyeq — 167tG/ anTahTT. (3.16)

This functional is a Hamiltonian for the point-mass degrees of freedom, and a
Lagrangian for the independent gravitational field degrees of freedom. Within the
post-Newtonian framework it was first introduced by Jaranowski and Schifer
(1998, 2000c). The evolution equation for the gravitational field degrees of freedom
reads

0
——— | R({)d{' = 0.
0[’!5T(X,I)/ ( ) (3-]7)
The Hamilton equations of motion for the two point masses take the form
OR ., OR
X==. (3.18)

Pu= g N,

For the following treatment of the conservative part of the dynamics only, we will
make now a short model calculation revealing the structure and logic behind the

treatment. Let’s take a Routhian of the form R(q, p; &, C) Then the action reads

Sla,p; é]=/(pq'—R(q,p;é,é))dt~ (3.19)

Its variation through the independent variables gives
d OR OR
oS = —(po i—— |9 —p——|9
/[df(p qH(q aP) p+( b %) K

el o

Going on-shell with the ¢-dynamics yields

o -2 (- () oo

(TT
hy

sidering the term ([ dx 7 nTT 5hTT)+°° on the solution space of the field equations

—00

The vanishing of the last term means—thinking in terms of hiTjT and i.e. con-

(“on-field-shell”)—that as much incoming as outgoing radiation has to be present, or
time-symmetric boundary conditions have to be applied. Thus in the Fokker-type
procedure no dissipation shows up. Assuming a leading-order-type prolongation
(allowing additions of only first time derivatives of ¢ and p) of the form
R =R(q,p,q,p), the autonomous dynamics can be deduced from the variation
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Jlo- (-2 (- ) o

where the Euler-Lagrange derivative 04/0z = 04/0z — d(04/0z)/d¢ has been
introduced.

Having explained that, the conservative part of the binary dynamics is given by
the higher-order Hamiltonian equal to the on-field-shell Routhian,

Hcon[xaapmxavpav .- ]

o (3.23)
= R[Xa, P 1" (Xa Py Xas P - - )7hgT(xa,pmxmpm--~)],

where the field variables h;T, hTT were “integrated out”, i.e., replaced by their
solutions as functionals of partlcle variables. The conservative equations of motion

defined by the higher-order Hamiltonian (3.23) read

Pult) = —&L(t) / Heon(?) ¢, (1) :517%1‘0) / Hen(1)df,  (3.24)

where the functional derivative is given by

5 OHeon d OH,
O () de = PHeon 4 O%Heon ,
5201 / ) =50 " @ (3.25)

with z = x, or z = p,;. Schifer (1984) and Damour and Schéfer (1991) show that time
derivatives of x, and p, in the higher-order Hamiltonian (3.23) can be eliminated by the
use of lower-order equations of motion, leading to an ordinary Hamiltonian,

Heon [%a, Pa] = Heon[Xa, Py Xa (X0, Pa)s Bu(Xa: o), - - - (3.26)

Notice the important point that the two Hamiltonians H,, and H%'¢ do not belong to

con
the same coordinate system. Therefore, the Hamiltonians H,,, and Hé’;ﬂ and their
variables should have, say, primed and unprimed notations which usually however
does not happen in the literature due to a slight abuse of notation.
A formal PN expansion of the Routh functional in powers of 1/c? is feasible to all

PN orders. With the aid of the definition hTT = 167G pIT we may write

o Mo
R[xa,pa,hUT,ahTT] S mad i Ru[xapos i 00y . (327)
a 0

Hereof, the field equation for hl.TfT results in a PN-series form,

1 . 1 A ~TT
<A — C_Zatz>h;T = E ED(THTW (X, X4, Py 1, iy |- (3.28)
n=0

This equation must now be solved step by step using either retarded integrals for getting
the whole dynamics or time-symmetric ones for only the conservative dynamics defined
by Hon, Which themselves have to be expanded in powers of 1/c. In higher orders,
however, non-analytic in 1/c log-terms do show up (see, e.g., Damour et al. 2014, 2016).
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To calculate the reduced Hamiltonian of Eq. (2.21) for a many-particle system one
has to perturbatively solve for ¢ and 7% the constraint equations H = 0 and H; = 0
with the densities H, H; defined in Egs. (3.5)—(3.6). Then the transition to the
Routhian of Eq. (3.16) is straightforward using the second equation in (3.14). The
expansion of the Hamiltonian constraint equation up to ¢~'° leads to the following
equation [in this equation and in the next one we use units ¢ = 1, G = 1/(16m)]":

—A¢=Z[1——¢+ ¢’ —m¢3+m¢

1 2
+< ¢+?8¢ —@(ﬁ )
19 45 )\ (p2)’ (L1 (P )’ 5 (@)
8 m 16 128 mS 128 m8
2
MR T
2 m;

m Y 16

(
(3476
- (1 +%¢> (77) +<2+ <i>>n e + (N?T)z
[ 1
(
A

1 5 5 3 15 ~ik=jk | 1 TT
_lrZh—= i - 277" | by
( 2+4¢ 64¢)¢’”+<16 128¢)¢¢ + }
7 )’ TT j,TT
b))+ 3+ do
17 T)? TT;TT T)°
(—54‘%4)) (hi] ) } [ Ghi; by +— ¢k(h ) ;
c_lz). (329)
The expansion of the momentum constraint equation up to ¢’ reads
i 1 1 5 1 1 .
==+ - — = ¢? 0 -+ v
%= (530 g?) Trader (~5+g0 )0
1 i ~ _
Ed’ﬂf anhTT lk< h;(Tl — hgi) + O(c 8). (3.30)

In the Egs. (3.29) and (3.30) dynamical field variables hZT and n%T are counted as
being of the orders 1/c* and 1/¢3, respectively [cf. Eq. (3.28)].

3.3 Poincaré invariance

In asymptotically flat spacetimes the Poincaré group is a global symmetry group. Its
generators P* and J"' are realized as functions P*(x,,p,) and J*'(x,,p,) on the

4 Equations (3.29) and (3.30) are taken from Jaranowski and Schifer (1998, 2000c) and they are enough to
calculate 3PN-accurate two-point-mass Hamiltonian. In Jaranowski and Schéifer (2015) one can find
higher-order PN expansion of constraint equations, performed in d dimensions, necessary to compute 4PN
Hamiltonian.
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many-body phase-space. They are conserved on shell and fulfill the Poincaré algebra
relations for the Poisson bracket product (see, e.g., Regge and Teitelboim 1974),

{P*,P'} =0, (3.31)
{P*,JP°} = —gt* P’ 4 roPP, (3.32)
I = =" IR g T TP — TP, (3:33)

where the Poisson brackets are defined in an usual way,

04 0B o4 0B
A.BY = 97 _ A9
{4,B} Za:(@x;apm apa,-ax;> (3.34)

The meaning of the components of P* and J*” is as follows: the time component P°
(i.e., the total energy) is realized as the Hamiltonian H = cP°, P' = P; is linear
momentum, J' =1e¥Jy [with e = ¢y =1 —/)(—k)(k—1i), Ju=J", and
Jj = s,ijk] is angular momentum, and Lorentz boost vector is K = J® /c. The boost
vector represents the constant of motion associated with the centre-of-mass theorem
and can further be decomposed as K’ = G' — ¢ P! (with G; = G). In terms of three-
dimensional quantities the Poincaré algebra relations read (see, e.g., Damour et al.
2000c¢, d)

{P,H}=0, {J,H}=0, (3.35)
{Vis Pt = e P, {Ji, i} = e Jis (3.36)
{Ji, G} = &k G, (3.37)

{Gi,H} =Py, (3.38)

{Gi, P} = Ciz H 6y, (3.39)

{Gi, G} = _c_12 &k Jk- (3.40)

The Hamiltonian H and the centre-of-mass vector G’ have the integral representations

ct 3 c*
H=— Ap = — 2dQn - 3.41
16nG/dx ¢ 16nt,€rd n-Ve, (341)
. A2 3 A2 ) o
i ¢ A — — Qn (¥, — 5 3.42
16nG/dxx ¢ 16nGﬁrd 70 = 05) ¢, (342)

where n72dQ (n is the outward radial unit vector) is the two-dimensional surface-
area element at i°. The two quantities // and G’ are the most involved ones of those
entering the Poincaré algebra.
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The Poincaré algebra has been extensively used in the calculations of PN
Hamiltonians for spinning binaries (Hergt and Schéfer 2008a, b). Hereby the most
useful equation was (3.38), which tells that the total linear momentum has to be a
total time derivative. This equation was also used by Damour et al. (2000c, d) to fix
the so called “kinetic ambiguity” in the 3PN ADM two-point-mass Hamiltonian
without using dimensional regularization. In harmonic coordinates, the kinetic
ambiguity got fixed by a Lorentzian version of the Hadamard regularization based on
the Fock—de Donder approach (Blanchet and Faye 2001b).

The explicit form of the generators P*(x,, p,) and J*' (x4, p,) (i.e., P, J, G, and H)
for two-point-mass systems is given in Appendix C with 4PN accuracy.

The global Lorentz invariance results in the following useful expressions (see, e.
g., Rothe and Schifer 2010; Georg and Schéfer 2015). Let us define the quantity M
through the relation

M =VH? —P>2 or H= VM +P2, (3.43)
and let us introduce the canonical centre of the system vector X (with components
X' =X),

Gc? 1 Gc?

X=—+———|(J—(—xP] | xP. 3.44

H+M(H+J\/lcz)< (H )) (3:44)
Then the following commutation relations are fulfiled:
{X, P} =0y, {X: X} =0, {P;, P;} =0, (3.43)
{M, P} =0, {M,X}=0, (3.46)
H
{M,H}=0, {P,H}=0, —Z)G,H}:Pi. (3.47)
C

The commutation relations clearly show the complete decoupling of the internal
dynamics from the external one by making use of the canonical variables. The
equations (3.43) additionally indicate that M? is simpler (or, more primitive) than
M, cf., Georg and Schifer (2015). A centre-of-energy vector can be defined by
X} = X = *G'/H = ¢*G,;/H. This vector, however, is not a canonical position
vector, see, e.g., Hanson and Regge (1974).

In view of our later treatment of particles with spin, let us decompose the total
angular momentum J** of a single object into orbital angular momentum L** and
spin $*, both of them being anti-symmetric tensors,

J =L S, (3.48)

The orbital angular momentum tensor is given by
LY =Z¢P' — Z'P*, (3.49)
where Z" denotes 4-dimensional position vector (with Z° = cf). The splitting in

space and time results in
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JI=7'P -ZP +57, J°=ZH/c— Pect+S". (3.50)

Remarkably, relativity tells us that any object with mass M, spin length S, and
positive energy density must have extension orthogonal to its spin vector of radius of
at least S/(Mc) (see, e.g., Misner et al. 1973). Clearly then, the position vector of
such an object is not given a priori but must be defined. As the total angular
momentum should not depend on the fixation of the position vector, the notion of
spin must depend on the fixation of the position vector and vice versa. Thus,
imposing a spin supplementary condition (SSC) fixes the position vector. We enu-
merate here the most often used SSCs (see, e.g., Fleming 1965; Hanson and Regge
1974; Barker and O’Connell 1979).

(i) Covariant SSC (also called Tulczyjew-Dixon SSC):
P,S* =0. (3.51)

The variables corresponding to this SSC are denoted in Sect. 7 by Z/ = 2/,
S¥, and P' = p'.
(i) Canonical SSC (also called Newton-Wigner SSC):

(P, + Mcn,)S* =0, Mec = /—P,Pr, (3.52)

where n, = (—1,0,0,0), n,n* = —1. The variables corresponding to this

SSC are denoted in Sect. 7 by #, S, and P'.
(i)  Centre-of-energy SSC (also called Corinaldesi-Papapetrou SSC):

n, S = 0. (3.53)
Here the boost vector takes the form of a spinless object,
K'=Z7ZH/ — P't=G' — P't.
3.4 Poynting theorem of GR

Let us start with the following local identity, having structure of a Poynting theorem
for GR in local form,
. . 1 . 5 5
—h5TORST = <0 (RTHTL) + 50 (T e) + (L], (354)

where [ = faf /c¢? + A denotes the d’Alembertian. Integrating this equation over
whole space gives, assuming past stationarity,

. 1 .
3 TT T __ 3 TT 2 TT\2
_/dexhij A —E/V%dxat{(hij Je)? + (hT) } (3.55)
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where V,, is just another expression for R®. Notice that the far or wave zone” is
understood as area of the ¢ = const slice where gravitational waves are decoupled
from their source and do freely propagate outwards, what means that the relation

hi% = —(n*/c)hi" + O(r~2) (r being the radial coordinate) is fulfilled in the far
zone at distances 7 > //(2n) from the source, where A is characteristic wavelength
of gravitational waves emitted by the source. We always use ¢ = const slices, where
our Hamiltonians are defined on, and explore physical processes by going from one
slice to another one located in the close-by future. This suffices to discriminate
radiation from non-radiation for any given approximation. Spacelike infinity (i°) is
enough for posing reliable boundary conditions, timelike infinity is not needed,
neither for the future nor for the past (past stationarity simply replaces past infinity).
Integration of Eq. (3.54) over the volume V7%, enclosed by its outer boundary located
in the far zone (fz) with ds; = n*7>dQ surface-area element of the two-surface of
integration with dQ as the solid-angle element, yields

. 1 .
- /V ExhfTORT = f dsg i i+ /V &xd, [(hgT/c)2+(h;£)2 . (3.56)
fz fz

To make sure that the surface integral (say over a sphere of radius r¢,) in the above
equation is not zero, we have to assume that ry, is located in the far zone, where real
wave propagation happens, i.e. behind the wave front of the out-propagating wave.
Of course, as the system is stationary in the remote past, the wave front has still
infinite distance to .

Combining Egs. (3.55) and (3.56) together, one gets

3 _7TT TT __ ' TT
_/<V PRI = § do T
—Viz

+%/(me xd, [(’izTT/C) (ni)’). (3.57)

The volume (¥, — Vg,) is meant for # = const and thus reaches i; it embraces the
radial coordinates 7y, <1< 4 00, where ryg, denotes the beginning of the far zone. In
the following we drop the left side of this equation as negligibly small [of the relative
order 1/(2mnrg,), where 7y, is located in the far zone]. Indeed, we can assume that the

source term for Dh}T, which follows from the Routhian field equation (3.17), decays
hTT

at least as 1/7° for » — oo (for isolated systems, all source terms for [J j decay at
least as 1/7* if not TT-projected; the TT-projection may raise the decay to 1/73, e.g.
TT-projection of Dirac delta function). Additionally, AL decays as 1/r, so the inte-

grand on the left side decays in total as 1/7*. This results in

a j{dQ 2(5IT)? = ¢ d / &x (T2 (3.58)
14 .
321G P mGd Ly

5 For precise definition of wave zone see, e.g., Sect. III in Thorne (1980) or Sects. 1.3 and 3.2.3 in Thorne
(1983). We do not separate here the local wave zone from the distant wave zone as, e.g., in Thorne (1980);
for specific tail terms, see our Sect. 3.6.
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with meaning that the energy flux through a surface in the far zone equals the growth
of gravitational energy beyond that surface.

3.5 Near-zone energy loss and far-zone energy flux

The change in time of the matter Routhian reads, assuming R to be local in the
gravitational field,

dR OR R R
- T d3 hTT / d3
dt ot / ahTT U onTt

R
TT 3 TT
Och;; /d T —hit, (3.59)

ijk i
where
Rupy) = [ xR p IO 0). (.60)
The equation for dR/d¢ is valid provided the equations of motion
. OR .  OR
Pai = _@v Xq = pai (3.61)

hold. Furthermore, we have

R
d3 a hTT /d3 hTT _ /d3 0 hTT
/ ahgg ¢ oRTT Fo\antt

3 'TT 3 TT 3
v s S [ ak(amy yrs (ahﬂ)h e

The canonical field momentum is given by

3
C lj TTij R

167TG TT 5/{] hTT (363)

Performing the Legendre transformation

3 c3
H=R+1— G/d3anTh;T, oo R=H~— 16nG/d3anTh;T, (3.64)

the energy loss equation takes the form [using Eq. (3.59) together with (3.62) and

(3.63)]
A [ (R / . R
& _/dxa"<ahﬁh' ) ) St

3 TT 3 'TT
/ Exdy (ahﬂ)h / g <ahTT>h,.j o (365)
y

Application of the field equations
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oR oR\ d[oR
ot~ % (ah;;) e (ahgT> - (366)

yields, assuming past stationarity [meaning that at any finite time ¢ no radiation can
have reached spacelike infinity, so the first (surface) term in the right-hand side of
Eq. (3.65) vanishes],

dH
=0
dt
The Eq. (3.58) shows that the Eq. (3.64) infers, employing the leading-order quad-
ratic field structure of R [R = —(1/4)(c?/(167G))(h;")* + - ; see Eq. (F.3)],

(3.67)

d R .
lre | @x g _f 3.68
dt ( /sz * 6hijT'T ij > ) ( )
where
L a f{ dsghTTATT = € 7{ dQ 2 (RITY? (3.69)
= —-— e . = 14 . .
327G Jp, iR T 300G i

is the well known total energy flux (or luminosity) of gravitational waves. The
Eq. (3.68) can be put into the energy form, again employing the leading-order
quadratic field structure of R,

d ¢ 3 (7 TTy2
dt( 32nG/(V%_V&)dx(hy ) c (3.70)

Note that the integral over V,, — V}, changes with time for radiating sources because
more and more radiation is entering the volume V, — V%, whereas the integral over
V', changes on secular damping-time scales only because for stationary time-sections
the volume V7%, is filled with constant amount of radiation energy.

Taking into account the Egs. (3.29) and (3.41) we find that the second term in the

parenthesis of the left side of Eq. (3.70) exactly subtracts the corresponding terms
hLt
i,k

from pure (h71)* and (nl;)* expressions therein. This improves, by one order in
radial distance, the large distance decay of the integrand of the integral of the whole
left side of Eq. (3.70), which runs over the whole hypersurface ¢ = const. We may
now perform near- and far-zone PN expansions of the left and right sides of the
Eq. (3.70), respectively. Though the both series are differently defined—on the left
side, expansion in powers of 1/c around fixed time ¢ of an energy expression which is
time differentiated; on the right side, expansion in powers of 1/c around fixed
retarded time ¢ — r/c—the expansions cannot contradict each other as long as they
are not related term by term. For the latter relation we must keep in mind that PN
expansions are instantaneous expansions so that the two times, # and ¢ — r/c, are not
allowed to be located too far apart from each other. This means that we have to read
off the radiation right when it enters far zone. Time-averaging of the expressions on
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the both sides of Eq. (3.70) over several wave periods [see text below Eq. (3.77)]
makes the difference between the two times negligible as it should be if one is
interested in a one-to-one correspondence between the terms on the both sides. The
Newtonian and 1PN wave generation processes were explicitly shown to fit into this
scheme by Konigsdorffer et al. (2003).

3.6 Radiation field

In the far zone, the multipole expansion of the transverse-traceless (TT) part of the
gravitational field, obtained by algebraic projection with

Pya(n) = 5 (Pulm)Pan) + Pu(m)Pa(m) — Pym)Pu(n), (371

Pj(n) = 0 — nn;, (3.72)

where n = x/r (r = |x|) is the unit vector in the direction from the source to the far
away observer, reads (see, e.g., Thorne 1980; Blanchet 2014)

-2
G Pyon(n) [ (1) 4 .
TT fz _ ijkm () *
h; (va)—gir > {(g) i Mkmiy.‘i/(t_?)Nis--»i/

=2
=1
1\?% 8/ 0 Ty
+ <02> <1+ 1)! Epq(k Sm)pig..i, (t_Z) ng Nis.iy ¢ (3'73)
where N;, ;, =n"...n" and where Ml(ll,)-mm[] and SEQN-}‘__,-, denote the /th time

derivatives of the symmetric and tracefree (STF) radiative mass-type and current-
type multipole moments, respectively. The term with the leading mass-quadrupole
tensor takes the form (see, e.g., Schéfer 1990)

M (=) = M (1)
C : C

2Gm [ v ~ (4) T 1
2o /0 av[in(2) 4] M (t_c_v)+o(c4),
with

2Gm r 1
ro=r+=5In (E) + O(C—3> (3.75)

showing the leading-order tail term of the quadrupole radiation (the gauge dependent
relative phase constant x between direct and tail term was not explored by Schéfer
1990; for more details see, e.g., Blanchet and Schéfer 1993 and Blanchet 2014).
Notice the modification of the standard PN expansion through tail terms. This
expression nicely shows that also multipole expansions in the far zone do induce PN

expansions. The mass-quadrupole tensor M i 18 just the standard Newtonian one.
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Higher-order tail terms up to “tails-of-tails-of-tails” can be found in Marchand et al.

(2016). Leading-order tail terms result from the backscattering of the leading-order

outgoing radiation, the “tails-of-tails” from their second backscattering, and so on.
Through 1.5PN order, the luminosity expression (3.69) takes the form

_ G 3 @ L L5 @ @ 16 3) ()

On reasons of energy balance in asymptotically flat space, for any coordinates or
variables representation of the Einstein theory, the time-averaged energy loss has to
fulfill a relation of the form

—<W> — (L), (3.77)

where the time averaging procedure takes into account typical periods of the system
(i.e. it is averaging over several periods of the lowest frequency mode, usually called
“averaging over several wavelengths”; see, e.g., Thorne 1980). Generalizing our
considerations after Eq. (3.70) we may take the observation time ¢ much larger than
the time, say fuf,, the radiation enters the far or wave zone, even larger than the
damping time of the radiating system, by just freely transporting the radiation power
along the null cone with tacitly assuming (L(z,7)) = (L(tots, Fbiz)), Where
t — tor, = (r — rpiz) /¢ > 0. Coming back to Eq. (3.70), time averaging on the left
side of Eq. (3.70) eliminates total time derivatives of higher PN order, so-called
Schott terms, and transforms them into much higher PN orders. The both sides of the
equation (3.77) are gauge (or, coordinate) invariant. We stress that the Eq. (3.77) is
valid for bound systems. In case of scattering processes, a coordinate invariant
quantity is the emitted total energy.

The energy flux to nPN order in the far zone implies energy loss to (n + 2.5)PN
order in the near zone. The leading-order 2.5PN energy loss is usually called
“Newtonian” because only the Newtonian source dynamics contributes; correspond-
ing notions are applied to the higher order PN fluxes. Hereof it follows that energy-
loss calculations are quite efficient via energy-flux calculations (Blanchet 2014). In
general, only after averaging over orbital periods the both expressions do coincide. In
the case of circular orbits, however, this averaging procedure is not needed.

4 Applied regularization techniques

The most efficient source model for analytical computations of many-body dynamics
in general relativity are point masses (or particles) represented through Dirac delta
functions. If internal degrees of freedom are come into play, derivatives of the delta
functions must be incorporated into the source. Clearly, point-particle sources in field
theories introduce field singularities, which must be regularized in computations.
Two aspects are important: (i) the differentiation of singular functions (i.e. functions
which are not infinitely differentiable), and (ii) the integration of singular functions,
either to new (usually also singular) functions or to the final Routhian/Hamiltonian.
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The item (ii) relates to the integration of the field equations and the item (i) to the
differentiation of their (approximate) solutions. On consistency reasons, differenti-
ation and integration must commute.

The most efficient strategy developed for computation of higher-order PN point-
particle Hamiltonians relies on performing a 3-dimensional full computation in the
beginning (using Riesz-implemented Hadamard regularization defined later in this
section) and then correcting it by a d-dimensional one around the singular points, as
well the local ones (UV divergences) as the one at infinity (IR divergences). A d-
dimensional full computation is not needed. At higher than the 2PN level 3-
dimensional computations with analytical Hadamard and Riesz regularizations show
up ambiguities which require a more powerful treatment. The latter is dimensional
regularization. The first time this strategy was successfully applied in the context of
general relativity was in the 3PN dynamics of binary point particles (Damour et al.
2001); IR divergences did not appear therein, those enter from the 4PN level on only,
the same as the nonlocal-in-time tail terms to which they are connected. At 4PN
order, using different regularization methods for the treatment of IR divergences
(Jaranowski and Schéfer 2015), an ambiguity parameter was left which, however, got
fixed by matching to self-force calculations in the Schwarzschild metric (Le Tiec
et al. 2012; Bini and Damour 2013; Damour et al. 2014).

The regularization techniques needed to perform PN calculations up to (and
including) 4PN order, are described in detail in Appendix A of Jaranowski and
Schifer (2015).

4.1 Distributional differentiation of homogeneous functions

Besides appearance of UV divergences, another consequence of employing Dirac-
delta sources is necessity to differentiate homogeneous functions using an enhanced
(or distributional) derivative, which comes from standard distribution theory (see,
e.g., Sect. 3.3 in Chapter III of Gel’fand and Shilov 1964).

Let /'be a real-valued function defined in a neighbourhood of the origin of R>. fis
said to be a positively homogeneous function of degree A, if for any number a > 0

flax) =da" f(x). (4.1)
Let k := —/ — 2. If 1 is an integer and if A < — 2 (i.e., k is a nonnegative integer),
then the partial derivative of /' with respect to the coordinate x has to be calculated by
means of the formula

_ k aké . |
Sl %X ]gdaif(x')x”l ol (4.2)

0 =0; A
S0 =0 () +
where 0;f on the lhs denotes the derivative of f considered as a distribution, while
0; f on the ths denotes the derivative of f considered as a function (which is com-
puted using the standard rules of differentiation), 2 is any smooth close surface
surrounding the origin and do; is the surface element on X.

@ Springer



2 Page 36 of 139 Review Article

The distributional derivative does not obey the Leibniz rule. It can easily be seen
by considering the distributional partial derivative of the product 1/r, and 1/r2. Let
us suppose that the Leibniz rule is applicable here:

al.i s <li) _1 ail + 1 ail_ (4.3)

3 2 2 2
ry, rqty 7 Va a i

The right-hand side of this equation can be computed using standard differential
calculus (no terms with Dirac deltas), whereas computing the left-hand side one
obtains some term proportional to 0;0,. The distributional differentiation is necessary
when one differentiates homogeneous functions under the integral sign. For more
details, see Appendix A 5 in Jaranowski and Schifer (2015).

4.2 Riesz-implemented Hadamard regularization

The usage of Dirac J-functions to model point-mass sources of gravitational field
leads to occurence of UV divergences, i.e., the divergences near the particle locations
Xy, 88 ¥y =[x —X,] — 0. To deal with them, Infeld (1954, 1957), Infeld and
Plebanski (1960) introduced “good” d-functions, which, besides having the
properties of ordinary Dirac J-functions, also satisfy the condition

1

————0(x—%) =0, k=1,....p, (4.4)
|x — Xo|

for some positive integer p (in practical calculations one takes p large enough to take
all singularities appearing in the calculation into account). They also assumed that the
“tweedling of products” property is always satisfied

/ d3xf1 (X) 2(X)5(X - XO) :ﬁreg(xo)ereg(XO)a (45)

where “reg” means regularized value of the function at its singular point (i.e., Xo in
the equation above) evaluated by means of the rule (4.4).

A natural generalization of the rule (4.4) is the concept of “partie finie” value of
function at its singular point, defined as

1
rs(30) = 5 [ d@an(m), (46)
with (here M is some non-negative integer)
= X — X
f(x=x¢+en) = Z am(n)e”, n= ‘ ¢ (4.7
m=—M X— XO‘

Defining, for a function f singular at x = X,

/d3xf(x)5(x —X0) = freg(X0), (4.8)

the “tweedling of products” property (4.5) can be written as
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(1/2) reg (X0) = fireg (X0 )fareg (Xo)- (4.9)

The above property is generally wrong for arbitrary singular functions f; and f;. In
the PN calculations problems with fulfilling this property begin at the 3PN order.
This is one of the reasons why one should use dimensional regularization.

The Riesz-implemented Hadamard (RH) regularization was developed in the
context of deriving PN equations of motion of binary systems by Jaranowski and
Schéfer (1997, 1998, 2000c) to deal with locally divergent integrals computed in
three dimensions. The method is based on the Hadamard “partie finie” and the Riesz
analytic continuation procedures.

The RH regularization relies on multiplying the full integrand, say i(x), of the
divergent integral by a regularization factor,

i(x) — i(x)(ﬂ)“ (r_z) (4.10)
S1 $2

and, after integration, studying the double limit ¢, — 0, ¢, — 0 within analytic

continuation in the complex €; and €, planes (here s; and s, are arbitrary three-

dimensional UV regularization scales). Let us thus consider such integral performed

over the whole space R and let us assume that it develops only local poles (so it is

convergent at spatial infinity). The value of the integral, after performing the RH

regularization in three dimensions, has the structure (this is the most general structure
in the calculation of conservative Hamiltonians up to and including 4PN order)

’3ie,6) = /R} i(x)(:—i)El (:—2)62 Bx

:A—l—c](l—klnrﬁ)+cz(l+lnrl—z)—|—0(el,ez). (4.11)
€1 §1 €2 $2
Let us mention that in the PN calculations regularized integrands
i(x)(r1/s1)" (r2/s2)? depend on x only through x —x; and x — x,, so they are
translationally invariant. This explains why the regularization result (4.11) depends
on x; and x; only through x; — x;.

In the case of an integral over R developing poles only at spatial infinity (so it is
locally integrable) it would be enough to use a regularization factor of the form
(r/ro)" (where rg is an IR regularization scale), but it is more convenient to use the

factor
1\ % /1) be
— = 4.12
( ro ) ( ro ) ( )
and, after integration, study the limit ¢ — 0. Let us denote the integrand again by

i(x). The integral, after performing the RH regularization in three dimensions, has the
structure

RiL (3, = [ i) () e d e — 2
I (3,a,b,e)_/R3z(X)(ro) (7”0) dx=4 coo((a+b)€+1nr0>+(9(e).

(4.13)
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Many integrals appearing in PN calculations were computed using a famous formula
derived in Riesz (1949) in d dimensions. It reads

ot+d +d +f+d
/ddxl’“rﬁ = /2 I'C3 )F(ﬁZ (== g ) aiprd
172

=T " ¥y
r(=2)r(-5rEt2)

(4.14)

To compute the 4PN-accurate two-point-mass Hamiltonian one needs to employ a

generalization of the three-dimensional version of this formula for integrands of the

form r?‘rg (ri + 7 +712)". Such formula was derived by Jaranowski and Schéfer

(1998, 2000c) and also there an efficient way of implementing both formulae to
regularize divergent integrals was proposed (it employs prolate spheroidal coordi-
nates in three dimensions). See Appendix A 1 of Jaranowski and Schifer (2015) for
details and Appendix A of Hartung et al. (2013) for generalization of this procedure
to d space dimensions.

4.3 Extended Hadamard regularization

A specific variant of 3-dimensional Hadamard regularization called the extended
Hadamard regularization (EHR) was devised by Blanchet and Faye (2000a, 2001b).
It was used by Blanchet and Faye (2000b, 2001a) at the 3PN-level computations of
two-point-mass equations of motion in harmonic coordinates.

The basic idea of EHR is to associate to any function F' € F, where the set F

comprises functions which are smooth on R* except for the two points (around which
they admit a power-like singular expansion), a partie-finie pseudo-function PfF,
which is a linear form acting on functions from F:

(PfF, G) := Pf, ,, / &xFG, for any G € F, (4.15)

where Pf,, ;, on the right-hand side means partie finie of the divergent integral [see
Eq. (3.1) in Blanchet and Faye (2000a) and the text around for the definition]; it
depends on two—one per each singularity—arbitrary regularization scales s; and s,.
The Dirac d-functions J, are represented by the pseudo-functions Pfd, defined by

(Pfd,, G) := Greg(x,), forany G € F, (4.16)

where the regularized value Greg(X,) of function at its singular point is defined in
Egs. (4.6)—(4.7) above. The product Fd, is represented by another pseudo-function
Pf(Fd,) such that

(Pf(Fé4), G) := (FG)y(Xa), forany G € F. (4.17)

As a consequence, in general
Pf(Fd,) # Freg(Xq)Pfo,. (4.18)
Another ingredient of the EHR relies on the specific treatment of partial derivatives

of singular functions. To ensure the possibility of integration by parts, one requires
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that (0;(PfF), G) = —(0;(PfG),F) for any functions F,G € F. This requirement
leads to the following definition of the partial derivative of the pseudo-function:

0;(PfF) = Pf(0,F) + Dy[F], (4.19)

where Pf(0,F) denotes the ordinary derivative of F’ viewed as a pseudo-function, and
D;[F] is the purely distributional part with support concentrated on x; or x; [see
Sects. VII-IX of Blanchet and Faye (2000a) for more details]. The derivative D;[F] is
an extended distributional derivative which differs in general from the usual
Schwartz derivative introduced in Eq. (4.2) above. Let us quote the results

Di[i} = 27nPf(rin0), D,-j[i} - _4_”Pf(5”f +5ﬁ’{)51, (4.20)

r rt 3 2

where ﬁi{ = n‘ln’1 — %5” The Schwartz derivative (4.2) of 0;(1/ry) contains no dis-

tributional part, whereas distributional part of 9;0;(1/r) equals —(47/3)375;.
There is no known generalization of the EHR definitions (4.17) and (4.19) to

generic d-dimensional case. Moreover, these definitions disagree with the dimen-

sional-regularization rules.

(i) In generic d dimensions one can always use

FO(%)89 (x = x4) = FI9 (%) (x — xa), (4.21)
where F(@) is the d-dimensional version of F. This leads to the following
dimensional-regularization rule [see Sect. III A in Blanchet et al. (2004)]:

[F(x)8) (X = X)] 1 = ( lim F&(%,))0% (x = x,). (4.22)

The property (4.18) disagrees with this.

(i) The extended differentiation (4.19), when applied to smooth functions of
compact support, coincides with Schwartz differentiation (4.2). However, in
the 3PN-level computations performed by Blanchet and Faye (2000b, 2001a)
it operated with other singular functions and gave the results different from
the results obtained by applying Schwartz differentiation. The definition (4.2)
of Schwartz differentiation is valid in d dimensions (see Sect. 4.4.3 above),
which supports the use of this definition also in the limit of three dimensions.

The computation using the EHR constitutes an approach very different from
dimensional regularization, following a different route which could not be combined
with the latter. This can be clearly seen in the paper by Blanchet et al. (2004) on
dimensional-regularization completion of the 3PN equations of motion in harmonic
coordinates [see the paragraph containing Eq. (1.8) and Sect. III D there]. Before
applying dimensional regularization the authors of Blanchet et al. (2004) had to
subtract from the 3-dimensional results of Blanchet and Faye (2000b, 2001a) all
contributions, which were direct consequences of the use of EHR. However, Blanchet
and Faye (2000b, 2001a) have shown that at the 3PN level the difference between the
final results of EHR and dimensional regularization computations of two-point-mass

@ Springer



2 Page 40 of 139 Review Article

equations of motion can be described in terms of one constant ambiguity parameter
(they called 7).

Yang and Estrada (2013) have recently developed the theory of “thick
distributions” in higher dimensions n (where n is an integer larger than 1). This
theory is connected with the extended Hadamard regularization, but is not equivalent
to the latter.

4.4 Dimensional regularization

It was first shown by Damour et al. (2001), that the unambiguous treatment of UV
divergences in the current context requires usage of dimensional regularization (see,
e.g., Collins 1984). It was used both in the Hamiltonian approach and in the one
using the FEinstein field equations in harmonic coordinates (Damour et al. 2001;
Blanchet et al. 2004; Jaranowski and Schéfer 2013; Damour et al. 2014; Jaranowski
and Schéfer 2015; Bernard et al. 2016, 2017a; Marchand et al. 2018; Foffa and
Sturani 2019,Foffa et al. 2019b). The dimensional regularization preserves the law of
“tweedling of products” (4.9) and gives all involved integrals, particularly the inverse
Laplacians, a unique definition.

4.4,1 D-dimensional ADM formalism

Dimensional regularization (DR) needs the representation of the Einstein field
equation for arbitray space dimensions, say d for the dimension of space and D =
d + 1 for the spacetime dimension. In the following, Gp = GNé‘é‘3 will denote the
gravitational constant in D-dimensional spacetime and Gy the standard Newtonian
one, £, is the DR scale relating both constants.

The unconstraint Hamiltonian takes the form

4

167‘EGD

H = / dix (NH — ¢N'H;) + 7{ 4718 05(vy — Sivm)s (4.23)

where d?~!'S; denotes the (d — 1)-dimensional surface element. The Hamiltonian and
the momentum constraint equations written for many-point-particle systems are
given by

1 ; 1
VIR = 7 (Vikyjénjnké = (75m") )

167‘EGD i 1
T > (mac* + ypaipa)Sa; (4.24)
i SHGD i
—Vl = =52 vipada (4.25)

a

The gauge (or coordiante) ADMTT conditions read
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d—2 4/(d-2) - )
ny i __
/”_<1+4(d—1)¢> EANANE S 420
where
him =0, it =0. (4.27)

The field momentum 7% splits into its longitudinal and TT parts, respectively,
nl =& 4+ 1y, (4.28)
where the longitudinal part 77 can be expressed in terms of a vectorial function V7,
A=V + o — f—la’f'ak vk, (4.29)
and where the TT part satisfies the conditions,
mi =0, Ol =0. (4.30)
The reduced Hamiltonian of the particles-plus-field system takes the form

T ] ¢

Hred[xfupaa i o TTT) = —m/ddquﬁ[xa,pa,h;T,nf{T]. (4.31)

The equations of motion for the particles read

_ aHer _ aI—Ired

o L = (432)
and the field equations for the independent degrees of freedom are given by
0 TT 167‘CGD TTkl 5Hred 0 ij 167‘EGD TTij 5Hred
ali =5 % oL 5= T s Ou SHIT (4.33)
where the d-dimensional TT-projection operator is defined by
trij 1 1
o | = E(éikéjl + 0udjk) — - 15;';5k1
1
—3 (001 + 8,10 + Syl + 9 0y) A"
1 o, d-=2 _
Finally, the Routh functional is defined as
. i c3 ii .
R[Ses i T 7] = s BT ] — 1 / dle T (4.35)

and the fully reduced matter Hamiltonian for the conservative dynamics reads
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H[xu7 pa] = R I:Xa’ pa’ h;T(Xll7 ptl)7 hgT(Xa’ pa)] ° (436)

4.4.2 Local and asymptotic dimensional regularization

The technique developed by Damour et al. (2001) to control local (or UV)
divergences boils down to the computation of the difference

. loc RHloc

lim H*(d) — H™7%(3), (4.37)
where HRHI¢(3) s the “local part” of the Hamiltonian obtained by means of the
three-dimensional RH regularization [it is the sum of all integrals of the type
IRM(3; ¢, €) introduced in Eq. (4.11)], H'°°(d) is its d-dimensional counterpart.

Damour et al. (2001) showed that to find the DR correction to the integral

I’ (3;¢1, ) of Eq. (4.11) related with the local pole at, say, x = xj, it is enough to
consider only this part of the integrand i(x) which develops logarithmic singularities
in three dimensions, i.e., which locally behaves like 1/ ri’,

i(x) =---+é(n)ry°+---, whenx — x;. (4.38)

Then the pole part of the integral (4.11) related with the singularity at x = x; can be
recovered by RH regularization of the integral of ¢;(n;) 7> over the ball B(x;, ¢1) of
radius ¢; surrounding the particle x;. The RH regularized value of this integral reads

RH 71\ €l b 1 1\
[1 (3;61) = / 51(]11)?‘1_3(—) d3l‘1 :Cl/ }”1_ (—) d]’l7 (439)
B(X],fl) S1 0 §1

where ¢ /(4n) is the angle-averaged value of the coefficient ¢ (ny). The expansion
of the integral I} (3;¢;) around ¢, = 0 equals

M35 6) zcl(i—l—lng—l) + O(e). (4.40)
€1 S1

The idea of the technique developed by Damour et al. (2001) relies on replacing the

RH-regularized value of the three-dimensional integral /R (3;¢;) by the value of its

d-dimensional version /i (d). One thus considers the d-dimensional counterpart of the

expansion (4.38). It reads

i(x) =+ 6’5“‘3)51 (d;my) r]673d +---, when X — Xx. (4.41)

Let us note that the specific exponent 6 — 3d of r; visible here follows from the
r1 — 0 behaviour of the (perturbative) solutions of the d-dimensional constraint
equations (4.24)—(4.25). The number k in the exponent of €§<d_3) is related with the
momentum-order of the considered term [e.g., at the 4PN level the term with £ is of
the order of O(p'°=2F), for k=1,...,5; such term is proportional to G%]. The
integral [, (d) is defined as
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0
I(d) = 447 / & (d;my) 973 dr) = ¢ (d) / P2 dry, (4.42)
(x1,61) 0

where ¢;(d)/(Q4- 14’6(‘#3)) (Qq_1 stands for the area of the unit sphere in RY) is the
angle-averaged value of the coefficient ¢; (d;ny),

o (d) = 44 74 & (dmy) A2y 1. (4.43)
s10,1)

One checks that always there is a smooth connection between ¢;(d) and its three-

dimensional counterpart cy,

61113; a(d)=a(3)=c. (4.44)

The radial integral in Eq. (4.42) is convergent if the real part $(d) of d fulfills the
condition R(d)<3. Making use of the expansion
a(d)=a(B3+¢) =c + ¢ (3)e+ O(e?), where ¢ =d — 3, the expansion of the
integral [, (d) around ¢ = 0 reads
é‘z‘ Cl 1 ,
L(d) = aB+e) =———=dB)+telnt + Oc). (4.45)
2¢ 2¢ 2
Let us note that the coefficient ¢} (3) usually depends on In 7y, and it has the structure

.
¢ (3) =¢,(3)+ ¢h(3) ln% +2¢; Inty, (4.46)
0

where ¢|,(3) = (2 — k)c; [what can be inferred knowing the dependence of ¢; (d) on
ly given in Eq. (4.43)]. Therefore the DR correction also changes the terms o Inry,.

The DR correction to the RH-regularized value of the integral IRH(3; ¢, ;) relies
on replacing this integral by

I’ (3se,6) + AL + AL, (4.47)
where
Al = I,(d) — M (3;¢,), a=1,2. (4.48)

Then one computes the double limit

limo ([RH(?), 6],62) + A[] + A[z)
e — 0

1,, ’
:A—E(c”(3)+czl(3)) -

(4.49)

\_/ N —
oo
@
—~
s
~

+(Cl +Cz)<——+1 ’2—2
0
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Note that all poles o 1/€;, 1/, and all terms depending on radii ¢;, ¢, or scales s, 52
cancel each other. The result (4.49) is as if all computations were fully done in d
dimensions.

In the DR correcting UV divergences in the 3PN two-point-mass Hamiltonian
performed by Damour et al. (2001), after collecting all terms of the type (4.49)
together, all poles o< 1/(d — 3) cancel each other. This is not the case for the UV
divergences of the 4PN two-point-mass Hamiltonian derived by Jaranowski and
Schéfer (2015). As explained in Sect. VIII D of Jaranowski and Schéfer (2015), after
collecting all terms of the type (4.49), one has to add to the Hamiltonian a unigue
total time derivative to eliminate all poles o< 1/(d — 3) (together with ¢,-dependent
logarithms).

The above described technique of the DR correcting of UV divergences can easily
be transcribed to control IR divergences. This is done by the replacement of the
integrals

/ d’xi(x) (4.50)
B(xa fa)

by the integral

/ d’x i(x), (4.51)
RY\B(0,R)

where B(0, R) means a large ball of radius R (with the centre at the origin 0 of the
coordinate system), and by studying expansion of the integrand i(x) for » — oo. This
technique was not used to regularize IR divergences in the computation of the 4PN
two-point-mass Hamiltonian by Damour et al. (2014) and Jaranowski and Schéfer
(2015). This was so because this technique applied only to the instantaneous part of
the 4PN Hamiltonian is not enough to get rid of the IR poles in the limit d — 3. For
resolving IR poles it was necessary to observe that the IR poles have to cancel with
the UV poles from the tail part of the Hamiltonian (what can be achieved e.g. after
implementing the so-called zero-bin subtraction in the EFT framework, see Porto and
Rothstein 2017).

Another two different approaches were employed by Damour et al. (2014)
and Jaranowski and Schéfer (2015) to regularize IR divergences in the instantaneous
part of the 4PN Hamiltonian (see Appendix A 3 in Jaranowski and Schifer 2015): (i)
modifying the behavior of the function h(T6T)U at infinity,® (i) implementing a d-
dimensional version of Riesz—Hadamard regularization. Both approaches were
developed in d dimensions, but the final results of using any of them in the limit
d — 3 turned out to be identical with the results of computations performed in d = 3
dimensions. Moreover, the results of the two approaches were different in the limit
d — 3, what indicated the ambiguity of IR regularization, discussed in detail
by Jaranowski and Schifer (2015) and fixed by Damour et al. (2014). This IR

® This approach is described in Appendix A 3 a of Jaranowski and Schifer (2015), where Egs. (A40)—
(A42) are misprinted: (r/s)® }'z?f)ij should be replaced by [(r/s)B h'(Tf)ij] ™ The Eq. (3.6) in Damour et al.
(2014) is the correct version of Eq. (A40) in Jaranowski and Schéfer (2015).
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ambiguity can be expressed in terms of only one unknown parameter, because the
results of two regularization approaches, albeit different, have exactly the same
structure with only different numerical prefactors. This prefactor can be treated as the
ambiguity parameter. The full 4PN Hamiltonian was thus computed up to a single
ambiguity parameter and it was used to calculate, in a gauge invariant form, the
energy of two-body system along circular orbits as a function of frequency. The
ambiguity parameter was fixed by comparison of part of this formula [linear in the
symmetric mass ratio v, see Eq. (6.3) below for the definition] with the analogous
4PN-accurate formula for the particle in the Schwarzschild metric which included
self-force corrections.

Analogous ambiguity was discovered in 4PN-acccurate calculations of two-body
equations of motion done by Bernard et al. (2016) in harmonic coordinates, where
also analytic regularization’ of the IR divergences of the instantaneous part of the
dynamics was performed. However, the computations made by Bernard et al. (2016)
faced also a second ambiguity (Damour et al. 2016; Bernard et al. 2017b), which
must come from their different (harmonic instead of ADMTT) gauge condition and
the potentiality of analytic regularization not to preserve gauge (in contrast to
dimensional regularization). The first method of analytic regularization applied
by Damour et al. (2014) and Jaranowski and Schifer (2015) is manifest ADMTT
gauge preserving. Finally, Marchand et al. (2018) and Bernard et al. (2017a)
successfully applied in harmonic-coordinates approach d-dimensional regularization
all-over. However, it is worth to emphasize that in intermediate steps their derivation
makes crucial use of an auxiliary regulator parameter #, entering as a factor r”
multiplying the formal expansions of the source. The confidence in the procedure
stems from the fact that the occurring poles in # do cancel each other in d
dimensions. On the other side, the obtained crucial rational number in the tail action,
41/60 or 41/30 depending on representation, was already derived within pure d-
dimensional calculations by Foffa and Sturani (2013b) and Galley et al. (2016) based
on the EFT formalism. Yet only quite recently, a complete pure dimensional-
regularization calculation has been achieved by Foffa and Sturani (2019); Foffa et al.
(2019b), where use has been made of the zero-bin subtraction method for interrelated
UV and IR poles, as discussed in view of the 4PN approximation by Porto (2017)
and Porto and Rothstein (2017).

4.4.3 Distributional differentiation in d dimensions

One can show that the formula (4.2) for distributional differentiation of homoge-
neous functions is also valid (without any change) in the d-dimensional case. It leads,
e.g., to equality

dn'n/ — 4nd/?
r dr(d/2—-1)

00774 = (d - 2) ;6. (4.52)

To overcome the necessity of using distributional differentiations it is possible to

7 The analytic regularization in Bernard et al. (2016) is a finite part procedure based on analytic
continuation in B of a regulator (r/re)".
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replace Dirac J-function by the class of analytic functions introduced in Riesz
(1949),

F((d— 6)/2) refd (453)

0X) = i)

resulting in the Dirac d-function in the limit

J = limd.. (4.54)

e—0

On this class of functions, the inverse Laplacian operates as
A6, = —b.1a, (4.55)
and instead of (4.52) one gets

(d — e)ninl — 8
P

There is no need to use distributional differentiation here, so no Jd-functions are
involved.

Though the replacements in the stress-energy tensor density of J, through o,
(with @ = 1,2) do destroy the divergence freeness of the stress-energy tensor and
thus the integrability conditions of the Einstein theory, the relaxed Einstein field
equations (the ones which result after imposing coordinate conditions) do not force
the stress-energy tensor to be divergence free and can thus be solved without
problems. The solutions one gets do not fulfill the complete Einstein field equations
but in the final limits ¢, — O the general coordinate covariance of the theory is
manifestly recovered. This property, however, only holds if these limits are taken
before the limit d = 3 is performed (Damour et al. 2008a).

00 = (d -2 —¢) (4.56)

5 Point-mass representations of spinless black holes

This section is devoted to an insight of how black holes, the most compact objects in
GR, can be represented by point masses. On the other side, the developments in the
present section show that point masses, interpreted as fictitious point masses
(analogously to image charges in the electrostatics), allow to represent black holes.
Later on, in the section on approximate Hamiltonians for spinning binaries, neutron
stars will also be considered, taking into account their different rotational
deformation. Tidal deformations are considered in Sect. 8.

The simplest black hole is a Schwarzschildian one which is isolated and non-
rotating. Its metric is a static solution of the vacuum Einstein field equations. In
isotropic coordinates, the Schwarzschild metric reads (see, e.g., Misner et al. 1973)

2
1 —GM GM\*
we (1 —|—ér;;> s <l Jr2rc2) a, .
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where M is the gravitating mass of the black hole and (x',x?,x*) are Cartesian

coordinates in R? with 2= 4 (03 + () and
dx? = (dx")? 4 (dx?)* 4 (dx*)2. The origin of the coordinate system » = 0 is not
located where the Schwarzschild singularity R = 0, with R the radial Schwarzschild
coordinate, is located, rather it is located on the other side of the Einstein—Rosen
bridge, at infinity, where space is flat. The point » = 0 does not belong to the three-
dimensional spacelike curved manifold, so we do have an open manifold excluding
the point » = 0, a so-called “puncture” manifold (see, e.g., Brandt and Briigmann
1997; Cook 2005). However, as we shall see below, the Schwarzschild metric can be
contructed with the aid of a Dirac ¢ function with support at » = 0, located in a
conformally related flat space of dimension smaller than three. Distributional sources
with support at the Schwarzschild singularity are summarized and treated by Pantoja
and Rago (2002), Heinzle and Steinbauer (2002).

A two black hole initial value solution of the vacuum Einstein field equations is
the time-symmetric Brill-Lindquist one (Brill and Lindquist 1963; Lindquist 1963),

2
1% — J G G\*
2 2r c? 2ryc? 242 o [2%) 2
ds* = _<_1 - o -~ o | cde + (1 +2r102 2r202) dx*, (5.2)

2r1c? 2ryc?

where r, = x — X, and r, = |r,| (@ = 1, 2), the coefficients o, and f§, can be found
in Jaranowski and Schifer (2002) (notice that hTT =0, 7/ =0, and, initially,
0,1, = 0). Its total energy results from the ADM surface integral [this is the reduced
ADM Hamiltonian from Eq. (2.20) written for the metric (5.2)]

4
Expm = — —— ) ds,a = (o + o), (5.3)

2nG
where dS; = n'r?dQ is a two-dimensional surface-area element (with unit radial
vector n' = x' /r and solid angle element dQ2) and

OC]G OC2G

=1 . 54
+ 2rict 2 (5:4)
Introducing the inversion map x — x’ defined by Brill and Lindquist (1963)
2 G? 2 G?
r'lzrlm = *rl4l4 2 (5.5)

where r| = x' — xy, r| = |x’ — xy|, the three-metric d?2 = P*dx? transforms into

0(1G OC10£2G2

27 Anrict’

d? = P"dx?, with ¥ =1+ (5.6)
where r, = rjo? G?/(4c¢*r?) + r12 with rj; = x; — x,. From the new metric func-
tion ¥’ the proper mass of the throat 1 results in,

2

mi=——— ¢ ds/ ¥ = L, A0G

2nG i 2r12c2 (5.7
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where i}, denotes the black hole’s 1 own spacelike infinity. Hereof the ADM energy
comes out in the form,

o0

Expm = (my +ma)c* — GW’ (5.8)
where
g Ma=my  Crap [ matmy (ma = my 2_1 (5.9)
“T 2 G Arap)G - \2¢%r4)G ' '

This construction, as performed by Brill and Lindquist (1963), is a purely geomet-
rical (or vacuum) one without touching singularities. Recall that this energy belongs
to an initial value solution of the Einstein constraint equations with vanishing of both
h}T and particle together with field momenta. In this initial conditions spurious
gravitational waves are included.

In the following we will show how the vacuum Brill-Lindquist solution can be
obtained with Dirac J-function source terms located at 7y =0 and », =0 in a
conformally related three-dimensional flat space. To do this we will formulate the
problem in d space dimensions and make analytical continuation in d of the results
down to d = 3. The insertion of the stress-energy density for point masses into the
Hamiltonian constraint equation yields, for p,; = 0, hgT =0, and 7/ =0,

167G
—PAp = — Xa:maéa, (5.10)

where ¥ and ¢ parametrize the space metric,

d—2
=gty = = :
If the lapse function N is represented by
X
N== .
o (5.12)

an equation for y results of the form (using the initial-data conditions p,; = 0,
h;T =0, n7 = 0),

4nGd —2
2 4, —
Py =— d_IXE My 0g. (5.13)
a

With the aid of the relation

1 4nd/?
- 5.14
AT T (-14)

it is easy to show that for 1 <d <2 the equations for ¥ and y do have well-defined
solutions. To obtain these solutions we employ the ansatz
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4GI'(d/2 -1
6= G (T o). (5.19)

C

where o) and oy are some constants. After plugging the ansatz (5.15) into Eq. (5.10)
we compare the coefficients of the Dirac d-functions on both sides of the equation.
For point mass 1 we get

<1+G(j2(_d2_) 1()?;/1/22_1 D (— rg—)>oc161 = m0;. (5-16)

After taking 1 <d <2, one can perform the limit 7, — 0 for the coefficient of 9; in
the left-hand-side of the above equation,

L G@d=r(/2-1) o
< TR DT 2

)0!151 :m151. (517)

Going over to d = 3 by arguing that the solution is analytic in d results in the relation

Ma
W= am (5.18)

23 ray Tab

where b # a and a,b = 1,2. The ADM energy is again given by, in the limit d = 3,
Eapm = (o1 + 22)¢. (5.19)

Here we recognize the important aspect that although the metric may describe close
binary black holes with strongly deformed apparent horizons, the both black holes
can still be generated by point masses in conformally related flat space. This is the
justification for our particle model to be taken as model for orbiting black holes.
Obviously black holes generated by point masses are orbiting black holes without
spin, i.e., Schwarzschild-type black holes. The representation of a Schwarzschild-
type black hole in binary—black-hole systems with one Dirac J-function seems not to
be the only possibility. As shown by Jaranowski and Schéfer (2000a), binary—black-
hole configurations defined through isometry-conditions at the apparent horizons
(Misner 1963) need infinitely many Dirac o-functions per each one of the black
holes. Whether or not those black holes are more physical is not known. It has been
found by Jaranowski and Schifer (1999) that the expressions for ADM energy of the
two kinds of binary black holes do agree through 2PN order, and that at the 3PN level
the energy of the Brill-Lindquist binary black holes is additively higher by
G*m2m3 (my +my)/(8¢°r,), i.e. the Misner configuration seems stronger bound.”
The same paper has shown that the spatial metrics of both binary—black-hole con-
figurations coincide through 3PN order, and that at least through 5PN order they can
be made to coincide by shifts of black-hole position variables.

& This could be an issue for the effacing principle as discussed in Sect. 1.1.
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6 Post-Newtonian Hamilton dynamics of nonspinning compact
binaries

In this section we collect explicit results on Hamilton dynamics of binaries made of
compact and nonspinning bodies. Up to the 4PN order the Hamiltonian of binary
point-mass systems is explicitly known and it can be written as the sum

1 1
H[Xaapmt] = Zmacz +HN(Xa7pa) + ?HlPN(Xaapa) +07H2PN(Xaapa)
a

1 1 1
+ EHZASN(XM P, t) + C_GHSPN(Xm p.) + C—7H3.5PN(Xa, Do, t)
1 _
+C*8H4PN[XmPa] + 0(c™). (6.1)

This Hamiltonian is the PN-expanded reduced ADM Hamiltonian of point-masses
plus field system; the nontrivial procedure of reduction is described in Sects. 3.1 and
3.2 of this review. The non-autonomous dissipative Hamiltonians H, spn (X4, P, )
and H3 spn (X4, Py, ¢) are written as explicitly depending on time because they depend
on the gravitational field variables (see Sect. 6.5 for more details). The dependence of
the 4PN Hamiltonian Hupn on X, and p, is both pointwise and functional (and this is
why we have used square brackets for arguments of Hspn).

We will display here the conservative Hamiltonians Hy to Hapyn in the centre-of-
mass reference frame, relegating their generic, noncentre-of-mass forms, to
Appendix C. In the ADM formalism the centre-of-mass reference frame is defined
by the simple requirement

pi+p, =0 (6.2)

Here we should point out that at the 3.5PN order for the first time recoil arises, hence
the conservation of linear momentum is violated [see, e.g., Fitchett 1983 (derivation
based on wave solutions of linearized field equations) and Junker and Schéfer 1992
(derivation based on wave solutions of non-linear field equations)]. This however has
no influence on the energy through 6.5PN order, if P = p, + p, = 0 holds initially,
because up to 3PN order the Eq. (3.43) is valid and the change of the Hamiltonian A
caused by nonconservation of P equals (dH/df)|y_cons = ((¢?/H)P)ypy -
(dP/dt); spy = O [where M is defined in Eq. (3.43)] through 6.5PN order.
Let us define

mymy ﬁ

M M’
where the symmetric mass ratio 0 <v < 1 /4, with v = 0 being the test-body case and
v = 1/4 for equal-mass binaries. It is convenient to introduce reduced (or rescaled)
variables r and p (together with the rescaled time variable 7),

v

M=m+m, p= (6.3)

r= , N=—, p=—=-—=—=, p,=n-p, (=

_X1-x r I ) bt
GM [r| u u GM’

(6.4)

as well as the reduced Hamiltonian [note that # = Mc?, see Eq. (3.43)]
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_ 2
g -Mc (6.5)
1

6.1 Conservative Hamiltonians through 4PN order

The conservative reduced 4PN-accurate two-point-mass Hamiltonian in the centre-
of-mass frame reads

N N 1 . 1 -~
Hlr,p] = Hx(r,p) + gHu’N(r, p) + gHsz(r, p)
1 . 1 .
+ gHspN(ll p) + §H4PN[r> pl. (6.6)

The Hamiltonians I:IN through I:I3PN are local in time. They explicitly read

21

, p
i _p 1 6.7
N(r7p) 2 I"’ ( )
i (r,p) =% (v — Dp* =2 [(3+)p? + ] -+ - (6.8)
IPN\L, ] 2 rla. 2,,2’
. 1 .y
Hopn (T, p) ZE(l —5v+5v)p
1 1
+2 (5 —20v — 3v*)p* — 2v*p2p* — 3v7p}] -
r
+l[(5+8v)2—|—3v2]1 1(1+3v)1 (6.9)
2 P PriaTy 3’ '
2 1 2 3y 8
H3PN(r7 p) 2@(—5 4+ 35v — 70v° + 35v )p
1
+ 16 [(—7 +42v — 53v* — 5V )p° + (2 — 3v)vpPpt
1 11
301 — )it — 5v3p3] ~+ [E(_” + 136y + 109v?)p*
1 s, 1 1
+ E(” +30v)vpip” + E(S + 43v)vpr} 3
25 (1 , 335 23, ,
+ < 8+(64n 48>V 8V>p
(85 3, TN Ll
16 64" 4 )P

1 /109 21 ,\ 11
— _—— —. 6.10
+L;+<12 32ﬂ>v}r4 (6.10)
The total 4PN Hamiltonian [:]4])]\][1', p] is the sum of the local-in-time piece
H5 (v, p) and the piece A9 [r, p] which is nonlocal in time:
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Hipxlr, p] = Hig (r, p) + Hipi ' [r, p]. (6.11)
The local-in-time 4PN Hamiltonian A5 (r, p) reads

7 63 189 , 105 , 63
Hlocal R 72 3 e 4 10
an (1) (256 256" 256" 128" 256

45 ¢ 45 (423 3 L, 9 L\,
+{128 167 v+<64p 3PP T gqPrP )Y

IRUERS S IR NP LI
—_— V
2567 T gt T 1aghP gl T asghr

9 5 35 0\ a1
128p 32prp 64’” 32p'p 128p’ r
P +—pp

1677 1928 T 160”

(S
+(4857 oSS 0 O4TS 4 LIS 6) X

135, 79164924889423696>

567 T ea P T PP T g Pr )Y

2335 o 1135 5 1649, 5 10353 6) 3}1

72

2567 T 256 PP T 768 PP T g0 P

R’ 8192 19200 1600 1024
(375 o 23533\ ) [(18491 5 1189789
8192 1280 )P 16384 ~ 28800 )¥
127 4035 2\ oo (5756338655 o) )
3 204" )p * < 1920 16384 )Pr|"

553 , 225 ,, 381 .\ 5] 1
+< 1287 " ea PP T agPr )V (13

105 » [(2749 2 589189) 4 (63347 1059n2> )

+

105 o+ [(185761 21837 2) 2 (3401779 28691 2> 2}\)

VR 19200 8192 © 57600 24576 )P

672811 158177 5\ 5 (21827 110099 5\ 5] 5] 1
_ . _ 21827 - 1
19200 49152 © )P 3840 ' 49152 © JPr|V (4

+ 7i+ 169199+6237 AT 1256+7403 2) 2 1
16 2400 1024 45 3072 P

(6.12)

The time-symmetric but nonlocal-in-time Hamiltonian AZSM°%! [y, p] is related with
the leading-order tail effects (Damour et al. 2014). It equals
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- 1G?- todr.
H:gllzllocal[r’ p] = _gﬁl’f (l) X Perlz/C [m Hlij([+ T), (613)

where Pfr is a Hadamard partie finie with time scale 7 = 2rj;/c and where 11/
denotes a third time derivative of the Newtonian quadrupole moment /;; of the binary
system,

o |
I = Z my <x’axfa - 55”){2). (6.14)

a

The Hadamard partie finie operation is defined as (Damour et al. 2014)

e [ Vo= [ Vo) -1+ [ Ve, 619

v T
Let us also note that in reduced variables the quadrupole moment /;; and its third time

derivative /; read

I = (GM)’u (r"rf - ;rzéij), = — # (4n<’p,> ~3(n- p)n<w>), (6.16)
where (---) denotes a symmetric tracefree projection and where in I the time
derivatives ¥, ¥, and r were eliminated by means of Newtonian equations of motion.

From the reduced conservative Hamiltonians displayed above, where a factor of
1/v is factorized out [through the definition (6.5) of the reduced Hamiltonian], the
standard test-body dynamics is very easily obtained, simply by putting v = 0. The
conservative Hamiltonians I:IN through I:I4PN serve as basis of the EOB approach,
where with the aid of a canonical transformation the two-body dynamics is put into
test-body form of an effective particle moving in deformed Schwarzschild metric,
with v being the deformation parameter (Buonanno and Damour 1999, 2000;
Damour et al. 2000a, 2015). These Hamiltonians, both directly and through the EOB
approach, constitute an important element in the construction of templates needed to
detect gravitational waves emitted by coalescing compact binaries. Let us stress again
that the complete 4PN Hamiltonian has been obtained only in 2014 (Damour et al.
2014), based on earlier calculations (Blanchet and Damour 1988; Bini and Damour
2013; Jaranowski and Schifer 2013) and a work published later (Jaranowski and
Schéfer 2015).

6.2 Nonlocal-in-time tail Hamiltonian at 4PN order

The nonlocal-in-time tail Hamiltonian at the 4PN level (derived and applied by
Damour et al. 2014 and Damour et al. 2015, respectively) is the most subtle part of
the 4PN Hamiltonian. It certainly deserves some discussion. Let us remark that
though the tail Hamiltonian derived in 2016 by Bernard et al. (2016) was identical
with the one given in Damour et al. (2014), the derivation there of the equations of
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motion and the conserved energy was incorrectly done, as detailed by Damour et al.
(2016), which was later confirmed by Bernard et al. (2017b).
The 4PN-level tail-related contribution to the action reads

sl = - / HEN (1) de, (6.17)

where the 4PN tail Hamiltonian equals

H (1) = — (2%4 L(t) Py e [ Z |dvv'i,-j(t +v). (6.18)
Because formally
Tyt +v) = exp (%) 700), (6.19)
the tail Hamiltonian can also be written as
Hipn (1) = — %Yz’/([) Pfo /e /w% [Yii(t +v) + It - V)}
0 (6.20)

2G*M ... > dv d\ -
= —?I,"(l‘) szr(ﬁ/C\/O 7 cosh (Va) ],j(l)

Another writing of the tail Hamiltonian is

i 2G*M - > dv
HIg(0) = 223 T5(0) PEae /0 Y osh (X (Ho)) (1 (6.21)

with

B 0Hy, 0 0H, 0 ~(p(1)’ GMyp
¥ = Y (g @) = w62

This presentation shows that H\ can be constructed from positions and momenta at
time 7.

i

For circular orbits, I,j(t) is an eigenfunction of cosh (v%), reading

d
cosh (va) 1;(t) = cos(2vQ(1))1;(1), (6.23)
where (2 is the angular frequency along circular orbit (p, = 0),

P, GMu

. OHy(py,r) _ py(t)
Q) =¢ = ANEAPSE R H = — ) 6.24
( ) ® apw ,LU"2 (t) ’ 0(p(/)’ }") 2,[”‘2 r ( )
Notice the representation of Q(¢) as function of the still independent (dynamical
equation p, = —0H,/Or has not yet been used) canonical variables p,(¢) and 7(z) (in

Damour et al. 2014, 2016, a more concise representation for circular orbits has been
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applied, based on the orbital angular momentum as only variable). The somewhat

complicated structure of Eq. (6.23) can be made plausible by writing

v% =vQ(py,r) %, see Eq. (6.24), and parametrizing the Eq. (6.16) for circular

orbits (p, = 0) with orbital angle ¢. The 4PN tail Hamiltonian for circular orbits can
thus be written as

lcin 2G*M - 2 *dv 2py(2)
H‘:EIIJII\IC C(I) = —? (Il](l)> szr(t)/c/o VCOS(MVZ)(I) v

2G*M /- 2 4py (1)
29V ) ,
5c8 ( (1) [n(,ucr(t) e
where y; = 0.577. .. denotes Euler’s constant. This representation has been quoted

and used by Bernard et al. (2016), see Eq. (5.32) therein, for a straightforward
comparison of their tail results with the tail results presented by Damour et al. (2014).

(6.25)

6.3 Dynamical invariants of two-body conservative dynamics

The observables of two-body systems that can be measured from infinity by, say,
gravitational-wave observations, are describable in terms of dynamical invariants, i.
e., functions which do not depend on the choice of phase-space coordinates.
Dynamical invariants are easily obtained within a Hamiltonian framework of
integrable systems.

We start from the reduced conservative Hamiltonian A (r, p) in the centre-of-mass
frame (we are thus considering here a local-in-time Hamiltonian; for the local
reduction of a nonlocal-in-time 4PN-level Hamiltonian see Sect. 6.3.2 below) and we
employ reduced variables (r,p). The invariance of H(r,p) under time translations
and spatial rotations leads to the conserved quantities

E=H(r,p), j= =rxp, (6.26)

uGM

where E is the total energy and J is the total orbital angular momentum of the binary
system in the centre-of-mass frame. We further restrict considerations to the plane of
the relative trajectory endowed with polar coordinates (», ¢) and we use Hamilton-
Jacobi approach to obtain the motion. To do this we separate the variables 7 =

t/(GM) and ¢ in the reduced planar action S = S/(GuM), which takes the form

S=—Ei+jp+ / V/R(r,E.j)dr. (6.27)

Here j = |j| and the effective radial potential R(r, E, j) is obtained by solving the
equation £ = H (r,p) with respect to p, = n - p, after making use of the relation
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2
pP=(n-p) +(nxp) =pl+5. (6:28)

The Hamilton—Jacobi theory shows that the observables of the two-body dynamics
can be deduced from the (reduced) radial action integral

. . 2 T'max -
() =5 / VR(r,E.j)dr, (6.29)

Tmin

where the integration is defined from minimal to maximal radial distance. The
dimensionless parameter k = A®/(2n) (with A® = @ — 2x) measuring the frac-
tional periastron advance per orbit and the periastron-to-periastron period P are
obtained by differentiating the radial action integral:

k:,w,l’ (6.30)
9
3ir(E,j)
P =2nGM LAy 6.31
G 5 ( )

It is useful to express the Hamiltonian as a function of the Delaunay (reduced) action
variables (see, e.g., Goldstein 1981) defined by

N . J i J-
WM’ T uGM’ T uGM”

n=i+j= =J. (6.32)
The angle variables conjugate to n, j, and m are, respectively: the mean anomaly, the
argument of the periastron, and the longitude of the ascending node. In the quantum
language, N /# is the principal quantum number, J /% the total angular-momentum
quantum number, and J./% the magnetic quantum number. They are adiabatic
invariants of the dynamics and they are, according to the Bohr—Sommerfeld rules of
the old quantum theory, (approximately) quantized in integers. Knowing the
Delaunay Hamiltonian A (n,j,m) one computes the angular frequencies of the
(generic) rosette motion of the binary system by differentiating H with respect to the
action variables. Namely,

2n 1 0H(n,j,m)

Wradial = &~

_ (6.33)
P GM on

A® 2k 1 0H(n,j,m)
Wperiastron = ? = T = Wiaj . (634)
Here, @yagiar 1s the angular frequency of the radial motion, i.e., the angular frequency
of the return to the periastron, while Wperiastron 18 the average angular frequency with

which the major axis advances in space.
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6.3.1 3PN-accurate results

The dynamical invariants of two-body dynamics were computed by Damour and
Schifer (1988) at the 2PN level and then generalized to the 3PN level of accuracy
by Damour et al. (2000b). We are displaying here 3PN-accurate formulae. The
periastron advance parameter k reads’

k:3,2{1+cl[(7 2v)1 (5_sz]

c?j

A (T (B 12) 1)
A2 64 4 j*

(12 (B2, 4_52 £
2 64 teV 7

1

+Z(5—5V+4V)

+ O(c™ } (6.35)
The 3PN-accurate formula for the orbital period reads

20GM 11
p=_2C { (15— v)E

- (_ZE)3/2 C24
1

+ —
Poud

L1054, 218 45, (—2E)*?
s\ 2T ed™ T3 6 7

(=2E)?

w

(—2E)3/2

3
~(5-2v) —3—2(35+30v+3v2)E2

[\

3
—Z(S—Sv+4v2)

5
— (21 -1 1
+128( 05v + 15v* + 5v*) E

+ (’)(cg)}. (6.36)

These expressions have direct applications to binary pulsars (Damour and Schéfer
1988). Explicit analytic orbit solutions of the conservative dynamics through 3PN
order are given by Memmesheimer et al. (2005). The 4PN periastron advance was
first derived by Damour et al. (2015, 2016), with confirmation provided in a later
rederivation (Bernard et al. 2017b); also see Blanchet and Le Tiec (2017).

All conservative two-body Hamiltonians respect rotational symmetry, therefore
the Delaunay variable m does not enter these Hamiltonians. The 3PN-accurate
Delaunay Hamiltonian reads (Damour et al. 2000b)

® Let us note a misprint in Eq. (4.16) of Damour et al. (2000b): the prefactor “3” in the term proportional
to i3(v) should be removed.
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o 1 1(6 1
1 /5 1 27 3 11 1
(27 -2v) 2L 235 — 4v)— + - (145 — 15v +1*) —
+c4 (2(7 v)j3n+j2n2 2(35 v)jn3+8( 5 5v+v)n4>
L[(231, (123, L2\ 14 1
i 125) T )
+cé[< 2 +<64 4V)j5n+2( V)
303

03 (1427 41, S\ 145 1
+(_4+<12_64 )V‘1°V>jans‘z(2°‘3v>w
L3
2

1 1
(6363 — 805y + 90v* — 5v*) —6}
n

(275 — 50v + 4?)
vy 64

jn’
+ (’)(08)}. (6.37)

Additional insight into the 3PN dynamics can be found in a paper by Le Tiec (2015),
where the first law of mechanics for binary systems of point masses (Le Tiec et al.
2012) was generalized to generic eccentric orbits.

6.3.2 Results at 4PN order

The reduced 4PN Hamiltonian Hapx [r, p] can be decomposed in two parts in a way
slightly different from the splitting shown in Eq. (6.11). Namely,

H4PN[1' p] = H4PN(r p;s) + I:IAI&)N[rap;S]v (6.38)

where the first part is local in time while the second part is nonlocal in time;
$ = sphys/(GM)) is a reduced scale with dimension of 1/velocity?, where sphys is a
scale with dimension of a length. The Hamiltonian H}py is a function of phase-space
variables (r,p) of the form

2G?

A A~ v 2
Hipy (r,p3s) = Higy(r,p) + F(r,p)In—, - F(rop) =5— (1), (639)
where the Hamiltonian A IPN is given in Eq. (6.12) above. The Hamiltonian H, }‘PN isa
functional of phase-space trajectories (r(¢), p(z)),

. 1G?... T qr ..
il pss] = =50y < Pha e [ TEh(e0) (640

The nonlocal Hamiltonian Ay [r, p; s] differs from what is displayed in Eq. (6.13) as
the nonlocal part of the 4PN Hamiltonian. There the nonlocal piece of ]:[4pN is
defined by taking as regularization scale in the partie finie operation entering
Eq. (6.13) the time 27y, /c instead of 2spnys /¢ appearing in (6.40). Thus the arbitrary
scale sphys enters both parts Hipy and Hiby of Hypy, though it cancels out in the total
Hamiltonian. Damour et al. (2015) has shown that modulo some nonlocal-in-time
shift of the phase-space coordinates, one can reduce a nonlocal dynamics defined by
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the Hamiltonian H[r, p;s] = Hx(r,p) + Hibx[r, p;s] to an ordinary (i.e., local in
time) one. We will sketch here this reduction procedure, which employs the
Delaunay form of the Newtonian equations of motion. In the circular motion case
things are much simpler and we can directly perform the integral in the nonlocal
Hamiltonian, Eq. (6.25).

It is enough to consider the planar case. In that case the action-angle variables are
(L,¢;G,g), using the standard notation of Brouwer and Clemence (1961) (with
L =n and G =). The variable £ is conjugate to the “mean anomaly” ¢, while G is
conjugate to the argument of the periastron g = . The variables £ and G are related
to the usual Keplerian variables a (semimajor axis) and e (eccentricity) via

L=+va, G=+/a(l-e?). (6.41)

By inverting (6.41) one can express a and e as functions of £ and G:

2
a=/L? e= l<%> (6.42)

We use here rescaled variables: in particular, ¢ denotes the rescaled semimajor axis
a = aphys/(GM). We also use the rescaled time variable 7 = t,hys/(GM) appropriate
for the rescaled Newtonian Hamiltonian
A 1 1 1
HL)==p*——=——. 6.43
N(£) 2P 202 (643)

The explicit expressions of the Cartesian coordinates (x, y) of a Newtonian motion in
terms of action-angle variables are given by

x(L£,4;G,g) =cosgxy —singyy, y(L,¢;G,g)=singxo+cosgyy, (6.44)

xo = a(cosu —e), yo=aVl—e*sinu, (6.45)

where the “eccentric anomaly” u is the function of ¢ and e defined by solving
Kepler’s equation

u—esinu=~. (6.46)

The solution of Kepler’s equation can be written in terms of Bessel functions:

u=~0+ i%Jn(ne) sin(n £). (6.47)

n=1

Note also the following Bessel-Fourier expansions of cos « and sinu [which directly
enter (xo, Vo) and thereby (x, y)]

e X1
cosu =~ + ;Z [(Ju—1(ne) — Jyi1(ne)] cosnt, (6.43)
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sinu = i% [Ju—1(ne) + Jy11(ne)] sinn . (6.49)

n=1

For completeness, we also recall the expressions involving the “true anomaly” f
(polar angle from the periastron) and the radius vector 7:

1 — 2
r=a(l —ecosu) :%, (6.50)
— 52
Y _ gosf = SOSUTC N0 g VIZesinu (6.51)
r 1 —ecosu r 1 —ecosu

The above expressions allow one to evaluate the expansions of x, y, and therefrom the
components of the quadrupole tensor /;;, as power series in e and Fourier series in /.
Let us then consider the expression

F(t,1) = () I;(t + 1), (6.52)

which enters the nonlocal-in-time piece (6.40) of the Hamiltonian. In order to
evaluate the order-reduced value of F (¢, 1) one needs to use the equations of motion,
both for computing the third time derivatives of fj;, and for expressing the phase-
space variables at time ¢ + 7 in terms of the phase-space variables at time ¢. One
employs the zeroth-order equations of motion following from the Newtonian
Hamiltonian (6.43),

d¢  dHy

— = N___ =@ 2= 6.53
dd oL 3 (), di oG ’ (6.53)
dr ol de Og

where Q(L) = £73 is the (-time) rescaled Newtonian (anomalistic) orbital fre-
quency Q = GM Quuys (it satisfies the rescaled third Kepler’s law: Q = a~3/2). The
fact that g, £, and G are constant and that ¢ varies linearly with time, makes it easy to

compute 7;(¢ + 1) in terms of the values of (£, g, £, G) at time . It suffices to use
(denoting by a prime the values at time ¢ = ¢ + 1)

0 =0(t+1) = £0) + QL)E, (6.55)

where © = t/(GM), together with ¢ = g, L' = £, and ¢’ = G. The order-reduced
value of F(t,71) is given by (using d/df = Qd/d¢)

. QL &1y, &y
Flb9) = ( GM ) e D4

Inserting the expansion of ;(¢) in powers of e and in trigonometric functions of ¢
and g, yields F in the form of a series of monomials of the type

(£ + Q(L)7). (6.56)
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Z nmn} e cos(ny £ +n3 Q1), (6.57)

ny,ny,En3

where ny, ny, n3 are natural integers. (Because of rotational invariance, and of the
result g’ = g, there is no dependence of F on g.)

All the terms in the expansion (6.57) containing a nonzero value of n, will, after
integrating over £ with the measure df/|z| as indicated in Eq. (6.40), generate a
corresponding contribution to H}H,N which varies with ¢ proportionally to cos(n; £).
One employs now the standard Delaunay technique: any term of the type
A(L) cos(nf) in a first-order perturbation eH, (L, £) = Hiby(L,0) of the leading-
order Hamiltonian Hy(L) = Hy (L) can be eliminated by a canonical transformation
with generating function of the type e¢g(L, £) = ¢B(L) sin(nf). Indeed,
0Hy(L) ©

602 ) 6—2 = —nQ(L) B(L) cos(nl), (6.58)
so that the choice B = A/(n Q) eliminates the term 4 cos(n¢) in H;. This shows that
all the periodically varying terms (with 7 # 0) in the expansion (6.57) of F can be
eliminated by a canonical transformation. Consequently one can simplify the non-

5gH1 = {HO([’)ﬂg} =

local part I:IA{{)N of the 4PN Hamiltonian by replacing it by its /-averaged value,

o N T . 1 G2 teode 6.5
Hypn(L,Gss) = 2 ), dl Hypy[r, p;s] = 5568 Pfhy/c B F, (659)
where F denotes the (-average of F (¢, %) [which is simply obtained by dropping all
the terms with n; # 0 in the expansion (6.57)]. This procedure yields an averaged

Hamiltonian HEPN which depends only on £, G (and s) and which is given as an
expansion in powers of e (because of the averaging this expansion contains only even
powers of e). Damour et al. (2015) derived the /-averaged Hamiltonian as a power
series of the form'’

Hiypn(£,G;5) = 3 gﬁloz P (o) ln(Zp L,) (6.60)

where ffj’ (e) are coefficients in the Bessel-Fourier expansion of the dimensionless
reduced quadrupole moment I; = I;/[(GM )? ua?),

+00

Li(t,e) = Y I(e)e™. (6.61)

p=—

Equation (6.60) is the basic expression for the transition of the tail-related part of the
4PN dynamics to the EOB approach (Damour et al. 2015).

For another approach to the occurrence and treatment of the (¢, ¢')-structure in
nonlocal-in-time Hamiltonians the reader is referred to Damour et al. (2016) (therein,
£ is called 4). Generalized quasi-Keplerian parametrization for eccentric orbits at 4PN

19 Here e = 2.718. .. should be distinguished from the eccentricity e.
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order was studied in Cho et al. (2022) (ignoring certain oscillatory terms arising due
to 4PN tail effects).

6.3.3 Results at 5PN order

To compactify the expressions for higher-order PN Hamiltonians it is most
convenient to go over to the canonically equivalent Hamiltonians of the EOB
formalism (Buonanno and Damour 1999, 2000) (let us remind that the EOB
approach is not in the scope of this review). Within this formalism the nPN-accurate
Hamiltonian H < ,pn(x,p) of the two-body system, in the centre of mass frame, is
replaced by the real (i.e. giving the evolution equations with respect to the real ADM
time coordinate fapy and the real two-body energy) and improved (i.e. representing a

nonperturbative resummed estimate of the PN Hamiltonian) Hamiltonian
Himproved
real

(' (x,p),p'(x,p)) (Buonanno and Damour 2000). The Hamiltonian
H™™v s related to the effective EOB Hamiltonian HEOB through the equation

real

(Damour et al. 2000a)

HEOB (Himproved)z N mz 4 2 4
eff

_ real 1€ —myc (662)
'ucz ZWI] I’}’l26‘4 ’
resulting in the useful representation of Hrlen;ll’ roved ih terms of HEQB,
;;r:l{)roved _ MC \/1 +2v HEOB 1) (663)

where HEB := HEOB /(uc?) denotes the reduced effective EOB Hamiltonian. In
turn, the EOB effective Hamiltonian is defined as HE® := —cpj), where pj, is the
solution of a general mass-shell condition of the form

g (@ )pp, + O py) = — 12, (6.64)

where the scalar Q denotes contributions which are at least quartic in momenta; one
can reduce the dependence of QO on momenta to a dependence on the sole radial

momentum p!. The spherically symmetric effective metric g/jff is a v-dependent

deformation of Schwarzschild metric,
g dx” = —A(r;v)de? + (A(r;v)D(; \)))71dif'2
+ #2(d0? + sin® 0 d¢™?). (6.65)

Solving Eq. (6.64) [with the metric (6.65)] with respect to pj gives the reduced
effective EOB Hamiltonian of the form
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HER (Y pl3v) = \/A(u; V(1452 + (40 )D(w; ) = 1)p2 + Ow,piiv) ),
(6.66)
where Q= Q/(uc?), u:=GM/(F&), p.:=p./(uc), p =p'/(uc) with
P =[PP + PR/ 43 (2 sin? ).

The 5PN-accurate PN expansions of the potentials 4, D, and O read [let us note
that u = O(c™?) and p. = O(c™")]

4 6
A(u;v) =1+ Zak(\))uk + Z (ag(v) + al(v) Inu)u”, (6.67a)
k=1 =
3 5
D(u;v) =1+ Zc?k(v)uk + Z (dg(v) + d;'(v)In u)ut, (6.67b)
k=2 k=4

O(u,py;v) = (1142(")”2 +aqu ()i’ + (g5 (v) + gis (v) Inw) u4)p£4
+ (g0 + (g5 () + g3 () ) )

+ (481 (V)u+ qu(V)u2>p/,8- (6.67¢)

Up to the 3PN level, the coefficients read as follows (Buonanno and Damour
1999; Damour et al. 2000a):

At OPN: a;(v) = -2, (6.68a)
at IPN:  a,(v) =0, (6.68Db)
at 2PN:  a3(v) =2v, da(v) = 6v, (6.68¢)
94 41 _
at 3PN:  as(v) = (= ——=7° |v, ds(v) = 52v — 62,
0= (557 ) @) s

q42(\1) =8v — 6\12.
At the 4PN level, the coefficients read (Damour et al. 2015; Bini et al. 2020a)

2275 4237 128 256 41 221
ag(v): (mnzw+?yE+?ln2>v+ <3—2ﬂ2?>\)2, (6693)
N 64
al(v) = =" (6.69b)
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_ 533 23761 1184 6496 2916
&)= (- 2 - In2+=—In3
3() ( 75 1536 " 15 BT Is TS )
123
+<Tg#—2m) (6.69¢)
_ 592
dr(v) =5 (6.69d)
5308 496256 33048
qa3(v) = <—?+ 45 In2 _Tl 3>v — 83 + 10\13, (6.69¢)
827 2358912 1399437 390625
q62( ): (——3 — 75 In2 + 30 In3 + 13 In 5)
27
-?;v24—6v% (6.69f)
35772 21668992 6591861 27734375
gs1(v) = <— 75 + 15 In2 + 350 In3 — 126 lnS)v. (6.69g)

At the 5PN level, solution with unique numerical prefactors is not available. The
TF approach yields all 5SPN-order coefficients of the EOB potentials (6.67) except for
numerical prefactors of two terms proportional to v* entering the coefficients ag(v)
and d(v). Also, Bliimlein et al. (2022a, b) disagree with obtained by Bini et al.
(2019, 2020a) local contribution to a term proportional to v? in the coefficient g5, (v).
The coefficients of the SPN-order EOB potentials read (Bini et al. 2019, 2020a)

. 1066621 246367 , 14008 31736 243
w0 =\""575 T 302 © " ios /B q05 M2t I3
-+ a62v2 + 4V3, (6703)
. 7004 144
a16 (V) = —WV — ?V27 (670b)
_ 294464 63707 , 2840 120648 19683
dc — — 2 — ) 1 2 —_ —1 3
50) < 175 512 ¢ 7 T35 7 )
_ 1069 205
2 oY eEr 2 3
+ dspv” + ( 3 T )v , (6.70¢)
_ 1420 3392
d;n(v) = — TV — ?\97 (670d)
¢ ) = 1295219 93031 , 10856 40979464 14203593 .
v 350 1536 105 T 315 280
9765625 615
+ oz hw>v+mmﬁ4cno—§5ﬁ>ﬁ, (6.70¢)
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5428 592
Iy 2528, 222 6.70f
qas(v) 105 v 3 v, ( )
() (2613083 6875745536, | 23132628 . 101687500 ¢
5 1050 4725 175 189
159089 4998308864 45409167 26171875 ,
— In2 — In3+—In5)v
75 1575 350 18
+ 116V — 14*, (6.70g)
gn ) =0, (6.70n)
() = (570381 _ 16175693888 393786545409
123 = 2450 1575 156800
875090984375 13841287201
169344 17280
870976 703189497728 | 332067403089, .
525 33075 39200
468490234375 13841287201 24
L P s - S 7 )+ 3 — vt (6.70i
02336 4320 )"’+ 7V 6% (6700

The nonlocal part of the potential gg; was computed in Appendix G of Bini et al.
(2020c).

The non computed in Bini et al. (2019, 2020a) prefactors ag, and ds, enter the
local-in-time parts of the EOB potentials,

nloc loc 7 “nloc Floc
a2 = Agy + gy s d52 = d52 + d52 5 (671)

where the prefactors a2° and d2y° related with the nonlocal-in-time parts are well
confirmed and equal [see Table IV in Bini et al. (2020a)]

e 64 288 928 972
B =5 T ety 2ol (6.722)
67736 7 6784 _ 326656 58320

dsy* = In2+>==n3. (6.72b)

105 15 BT 21
The EFT approach by Bliimlein et al. (2021b, 2022b) gives,

584881 25911 ,

ay = ag’zc(rat) + alé"zc(nz)7 ag’zc(mt) =55 agozc<n2) =56 © (6.73a)
loc Jloc Jloc Jloc 10442728 Sloc 306545
A5y = Ay + A5y, Ay = ~ {575 ) = =17 n*. (6.73b)

The coefficients a16°2°<n2> and gls(éc(nz) are confirmed by TF.

The computed in Bini et al. (2019, 2020a) prefactor g44; is the sum of the local-in-
time and the nonlocal-in-time parts,
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Qa2 = 4 + digros (6.74)
where the nonlocal-in-time part g% reads [see Table IV in Bini et al. (2020a)]

s 744361184 33693536 6396489 . 9765625
da2 =735 5 B 105 70 126 '
(6.75)

The local-in-time part g%, equals

31633
ql&cZ = qE&CZ(rat) + q442(n2) qlﬁfZ(nz) - W ﬂ:z’ (676)

where the transcendental part q44z<ﬂ2> is confimed by both Bini et al. (2019, 2020a)
and Bliimlein et al. (2022a, b). However, the rational part q442(rat) has incompatible
values according to Bini et al. (2019, 2020a) (TF) and Bliimlein et al. (2022a, b)
(BMMS),

9367 1252924
C]L‘sz(fm) T 5111(2628(?:343 T T T 575 (6.77)

Agreement between the TF and BMMS results could be achieved by a possibly
missing conservative quadratic radiation-reaction (anti-symmetric)® term mentioned
in Bini et al. (2021), which could lead to the following change of the TF Hamiltonian
(Bliimlein et al. 2022a, b),

5Hr(;§ac =avptut, acR. (6.78)

The agreement would be achieved for a = —168/5 (Blimlein et al. 2022a, b).

The genuine (i.e., not the 1PN corrections coming from 4PN level) local and
nonlocal tail Hamiltonians at the SPN order are (Foffa and Sturani 2020; Bini et al.
2021; Almeida et al. 2021; Bliimlein et al. 2021b, 2022b)

i GM Cdt o
ail,nl 1
g == [ PR, 610
i _GM split, MQ? split, MJ2
HE =~ F (R PR (1.0 + R PR (00)). (6.790)

Here, M denotes the total ADM conserved mass-energy of the binary system
[M =M + O(c™2)] and the indices MQ? and MJ? are denoting the mass-type (or
electric-type) octupole-moment (Qyx) and the spin-type (or magnetic-type) quadru-
pole-moment (Jj;) contributions, respectively, and

I G 1 4 4 16 3
Fiae) = 55 (15 OO0 @) + 21 0I0O)), (630)
82
RIE = RES, = REMS = =2, (6.80)
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R g = RYS = RS = 0. (6.80c)
We have used here the notation £ (¢) = df (¢)/d¢" to denote the n-th derivative with
respect to time 7.

The magnetic-type quadrupole moment J; = Jj; comes in via the most subtle form
%Ro,-abea;,j.],j, valid in 3 dimensions only. Its d-dimensional generalization needs the
avatar J; ., antisymmetric with respect to i and b, Jju = —Jpju» that satisfies the
cyclic identity Jijup + Jopi + Jpjia = 0. It reads (Henry et al. 2021; Bini et al. 2021)

']l‘ab = v(m2 _ml)(<xixa _ XX 5[a>vb _ (xaxb _ XX 5”b)vi

d—1 d—1
- ;% (5 — xb(sfa)> . (6.81)
Then eaijij = Jb|ia,
3,3 16,0
Jij Jij - EJi|ain|ab' (682)

The following relations have been derived within TF (Bini et al. 2021), using Rocc
and unad,m:

25911

agy =5~ ™ + Rai(Coor, Cooo:» Cooo,), (6.83a)
e 306545
dsy = =515 ™ +Ra:(Coor, Cooo:s Cooe.): (6.83b)

where R,, and Ry, are given rational-valued functions of the three numerical con-
stants Cpp4 (A4 = L, 01, 0,) which are defined by specific terms in the effective
action for the radiation-type graviton exchange:

Soor = CoorG* / dr 00 €L, (6.84a)
So00, = Co00,G” / dr 0} 0V 0y, (6.84b)
S000, = C000,G’ / dr oY )Q,(f )fo) (6.84c)

with values all having been calculated by Foffa and Sturani (2020, 2021), Bliimlein
et al. (2022a, 2022b), and Almeida et al. (2023b) using in-out and in-in (or, closed-
time) formalisms, respectively,'’

1 1
CARS = — 55 = 7 oS, (6.85a)
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1 4
FS _ BMMS
Coo = 15 =3 oo™, (6:850)
1
CopBMMS < (6.85c¢)
CmemFS 4 4 CmemBMMS (6 85d)
000, — 105 3 Q00 ’

The abbreviations “mem” and “cont” denote so-called memory and contact terms,
respectively.

In terms of doubled in-in position variables, xfl , (moving forward in time) and x’ 2
(moving backward in time) with then x/, = (x| —x/,)/v2 and x!, , = (x], +
xi,)/V2 or, alternatively, x/, _ =x!, —x!, and x(L+ = (x}, +xa12)/2, the action
functionals obtained in respectlvely Bliimlein et al. (2022a, b) and Almeida et al.
(2023a) coincide. The classical limit reads x/,, = x!, = x}. In the extractions of

al

classical dynamics information, however, Blimlein et al. (2022a, b) and Almeida
et al. (2023a) did obtain different results.

By TF (Bini et al. 2021), the following constraint equation is derived from the

EFT TF . .
condition on scattering-angles 73" — g =0 of conservative dynamics,

where 7™ is based on a general rule on mass-polynomiality (Damour 2020) that

terms proportional to v are not present,

2973 69 253 85
22 _Zc “c >c 6.86
350 o Coor ¢ Cooor + 5 Cooon: (6.86)

where the pure rational number is obtained for a specific value of g44. That condition
gets fulfilled by neither the values from Foffa and Sturani (2020, 2021) nor those
from Blimlein et al. (2022a, b). Also Almeida et al. (2023a) does not stay in
agreement.

To sum up: on the local-in-time level, the SPN EOB numerical coefficients a16°zc(rat),

c?é"zc(m) and ¢ 44 (rar) A1€ still controversial.

6.3.4 Results at 5.5PN order

Half-integer-power PN contributions to conservative two-body dynamics start at the
5.5PN order (Shah et al. 2014; Blanchet et al. 2014). The complete 5.5PN
conservative Hamiltonian comes from the second-order tail (i.e., tail-of-tail or tail?)
effects and it reads (Damour et al. 2015; Bini et al. 2020a)

ail® nloc 107G2M2 spli spli
A =i | T+~ =) (687

"' The numerical value —1/30 of the coefficient Cobs computed in Almeida et al. (2023b) corrects the

value —8/15 obtained by means of an incomplete computation by Foffa and Sturani (2020, 2021). The
value —1/30 was also recently confirmed by Henry and Larrouturou (2023) by means of the Fokker
Lagrangian method and dimensional regularization.
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where

i G 3 4
(1) = 5505 (00, (). (6.:58)
The contribution of the 5.5PN Hamiltonian H;?isl;if}k’c to an effective EOB dynamics
was computed in (Damour et al. 2015; Bini et al. 2020a).

6.3.5 Results at 6PN order

The TF approach succeeded with 6PN level to some remarkable extent (Bini et al.
2020b, c) and the EFT approach to some part (Bliimlein et al. 2020c, 2021a). Only
four numerical coefficients of the EOB representation of the 6PN dynamics are
unknown [two of them are prefactors of terms proportional to v> and v? in the
potential A(u;v), the remaining two are prefactors of terms proportional to v?
entering the D(u; v) and Q(u, pl; v) potentials]. Each of these coefficients is predicted
to be the sum of a rational number and a transcendental number.
The nonlocal-in-time 6PN Hamiltonian is known explicitly and reads

i GM ©d spli
A = S P [ GRG0, (6
fsplit (l Z") _ El 1 Q(S)(t)Q(S) (t/) + LJM) (t)J(4)(t’) (6 90)
PNAD TS 05 4\ 9072 Tk N F ik 4k ik ’ '

Ojin and Jj denoting mass-type hexadecapole and magnetic-type octupole moments.
The R-coefficients, cf. (6.79b), of the corresponding local-in-time part are known,
even through all PN orders, see Almeida et al. (2021). Not known are many other
local-in-time expressions. All these expressions contribute to the four coefficients
listed at the beginning of this subsection.

6.4 The innermost stable circular orbit

The innermost stable circular orbit (ISCO) of a test-body orbiting in the
Schwarzschild metric is located at R = 6MG/c?, in Schwarzschild coordinates.
Within a Hamiltonian formalism the calculation of the ISCO for systems made of
bodies of comparable masses is rather straightforward. It is relevant to start with the
discussion of dynamics of a two-body system along circular orbits.

The centre-of-mass conservative Hamiltonian A (r,p) can be reduced to circular
orbits by setting p,=n-p=0 and p*>=;2/r%, then H = H(r,j). Moreover,
OH (r,j)/or = 0 along circular orbits, what gives the link between r and j, r = r(j).
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Finally the energy E°™ along circular orbits can be expressed as a function of j only,

E(j) = H(r(j), /). The link between the (reduced) centre-of-mass energy £ and
the (reduced) angular momentum j is explicitly known up to the 4PN order. It reads
(Bini and Damour 2013; Damour et al. 2014)

E(j;v) = Lo (242 L (BT L) ]
2 4 4 )2 8 8 8 Jj

3861 (4l 8833\ 5 o 5 )1
64 32 192

2" Ta s

53703 65817> 989911 64 16
+ + - - ZyE—Hnj—2 v

128 512 1920 5

8875 412\, 3.5 7 1 .
RN LI N A SN N T ) T )
+<384 64 )V o't | F o) (6:91)

An important observational quantity is the angular frequency of circular orbits, @irc.
It can be computed as

1 dEcirc

L (6.92)
GM dj

Weire =

It is convenient to introduce the coordinate-invariant dimensionless variable (which
can also serve as small PN expansion parameter)

N 2/3
X = <%> . (6.93)
3

Making use of Egs. (6.92) and (6.93) it is not difficult to translate the link of

Eq. (6.91) into the dependence of the energy E°™ on the parameter x. The 4PN-
accurate formula reads (Bini and Damour 2013; Damour et al. 2014)

L 3 27 19 2
E“(x;v) %{l - (Z+%>x+ <§+Tv;—4)x2

675 (3445 2057\ 155 350
64\ 576 9 96 5184
3969 (90377 123671 448
- - ™ (29 + (1
+{ 128 < 1536 5760 t 15 (7t In( 6x)>)v

315772 498449\ , 301 T ], 5
( 576 3456 )V 1728 +31104]x o). (694)

In the test-mass limit v — 0 (describing motion of a test particle on a circular orbit in
the Schwarzschild spacetime) the link £ (x; v) is exactly known,
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. 1-2
ET(x;0) = \/17—36 -1 (6.95)
— X

The location xisco = 1/6 of the ISCO in the test-mass limit corresponds to the
minimum of the function E<™(x; 0), i.e.

dEvcirc (x; 0)

o =0. (6.96)

X=XISCO

Therefore the most straightforward way of locating the ISCO for v > 0 relies on
looking for the minimum of the function Freire (x;v), i.e., for a given value of v, the
location of the ISCO is obtained by (usually numerically) solving the equation
dE™(x; v) /(dx) = 0 (Blanchet 2002). Equivalently the location of the ISCO can be
defined as a solution of the set of simultaneous equations OH(r,j)/0r = 0 and
0*H(r,j)/or* = 0. Both approaches are equivalent only for the exact Hamiltonian

H(r,j), see however Sect. IV A 2 in Buonanno et al. (2003, 2006) for subtleties
related to equivalence of both approaches when using post-Newtonian-accurate
Hamiltonians. With the aid of the latter method Schéfer and Wex (1993a) computed
the nPN-accurate ISCO of the test mass in the Schwarzschild metric through 9PN
order in three different coordinate systems, obtaining three different results. Clearly,
the application of the first method only results in a nPN-accurate ISCO described by
parameters which are coordinate invariant.

Let us consider the 4PN-accurate expansion of the exact test-mass-limit formula
(6.95),

. 3 27 675 3969
Emm(x; 0) — _g (1 _Zx _ §x2 _HXS o mx4 + O(X5)> (697)

Let us compute the succesive PN estimations of the exact ISCO frequency parameter
Xisco = 1/6 220.166667 in the test-mass limit, by solving the equations
dESS (x;0)/(dx) = 0 forn = 1, ..., 4, where the function £I¢, (x; 0) is defined as the
O(x"1)-accurate truncation of the right-hand-side of Eq. (6.97). They read:
0.666667 (1PN), 0.248807 (2PN), 0.195941 (3PN), 0.179467 (4PN). One sees that
the 4PN prediction for the ISCO frequency parameter is still ~ 8% larger than the
exact result. This suggests that the straightforward Taylor approximants of the energy
function £ (x;v) do not converge fast enough to determine satisfactorily the fre-
quency parameter of the ISCO also in v > 0 case, at least for sufficiently small values
of v. The extrapolation of this statement for larger v is supported by the values of the
ISCO locations in the equal-mass case (v = 1/4), obtained by solving the equations
dESS (x;1/4)/(dx) =0 for n=1,...,4, where the function ESX (x;v) is now
defined as the O(x"*!)-accurate truncation of the right-hand-side of Eq. (6.94). For
the approximations from 1PN up to 4PN the ISCO locations read (Damour et al.
2000a; Blanchet 2002; Jaranowski and Schifer 2013): 0.648649 (1PN), 0.265832
(2PN), 0.254954 (3PN), and 0.236599 (4PN).'?
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To overcome the problem of the slow convergence of PN expansions several new
methods of determination of the ISCO for comparable-mass binaries were devised
by Damour et al. (2000a). They use different “resummation” techniques and are
based on the consideration of gauge-invariant functions. One of the methods, called
the “j-method” by Damour et al. (2000a), employs the invariant function linking the
angular momentum and the angular frequency along circular orbits and uses Padé
approximants. The ISCO is defined in this method as the minimum, for the fixed
value of v, of the function j*(x;v), where j is the reduced angular momentum
[introduced in Eq. (6.26)]. The function ;2(x; v) is known in the test-mass limit,

1
2

-0) =
J(x;0) .

m7 (698)

and its minimum coincides with the exact “location* x;gco = 1/6 of the test-mass
ISCO. The form of this function suggests to use Padé approximants instead of direct
Taylor expansions. It also suggests to require that all used approximants have a pole
for some xpole, Which is related with the test-mass “light-ring” orbit occurring for
xir = 1/3 in the sense that xpe(v) — 1/3 when v — 0. The 4PN-accurate function
72(x; v) has the symbolic structure (1/x)(1 +x+ ...+ x* +x*Inx). In the j-method
the Taylor expansion at the 1PN level with symbolic form 1 + x is replaced by Padé
approximant of type (0,1), at the 2PN level 1 +x+x* is replaced by (1,1)
approximant, at the 3PN level 1 + x + x> + x> is replaced by (2,1) approximant, and
finally at the 4PN level 1 4+ x + x? 4+ x* + x* is replaced by (3,1) Padé approximant
[the explicit form of the (0,1), (1,1), and (2,1) approximants can be found in
Egs. (4.16) of Damour et al. 2000a]. At all PN levels the test-mass result is recovered
exactly and Jaranowski and Schéfer (2013) showed that the ISCO locations resulting
from 3PN-accurate and 4PN-accurate calculations almost coincide for all values of v,
0<v< %. The ISCO locations in the equal-mass case v = 1/4 for the approximations
from 1PN up to 4PN are as follows (Jaranowski and Schifer 2013): 0.162162 (1PN),
0.185351 (2PN), 0.244276 (3PN), 0.242967 (4PN).

6.5 Dissipative Hamiltonians

To discuss dissipative Hamiltonians it is convenient to use the toy model from
Sect. 3.2 with the Routhian R(q,p;&,¢) and its corresponding Hamiltonian

H(q,p;¢&,m) =R+ né. The Hamilton equations of motion for the (g, p) variables
read

12 The 4PN value of the ISCO frequency parameter given here, 0.236599, is slightly different from the
value 0.236597 published in Jaranowski and Schéfer (2013). The reason is that in Jaranowski and Schafer
(2013) the only then known approximate value 153.8803 of the linear-in-v coefficient in the 4PN-order
term in Eq. (6.94) was used, whereas the numerical exact value of this coefficient reads 153.8837968 - - -.
From the same reason the 4PN ISCO frequency parameter determined by the j-method described below in
this section, is equal 0.242967, whereas the value published in Jaranowski and Schéfer (2013) reads
0.247515.
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. OH OoR ., OH OR (6.99)

and the Euler—Lagrange equation for the ¢ variable is
OR dOR 6.100
& droE (6.100)

Alternatively, the Hamilton equations of motion for the (&, ) variables can be used.
Solutions of the Euler-Lagrange equation are functions ¢ = £(g,p). Under those
solutions, the Hamilton equations of motion for the (g, p) variables become

. OR . OR
pzfa_ ) q
q

=_— . (6.101)
¢=L(gp) p &=¢(gp)

These autonomous equations in the (g, p) variables contain the full conservative and
dissipative content of the (¢, p) dynamics. The time-symmetric part of R yields the
conservative equations of motion and the time-antisymmetric part the dissipative
ones. The conservative equations of motion agree with the Fokker-type ones showing
the same boundary conditions for the (&, &) variables. When going from the (&, ¢)
variables to the field variables 47T and 2T, those time-symmetric boundary condi-
tions mean as much incoming as outgoing radiation.

To describe astrophysical systems one should use the physical boundary
conditions of no incoming radiation and past stationarity. Clearly, radiative
dissipation happens now and the time-symmetric part of the whole dynamics makes
the conservative part. In linear theories the conservative part just results from the
symmetric Green function Gg, whereas the dissipative one comes from the
antisymmetric Green function Gg, which is a homogeneous solution of the wave
equation. They both together combine to the retarded Green function Gyt = Gs + Ga,
with Gy = (1/2)(Gret + Gaay) and G, = (1/2)(Gret — Gady), where G,qy denotes the
advanced Green function. In non-linear theories time-symmetric effects can also
result from homogeneous solutions, e.g., the tail contributions.

For a binary system, the leading-order direct and tail radiation reaction enter the
Routhian in the form

1 pupy |, pupy Gmmy ;
R ) = =5 W) (P P20 S ) (6o

where h;T”(t) decomposes into a direct radiation-reaction term and a tail one
(Damour et al. 2016),

. 4G 4GM [* T
R () = — (4§3>(1)+ > /O drln<2 )1,55>(t—r)). (6.103)

5¢5 Sphys

The last term on the right side results in a Routhian, which reproduces the corre-
sponding tail effects in Blanchet (1993) and Galley et al. (2016).
The conservative (time-symmetric) part in hZT ™ reads
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reon 8G*M ©d
A0 = = Pl | o @) (6.104)

and the dissipative (time-antisymmetric) one equals

4G ), 8G°M T
— 51’/ (1) — 38 2sphys /¢ =1 Il]

h;TrrdiS(t) _ (t/)7 (6105)

where use has been made of the relations

Pf,, /jo def () _ /OOC drln <T> O —1) -+ 1), (6.106)

w |t =17 o
o ¢ (¢ 0
Pf, /4@ ;{(;) :/0 d”“(%) =) +rM e+ )] (6.107)

The leading-order 2.5PN dissipative binary orbital dynamics is described by the non-
autonomous Hamiltonian (Schéfer 1995),

2G - pupy | papy  Gmimy
HZ-SPN(Xavat):ﬁlij(x;k(t)) < m1.1+ mz.]_ 1 oy |, (6.108)

where [;; is the Newtonian mass-quadrupole tensor,
‘ N i 1
T(¥(0) = 3 ma (¥, (0x)(1) = 57 (1)93). (6.109)

Only after the Hamilton equations of motion have been obtained the primed position

and momentum variables coming from I,J are allowed to be identified with the
unprimed position and momentum variables, also see Galley (2013). Generally, the
treatment of dissipation with Hamiltonians or Lagrangians necessarily needs dou-
bling of variables (Bateman 1931). In quantum mechanics, that treatment was
introduced by Schwinger (1961) and Keldysh (1965). In the EFT approach as well a
doubling of variables is needed if one wants to treat dissipative systems in a full-
fledged manner at the action level (see, e.g., Galley and Leibovich 2012 and Galley
et al. 2016). However, one should keep in mind that in quantum mechanics damping
can also be treated without doubling of variables by making use of the fact that the
Feynman Green function G, the analogue of the retarded Green function of classical
physics, decomposes into real and imaginary parts, Gz = G + (i/2)G!), where both
G, from above and G"), Hadamard’s elementary function, are symmetric Green
functions, G(!) solving homogeneous wave equation as G, does. The imaginary part
in e.g. the Eq. (8.7.57) in the book by Brown (1992) yields nothing but the dipole
radiation loss formula and this without any doubling of variables (also see Sect. 9—4
in Feynman and Hibbs 1965). Note, however, that the statement concerning the
Feynman propagator applies only to the calculation of the energy flux, not to that of
the gravitational-wave amplitude.

@ Springer



Hamiltonian formulation of GR and PN dynamics of compact binaries Page 75 of 139 2

Applications of the 2.5PN Hamiltonian can be found in, e.g., Kokkotas and
Schifer (1995), Ruffert et al. (1996), Buonanno and Damour (1999), Gopakumar and
Schifer (2008), where in Gopakumar and Schifer (2008) a transformation to the
Burke-Thorne gauge (coordinate conditions) is performed. More information on the
2.5PN dissipation can be found in Damour (1987a). The 3.5PN Hamiltonian for
many point-mass systems is known too, it is displayed in Appendix E (Jaranowski
and Schifer 1997; Konigsdorffer et al. 2003). Recently the 4.5PN radiation-reaction
acceleration for nonspinning binary was computed using the EFT approach
(Leibovich et al. 2023). Regarding gravitational spin interaction, see the next
section, also for this case radiation reaction Hamiltonians have been derived through
leading order spin-orbit and spin-spin couplings (Steinhoff and Wang 2010; Wang
et al. 2011). Recent related developments within the EFT formalism are found
in Maia et al. (2017a, 2017b).

Let us mention that the already cited article Galley et al. (2016) contains two
interesting results improving upon and correcting an earlier article by Foffa and
Sturani (2013b): on the one hand it confirms the conservative part of the tail action,
particularly the additional rational constant 41/30 which corresponds to the famous 5/
6 in the Lamb shift (see, e.g., Brown 2000), and on the other side it correctly delivers
the dissipative part of the tail interaction. It is worth noting that in the both articles
the involved calculations were performed in harmonic coordinates.

7 Generalized ADM formalism for spinning objects

In this section we review the relatively recent generalization of ADM formalism
describing dynamics of systems made of spinning point masses or, more precisely,
pole-dipole particles. We start from reviewing the generalization which is of fully
reduced form (i.e., without unresolved constraints, spin supplementary and
coordinate conditions) and which is valid to linear order in spin variables (our
presentation of linear-in-spins dynamics closely follows that of Steinhoff and Schéfer
(2009a)).

7.1 Dynamics linear in spins

In this section Latin indices from the middle of the alphabet i, j, %, ... are running
through {1,2,3}. We utilize three different reference frames here, denoted by
different indices. Greek indices refer to the coordinate frame (x*) and have the values
w=0,1,2 3. Lower case Latin indices from the beginning of the alphabet refer to
the local Lorentz frame with its associated tetrad fields (e#(x")) (e denotes thus the
u coordinate-frame component of the tetrad vector of label a), while upper case ones
denote the so-called body-fixed Lorentz frame with its associated “tetrad” (A5 (z")),
where (") denotes coordinate-frame components of the body’s position (so A is the
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a local-Lorentz-frame component of the tetrad vector of label A). The values of these
Lorentz indices are marked by round and square brackets as a = (0), (i) and
A = 10], [i], respectively, e.g., 4 = [0],[1], [2], [3]. The basics of the tetrad formalism
in GR can be found in, e.g., Sect. 12.5 of Weinberg (1972).

In GR, the coupling of a spinning object to a gravitational field, in terms of a
Lagrangian density, reads

1 dz 1 00” o
EM = /d’[|:<pu—2Sab w;b>df+2Sath:| 5(4>()C‘ —Zz ('L')) (71)

The linear momentum variable is p, and the spin tensor is denoted by S,;. The
object’s affine time variable is t and 6*) (x" — 2*(1)) is the 4-dimensional Dirac delta
function (from now on we will abbreviate it to 5(4)). The angle variables are rep-
resented by some Lorentz matrix satisfying A1 A5y ., = n® or AuuAgpn™ = 14,
where 1, = diag (—1,1,1,1) = n®, which must be respected upon infinitesimal
Lorentz transformations (see Hanson and Regge 1974), so 60% = AN = —50™.

The Ricci rotation coefficients ) ﬁb are given by
Ouapp = emehﬁwﬁb = _Fﬁ)u + €, yCeps With F;;L)u = 5 (gpou + Epuo — Gup) as the 4-

dimensional Christoffel symbols of the first kind with g,, = eaﬂeb‘,nab the 4-di-
mensional metric. As in Hanson and Regge (1974), the matrix A“ can be subjected
to right (or left) Lorentz transformations, which correspond to transformations of the
local Lorentz reference frame (or the body-fixed frame, respectively). In the action
(7.1) only a minimal coupling between spin variables and gravitational field is
employed; for more general (than minimal) couplings, the reader is referred to Bailey
and Israel (1975).
The matter constraints are given by, also in terms of a Lagrangian density,

. ‘ y)
Lo = / dt [A‘;pbsa,, + Aoy AMp, — 53 (P* +m*c?)| oW, (7.2)

where m is the constant mass of the object, p> = pup", and 77, o) /3 are the
Lagrange multipliers. The constraint

P’Say =0 (7.3)

is called the spin supplementary condition (SSC), it states that in the rest frame the
spin tensor contains the 3-dimensional spin S;; only (i.e., the mass-dipole part

So0)(i) vanishes)."* The conjugate constraint A[i]”pa = 0 ensures that A““ is a pure 3-
dimensional rotation matrix in the rest frame (no Lorentz boosts), see Hanson and
Regge (1974). Finally, the gravitational part is given by the usual Einstein-Hilbert
Lagrangian density

A

= V—gRW 7.4
L6 = o VR 74

where g is the determinant of the 4-dimensional metric and R™ is the 4-dimensional
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Ricci scalar. Using a second-order form of the gravitational action, i.e., not varying
the connection independently, ensures that the torsion tensor vanishes, see, e.g.,
Nelson and Teitelboim (1978). The complete Lagrangian density is the sum

L=L;+Ly+ LcC. (75)

We assume space-asymptotic flatness as a boundary condition of the spacetime. The
total action is given in a second-order form, where the Ricci rotation coefficients are
not independent field degrees of freedom and where no torsion of spacetime shows
up. It reads

W[eaﬂ, Zﬂ,pﬂ, AC‘Z, Sab, /1([1; ;“2[1']7 /13] = / dt d3x£, (76)

and must be varied with respect to the tetrad field e,,, the Lagrange multipliers Af,
/2i]» /3, position z* and linear momentum p,, of the object, as well as with respect to

angle-type variables A““ and spin tensor S, associated with the object.

Variation of the action /W = 0 leads to the equations of motion for the matter
variables (here d and D denote ordinary and covariant total derivatives,
respectively'®)

DS, DA dz*
70 pr— O fr— 0 H = — = ) H 77
Dr Dr o YT a P 7.7)
Dp, 1@ pcab
Dr 2 RS (78)

as well as to the usual Einstein equations with the stress-energy tensor (cf. Tulczyjew
1957 and Sect. 12.5 in Weinberg 1972'°)

el o6(Ly + L)
vV—E 5eav

/ 1 o (g ot (7.9)

= [ dt|A3p'p’ ——+ (u S”—) , 7.9
vV—E& V=E/ |x

4)

where RL oab is the 4-dimensional Riemann tensor in mixed indices, |, denotes the 4-
dimensional covariant derivative. Here it was already used that preservation of the
constraints in time requires A{ to be proportional to p* and ,}; to be zero, so that A{
and /,; drop out of the matter equations of motion and the stress-energy tensor. The
Lagrange multiplier /3 = A3(t) represents the reparametrization invariance of the

T;w —

action (notice A3 = v/—u?/m). Further, an antisymmetric part of the stress-energy
tensor vanishes,

13 For more details about SSCs, see Sect. 3.3 of our review.

4 Covariant derivative of an object with Greek index means application of the Christoffel symbols (apart
from z* which are four scalars), in case of a small Latin index the application of the Ricci rotation
coeffients, and in case of a capital Latin index just the ordinary derivative of a scalar.

15 Especially Eq. (12.5.35) there.

@ Springer



2 Page 78 of 139 Review Article

1 oW 1 Dsw 54

— [y — = — =

2/dr<S u = 2/d‘f Dr =% 0, (7.10)
P

and T#", = 0 holds by virtue of the matter equations of motion. Obviously, the spin
length s as defined by 25> = S,,5% is conserved.

A fully reduced action is obtained by the elimination of all constraints and gauge
degrees of freedom. However, after that the action has still to be transformed into
canonical form by certain variable transformations. To perform this reduction we
employ 341 splitting of spacetime by spacelike hypersurfaces ¢ = const. The
timelike unit covector orthogonal to these hypersurfaces reads n, = (—N,0,0,0) or
n* = (1,—N')/N. The three matter constraints can then be solved in terms of p;, Sy,

and A% ag
1 =W = — e+ o, )

K. .
nS; = nSy — PR 7nS s (7.12)
np
A0 _ g1 PO e _r (7.13)
p mc

We take L = 0 from now on. A split of the Ricci rotation coefficients results in

(A)k,‘j = —Fj,'k + ezkeaj, (714)
N, ey
1 N (] a 1
n’ wkw = Kki — gijﬁ =+ N (60,1{ — el.kN ), (715)
wo;j = NKj — Nji + €{yeq), (7.16)
u , Mo Cipa (7.17)
n"woui = KyN' — N — ava + N (ebo — €foN'), :

where ; denotes the 3-dimensional covariant derivative, I the 3-dimensional
Christoffel symbols, and the extrinsic curvature K; is given by
2NKjj = =v;;0 + 2N(i), where (.., denotes symmetrization.

It is convenient to employ here the time gauge (see Schwinger 1963a and also
Dirac 1962; Kibble 1963; Nelson and Teitelboim 1978),

el = n". (7.18)

Then lapse and shift turn into Lagrange multipliers in the matter action, like in the
ADM formalism for nonspinning matter points. The condition (7.18) leads to the
following relations:

0 _g_ (0) _
e =0=¢}y, ¢ =N=1/¢, (7.19)
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N'= —Ne(, el = Njej(-[), (7.20)

Vi = e§”1)6<m)j, VU = eém>e(m)j, (721)
which effectively reduce the tetrad e“* to a triad eV,
The matter part of the Lagrangian density, after making use of the covariant SSC

(7.3), turns into
Ly = Ly + Luc + Lok + (td), (7.22)

where (td) denotes an irrelevant total divergence. After fixing the yet arbitrary
parameter T by choosing 7 = z° = ct, where ¢ is the time coordinate, the terms
attributed to the kinetic matter part are given by

A ‘ 1 punS; 1. nS' .
Ly = {Pi + KynS' + Aeqpef]) - (Eskj " %)Fﬂz T

(@) 1[k]()
nSwpy) — nSyrw | A
S 0 7.23
+{@m+ p" 79 (7.23)
where § = 6(x' — Z/(¢)) and A7 is defined by

1 nS;p;
A =S I 7.24
ylk/_/l 2 i + znp ( )

The matter parts of the gravitational constraints result from
ACMC - _ NHmattcr + NiH;_nattcr’ (725)

where the densities H™"*" and H™"" are computed from Egs. (2.11)+(2.12) and
(7.9). After employing the covariant SSC one gets (Steinhoff et al. 2008c)

pins;
H™ = T untn’ = —npd — kiP5 (nS*s),, (7.26)
np ;

, . 1 S,
e = _ ATun' = (p; + KynS')o + <§y’”kS,»k5 + 55%”“%’ 5) . (7.27)

sm

Further, some terms attributed to the kinetic part of the gravitational field appear as

ACGK = A’je(k),-é;k)é. (728)
Now we proceed to Newton-Wigner (NW) variables #, P;, S'(i>(j), and fl[i](f), which
turn the kinetic matter part Ly into canonical form. The variable transformations
read
) ) S k/’ﬁ.l.
d=go s = PO (7.29)
mc — np mc
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o P nS;
Sy =8y — 2y P (7.30)
mc — np mc — np
S )
A0 — 410 (%+ PwP ) (7.31)
mc(me — np)
ik, 0 (Lo L PES) Y
Pi = pi + K;n§ + A%eje;; — ESkj +T I, (7.32)

where A7 is given by

R 1. mcpinS))
pay At = =8 4+ ———— T 7.33
/tk))jl 2 "+np(mc—np) ( )

The NW variables have the important properties S‘(,-)(,-)S(i)(f) =25 = const and
/Alafl[k](f) = §;, which implies that 560 E/Alflgd.;l[k](j) is antisymmetric. The
redefinitions of position, spin tensor, and angle-type variables are actually quite
natural generalizations of their Minkowski space versions to curved spacetime,
cf., Hanson and Regge (1974) and Fleming (1965). However, there is no difference

between linear momentum p; and canonical momentum P; in the Minkowski case. In
these NW variables, one has

Lok + Lax = Lok + Lk + (td), (7.34)
with [from now on & = 5(x' — Z(¢))]

A00)

R 1.
Lyx = Piz'o + 55(5)(/)9 0, (7.35)

EGK = jyewye}f?é. (7.36)

Notice that all p; terms in the action have been canceled by the redefinition of the
position and also all Kj; terms were eliminated from Ly,c and Ly by the redefinition

of the linear momentum. If the terms explicitly depending on the triad ej(-i) are
neglected, the known source terms of Hamilton and momentum constraints in
canonical variables are obtained [cf. Equations (4.23) and (4.25) in Steinhoff et al.
(2008¢)].

The final step goes with the ADM action functional of the gravitational field
(Amowitt et al. 1962; DeWitt 1967; Regge and Teitelboim 1974), but in tetrad form
as derived by Deser and Isham (1976). The canonical momentum conjugate to e, is
given by

L =i 4 o A5, (7.37)

8nG
c
where the momentum 77 is given by
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! = 0" ="K (7.38)
Legendre transformation leads to
. &3 _ &
Lok +Lg = %ﬁ(k»e(k)j,o ~ Teng S T Loc + (td). (7.39)

In asymptotically flat spacetimes the quantity &; is given by [cf. Eq. (2.6)]

E = v — Vi (7.40)
The total energy then reads
pe o j[dzs& (7.41)
167G o

The constraint part of the gravitational Lagrangian density takes the form

£GC _ _NHﬁeld + NiHiﬁeld, (742)
with
P + L ) (7.43)
T T lenGyy | T2\ Tk ’ '
field _ c s (7.44)
T RaG T '

where R is the 3-dimensional Ricci scalar. Due to the symmetry of 7/, not all
components of 7Y are independent variables (i.c., the Legendre map is not
invertible), leading to the additional constraint ([...] denotes anti-symmetrization)

7l —

% Jlils. (7.45)

C

This constraint will be eliminated by going to the spatial symmetric gauge (for the
frame e(,«)j)

e = ej = €ji, WV = ol = ', (7.46)

Then the triad is fixed as the matrix square-root of the 3-dimensional metric,
ejejx = Vi, Of, in matrix notation,

(e5) =1/ (vy)- (7.47)

Therefore, we can define a quantity Bfil as
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ek[iej]k,,u - Bf;l'}/kl#, (748)
or, in explicit form,
a m, a mi
ZBf;l = emi& mj Cmi. (7.49)
0gu agkl

This expression may be evaluated perturbatively, cf., Steinhoff et al. (2008c). One
also has Bf;l Oy = 0. Furthermore,

1
k
cwiely = B, + > Vi (7.50)
which yields
) 1
TE(k)Je(k)j-,O = E n({anyij.Ov (75 1 )

with the new canonical field momentum

8nG 16nG

i _ i/’ U
n =n"+ o+

BJAMs. (7.52)
The gravitational constraints arising from the variations N and SN’ read,
O mater — 0, HN 4 P = 0, (7.53)
They are eliminated by imposing the gauge conditions
39— Vi =0, Ty =0, (7.54)

which allow for the decompositions

_ w4 TT i =0 ijTT
i =V 05t hy My = Ty Ty (7.55)
where hTT and 7/1T are transverse and traceless quantities, and longitudinal part 7/

is related to a vector potential V', by

can = VéanJ + Véanl - 5UVé{ank (756)
Let us note that in the construction of ¥/, the operator 4~ is employed [see the text
below Eq. (2.15)].
The gravitational constraints can now be solved for ¥ and 7/
71T as the final degrees of freedom of the gravitational ﬁeld Notice that our gauge
condition 7 = 0 deviates from the original ADM one n'/ = 0 by spin corrections
(which enter at SPN order). The final fully reduced action reads,

c* 4. _jTT;TT 5o 1g AD(G)
W = ]677;G/d lcjan hsz /dl PiZl—FES([)(/-)() —E|. (757)

¥ s leaving hTT nd
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The dynamics is completely described by the ADM energy E, which is the total
Hamiltonian (E = H) once it is expressed in terms of the canonical variables. This
Hamiltonian can be written as the volume integral

H[fi,Pj,S( )0) hTT I]TT] —

7zj’can

4
ZnG/d3xA'P[ Py, Sy, by mt]. (7.58)

The equal-time Poisson bracket relations take the standard form,

(2,9} =65, {80, 8)} = €S (7.59)

l6nG
TT KITT (o TTkI '
{hij (x,0), 15, (xX,6)} = = 51)‘ o(x —x), (7.60)

» “rcan

Z€ro OtheI'WiSG, where S(l) = %E(i)(j)(k)S(j)(k)a e(i)(j)(k) = €jk = (i *j)(] - k)(k - i)/za
and 5;;“ is the TT-projection operator, see, e.g., Steinhoff et al. (2008c). Though the
commutation relations (7.59) and (7.60) are sufficient for the variables on which the
Hamiltonian (7.58) depends on, for completeness we add the non-trivial ones needed

when a Hamiltonian, besides 5'(,»)(/), also depends on the 3-dimensional rotation
matrix /1 ) (“angle” variables). They read

{/1[] Sk)(l b= Aoy — /Al[i](l)ékf (7.61)

The angular velocity tensor Q<i>(’), the Legendre dual to S‘(i)(/»), ie.

QU0 = 208 /885, is defined by QO = 5000 /dr = 4 A"V
derivative of the spin tensor thus reads

, and the time

IAHK® oAKY
The Hamiltonian H of Eq. (7.58) generates the time evolution in the reduced mat-

ter+field phase space. Generalization and application to many-body systems is quite
straightforward, see Steinhoff et al. (2008c¢). The total linear (P;*) and angular (J;*")

momenta take the forms (particle labels are denoted by «),

P = ZPw—m G / dx iy By (7.63)

S = 28w Ruw + 41V (7.62)

i A o C3 i
T = &Py = ZPa+ Suiyp) — 3G / & (g by — g i)

a

3
~ oG / & (e iy = ¥ e i), (7.64)

and are obtained from the reduced action in the standard Noether manner.
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7.2 Spin-squared dynamics

For the construction of the spin-squared terms we resort to the well-known stress-
energy tensor for pole-dipole particles but augmented by quadrupolar terms. The
stress-energy tensor density then reads (Steinhoff et al. 2008b)

vJ—gT" = /d‘L’ |:l"w(5(4) + (l‘”"’“&@))w + (f’lwﬁé(@)“w . (7.65)

The quantities #" = " only depend on the four-velocity u* = dz*/dt, where
z#(t) is the parametrization of the worldline in terms of its proper time 7, and on the
spin and quadrupole tensors. Notice that, in general, the quadrupole expressions
include not only the mass-quadrupole moment, but also the current-quadrupole
moment and the stress-quadrupole moment (see, e.g., Steinhoff and Puetzfeld 2010).
For the pole-dipole particle #"*# is zero. In contrast to the stress-energy tensor of
pole-dipole particles, the Riemann tensor shows up at the quadrupolar level. How-
ever, the source terms of the constraints,

ATy = HmT Ty e (7.66)

at the approximation considered here, do not include the Riemann tensor.

Regarding rotating black holes, the mass-quadrupole tensor Q’{ of object 1 is given
by Steinhoff et al. (2008b) (also see, e.g., Thorne 1980 and Damour 2001)

ij ik, jl.mn & _ 2 ij i 1
mi 0] = 99"y StmSim +§S%V’ = €ne (SimSi) — 55%5(/()(/))7 (7.67)

where 8; = (Sj(;) is the three-dimensional Euclidean spin vector related to a spin
tensor Slii with the help of a dreibein ¢;;) by S’l,-j = ej(k)€j(1)€imS1(m)- The quantity Sf
is conserved in time,

ZS% = yikyjlglyglkl = const . (7.68)

The source terms of the constraints in the static case (independent from the linear
momenta P; of the objects, what means taking P; = 0, but p; # 0) read

matter  __ 2 ymglami ok &G
Sf,static—cl(c 0101) = V1Y 7" 4 S13S 10001

8m1
P SinSied ) 7.69
am, (/ T S S0 ) (7.69)
1, .
Hisatie = 5 (7"5id) ,+O(8%). (7.70)

The ¢; is some constant that must be fixed by additional considerations, like
matching to the Kerr metric. The noncovariant terms are due to the transition from
three-dimensional covariant linear momentum p; to canonical linear momentum P;
given by [cf. Eq. (4.24) in Steinhoff et al. 2008c or Eq. (7.32) above]
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pi=Pi— %yijylmyﬂfmﬁk; + O(P*) + O(5?). (7.71)
Thus the source terms are indeed covariant when the point-mass and linear-in-spin
terms depending on the (noncovariant) canonical linear momentum are added, cf.
Eqgs. (7.26) and (7.27).

The simple structure of the Q’l’ term in Eq. (7.69) is just the structure of minimal
coupling of the Minkowski space mass-quadrupole term to gravity. As shown
by Steinhoff et al. (2008b), the most general ansatz for the spin-squared coupling
including the three-dimensional Ricci tensor reduces to the shown term. Here we
may argue that the correct limit to flat space on the one side and on the other side, an
undefined multiplication with a second delta-function, resulting in that limit from the
Ricci tensor of the spinning “point” particle, makes the ansatz unique. A deeper
analysis of the structure of nonlinear-in-spin couplings can be found in, e.g., Levi and
Steinhoff (2015).

7.3 Approximate Hamiltonians for spinning binaries

All the approximate Hamiltonians presented in this subsection have been derived or
rederived in recent papers by one of the authors and his collaborators employing
canonical formalisms presented in Sects. 7.1 and 7.2 (Damour et al. 2008c; Steinhoff
et al. 2008b, c). They are two-point-particle Hamiltonians, which can be used to
approximately model binaries made of spinning black holes. For the rest of this
section, canonical variables (which are arguments of displayed Hamiltonians) are not
hatted any further. We use a,b = 1,2 as the bodies labels, and for a # b we define
FabMap = Xg — X With n2, = 1.

The Hamiltonian of leading-order (LO) spin-orbit coupling reads (let us note that
in the following p, will denote the canonical linear momenta)

G 3mb
HES = > 55 (Sa X nap) - (2_pa - zpb)» (7.72)
o o7 CTab my
and the one of leading-order spin(1)-spin(2) coupling is given by
G
5 =20 2z, B ma)Sma) = (Sa-Su)). (7.7)

The more complicated Hamiltonian is the one with spin-squared terms because it
relates to the rotational deformation of spinning black holes. To leading order, say for
spin(1), it reads

Gm
0 2 2 2
Hng :W(a(sl ‘np)° —S7). (7.74)

The LO spin-orbit and spin(a)-spin(b) centre-of-mass vectors take the form
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1
Gso =D 52— (P xSd), Gy, =0, G =0. (7.75)
a a

The LO spin Hamiltonians have been applied to studies of binary pulsar and solar
system dynamics, including satellites on orbits around the Earth (see, e.g., Barker and
O’Connell 1979 and Schéfer 2004). Another application to the coalescence of
spinning binary black holes via the effective-one-body approach is given in Damour
(2001). The LO spin dynamics was analysed for black holes and other extended
objects in external fields by D’Eath (1975a) and Thorne and Hartle (1985), and for
binary black holes in the slow-motion limit by D’Eath (1975b). In Barausse et al.
(2009, 2012b) the spinning test-particle dynamics in the Kerr metric has been
explored at LO within Hamiltonian formalism based on Dirac brackets. In the arti-
cle Kidder (1995) the LO spin-orbit and spinl-spin2 dynamics for compact binaries
is treated in full detail, even including their influence on the gravitational waves and
the related gravitational damping, particularly the quasi-circular inspiraling and the
recoil of the linear momuntum from the LO spin coupling was obtained.
The Hamiltonian of the next-to-leading-order (NLO) spin-orbit coupling reads

(P x 1) -ma) <5mzp% L 3((pyp2) + (012 py)(n12 - p))

2 8m3 4m?

HNLO _ 5
50 C4r12

303 — 20 ~pz>2>> (xS py) <2(n12 ) 3(m -m))

4m1m2 c4r%2 miniy 4m%

G((Pz X Sl) ' 1112) (p] 'pz) + 3(1112 . p])(nlz . pz)
chrh, mymy
_ ((py X S1) -my2) (11’"2 +%)

4.3
c*ri, 2 m

+

3

P> XS;)-n 15m
+ GZ% <6m1 += 2) + (1 2). (7.76)

This Hamiltonian was derived by Damour et al. (2008c). The equivalent derivation of
the NLO spin-orbit effects in two-body equations of motion was done in harmonic
coordinates by Blanchet et al. (2006, 2007, 2010a).

The NLO spin(1)-spin(2) Hamiltonian is given by
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G
NLO
Hgg = PR —, [6((1’2 x 81) -mp)((py x S2) - my2)

+3 (1 xS m)((pa % 52) )

— 15(S1 - m12)(S2 - mi2)(m12 - py)(ni2 - py)

—3(S1 - m12)(S2 - mi2)(py - P2) +3(S1 - p2)(S2- nlz)(
+3(S2 - py)(S1 - mi2)(mi2 - py) +3(Si - py)(S2 - mi2)(mi2 -
+3(S2 - po)(Si - miz)(mi2 - py) — 3(Sy 'Sz)(nlz p1)(ni2

(S p)(S27P2) — 5 (81 p)(S2py) 5 (81 8y

2 [ ((py xS m)((py x 82) - mo)

2¢4mir,
+(S1-82)(m2 - py)” = (S1-mi2)(S2 - py) (- )|

3G
53 | — S;) - S) -
st |~ (2 82 m) (B2 x 81) o)

+(S1-S2)(n12 - py)° — (S2 - m12)(S1 - py) (nia 'Pz)]

6G? (m1 + mz)
C4V?2

=

IS
= B
SN
NN

=

5]

~—
—

[(S1-82) —2(S1 - n2)(Sy - mpy)]. (7.77)

The calculation of the LO and NLO S?-Hamiltonians needs employing the source
terms (7.69)—(7.70). In the case of polar-dipolar-quadrupolar particles which are to
model spinning black holes, Q’l’ is the quadrupole tensor of the black hole 1 resulting
from its rotational deformation and the value of the constant ¢, is fixed by matching
to the test-body Hamiltonian in a Kerr background: ¢; = —1/2. Additionally one has
to use the Poincaré algebra for unique fixation of all coefficients in momentum-
dependent part of the Hamiltonian. The NLO S?-Hamiltonian was presented for the
first time by Steinhoff et al. (2008b).'® It reads

16 Slightly earlier a fully dynamical calculation of that dynamics was made by Porto and Rothstein
(2008a). This result turned out to be incomplete due to an omitted term in a specific Feynman diagram
(Porto and Rothstein 2010a).
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G my 1 3
HNLO o {m% [4(p1 .SI)Z+§(p n;)’s} _§P1(Sl “np)°

3 3
=3 Sy 80| g [spds
1[3 9 2
-0t o 30 pS RS
3
=5 (P m2)(P2 - S1)(S1 - miz) +3(p2 - miz)(py - S1)(S1 - m2)
3 , 15 ,
+Z(P1 ‘mp2)(py - Mi2)Sy — I(Ih “m2)(py - m2)(S1 - m2)
G2m2 2 2 14H12 2 67}12 2
9(Sy - - 358 S —-—S7|. 7.78
T2, [ (S1 - mp2) (i (S1-mp2) bl (7.78)
The spin precession equations corresponding to the Hamiltonians HNLO and HNLO

have been calculated also by Porto and Rothstein (2008b)'” and Porto and Rothstem
(2008a),'® respectively.
The NLO spin-orbit and spin(a)-spin(b) centre-of-mass vectors take the form

p2
GNLO_ Z a ( XS)

8ctm3
S )
+ZZC4 { (P X Sa) — l(nub x Sa)(Pp - Map)
— [(pa *x Sa) - nabl%}, (7.79)

I;I&? 5 422{ “Mgp)(Sp - Mapy) — (Sa - Sb)] 3 +(Sp - nab)%}’

a  b#a ab

7" The paper Porto and Rothstein (2008b) has benefited from Steinhoff et al. (2008a) when forgotten terms
from spin-induced velocity corrections in the LO spin-orbit coupling could be identified (so-called
subleading corrections), see Eq. (57) in Porto and Rothstein (2008b).

'8 The final spin precession equation of the paper (Porto and Rothstein 2008a) deviates from the
corresponding one in Steinhoff et al. (2008c). A detailed inspection has shown that the last term in Eq. (60)
of Porto and Rothstein (2008a) has opposite sign (Steinhoff and Schifer 2009b; a typo according to Porto
and Rothstein 2010a). Using the reverse sign, after redefinition of the spin variable, agreement with the
Hamiltonian of Steinhoff et al. (2008c¢) is achieved.

@ Springer



Hamiltonian formulation of GR and PN dynamics of compact binaries Page 89 of 139 2

2Gm2 3(S| . Il12)2 S2 (Sl ‘ nIZ)SI
GNLO — L (3x) — 5%;) — ——5—— §.
St ctmy 81, (+x2) + 811, (1 — o) rh
(7.81)

We can sum up all centre-of-mass vectors displayed in this subsection in the fol-
lowing equation:

G = Gy + Gipny + Gopn + Gspn + Gapn + GI§8 + GIS\%O + G_I;I]I&? + G?lzLO + Gg%LO,
(7.82)

where Gy up to Gupn represent the pure orbital contributions, which do not depend
on spin variables (the explicit formulae for them one can find in Jaranowski and
Schifer (2015)). The last term in Eq. (7.82) can be obtained from the second last one
by means of the exchange (1 < 2) of the bodies’ labels.

The explicitly given above and in Appendices C and D conservative binary
Hamiltonians, modeling binaries made of spinning black holes, can be summarized
as follows:

H = Hy + Hipx + Hopn + H3px + Hapn
+HS + HSL%O +HGS + Hngo
+ Hé\ICI;O 4 HSNIZLO + Hg%‘? + H%LO
+H§]ONLO +H§%NLO + HSI?{I;ZLO +HSI§NL0
+ HSL?O + H§§2 + HSLI% + HSL;)
+Hg® + Hgyg, + Heg + Hegy + H, (7.83)

where the first line comprises pure orbital, i.e., spin-independent, Hamiltonians. The
Hamiltonians from the second and the third line are explicitly given above. The
NNLO spin-orbit HI)™ and spinl-spin2 Hyy-° Hamiltonians were obtained
by Hartung et al. (2013), their explicit forms can be found in Appendix D. Levi and
Steinhoff (2021) derived, applying the EFT method to extended bodies, the NNLO
spin-squared Hamiltonians Hé\lﬁNLO and Hé\zﬁNLo. All the Hamiltonians cubic and

quartic in the spins were derived by Hergt and Schifer (2008a, b) with the aid of
approximate ADMTT coordinates of the Kerr metric and application of the Poincaré
algebra.'” Their generalizations to general extended objects were achieved by Levi

and Steinhoff (2015), where also for the first time the Hamiltonians H¢, and HEP
1 2

were obtained (correcting Hergt and Schéfer 2008a). All the Hamiltonians cubic and
quartic in the spins and displayed in Eq. (7.83) are explicitly given in Appendix D.
Notice that not all Hamiltonians from Eq. (7.83) are necessarily given in the ADM
gauge, because any use of the equations of motion in their derivation has changed
gauge. E.g., for spinless particles the highest conservative Hamiltonian in ADM
gauge is Hopn.

19 The H;AO and HSLP terms were incorrectly claimed to be zero by Hergt and Schéfer (2008a).
1 2
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For completeness we also give the spin-squared Hamiltonians for neutron stars
through next-to-leading order (Porto and Rothstein 2008a, 2010a; Hergt et al. 2010).
They depend on the quantity Cp, which parametrizes quadrupolar deformation effects
induced by spins. The LO Hamiltonian reads (cf., e.g., Barker and O’Connell 1979)

Gmym (S -m )2 S2
o _ Gmm 1-npp)”  Sp
Hsiing) = 50,3, Co (3 ) (7.84)

The NLO Hamiltonian equals

G [m 21 9 3 s
NLO _ 2 ) ) 5
HS%(NS) T, m_? ((_§+ZCQ1>P1(SI ‘npp)” + (ECQ‘ _4_1> (S1-py)

15 9
+ <T_§CQI> (pr-m12)(S1-m12)(S1-py)
9 3 >3
+ <—§+§CQ1> (P, _n12)2S% + (Z_ZCQl>p%S%)

1 15
+— <—4C91 (p1-m12) (P2 mi2)(S1 -mpa)’

G2m2
* At
12

1 my 2
2+-C, —(1+2C S
( +3C0 +, (1+ QI)) i

- (—3 —%CQ, —Z—?(l +6€QI)>(S1 -nlz)Z]. (7.85)

This Hamiltonian for Cp, = 1 agrees with that given in Eq. (7.78) describing black-hole
binaries (for neutron stars, Cp, =2-8 holds; see, e.g., Mandal et al. 2023a). It has been
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derived fully correctly for the first time by Porto and Rothstein (2010a) using the EFT
method. Shortly afterwards, an independent calculation by Hergt et al. (2010), in part
based on the Egs. (7.69) and (7.70) including (7.67), has confirmed the result.

The radiation-reaction (or dissipative) Hamiltonians for leading-order spin-orbit
and spinl-spin2 couplings are derived by Steinhoff and Wang (2010) and Wang et al.
(2011). All the known dissipative Hamiltonians can thus be summarized as

Hdiss _ HZ.SPN +H34SPN +I_]é_(())diss Hslig‘zdlss7 (786)

where H, spy and Hj spy are spin-independent (purely orbital) dissipative Hamilto-
nians. The leading-order Hamiltonian H; spy is given in Eq. (6.108) for two-point-
mass and in Appendix E for many-point-mass systems, and the next-to-leading-order
Hamiltonian Hj; spy is explicitly given in the Appendix E (also for many-point-mass
systems). The spin-dependent dissipative Hamiltonians HS % and HEQ% can be
read off from the Hamiltonian H;"py given in the Appendix E (we keep here the

notation of the Hamiltonian used by Wang et al. 2011, which indicates spin cor-
rections to the spinless 3.5PN dynamics).

8 Tidal interactions

The work done in this field through higher PN orders relies on the effective Fokker
action with non-minimal matter couplings. The Hamiltonians are obtained from
higher-order Lagrangians in harmonic coordinates via order reduction and Legendre
transforms. Here we tightly follow Henry et al. (2020a, b); also see Damour and
Nagar (2010), Bini et al. (2012), Steinhoff et al. (2016).

The action for the gravitational field is given in harmonic gauge through

where I'* := gf°I" ﬁg. The ansatz for the matter action, in sufficient approximation for
our intended presentation, is given by

@) (2)

Z/dTa( mgC +’uz GZVGZV 6c2 ,UVHciw

,U(B) G/ vy O(Etidal)
) , (8.2)

12 Ay c®

with the bodies’, labeling a, tidal mass quadrupole G”, tidal current quadrupole HA",
and tidal mass octupole Gﬁ‘”’ moments; €y ~ 1/c!® denotes order of the dominant
tidal effect. The static (equilibrium) deformability coefficients are denoted, including
their orders, by ,uf,z) = O(€idal)s o = = O(€4iqal), and ,uf,” = O(egga/c*). The first
tidal term is leading order plus NLO plus NNLO, the second is NLO plus NNLO,
and the third one is solely NNLO.

The tidal moments are related with the Weyl or Riemann tensor, centered at the
point masses (particles) in the forms
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G;lu = 2[Rupva]auguga (8.33)
H,fllv - 203 [Rzk/,tgv)a]auzua7 (83b)
G(/J/u = [V(A ,u.pv ]a 5%7 (830)

with the underlined index p being excluded from symmetrization and
V= (0, +uu")V,.

Makmg use of the gothic metric deviation A" = ,/—gg"" —n"', with then
defining the vector variable & = (A% A% h¥) with h°% = h% + 5;hY, and decom-
posing h = hyp + higa, Where Ay, comes from the metric generated by structureless
point particles (pp) and /figa = (€idal/C?, €ida/C, €iigar /), the Fokker action
Sr[MV], and as well the Fokker Lagrangian Ly with [dfLp(MV) = Sg[MV], with
MYV denoting matter variables, similarly to our Routhian procedure, results in the
form

Se[MV] = Siotal [ MV, App], (8.4)

where we have used

oS,
Stotal [MV, h] = Stotal [MVa hpp] + / d4 51(;;31 [MV hpp}htldal + O( ndal)
= Sto MV, ipp] + O(€fa); (85)

also see Appendix C in Damour and Schifer (1985).
The explicit form of the NNLO tidal Hamiltonian can be found in Henry et al.
(2020a). It reads

G*m 3 1 1 1543
Hidgal = r_z{ —Eﬂ(f) +C—ZWNL0 +c—4WNNLo — 24 +(1<2)

12 2t
Etidal
- o(C), (8.6)
where
12673 (ni - p,)?
o = — 1291 p; (Mo 2pz) (_18ﬂgz)+12052))
m; m;
+ (ni2 - py) (12 - py) (lguf) _ 2409) + (P; - p>) (2#§2) +24a§2)>
mimy mymy \2
(m2-p)* (9 ) @\, Pt 15 o @
+ o~ (5“1 + 120, )*%(*7#1 — 120, )
G 21
+— (3m1 + —mz)uﬁ ), (8.7a)
rn 2
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(n 63
WANLO = — g 2 p2 ( SR ) (4)( 1za§>)
+(p1 pz)p% (% 24 6000 ) L(n2py)’ &(54u<2>+720<2>)
mym3 4 m3 m3 ! !
2
. : 45
PPy (~sau” - 1440@)] PP (-5 —600)
mymy mym; 2
3
n . n .
+( 12 P1)3( 12 pZ)(18ﬂ<12>+480'(12)>
mymy
2 2 2
pi [(ni2-py)” /45 (o) @\, P2/ 45 0 @)
+m_§[T§<7’“‘l +661" )+ 3 (— g u” ~307)
(P1-p2) (81 () N (m2-py) ((ni2-p,)’ @ @)
R (20 48 54 144
+ miny (4M1 a8 ) + my m% ( S % )
(nlz-pz)p?( 63 ) <z>)
T2 BB 02248
+ m%mz 2'ul %
(n2-p,) [P @) @\ , (p1°P2) @) )
2 Py) —2(—36;11 600! )+7(45u1 +1200")
my m2 mymy
2
LIS p1 9 @\ () 45 o @
( 2“1 )+ m’ ( 16t 6 )

1

2
Ami pl {“” )’ (—4s? ~1200") + i 2 (ou? +240)
3
27
L (Pi-po) ( 184 ))+p1( W 1860 >>]
mlmz ml 4

2/ 45
( [(“ 2py)° 207,1& ) 8069) +P2 (——uﬁz) +800§2))
7’12 m N 2

(ni2-py)(ni2- pz) 1341 e @\ , (P1P2) (3 ) 2)
P (- K 41720 )+ s <8“1 17247)

(ni2-py)°/ 183 (o) <z>) Pi (123 () )
S R (C N

2 2
np- 331 61
o 2 G ) P (20
2 2
. . 1189 . 401
+(n12 l::l)’(/;llz p2) (7 3 ,ng) +2286§2)) +(I’;1 ’52) (7?‘1152) *2280'(12))
1mz 1My
2 2
np- 81 135
+(1§117f1)(—7u§2> 108017 ) +- 25 (20 + 1osa§2>)D
1 1
G? (303 2 455
28 8

m1m2—39m2),u(1 ), (8.7b)
h

The NNNLO tidal effects were recently computed in Mandal et al. (2023).
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A Hamiltonian dynamics of ideal fluids in Newtonian gravity
In the Newtonian theory the equations for gravitating ideal fluids are usually given in
the following form:

(i) The equation for the conservation of mass,*

where g, is the mass density and v = (v/) is the velocity field of the fluid.
(i) The equations of motion,

0,0,V + % gradv? — g, v x curlv = —gradp + ¢, grad U, (A2)
where p is the pressure in the fluid and U the gravitational potential.
(iii)  The equation of state,
e =¢€(g,,s) with de=hdg, +0,Tds, or dp=g9,dh—,Tds,
(A3)

with the temperature 7, the internal energy density e and the specific
enthalpy #.
(iv)  The conservation law for the specific entropy s along the flow lines,

Ois +v-grads = 0. (A4)

(v) The Newtonian gravitational field equation,

AU = —4nGy,, (A.5)
where A is the Laplacian. The gravitational potential hereof reads
2. (X', 1)
Ux,) =G | &x'= : A6
(0 =6 [ @x sy (A6)

Within the Hamilton framework the equations of motion are obtained from the
relation 0,4(x, t) = {A(x,t), H}, valid for any function A(x, ¢) living in phase space,
i.e. built out of the fundamental variables g,, 7;, and s, with the Hamiltonian given by
H = H|o,,n;,s|, where m; is the linear momentum density of the fluid (Holm 1985).
The brackets {-,-} are called Lie-Poisson brackets. They may be defined by

,. OF OF OF
{/d3X5n,-, F[Q*7S7m]} :/d3x(5g £éQ*+5_£éS+5_m£é”i)a (A7)

¥ S

where F'is a functional of ¢, s, and 7;, £ denotes the Lie derivative along the vector

field &, and 0F/3(---) are the Fréchet derivatives of the functional F [see, e.g.,
Appendix C of Blanchet et al. (1990) and references therein].

20 n a Cartesian spatial coordinate system (x') and for any vector field w and any scalar field ¢ we define:
divw = 9w/, (curlw)' = e*Qnk, (grad )’ = 8;¢p.
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Explicitly, the equations in (i), (ii), and (iv) take the following Hamiltonian form
[the equations in (iii) and (V) remain unchanged]:

(i) The mass conservation equation

d0, oH
notice that v/ = %
(i) The equations of motion
om; oH OH OH oH
E = —6_/ <5—7tj TE,‘) — ai (5—7[]> T — 6,- (5—@‘) 0, + g@is. (Ag)
(iv) The entropy conservation law
Os oH
— = ——20;s. A.10
&= om s (A.10)

The following kinematical Lie-Poisson bracket relations between the fundamental
variables are fulfiled:

{mi(x,1),0.(x,0)} = 66” [0.(x',1)d(x — x')], (A11)
[ri(x, £),5(x, )} = asé’;,; D s(x — x), (A.12)

{mi(x, 0), m(x', )} = m(x', 1) aa, o(x —x') — m(x,1) ai d(x —x'), (A.13)

and other brackets are zero. More explicitly the Hamiltonian of the fluid takes the

form,
1 i * 1)
_7/d3x” - /c13xc13 &%, 00.(x, 1) /d3xe (A.14)
2 Q.
For point masses, the momentum and mass densities are given by
T = Zpaié(x_xa)7 Zma a (AIS)

and we have also # = p = s = 0. The position and momentum variables fulfill the
standard Poisson bracket relations,

(X, paj} = 04 zero otherwise | (A.16)
and the Hamiltonian results in

H — 1 pz G mgamyp

ey (A.17)
245~m, Zu#b|xa—xb
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where the internal and self-energy terms have been dropped (after performing a
proper regularization, see Sect. 4.2 in our review).

Let us remark that for fluids a canonical formalism with standard Poisson brackets
can be obtained with the transition to Lagrangian coordinates b4 (x’,¢), such that
9,b" + v - grad b! = 0. Then,

ox!

— (A.18)

pa=bm  with b, =

The variables 5 and pp are canonically conjugate to each other, i.e.
{0 (1), pa(/,0)} = 03" = »). (A.19)

The mass density in Lagrangian coordinates, say u(b?,¢), is defined by o, dx =
1 d®b and relates to the usual mass density as o, = u(b*, 1) det(b}9 ).

B Hamiltonian dynamics of ideal fluids in GR
The general-relativistic equations governing the dynamics of gravitating ideal fluids
are as follows (see, e.g., Holm 1985; Blanchet et al. 1990).
(i) The equation for the conservation of mass,
0,(v/—gou*) =0 or 0, +div(g,v) =0, (B.1)

where ¢ denotes the proper rest-mass density and u* the four-velocity field
of the fluid (g, u'u’ = —1), ¢, = \/—_guog is the coordinate mass density
and v the velocity field of the fluid, v/ = cu’/u°.

(ii)) The equations of motion,

1 .
al‘(\/ & Tlu) - 5 vV —8 T aiguv = 07 (BZ)
where
™ = o(c + hju'u" + pg" (B.3)

is the stress-energy tensor of the fluid with pressure p and specific enthalpy
h.
(iii) The equation of state, using the energy density e = o(c? + h) — p,

e=e(g,s) with de=(c*+h)do+ oTds or dp=edh— oTds.
(B.4)

(iv)  The conservation law for the specific entropy s along the flow lines,

u'9,s =0 or Oms+v-grads=0. (B.5)

(v) The Einsteinian field equations for gravitational potential (or metric)
functions g,
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C8nG (.. 1 .
Rf“:—f4 <T“‘—Eg"‘gaﬁT“ﬁ>. (B.6)

The variables of the canonical formalism get chosen to be

1
0. = V _guOQa s, = — _ngO (B7)
c
They do fulfill the same (universal, free of spacetime metric) kinematical Lie—
Poisson bracket relations as in the Newtonian theory (see Holm 1985 or also
Blanchet et al. 1990),

(mx,1), 0., 00} = o [0, (¥ 0)3(x )], (B.)
(m(x,1),5(x, 1)} = asé’:,; D s(x — x), (B.9)

{mi(x, 1), ;(x', 1)} = mi(x', 1) %cﬂx —x') — m(x,1) &5(;; —-x).  (B.10)

Written as Hamiltonian equations of motion, i.e. 0,4(x,?) = {A(x,¢),H}, the
equations in (i), (ii), and (iv) take the following form [the equations in (iii) and (V)
remain unchanged]:

(i) The mass conservation equation

0o, oH
at - _al (ng*)a (Bll)

SH
on;*

(i) The equations of motion

om, SH SH SHY  OH
I o () — o () m — 0 (2 g, + 2 b, .
T <5nj ”’) <5nj> g (59 )” +ogos (B12)

*

notice v =

(iv) The entropy conservation law

0s  OoH

&_ My, B.13
TR T (B.13)

where the Hamiltonian functional is given by H = H{o,, n;,s], see Holm
(1985).

Point-mass systems fulfill
h=p=s5=0, (B.14)

(just as for dust) and the momentum and mass densities read
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i

; dx
m = Zpaié(x—xa), 0, = Zmaé(x—xa), v, :d—t“. (B.15)

The position and momentum variables again fulfill the standard Poisson bracket
relations,

{xL, pa} = 64 zero otherwise . (B.16)
Hereof the standard Hamilton equations are recovered,

dpui - OH dx; . o0H
d  oxi’ dt  Opu

(B.17)

Remarkably, the difference to the Newtonian theory solely results from the Hamil-
tonian, so the difference between GR and the Newtonian theory is essentially a
dynamical and not a kinematical one. This statement refers to the matter only and not
to the gravitational field. The latter is much more complicated in GR, dynamically
and kinematically as well.

C 4PN-accurate generators of Poincaré symmetry for two-point-mass
systems

Generators of Poincaré symmetry for two-point-mass systems are realized as
functions on the two-body phase-space (X1, X2, p;, P2)- In the 3 + 1 splitting the 10
generators are: Hamiltonian H, linear momentum P’, angular momentum J’, and
centre-of-energy vector G (related to boost vector K’ through K’ = G' — tP"). They
all fulfill the Poincaré algebra relations (3.35)—(3.40). In this Appendix we show
4PN-accurate formulae for these generators derived within the ADM formalism (see
Bernard et al. 2018 for recent derivation of corresponding and equivalent formulae
for integrals of motion in harmonic coordinates).

The gauge fixing used in the ADM formalism manifestly respects the Euclidean
group (which means that the Hamiltonian H is translationally and rotationally
invariant), therefore the generators P’ and J' are simply realized as

Xaapa mev Xavpa Zgikﬂg;palf' (C.1)

These formula are exact (i.e., valid at all PN orders).
The 4PN-accurate conservative Hamiltonian H<4pn is the sum of local and
nonlocal-in-time parts,

H§ 4PN [Xm pa] = H?%N("m pa) Hérlllg{\lllocal [Xd? pa]7 (Cz)

where the nonlocal-in-time piece equals

1G2M +00

dr -
Hishlocally p | = —gc—glij(r) x szm/c/ . 1i(t+ ). (C.3)

o Il
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The third time derivative of j;, after replacing all time derivatives of x, by using the
Newtonian equations of motion, can be written as

26 oy A . . o
Iy = -2 {4n§12 (plﬂ _2J>> _ 3<(n12 p) (mp p2)>n§’2n’1>2}

) mp  nm m my
2Gmym i 3 ;o
- r31 : {4x§2\/1>2 - 7(“12 -V1z)X§2x’1>2}, (C4)
12 12

where the relative velocity vi, = p,/mi — p,/m2 ({---) denotes a symmetric trace-
free projection). This formula is valid in an arbitrary reference frame and it is
obviously Galileo-invariant. Consequently the nonlocal-in-time Hamiltonian (C.3) is
Galileo-invariant as well. The local part of the 4PN-accurate Hamiltonian reads

HISO?II’N(XM pa) = Mcz + Hy (Xll? pa) + Hipn (Xm pa) + Hopn (Xm pa)
+H3PN(Xaapa) +H411%C;111(Xa7pa)' (CS)

The Hamiltonians Hy to Hspy in generic, i.e. noncentre-of-mass, reference frame, are
equal to [the operation “+(1 — 2)” used below denotes the addition for each term,
including the ones which are symmetric under the exchange of body labels, of
another term obtained by the label permutation 1 « 2]

2
pi  Gmum,

HN(Xa, P,) = +(1+2), (C.6)

- 21’)’!1 2}"]2

e HIPN(Xaa pa) =

3 2 mimy

() Gmuma ( 6pi  7(p1-p2)
Sml 41’12 }’}'ll

N (n - p1)(n12 . p2)> N GZm%mz i (1 o 2), (C.7)

mimy 2r2,

! Hapn (Xm pa) =

16m? 8rn m‘l‘ 2 m%m% m%m%

(f)° | Gmumy (5 @)’ 11pipl (p-p)

P% (n2 'pz)z 6 (P - P2) (ni2 - py)(n12 - py)

5 —_
* mim; mim3

3 . 2 . 2 G2 2 2
_3me p) (Mo py)” ) | GTmm mz(lOp—12+ 19"—22)

2 mim; 4ri, my my

1 27 . 6 . :
_E(ml +my) (p; - py) + 6 (np2 - py)(nin Pz))

nmymyp
3 2 2

. G mlmz(ml + 5m1m2 +m2) + (1 - 2)7 (CS)

3
8r1,
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5’ G 14(p?)*
c® Hapn (Xa, P,) = — (1) + m1m2<_ L

128m¥ 32}”12 m?

+4((p1~pz)2+4p%p%)p2 6pt(niz - py)’(ny2 - py)’
)

mym; m?m%
1o Pi (M2 py)” 43 (m2 - py)*)pi
miims3
2
N 54 PL (P 'Pz)(“142 2pl)(n]z Py) ,Pi (P -pz3)(r;1z “p2)
mym; mym;
+(71)%1)%—100) -p,)7) (12 - py)(np2 - p,)
mim;3
(P% P% —2(p; - p2) )(Pl “P2) (P - p2)(ni2 'Pl)z(“l2 : Pz)z
+ 3.3 + 15 3.3
mym; mym;
P p)(mi2py)’ | (m2p) (2 py)’
18 3,..3 +5 3..,3
min; mym;

P 16

GPmymy (1 ()’ 115 P (pi-py)
— —27 LI 4 I 75
* 16 (m m2) m} 16" m3my

25 (m'pz)2+371p%p%+17p1(mz p)’ ERCIEE p)’

AT mim} 16 m 2w
1 (15pT(mz-py) + 11 (py - o) (M2 - py)) (M2 - Py)

g ! m?mz
_ %ml (n1 'P1)33(“12 Py +Em2 (P P2) (“122' [;1)(“12 P2)

mimy 12 mim;

10 (g - P1)2(n12 : P2)2 1 pi(ni2 ‘pz)z

- ——(220 193m;) ————
tym mini 4g (220 193m2) =25

G*mymy 1 3, 2 pf
+ ”%2 T (425 ml <473 f:‘n >m1m2 + 150 m; m—%

1 1, (P1-P2)
+16 (77(111l +m3) + (143 2" )m1m2> —_—

mymy

1 (ni2 - py)’
16 (ZOm1 (43 +-7n >m mz) B —

1

116 (21(""1 +m3) + (119 +%n2)m1m2) W)

myny

G* 227 21
+ o ((T—?nz)ml—kmz) +(1<2). (C.9)

8r12

The formula for the Hamiltonian )% is large, therefore we display it in smaller
pieces:
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7(p2)5 Gm1m2 szln’lz
8 rrlocal 1
c H X = + —Hug(x + ————m Hys(X
4PN( @ Pa) 256m? 1 8(Xas Py) r%z 6(Xas Py)
G3m1m2 2
3 (m1 Hua1 (Xq, P,) + mimy Hagy (Xq, Pa))
12
G4m1m2 3 2
—a (’"1 Hip1 (X4, p,) + mymy H422(Xa,Pa))
12
G5m1m2
T e (xpa) + (1 2), (C.10)
12
where
Hus(xe,p,) = 45(p})* 9(mi> - py)*(miz - py)* (P} REICIEE )’ (p})’
e Bl 08 mS 64mSm3 64mSm3
C9(miz-p)(mz - py) (P Py p2) 301 (P - P
16m$m3 32mém3
15(ni2-p)*(p1)’p3  21(p1)°P3  35(mi2-py)°(mis - py)°
64m?m% 64m?m% 256m:15m§
25(ny> - py)’(m12 - p)’°p? 33 p) (s - )’ (p})’
128m3m3 256m3m3
85(mi2-py) (2 p) (P - P2)  45(niz-py)’(miz - py)°Pi(py - )
256m3m3 128m3m3
(2 po)* (1)’ (P - py) | 25(mz ) (mi2 - Py)(P1 o)’
256m3m3 64m3m3
i 7(niz2 - py)(ni2 - p,)pi (py p)’ _3(np2 )’ (- p)’ i 3pi (py )’
64m?m§ 64m?m% 64m?mg
55(ni2 - py) (2 - pp)p3  7(miz - py)* (mi2 - p2)pip3
256m3m3 128m3m3
25(niz - p)(ni2 - o) (PD)’P3 23(niz2 - p)*(py - po)P}
256mfm% 256m:13m%
L7 p)"pi(py )RR T(P1)’(Py PR3 S(niz-py)’(miz-po)'pd
128m3im3 256m3m3 64mtm3
L7z p) (@D’ (M2 py) (o) PI(P1 - P2)
64mim? Amim?
L (2 p)"pi(py-py)°  S(mo - py)*(ni2 - py)°P3
16m}m? 64m?tm?
21(ni2-py)’(m2 - p2)’pip3  3(mi2-po)’(p})°P3
+ 64mim} B 32mim}
~(m2-py)’(mi2 - py) (P - P2)P3 L (m2-p)(ma-py)pi(pr - )RS
Amim} 16m?tm3
L ()’ (pop)’5 PP Po)’PE | T(n2 P (3)°
16m}m? 32mim}3 64m’tm?
3(mi2-py)’Pi(P3)” _ 7(01) (D)’
- 4.4 - 4.4 > (C*”)
32mim; 128mim;
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Hig(Xa,p,) = 369(n12 'P1)6 _ 889(ni> 'P1)4P% + 49(n1y 'P])Z(P%)z
103t Ba 160m¢ 192m 16m¢
_63(p})° 549(niy - p,)’(ni2 - py) n 67(ni2 - p;)’ (n12 - p)p?
64mS 128m3m; 16m3jm
_167(ngy - py)(ni2 - py)(P})° 4 1547(nz p) (P, - py)
128m?m2 256m?m2
_851(mo - p)pi(p - p2) |, 1099(p1)° (s - P2)
128m?m2 256m?m2
3263(n12 - py)* (niz - p,)° n 1067(nyz - py)*(miz - p,)’p?
1280m‘1‘m% 480m‘1‘m%
_ 4567 (my; - Pz)z(l)%)2 -~ 3571(ni> 'Pl)g(“lz “P2)(P1 - P2)
3840m’ni2 320mini2
+ 3073(n12 - py) (M2 - po)Pi (Py - P) + 4349(ny> 'Pl)z(Pl 'Pz)2
480mm3 1280m7m3
~ 3461p3(p, - py)° | 1673(ni2 - p))*'p3  1999(mi2 - i)’ pip}
3840mm3 1920mtm3 3840mm3
2081(p?)°p3 ~ 13(npp - p.)’(ni - py)’ n 191(ny; - py)(ni2 - p,)°p}

3840mtm3 8m3im3 192mim3

_ 19(n, 'PI)Z(DIZ 'p2)2(p1 “P2) -~ 5(my2 - pz)zp%(l’l “P2)
384mim3 384m3m3
1 (niz - py) (2 - o) (Py - 2)° | 77(py - Po)’
192m3m3 96mim3
L 233(m - p ) (no - p)p3  47(mio - py) (2 - P)RTR
3.3 3.3
96mim; 32mim;

(ni2-p)°(py - P)P}  185pi(py-po)p3  7(miz-p)’(mi2 - py)°

384mim3 384mim3 4m2m3
T2 - py)*pd 7z py)(ni2 - po)* (p - po)
4m3m} 2mim}
2 2 2 2 5

21(mp2 - py) (s - P2)” | 7(mi2-py) (12 - P2)7P3

16m3m} 6mim}
L 49(m2 - py)°pip3  133(nix - py)(miz - po) (P1 - PP

48m3m} 24m3m}
77(ps - p)’P3 | 197z -p)*(PD)”  173pi(p3)° | 13(p3)°
96m3m3 96m3m? 48m3m} 8mS

+

+

)

(C.12)
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5027(ni; - py)*t 22993(miz - p))°pl  6695(p?)’
384m? 960m* 1152m*

~3191(niz - py)*(mi2 - py) | 28561 (niz - py)(miz - p,)p}
640m3m; 1920m3m,

8777(m2 - 1) (P - P2) |, 75296991 (p; - Po)
384m3m; 28800m3m;
_ 16481(ny, p) (- py)° i 94433 (np ~p2)2pf
960m?3m3 4800m3m3
_ 103957(ny - p;)(m12 - ) (Py - P2) n 791(p, 'Pz)2
2400m3m3 400m?3m3
26627(ni> -p)°p3 _ 118261ptp3  105(p3)°
1600m3m3 4800m3m3 32m§

Hus1(Xa,p,) =

(C.13)

27497 211189\ (p})* | (3757 23533\ (myz-p)°
8192 19200 ) m? 8192 1280 m?
63347 1059n2> (ny2-p,)’p} (10631n2 1918349) (p;-py)°

1600 1024 m? 8192 57600 ) mim?

Huap(Xa,P,) = (

+

1372372 2492417) p2p? (1411429 1059n2> (n12-p,)’p>

16384 57600 ) m?m2 ' \ 19200 512 m2m?

_|_

248991 615377\ (mi2-py)(mi2-py) (P -P2)
6400 2048 2m3

(

(

(
(30383 3640572 ) (ni2-p))’ (012 p,)?
(

(

(

960 16384 2m3

mym;
(B9 35655n>(n12-p1)3(n12'p2)

60 ' 16384 m3m,

1243717 404831 )p%(pl p,)

m?mz

_|_

14400 16384

N 4310172 391711>(n12~p1)(n12-p2)p%

3

16384 6400 mim;

(56955n 1646983) (n12-p,)(p - P,)

16384 19200 m3m,

, (C.14)

64861p7  91(p; - py)  105p3
4800m? 8m my 32m3

_9841(np2-p,)*  T(niz2-p)(mi - p,) (C.15)
16007’}1% 2m1m2 ’ '

Hui(Xq,P,) =
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Han(xo.p,) = (1237033 1991777\ p} | (282361 218377\ p}
22 Pa) =\ 57600 49152 )2 T\ 19200 © 8192 ) m2

(176033712 _ 2864917) (p; - P2)

24576 57600

698723 | 217457\ (s - )’
19200 16384 2

my
<63641n2 2712013) (n12 - py) (012 - py)

miny

24576 19200 mym;
<3200179 28691n2) (ny3 - p,)°

— C.16
57600 24576 27 ( )

my

mt  (6237m2 169799\ 4
16 <1024 72400 )m1m2
4482577 609427\ , ,

( 6144 7200 )ml >

Hyo(Xa,p,) =

(C.17)

The centre-of-energy vector G'(x,,p,) was constructed with 3PN-accuracy (using
the method of undetermined coefficients) by Damour et al. (2000c, d), and at the 4PN
level by Jaranowski and Schifer (2015). It can be written as>'

Gi(xmpa) = Z (Ma(xbvpb)x; +Na(xb>pb)pai); (Clg)

a

where the functions M, and N, possess the following 4PN-accurate expansions
1 1
M, (x, — m, 4+ — M"™N(x, L MPPN(x,
(Xa: Pa) = ma + 5 My (Xa Pa) + 3 Mg (X, o)

1 1
5 M (Xa ) + 5 M (e, D), (C.19)

1 1 1
Na(%arPa) = 2 Ng™ (Xas Ba) + 25 NI (e ) + 5 N (0 pa). - (C20)
The functions M|™ to M;™N read

2 Gmm
M (x,,p,) = 2L - 22 (c21)

2m1 2}"12

2! Let us note that the centre-of-energy vector G' does not contain a nonlocal-in-time piece which would
correspond to the nonlocal-in-time tail-related part of the 4PN Hamiltonian. The very reason for this is that
the integrals contributing to Gipy are less singular than those for Hspy, and the singular structure of terms
contributing to G'ypy rather relates to the singular structure of terms contributing to Hspx.
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3 N

&m; 4ri 2 2

22 2 2
G 5 7(p; -
M (x4,p,) = — (p1) mn ( | T ) (P1 - P2)
my my mimy

+

(C.22)

2 b
mimsy 4ri,

(ni2 - py)(mi2 'Pz)) N G*mymy(my + my)

~16m}  16r2 2m2

213 232 212 212

G
M (x,p,) — (p7) | Gmamz <9 (P14) n (p24) _ 1 PP
m] m; mim3;

(P P’ , P mi2-py)’ | pi(mi2-p)’
-2 2.2 +3 2.2 +7 2.2
mym; mymy mymy
_ 1o (PLPy) (2 py)(miz - py) 5 (M2 -p)’(n2 - py)°
mim3 mims3
G mymy P% P%
112 45 — 15 2 =
24r%2 (112my + mz)m% + (15my + m2)m%

_1(209m + 115my) (P Py) + (ni2-py)’ ~ (mp2 py)’
2 1 ’ mymy m my

— (31my + 5m )(HIZ Py)(ni2 - py)
1 2 o
G*mymy(m? + Smymy + m3)
- 18r3 27, (C.23)
12

The function M{*N has the following structure:

5(])%)4 Gm1m2
128”’1? r
G2m1m2

2 (ml Mag1(Xa, Py) + Mo Mago(Xa, Pa))
12

G3m1m2
3 (m% M1 (X4, p,) + mymy My (X4, )
12

MfPN(mea) = M46(th7pa)

G*mym
+ m% M423(Xa7pa)) + r4l 2M40<xa7pa)5 (C24)
12

where

@ Springer



2 Page 106 of 139 Review Article

Mag(xa,p,) = — 131’ 15(niz2-p)* (2 -py)*  91(miz - p,)* ()’
4633 Ba 32m8 256m*m? 256m*m?
4 B p) (m2-py)°p} S(miz - p) (mi2 - py)(ps - po)
128m‘]1m% 32m‘]1m§
25(m12 - py)(miz - p)p(Py - P2) | S(miz - P])Z(Pl 'Pz)2
+ ) + )
32mm; 64m'm3;
7p}(pi - po)° | 11(n2-p)°'p3  47(n2-p))’pip3
64m‘1‘m§ 256m‘1‘m% 128m‘1‘m§
91(p})°p3 | 5(niz-p)’(miz-py)*  T(nia-py)(mi2 - py)°p}
256m‘1‘m% 32m?m§ 32m?m%
REICTERS JDRCIEES SYROIES S BNCTERS Y (T8 )
3.3 3,3
32mym; 32mim;
_5(mia - p)(mia - py)(py o p)’ 1(miz-py)(mi2 - py)p3
16m3m3 32mim3
C(popy)’ | Tz -p)(mi2 - p)p?p3  S(nia-p))’(py - PP}
16m3m3 32m3im3 32mim3
pi(p, - P)P3 | 15(m2-py)’(ma-py)*  1i(niz-py)*p}
32mim3 256mim; 256mim}
5(mi2 - py)(np2 - Pz)S(Pl “Py) -~ 5(my2 'Pz)Z(Pl 'Pz)2
32m%m‘21 64m%m‘21
21z )*(mopy)°p3 | 7(mo - p,)’PiR3 | (P1-P)’°PE
128m2mj 128m3m3 64m3m}
(n2-p)(m2 - p) (P -Po)R3 | 11(mi2-py)*(P3)°
32mim} 256mim}
3793 (3)°  (p3)’
256mim%  32m§’

+

J’_

+

+

(C.25)

Mao (x )_7711(n12.p1)4_2689(n12~p1)2p% 2683(p3)*
1 Pa) =50 40m? 3840m’ 1920m?
_67(m2-py) (mi2-py)  1621(ny2-py)(miz - py)p}
30m?m2 1920m%m2
AL py)* (P Py)  25021p5(py-Py) | 289(n12-py) (mia )’
1280m?m2 3840m?m2 lZSm%m%
~259(ni2-py)°p? | 689(niz-py)(ni2-py)(py-p) | 11(py Py’
128m%m§ 192m%m§ 48m?m%
147(ni2-p,)°p3 | 283pip3  7(mi2-py)(miz-py)’
64m%m% 64m%m% 12m1m§

+49(n12 p)’(Py-P2)  7(miz-py)(ni2-p,)p3

3 3
48m m; 6mm;

C7(pip)p3 9(p3)°
aBmm3  32mi’

(C.26)
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_45<P%)2 7pi(p1 - P2) | 7(mi2 - py)(mi2 - po)PY
32m} 48m3my 6m3my
49 p)i(piop) T p)i(miz-py) | (R o)’
48m3my 12m3m, 24m3m3
635pip3  983(mi> - p,)°p3 | 413(niz-p,)’(niz - py)°
l92m%m% 384m%m% 384m%m%
 331(niz - py)’p} L 4372 - py) (M2 ) (P - Po)
192m%m% 64m%m%
1(n-p)(m2-p,)°  1349(niz - py)°(py - Po)
15mym3 1280mm3
_5221(mo - py)(m2 Py)P3  2579(p, - po)P3 | 6769(niz - p,)°p3
1920m,m3 3840mmj3 3840m}
2563(p2)>  2037(ny; - py)*
19202 1280m%

Maysr(Xq,p,) =

(C.27)

| 179843p} _ 10223(p, -py)  15p3
14400m? 12007, m5 16m3

8881(1112 . P1)(ﬂ12 . Pz) 17737(1112 . p])2
2400m1m2 1600m% ’

M1 (Xq,p,) =

(C.28)

82257 12007\ p? (143 7%\ (p, - p,)
M (% P) = (aer — e ) ot o~ )
122(Xa: o) (16384 1152)m% 16 64

mimy
(655 _79697r2) P (696377:2 40697) (ni2-p;)°

1152 16384 16384 3840 2

m
(“9+ﬁ> (mi2 - py)(mi2 o) <30377 77317[2) (015 - p,)?

16 ' 64 mymy 3840 16384 m

2
m;

(C.29)

35p; | 1327(p, -py) , 52343p3
16m2 " 1200mym; = 14400m3

2581(ni2-py)(nia - p,)  15737(ny; - py)°
240077117}12 1600”’!%

Mp3(X4,p,) =

(C.30)

)
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m3 337172 6701
Myo (X4, p,) = — ( ) f

6144 1440)"M™

16
20321 740322\  , m}
_—— —=. C.31
(1440 6144 > KERRT: (€31)
The functions NN and NN equal
5
NP (%0, p,) = =5 G (ma - py), (C32)
NN (x4, p,) = 8mimy (2 (p1 - 2) (M2 - py) — p3 (M2 - py)
2 G
+3 (2 - py) (2 - py) ) 13 (197712 (ni2-py)
r'12
+ (130 my + 137 my) (ny5 - p2)>. (C.33)
The more complicated function N{™N has the structure:
G*m
N (x4, P,) = GmaNas (x4, P,) + mz (ml Na31(Xa, Py)
G*m
+ my Nuza (Xq, Pa)) + rz_z (m% Na1(Xa; Py)
12
+ mymy Naia (Xa, p,) + m3 N413(Xa7pa))7 (C.34)
where
S(niz-p;)’(ni2-py)° | (mi2-py)(mi2-p,)°pt
N asta =
#5(%a:Pa) 64mim * 64mim
+5<“12 'Pl)z(nlz P2)(Pi P2) _ (n12-p2)pi(p;s - p2)
32mim3 32mim3
L 3ma-p)(y )" (m-p)’P3 (nia-py)piR
32mim3 64m3m3 64m3m3
n (ni2-p))’* (nlz P’ 7(mi2-p,)’p} | 3(mi2-py)(ni2-py)’(py-ps)
32mim3 32m3m3 16m3m3
L)y py)’  9(nio ) (2 p)p3 | S(miz-po)RiR
16m2m3 32m2m3 32mm3
_ 3(ni2-py)(pi - P2)P3 -~ 11(n-py)(n2 'Pz)4 n (i 'P2)3(P1 P)
16m3m3 128mm3 32mym}
+ 7(ni2-py)(n2 'Pz)ng n (n12-p,)(P1 - P2)P3 _ 3(mi 'M)(P%)Z
64m;m3 32mym} 128mym3
(C.35)
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387(ni2-py)’ ., 10429(m15 -py)pi

Nazi (Xq,p,) =

1280m3 3840m3
751(niz-py)’(mi2 - py) | 2209(nyz-py)pl  6851(niz-py)(p; - Ps)
480m3m; 640m?my 1920m?my
43(ni2-py)(ni2-py)°  125(niz - py)(py-p2) | 25(mi2-py)P3
192mym3 192mym3 48mym3
T(ni2-p,)°  7(nyy-p,)p
_7(nip 31)2) Y P32)Pz, (C.36)
&m; 12m;

Tz - p)p? | T(mi2-p)(ps -py)  49(miz-p))’(mi2 - py)

Naz2(Xa,Py) =

481’)’1%”’!2 24m%m2 48m%m2
295(1112 'pl)(n12 . p2)2 B 5(1112 Pz)(Pl pz) B 155(1112 . Pl)Pg
384m1m% 24m1m% 384m1m%
3 2
. 1251(ny; -
~5999(n,; 3p2) | 12si(ng 3132)1’2, (C.37)
3840m3 3840m;
37397(ni, - p,)  12311(ny; - p,)
N _ 3 C.38
411 (Xas Pa) 7200m, 2400m; 7 ( )
50057% 81643\ (ny; - p;)
Nai2 (X4, p,) = ( 8192 11520) m
i (C.39)
77372 61177\ (ni2 - py)
2048 11520)  mp
7073(ny -
Nty (x0.p,) = — 1073 (mi2 o) (C.40)

1200”’12

D Higher-order spin-dependent conservative Hamiltonians

In this appendix we present explicit formulae for higher-order spin-dependent
conservative Hamiltonians not displayed in the main body of the review. We start
with the next-to-next-to-leading-order spin-orbit Hamiltonian, which was calculated
by Hartung et al. (2013) (see also Hartung and Steinhoff 2011a). It reads
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G {(Tmy(p})’  9(ni>-p;)(mi2-p,)p3
JJNNLO . S,) = 2\Py 1 2/)P1
50 (Xa:Pg:Sa) 2, 16m3 * 16m}
3pi(002-p,)° | 45(002-py)(mi2-py)°  9PI(P-Po)
4mim, 16m3m3 16m}
C3(mi2-p)’(piopa) 3D (P 15(miz-py)(ni2-py)p3
16m2m3 16m3m, 16m2m3
3(ni2-py)’p3 3(pp)p3 3(pd)’
+ (ni2-p,) Py (P pz)pz_ (p2) )((nlzxpl)'sl)

4mym3 16mim3  16mym3

+(

3(niz-py)(mi2-py)p}  15(niz-py)*(mi2-py)°

3 2,2
2mim; 4mym;

+3p%(nu pz)z_p?(pypz) (pi-P2)°

4mim3 2m3my 2mim3
L 3ma-py) p3 (PH(P3) 3(mi2-py)(niz-p,)p
4mim3 Am2m3 2mym;

. 2 9(ny, - 2 p’(ngy-
_M (s xpy)-S1)+ (- (n1 pi)pl_'_pl( 12 P2)
2mym; 16m; mimy
+27(n12'P1)(“12‘P2)2_(an'Pz)(Pl ‘p2) 5(niz-py)p3

16m3m3 8mim3 16m3m3

+

(“1”’2)1’2>((p1 XP2)- Sl)}

mlmz

GZ

cor

3
1

27m3  3my 2_3m2(n12-p1)2+ 177
) Sm? 2m% P Zm% 16m,

11 9m, 23 9m,
(s 22 ) s o pe)+ (4 -

~ ( 159 37 )p2:|((nlzxp1>'sl>+ {4(n,2~p1) n

16m; 8m

+

11 P
+m—2> (m2-p,)

P>)

13p;]

m

5(“12'[’2) +53P%_ (ﬂﬁz

_) (ni2-p;)(n12-p,)

my 8my 8my  my

2m1

(ot ) o) () S0+ [ (4325 ) mm)

4dm;  2m

(san Y mee|oe s

G3

6,4
Criy

{ <181m1m2+95m§+75m%

16 4 8m )“"”Xpl)'sl)

21m?  473mymy  63m3
—( Zl—i— 161 24 42>((n12><l)2)'51)}+(1‘—’2)- (D.1)
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The next-to-next-to-leading-order spinl-spin2 Hamiltonian was calculated for the
first time by Hartung et al. (2013). Its explicit form reads

G [ ((p1 xP2) - S)((p1 X P2) - S2)
NNLO _ 1 2 1 2
Hys, ™ (XarPar Sa) = cor3, { 16m3m3
~ 9Py X p2) - S ((mi2 X py) - So)(mi2 - py)
Sm%mg
~ 3((mi2 x py) - S1)((Py X P2) - S2)(mi2 - py)
Zm%mg

9p?  15(ni2-p,)°  3p?
(2 p) S )-8 (g )
_ 3p; 3(p1 - P2)
2mimy  4mim3

T (2 % pa) - S)((mz x py) 'Sz)<

- PGB () S < )52

( 3P% 3(pr-p2)  15(miz - py)(mi2 'Pz))

16mimy  16mim3 16m3m3

2,2 2.2
dmimy 4mims;

P% (P p2)
4m?m2 4m%m§
SP% 3(py-p2)  9(npz-py)(np2 'Pz))

.S .S _ _
(P2 S1)(py 2)<16m§mz T6mni2 T6m?ni2

.p.)? 2
+(py - S1)(p, _S2)<3(n12 p) p; )

(P S)(pa- Sz)<—

9(np, - 2 3(ny, - 2 3(n - 2
g $1)(py -5y (22 B 300 2l (e Py )
my mym; mim;

3(ni2 - p,)p? _ 15(ng2 - py)(np2 ’Pz)z
4m?m2 4m%m§

+(py - S1)(n12 - Sy) ( -

+ -
2.2 3 2.2
4mim; 4mym; 8mim;

3(ni2-pyp;  3(mi 'Pz)P%) +(n2-S1)(np2 - ) ( _3(pip)

105(ni> - py)*(niz - py)° _ 15(mi2-py)°pi  3pi(p, -Pa) . 3pip3

16m?m3 8mim3 4m3my 16m3m3
LIspima p)(m2-P)) | (g gy (P p)° 9(niz-p)’p}
dm3im, b2 16m?3m3 8m
CS(picp)P} 3(mia-py)’p 15(nix-py)’(mia-p,)’ | 3pip3
16m3m, 8mim3 16m3m3 16m3m3
3pi(niz - py) (2 -py) | 9(py - po)(mi2 - py) (M2 - py)
+ 4mim + 16m?m3
1712 mym;
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- %((nlz X py) - S1)((mi2 x py) - S2)
- %((nu xpy)-S)((n2 x py) - S)
_2%11(pl S1)(p; - S2) +82—,:1(pz -81)(p; - $2) —82—,,11(1)l .$0)(p; - S1)

my  mp

+ (P - S1)(n2 - S7) |:mil(n12'p]) - <£+£> (ni2 'Pz)}

12 10 37
+ (n2-Sy)(ny2 - S2) { - m_l(nlz p) - m—lp% +4—ml(P1 “P2)
255 25 9m, ,
+ﬁ(ﬂ12 “p1)(ni2 'Pz)] +(S1-82) [ - (Mer—%) (ni2-p))

+£ +3—5(n )(n )_ﬁ( )
8m1p1 4m, 12 - Pp){n2 - Py 8, P P2

G 63 145
+—= { — (S -Sz)<m% —|—m1m2)

cbry, 4 8
105 289
+(n12 -Sl)(n12~Sz)<Tmf+?m1m2)} +(1 <—>2) (DZ)

Leading-order cubic in spin Hamiltonians (which are also proportional to the linear
momenta of the bodies) were derived by Hergt and Schéfer (2008a, b) and Levi and
Steinhoff (2015). They are collected here into the single Hamiltonian A SLP, which equals

H;O(xa,pa,sa)zHS +H +HL(§2+H§30

- mG{j 752+ (2 )+ (81 m02) (82 (51 %)
1712
+ (2 - (S1 % $2))((S1 - py) — 5(S1 - np2) (py - my2))

= 5(81ma)? (52 2 % By) — 5 (8385 - (2 x )

+2(S1 - mp2)(S2 - (S1 % Py)) — 5(S1 - mp2)*(Sy - (mya x Pz)))}

— (s ><n12).<p2 :’;1 )(s2 5(8, nlz)z)}+(1<—>2).
(D.3)

Leading-order quartic in spin Hamiltonians were derived by Levi and Steinhoff

(2015). They are collected here into the single Hamiltonian H(,°, which reads
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HgO (Xa,Sa) = Hyl3s + Hegy + Hygy + HE + H

3G 1 5
= —W { ES%S% + (Sl . 82)2_5 (S (Sz nlz) +S§(Sl . n12)2>
12

7
—10(S; - ny2) (S2 - myp) ((Sl -8y) — Z(Sl “np2) (S2 - an))}
3G
2(:4m1r12
2 35 3
— 587 (S1 -m2) (S2-mp2) + ?(Sz ‘np2)(Sy - ny2)

3Gm2
T Q43,3
8ctmiry,

{sz (S1-85) = 5(S1 - $5)(S; - mp)’

{(S%)z — 108{(S: ~n12)2+3?5(51 -1112)4} +(1<2).

(D.4)

Let us note that it is possible to compute the leading-order Hamiltonians to all orders
in spin (Vines and Steinhoff 2018).

E Dissipative many-point-mass Hamiltonians

In this appendix we display all known dissipative Hamiltonians for many-body
systems (i.e. for systems comprising any number of components), made of both
spinless or spinning bodies. We start by displaying the dissipative leading-order
2.5PN and next-to-leading-order 3.5PN ADM Hamiltonians valid for spinless bodies.
The 2.5PN Hamiltonian is given in Eq. (6.108) for two-body systems, but in this
appendix we display formula for it valid for many-body systems. The 3.5PN
Hamiltonian was computed for the first time by Jaranowski and Schéfer (1997). The

Hamiltonians read [in this Appendix we use units in which ¢=1 and
G=1/(16n)1*

HZ.SPN(xmpaa ) - 57‘5}’(4)11( ) (4 )zj(xmpa) (El)

H.5pN (Xas Pys £) = 5T 141 (Xas Bg) (I135(t) + Toy(t) + H34(2))
+ 57 fay (0) (M15(Xa, Pa) + Moy (Xa, 1))
—5m %(4)gj(t)H3y(Xa7Pa)
+ A1) (Q:‘j(xaapa) 1)+ Q (Xa, ))

3

+ % (R'(Xa, Pgs 1) + R (Xa,1)). (E2)

22 In Jaranowski and Schifer (1997), Eq. (58) for Hsspy contains misprints, which were corrected in
Eq. (2.8) of Konigsdorfter et al. (2003).
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To display the building blocks of these Hamiltonians we adopt the notation that the
explicit dependence on time ¢ is through canonical variables with primed indices
Onlya c.g., X(4)ij(t) = X(4)ij(xa’(t)7pa’(t))' We also define suc = 7up + v + Teas
Saa'tt = Taa + Tapy + Fapr, A0 Sapyr = Fap + T + 1per. The building blocks are then
defined as follows™’

8 1 1
( )ij ( Hapa) 15 167'(2 (piélj - 3paipaj)

2 Z Z mamb 3”ab”lab l/)’ (E.3)

a  b#a Tab

4 1 p
“(

2
6[' 3 aill aj
15167 P393 + 3puips)

Hly(xav pa)

8 1 mp

= -2 61 5 aifa I’tl
5 16 2;})7&1 marah P, J+ P pj+panab ab)
1
5

zZZ

a bta Fab
— 42pipp — [ (P, Pp) + (Nap - p,) (Nap 'Pb)]”ib”{;b
+6@w'PDOéM@-Fﬂu%J}

3zzm mb 9 3”217”217)

{19 P Py) — 3(nas - p,) (s - Py)] 0

b#a Tab
18 .y
e S Y mmne{ L 3y = )
a  b#a c#ab Fea

180 N,
- L LI

Sabc |:<rab * Sabc) Hap'Tab + Sabe Mab bc:|

10 1 1 1 P e, 2,
b—|a(—+——) T T e Tl 5 4 (E.4)

Sabc Vab Vbe Vea YabT'bcl ca

2 In Jaranowski and Schifer (1997), Egs. (56) and (57) for Ql’./’. and R”, respectively, contain misprints,
which were corrected in Eqgs. (2.9) of Konigsdorffer et al. (2003).
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_ mp 2
a a

+ [Spi —3(ng - pa)z]nflbnilb —6(ng, - pa)(”;bpaj + n/bpal)}
L8
5

16n322m ™ (30}, — 65)

a b#a Tab

10 (16m) o 2 2 3 mamme

a  b#a c#ab
5rm Ta 1 /13 40
+—(=- 5
bc Yab \¥ca Sabe
5 40 /1 1 -
+ [3 T+ — (— + )] nonl,
rabr rabrca Sabe \Vab Sabe

{ (p + ea) 16(1 1)+S88} ;'/} (E.5)

rbc Tab rcza abc
HSy(Xaapa E zzzmb{_s Ngp - pa ij
a  b#a
+ (nab ' pa)nabnizb + 7(nlahpllj + n]bpal)} (E6)

~ _ 2 2
Hzij(Xa,t = § (167) 3 sza,raa { (Mg - Py)” — Pa/)5z7' — 2paiPuj

+ (Spa’ - 3(11(10 pa) ) L n]aa’ - 6(11,1”/ : pa’)(niw’pa/j + l’l1 /paz)}

2 /1 1\, ,
10 16 (167) Z Z Z mama’mb/{saa’b’ (ra’b’ * ng/})/)”a’b’niz’b’

a a b#d

1 2
+ 16( 2—)( aa' n]a’b’ +niza’na’b’)

rb/ Saa'b’

Vaa + Vab' 12 i i
_2<37+S2— naa’n]ab’
Va/b/ aad'b!

Yaa' [ Taa 5 8
+ 3 +3) - + Moo aa’
Vo \Vab/ Yab'Vaa Sad' b raa Saa’b’
Vaa Yad 17 4 1
+ (55 1 - + - — + i ¢
Yoy Vap Ya'b'Vaad Vaa'Vab' Saab \Taa' Yo'y

(E.7)

1 mgy
Q;i(xaapavt) = 7%@2211% Fad {2pmpa/ + lz(naa’ pa) aa’pa}

- Spa aa’n] + 3(“”“ a Roa aa } (Eg)
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1 1 1 1 R
// P 1
050 = 577 - 3 Y mamme 22 (e

a b#a d
Vaa' 5 ¥, 8 1 1 S
+ [3 R + MMy
Yab TabPaad'  Vyptaa  Saba' \Taa'  Saba'

A 12\ 1 2\ .
—2(¥+2 )n;n’ 32( 2—>n;,,n§m,}, (E.9)
v

ab Saba’ ab Saba’

R (XasPs!) = e  +11(p, - Py
(%0, Py ) 105167122%% Pip; + 11(p, - Py)’

+ 4(naa’ : ’) + 4(ngy - p,) pi/ — 12(ngy 'pa ) (e - P, (P, - pa’)}

o 2 2
105 2zzzm:1’:1b{(2raa _9 aa3 ab 5%)[’2

a a b#d 'y Tab

raa’ 2 rnzm’ 2
(nge - p,)" + 17 +rap | (e - P,)

Ya'b' Ya'p'
< ad' 17raa’> (naa/ . pa)(narb/ . pa)}7 (EIO)
ab’
R”(X t) Zzzmamb 5 Vaa 2r§a’r127a 2 aa
- 105 2 a b#a o rgb ab a
P, r,
- ”< ) (B =4 ()
Vab Vab

6r 3
+ 2( ad' | 17raa)(nab “Py) (Mg -pa/)}

rab

,,.2
210 (16m) 163 ZZ Z Z mambma'mb'{Zr = 3 (rza, _ rib,)

a b#a a b+#d

2 2 3
2 (2, —rga,)+4%—si—z<rab T r“”)

ng”a'b' ¢ oy Tab¥a'b’ r?z’b’ Ya'p

2
VabVaa Vbb' Vab 19704 T
_ 4 a L;a (naa’ . nbb’) + 17 a a aa’ (nab . na’b’>2
ra/b’ Fa'b Vap VYabla'ty
4 1 1
Taa 2
+6 2 3 (nab 'na'b’) +34Vaa/ (T+Z_> (nab 'na’b’)}' (Ell)
Tab"a'y Tab b

The leading-order Hamiltonian for systems made of any number of spinning bodies
was derived by Wang et al. (2011). It reads®*

24 We keep here the total time derivative as given in Wang et al. (2011), though it could be dropped as
correspondingly done in the Eq. (E.2), because it can be removed by performing a canonical
transformation.
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(ko B S) = 571y (5 ) (T7(0) + 1170 + 11570
+ i (1) (TR (X4, g Sa) + T (%4, 1))

( )ij ( )H311)jm(xavsa)> + )'C(4)[j(t)Q;jspm(Xaapa7Saat)
3

at3

d . spin
-3 (007" 0,8 (E.12)

(Rlspm(xa,pa, Sa’ ) —|—R”Spin(xu,[))

where S, is the spin tensor associated with ath body, with components ;). The

function y(4); is defined in Eq. (E.3) above and the functions e e e

4)ij 1 » o > Haji
11 ;';;”, Q;Spm R'Pin RSP and 0Spm are given by
D D) WL FLCTLVPEA AR
167[ a bta
+ 1 Saht) — 3P0k (WgSatiyi) + 1St ) — 37 (PriSat vy
my 1 j
+ PuiSapii)) + 4Gkl — Sk pmSaio | to 2 [Pk (St
ab
+ 1y Sat))) + (405 — 6ny 1, s ParSati ) + 4ty (PaSati i)
Sa(k) (1 ;o j
—|—pa,»Sa(,-)(k))} - % [(3n;bn’ab —05)Shwy) + 3”’;;; (”ZbSb(i)(D
ab
1y Shin) + 305 = Syt 1y Suinyn } (E.13)
Hspin S _ mp 1 2 i S
3 (a0 P S0) =~ ZZZ o { = 20 (S
7T a h;éa ub

+ nile ) + nab(pat a(j)(k +pajSa(i)(k)) + 3(nab : pa)nlt;b (nitha(/)(k)

1y Sati(t)) + (O + 3y IngparSatiy o } (E.14)
in mb
13" (X4, Py Sa) = S(16m)? Z Z k(1 Satiyio) + Sagy)) (E.15)
(16” @ bral
" (x t):—LZZ@L{z (1 Sy + St i)
2 “ 5(1677:)2 o 7 Ma rga’ Pak “
— ey (PaiSa iy + PaiSa i) — (85 + 3"257/”2@/)”ﬁa«PavSa'(k)(z)
- 3(““”’ ’ pa’)nza’(nza’S nlaa’S )}7 (E16)
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/ spin — Ma 1
Qijsp (Xas Pas Sart) = 167[ sza Vou {2pak Hat Sa())

+ nga’Sa(i)(/‘)) - naa (Pai, a(j)(k) +pafS0(i)( ))
- 3(naa' . pa) ad' ( aa’Sa(/ +nl S )

— (85 + 3n iy )n aa’plllSa(k)(l)}7 (E.17)

spin Ay, i
R (xa: P Su 1) = 157765 ZZ {man: (i raps

- (nu’a 'pg’)pa’lpaj - z(pa’ 'pa)n ’apa/J)

1 m ’mb’ . 2r .
4 17 l/r aj — aa 17 a'b //n/r
+7(16”)1;/ my, ( Ny Paj ( (Il b pa) Ny My
i Vaa (i i
+ 7”;’ap”j) + 2_0 (na’b’paj + 2(n0/0 ' pa)na’b’ni/u)
ab
8I"ara i i
+ 3 (rczl’ana’ap‘lj - ri’ana’apaf)> }
/h/
Taa' i
167-5 Z Zma,ma (pa ogPaj — (pa’ ’ pa)naa’paj
+ (ngy -Pa)l?a/ipaj) 5(16n ; Zma/ma (3pa/kpazS '(5)())
—2(Py  P)Sa i) — Zpa’ipakSa’(k)(j)> : (E.18)
RSP (x,, 1) = ———— MallbTaag (ni, i
~ 2(ng 'pa/)nfl,an/‘;b ~ (nga - n,,,,)n;bp,,,_,-), (E.19)
spin _ 1
07" (p0rSa) = D o oz Pt (PasSat )+ PiSaioo)- (E.20)

a

F Closed-form 1PM Hamiltonian for point-mass systems

The first post-Minkowskian (1PM) closed-form Hamiltonian for point-mass systems
has been derived by Ledvinka et al. (2008). The starting point is the ADM reduced
Hamiltonian describing N gravitationally interacting point masses with positions X,
and linear momenta p, (¢ =1,...,N). The 1PM Hamiltonian is, by definition,
accurate through terms linear in G and it reads (setting ¢ = 1)
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Hlm—Zma——GZm”mb (1 4L 2 )

a.b#a Tab

+ G Z 7pa Py + (pa ) nab)(p[; . nab))
ab;ﬁa

1 paipaj TT 3
_52(1: 7, hii (X: 16 G d'x hl]k yk TTTETT (Fl)

1
where 7, = (m%+p2)* and ngre = X, — X, (with |nab| =1). The independent

degrees of freedom of the gravitational field, hTT and n¥, are treated to linear order

in G. Denoting x — X, = n,|x — x,| and cos@ = (n, - X4)/|X4|, the solution for
hgT(x) was found to be

4G 1
hiTiT(X) Y N PokPbl . (F.2)
’ ) |X_Xb|\/l—x';,2sin26;,
An autonomous point-mass Hamiltonian needs the field part in the related Routhian,
3 TT 7 TT _ jTTTT
Ry = G/dx— HL g = TR, (F.3)
to be transformed into an explicit function of particle variables. Using the Gauss law

in the first term and integrating by parts the term containing the time derivatives one
arrives at

1 1
R — — FE _hTT( hTT athT) d hTThTT
ST T 1enG ) © T4l ")+ GG 45y )
1 d :
———— [ &Ix (). F.4
64nGdt/ x (hy i) (F4)

The field equations imply that the first integral directly combines with the “inter-
action” term containing Y 7, ' pai poj ;' (X4), so only its coefficient gets changed.
The remaining terms in Ry, the surface integral and the total time derivative, do not
modify the dynamics of the system since in our approximation of unaccelerated field-
generating particles, the surface integral vanishes at large |x|. The reduced Routhian
thus takes the form, now referred to as H because it is a Hamiltonian for the particles,

Hlm Xc‘apmxc Zma - _G Z mamb < >

ab;éa Fab
+ G Z + (pa : nab)(pb : nab))
ab;éa
1 paipa' .
ZZ—@’ ATk = X435, Dy ) (F.5)

a

Though dropping a total time derivative, which implies a canonical transformation,
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the new canonical coordinates keep their names. A further change of coordinates has
to take place to eliminate the velocities X, in the Hamiltonian. This can be achieved
by simply putting X, = p,/m, (again without changing names of the variables).

1
Using the shortcut yy, = i, ' [m2 4 (ny, - py)°J?, the Hamiltonian comes out in the

final form (Ledvinka et al. 2008)

1 7,7 2 2
Hig = Y 7,56 Y b(1+%+%)
a a b

a,b#a Fab
1 1
+36 D — (70, By) + (Py 1t (B - )
abta” @
1 1 (mamb)_l

Gy {2(2(pu Pp) (P M)’

4 GzaTab Vpa + 1)*ha

1
= 2P~ )Py ) (P~ PP} + (P - )P — (P~ P1)’P}) —
b

+2 {(Pa pp)’ - PPy - n5a)” + (P - Mea)” (P - Mpa)’
+2(Pa  Mba) (P Moa) (Pu - P) — (P - nba)zpﬂ

+ 020 — 30200y )+ (9 (B )’
+ 8(Py * Mba) (Pp - Mba) (P P) — 3(Py - nba)zpﬂ)%a}- (F.6)

This is the Hamiltonian for a many-point-mass system through 1PM approximation,
i.e., including all terms linear in G. It is given in closed form and entirely in terms of
the canonical variables of the particles.

The usefulness of that Hamiltonian has been proved in several applications (see, e.
g., Foffa and Sturani 2011; Jaranowski and Schifer 2012; Foffa and Sturani 2013a;
Damour 2016; Feng et al. 2018). Especially in Jaranowski and Schéifer (2012) it was
checked that the terms linear in G in the 4PN-accurate ADM Hamiltonian derived
there, are, up to adding a total time derivative, compatible with the 4PN-accurate
Hamiltonian which can be obtained from the exact 1PM Hamiltonian (F.6). Let us
also note that Damour (2016) has shown that, after a suitable canonical transfor-
mation, the rather complicated Hamiltonian (F.6) is equivalent (modulo the EOB
energy map) to the much simpler Hamiltonian of a test particle moving in a (linearized)
Schwarzschild metric. The binary centre-of-mass 2PM Hamiltonian has been derived
most recently by Damour (2018) in an EOB-type form and also the gravitational spin-
orbit coupling in binary systems has been achieved at 2PM order by Bini and Damour
(2018) (for other 2PM results see, e.g., Bel et al. 1981; Westpfahl 1985).
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G Skeleton Hamiltonian for binary black holes

The skeleton approach to GR developed by Faye et al. (2004), is a truncation of GR
such that an analytic PN expansion exists to arbitrary orders which, at the same time,
is explicitly calculable. The approach imposes the conformal flat condition for the
spatial three-metric for all times (not only initially as for the Brill-Lindquist
solution), together with a specific truncation of the field-momentum energy density. It
exactly recovers the general relativity dynamical equations in the limits of test-body
and 1PN dynamics. The usefulness of the skeleton approach in the construction of
initial data needed for numerical solving binary black hole dynamics was studied
by Bode et al. (2009).
The conformally flat metric

1
7y = (1 +§¢)45ij (G.1)
straightforwardly results in maximal slicing, using the ADM coordinate conditions,

Our coordinates fit to the both ADM and Dirac coordinate conditions. The
momentum constraint equations now become

i 8nG
™= _0—32}7(41'50- (G.3)

The solution of these equations is constructed under the condition that n'i is purely
longitudinal, i.e.,

; 2

l

This condition is part of the definition of the skeleton model.
Furthermore, in the Hamiltonian constraint equation, which in our case reads

mnl 16nG P 2 172
Ap = — 1T O MaC (1+ P > . (GS)
(1+1¢) & S (1+49) (1+5¢) mic?
a truncation of the numerator of the first term is made in the following form

i i i i i lonG
mnl = =2V 0m, + 0;(2Vm) — =2V = —— Y pyiVjda, (G.6)

J c

i.e., dropping from nﬁnjl the term 0;(2¥;n}). This is the second crucial truncation

condition additional to the conformal flat one. Without this truncation neither an
explicit analytic solution can be constructed nor a PN expansion is feasible.
From Jaranowski and Schifer (1998, 2000c), it is known that at the 3PN level the

hT-field is needed to make the sum mjn! analytic in 1/c.
With the aid of the ansatz
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_ 4G Oy

¢ = (G.7)

c? — ¥y

and by making use of dimensional regularization, the energy and momentum con-
straint equations result in an algebraic equation for o, of the form (Faye et al. 2004),

1/2
2 /(2.2 R
g = |y g Lallma) |y paVale oy, (G3)
Prawe | (o) ] (14)

With these inputs the skeleton Hamiltonian for binary black holes results in

c* 3 2
Hg = — 167ZZG/d xAp = Ea O0aC”. (G.9)
The Hamilton equations of motion read
OH, OH.
Xy = —= =k (G.10)

o, T ox

We will present the more explicit form of the binary skeleton Hamiltonian in the
centre-of-mass reference frame of the binary, which is defined by the equality
p; + p, = 0. We define

P=pP =-P r=x1-X, r=]r (G.11)
It is also convenient to introduce dimensionless quantities25 (here M = m + m; and
"= mlmz/M)

rc? p 2 2 22 P . Je
~ = ~ ~ _ ~ N th ~ = r d 0 =
PG PSPt /F~ with  p, o M IEam

(G.12)

where p, = p - r/r is the radial linear momentum and J = r X p is the orbital angular
momentum in the centre-of-mass frame. The reduced binary skeleton Hamiltonian

Hy = Hy /(uc?) [it defines equations of motion with respect to dimensionless time
¢t = tc*/(GM)] can be put into the following form (Gopakumar and Schifer 2008):

ﬁsk :212((#1 +w2_2)a (G13)

where the functions /, and , are solutions of the following system of coupled
equations

) 42}2 2 /722 85 2 4+ 72 /12),2
U= 1+ 2 14 v (p +‘{/”)7(Pr +A]7/’")V’ (G.14)
47y, Xz_lpz 8721#2

25 Let us note the they differ from the reduced variables introduced in Sect. 6 in Eq. (6.4).
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=1+ jn . 4v2(p,? +]?2/f2)_(815,2+7f/f2)v2 (G.15)
? 47, et 872 7
where y_ =1—+v1—4vand y, =1++V1—4v, with v=pu/M.
Beyond the properties mentioned in the beginning, the conservative skeleton
Hamiltonian reproduces the Brill-Lindquist initial-value solution. It is remarkable
that the skeleton Hamiltonian allows a PN expansion in powers of 1/c? to arbitrary
orders. The skeleton Hamiltonian thus describes the evolution of a kind of black
holes under both conformally flat condition and the condition of analyticity in 1/c2.
Along circular orbits the two-black-hole skeleton solution is quasistationary and it
satisfies the property of the equality of Komar and ADM masses (Komar
1959, 1963). Of course, gravitational radiation emission is not included. It can,
however, be added to some reasonable extent, see Gopakumar and Schifer (2008).
Restricting to circular orbits and defining x = (GMw/c3)2/ 3 where o is the
orbital angular frequency, the skeleton Hamiltonian reads explicitly to 3PN order,

o x (3 27 29 17, ,
Hae = 2+(8+24)x2+<16+16v 48V>x

675 8585 7985 , 1115 3\ 4 .
<128+ 384 "~ 192 T1036s” )x o).

(G.16)

In Faye et al. (2004), the coefficients of this expansion are given to the order x'!
inclusively. We recall that the 3PN-accurate result of general relativity reads [cf.

Eq. (6.94)],
. x (3 v 27 19 1
g __x AT - R 2 O
<3N 2+<8+24> +(16 16v+4sv>x

675 (205 , 34445\ 155 , 35 .\,
+<128+<192” 1152)V+192V+10368v ¥ (G17)

In the Isenberg—Wilson—Mathews approach to general relativity only the conformal
flat condition is employed. Through 2PN order, the Isenberg—Wilson—Mathews
energy of a binary is given by

S x (3 v\, (27 39 17, ,
Hiwm = 2+<8+24)x +<16 T 48v>x. (G.18)

The difference between Hywy and Hy shows the effect of truncation in the field-
momentum part of I:ISk through 2PN order and the difference between HIWM and

H <3pN reveals the effect of conformal flat truncation. In the test-body limit, v = 0,
the three Hamiltonians coincide.
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