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Abstract
Hamiltonian formalisms provide powerful tools for the computation of approxi-
mate analytic solutions of the Einstein field equations. The post-Newtonian
computations of the explicit analytic dynamics and motion of compact binaries
are discussed within the most often applied Arnowitt–Deser–Misner formalism.
The obtention of autonomous Hamiltonians is achieved by the transition to
Routhians. Order reduction of higher derivative Hamiltonians results in standard
Hamiltonians. Tetrad representation of general relativity is introduced for the
tackling of compact binaries with spinning components. Compact objects are
modeled by use of Dirac delta functions and their derivatives. Consistency is
achieved through transition to d-dimensional space and application of dimensional
regularization. At the fourth post-Newtonian level, tail contributions to the
binding energy show up for the first time. The conservative dynamics of binary
systems finds explicit presentation and discussion through the fifth post-Newtonian
order for spinless masses. For masses with spin Hamiltonians are known through
(next-to)3-leading-order spin-orbit and spin-spin couplings as well as through next-
to-leading order cubic and quartic in spin interactions. Parts of those are given
explicitly. Tidal-interaction Hamiltonians are considered through (next-to)2-leading
post-Newtonian order. The radiation reaction dynamics is presented explicitly
through the third-and-half post-Newtonian order for spinless objects, and, for spin-
ning bodies, to leading-order in the spin-orbit and spin1-spin2 couplings. The most
important historical issues get pointed out.
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1 Introduction

Before entering the very subject of the article, namely the Hamiltonian treatment of
the dynamics of compact binary systems within general relativity (GR) theory, some
historical insight will be supplied. The reader may find additional history, e.g.,
in Damour (1983a, 1987b), Futamase and Itoh (2007), Blanchet (2014), Porto
(2016), Levi (2020).

1.1 Early history (1916–1960)

The problem of motion of many-body systems is an important issue in GR (see, e.g.,
Damour 1983a, 1987b). Earliest computations were performed by Droste, de Sitter,
and Lorentz in the years 1916–1917, at the first post-Newtonian (1PN) order of
approximation of the Einstein field equations, i.e., at the order n ¼ 1, where ð1=c2Þn
corresponds to the nth post-Newtonian (PN) order with n ¼ 0 being the Newtonian
level. Already in the very first paper, where Droste calculated the 1PN gravitational
field for a many-body system (Droste 1916), there occurred a flaw in the definition of
the rest mass m of a self-gravitating body of volume V (we follow the Dutch version;
the English version contains an additional misprint), reading, in the rest frame of the
body, indicated in the following by _¼,

m ¼Droste1916
Z
V
d3x . _¼

Z
V
d3x .� 1� 3U

c2

� �
; ð1:1Þ

where the “Newtonian” mass density .� ¼ ffiffiffiffiffiffiffi�g
p

.u0=c [g ¼ detðglmÞ, u0 is the time

component of the four-velocity field ul, ulul ¼ �c2] fulfills the metric-free conti-
nuity equation

ot.� þ divð.�vÞ ¼ 0; ð1:2Þ
where v ¼ ðviÞ is the Newtonian velocity field (with vi ¼ cui=u0). The Newtonian
potential U is defined by

DU ¼ �4pG.�; ð1:3Þ
with the usual boundary condition for U at infinity: limjrj!1 Uðr; tÞ ¼ 0. Let us
stress again that the definition (1.1) is not correct. The correct expression for the rest
mass contrarily reads, at the 1PN level,
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m _¼
Z
V
d3x .� 1þ 1

c2
P� U

2

� �� �
; ð1:4Þ

with specific internal energy P. For pressureless (dust-like) matter (for a dust-like
body P ¼ 0, but then the potential term U has to disappear too, because of the
internal pressure-gravity balance: a pressureless body cannot show up internal
gravity), the correct 1PN expression is given by

m ¼
Z
V
d3x .� _¼

Z
V
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
. ¼

Z
V
dV.; ð1:5Þ

where dV � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

p
d3x.

The error in question slept into second of two sequential papers by de Sitter
(1916a, b, 1917) when calculating the 1PN equations of motion for a many-body
system. Luckily, that error had no influence on the de Sitter precession of the Moon
orbit around the Earth in the gravitational field of the Sun. The error became
identified (at least for dusty matter) by Eddington and Clark (1938). On the other
side, Levi-Civita (1937b) used the correct rest mass formula for dusty bodies.
Einstein criticized the calculations by Levi-Civita because he was missing pressure
for stabilizing the bodies. Hereupon, Levi-Civita argued with the “effacing
principle”, inaugurated by Brillouin, that the internal structure should have no
influence on the external motion. The 1PN gravitational field was obtained correctly
by Levi-Civita but errors occurred in the equations of motion including self-
acceleration and wrong periastron advance (Levi-Civita 1937a; Damour and Schäfer
1988). Full clarification was achieved by Eddington and Clark (1938), letting aside
the unstable interior of their dusty balls. Interestingly, in a 1917 paper by Lorentz and
Droste (in Dutch), the correct 1PN Lagrangian of a self-gravitating many-body
system of fluid balls was obtained but never properly recognized. Only in 1937, for
the edition of the collected works by Lorentz, it became translated into English
(Lorentz and Droste 1937). A full-fledged calculation made by Einstein et al. (1938)
—posed in the spirit of Hermann Weyl by making use of surface integrals around
field singularities—convincingly achieved the 1PN equations of motion, nowadays
called Einstein–Infeld–Hoffmann (EIH) equations of motion. In the publication
seamless following Einstein et al. (1938), Robertson (1938) derived the 1PN
periastron advance based on the EIH equations of motion. Some further refining
work by Einstein and Infeld appeared in the 1940s. Fichtenholz (1950) computed the
Lagrangian and Hamiltonian out of the EIH equations. A consistent fluid ball
derivation of the EIH equations has been achieved by Fock (1939), Petrova (1949)
(delayed by World War II), and Papapetrou (1951a) (see also Fock 1959).

In the 1950s, Infeld and Plebański rederived the EIH equations of motion with the
aid of Dirac d-functions as field sources by postulating the properties of Infeld’s
“good” d-function (Infeld 1954, 1957; Infeld and Plebański 1960; see Sect. 4.2 of our
review for more details). Also in the 1950s, the Dirac d-function became applied to
the post-Newtonian problem of motion of spinning bodies by Tulczyjew (1959),
based on the seminal work by Mathisson (1937, 2010), with the formulation of a
general relativistic gravitational skeleton structure of extended bodies. Equations of
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motion for spinning test particles had been obtained before by Papapetrou (1951b)
and Corinaldesi and Papapetrou (1951). Further in the 1950s, another approach to the
equations-of-motion problem, called fast-motion or post-Minkowskian (PM)
approximation, which is particularly useful for the treatment of high-speed scattering
problems, was developed and elaborated by Bertotti (1956) and Kerr (1959a, b, c), at
the 1PM level. First results at the 2PM level were obtained by Bertotti and Plebański
(1960).

1.2 History on Hamiltonian results

Hamiltonian frameworks are powerful tools in theoretical physics because of their
capacity of full-fledged structural exploration and efficient application of mathemat-
ical theories (see, e.g., Holm 1985; Alexander 1987; Vinti 1998; Boccaletti and
Pucacco 2004, 2002). Most importantly, Hamiltonians generate the time evolution of
all quantities in a physical theory. For closed systems, the total Hamiltonian is
conserved in time. Together with the other conserved quantities, total linear
momentum and total angular momentum, which are given by very simple universal
expressions, and the boost vector, which is connected with the Hamiltonian density
(which defines “centre-of-energy vector”) and the total linear momentum, the total
Hamiltonian is one of the generators of the globally operating Poincaré or
inhomogeneous Lorentz group. A natural ingredient of a Hamiltonian formalism is
the (3?1)-splitting of spacetime in space and time. Consequently Hamiltonian
formalisms allow transparent treatments of both initial value problems and
Newtonian limits. Finally, for solving equations of motion, particularly in
approximation schemes, Hamiltonian frameworks naturally fit into the powerful
Lie-transform technique based on action-angle variables (Hori 1966; Kinoshita 1978;
Vinti 1998; Boccaletti and Pucacco 2004, 2002; Tessmer et al. 2013). Lie series are
also very useful when treating canonical transformations with usual canonical
variables (see, e.g., Blümlein et al. 2020a, c, 2021b).

Additionally we refer to an important offspring of the Hamiltonian framework, the
effective-one-body (EOB) approach, which will find its presentation in an upcoming
Living Reviews article by Thibault Damour. References in the present article referring
to EOB are particularly Buonanno and Damour (1999, 2000), Damour et al.
(2000a), Damour (2001), Damour et al. (2008b), Damour et al. (2015), Damour
(2016).

The focus of the present article is on the Hamiltonian formalism of GR as
developed by Arnowitt, Deser, and Misner (ADM) (Arnowitt et al. 1959, 1960a, b),
with its Routhian modification (Jaranowski and Schäfer 1998, 2000c) (where the
matter is treated in Hamiltonian form and the field in the Lagrangian one) and
classical-spin generalization (Steinhoff and Schäfer 2009a; Steinhoff 2011), and with
application to the problem of motion of binary systems with compact components
including proper rotation (spin) and rotational deformation (quadratic in the spin
variables); for other approaches to the problem of motion in GR, see the reviews
by Futamase and Itoh (2007), Blanchet (2014), Porto (2016). The review article
by Arnowitt et al. (1962) gives a thorough account of the ADM formalism (see also
Regge and Teitelboim 1974 for the discussion about asymptotics). In this formalism,
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the final Hamiltonian, nowadays called ADM Hamiltonian, is given in form of a
volume integral of the divergence of a vector over three-dimensional spacelike
hypersurface, which can also naturally be represented as surface integral at flat spatial
infinity i0.

It is also interesting to give insight into other Hamiltonian formulations of GR,
because those are closely related to the ADM approach but differently posed. Slightly
ahead of ADM, Dirac (1958, 1959) had developed a Hamiltonian formalism for GR,
and slightly afterwards, Schwinger (1963a, b). Schwinger’s approach starts from
tetrad representation of GR and ends up with a different set of canonical variables
and, related herewith, different coordinate conditions. Dirac has developed his
approach with some loose ends toward the final Hamiltonian (see Sect. 2.1 below and
also, e.g., Deser 2004), but the coordinate conditions introduced by him—nowadays
called Dirac gauge—are often used, mainly in numerical relativity. A subtle problem
in all Hamiltonian formulations of GR is the correct treatment of surface terms at
spacelike infinity which appear in the asymptotically flat spacetimes. In 1967, this
problem has been clearly addressed by DeWitt (1967) and later, in 1974, full
clarification has been achieved by Regge and Teitelboim (1974). For a short
comparison of the three canonical formalisms in question, the Dirac, ADM, and
Schwinger ones, see Schäfer (2014).

The first authors who had given the Hamiltonian as two-dimensional surface
integral at i0 on three-dimensional spacelike hypersurfaces were ADM. Of course,
the representation of the total energy as surface integral was known before,
particularly through the Landau–Lifshitz gravitational stress-energy-pseudotensor
approach. Schwinger followed the spirit of ADM. He was fully aware of the
correctness of his specific calculations modulo surface terms only which finally
became fixed by asymptotic Lorentz invariance considerations. He presented the
Hamiltonian (as well as the other generators of the Lorentz group) as two-
dimensional surface integrals. Only one application of the Schwinger approach by
somebody else than Schwinger himself is known to the authors (apart from Faddeev
1982 who presented Einstein’s theory of gravitation in the Schwinger canonical
variables). It is the paper by Kibble in 1963 in which the Dirac spin-1/2 field found a
canonical treatment within GR (Kibble 1963). This paper played a crucial role in the
implementation of classical spin into the ADM framework by Steinhoff and Schäfer
(2009a) and Steinhoff (2011) (details can be found in Sect. 7 of the present article).

The ADM formalism is the most often used Hamiltonian framework in the
analytical treatment of the problem of motion of gravitating compact objects. The
main reason for this is surely the very well adapted coordinate conditions for explicit
calculations introduced by Arnowitt et al. (1960c) (generalized isotropic coordinates;
nowadays, for short, often called ADMTT coordinates, albeit the other coordinates
introduced by Arnowitt et al. 1962, are ADMTT too), though also in Schwinger’s
approach similar efficient coordinate conditions could have been introduced (Schäfer
2014). Already Kimura (1961) started application of the ADM formalism to
gravitating point masses at the 1PN level. In 1974, that research activity culminated
in a 2PN Hamiltonian for binary point masses obtained by Ohta et al. (1974a, b),
based on earlier work by Hiida and Okamura (1972). However, one coefficient of
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their Hamiltonian was not correctly calculated and the Hamiltonian as such was not
clearly identified, i.e., it was not clear to which coordinate system it referred to. In
1985, full clarification has been achieved in a paper by Damour and Schäfer (1985)
relying on the observation by Schäfer (1984) that the perturbative use of the
equations of motion on the action level implies that coordinate transformations have
been applied; also see Barker and O’Connell (1984, 1986). In addition, Damour and
Schäfer (1985) showed how to correctly compute the delicate integral (UTT) which
had been incorrectly evaluated by Hiida and Okamura (1972), Ohta et al. (1974a, b),
and made contact with the first fully correct calculation of the 2PN dynamics of
binary systems (in harmonic coordinates) by Damour and Deruelle (1981), Damour
(1982) in 1981–1982. The 2PN periastron advance for binary systems has been
obtained for the first time by Damour and Schäfer (1987); generalized by adding to it
the effect of the leading-order spin-orbit coupling, in 1988 (Damour and Schäfer
1988).

In Schäfer (1983b), the leading-order 2.5PN radiation reaction force for n-body
systems was derived by using the ADM formalism. The same force expression had
already been obtained earlier by Schäfer (1982) within coordinate conditions closely
related to the ADM ones—actually identical with the ADM conditions through 1PN
and at 2.5PN order—and then again by Schäfer (1983a), as quoted in Poisson and
Will (2014), based on a different approach but in coordinates identical to the ADM
ones at 2.5PN order. The 2PN Hamiltonian shown by Schäfer (1982) and taken
from Ohta et al. (1974b), apart from the erroneous coefficient mentioned above, is the
ADM one as discussed above (the factor 7 in the static part therein has to be replaced
by 5), and in the definition of the reaction force in the centre-of-mass system, a
misprinted factor 2 is missing, i.e. 2F ¼ F1 � F2. The detailed calculations were
presented in Schäfer (1985); and in Schäfer (1986), a further ADM-based derivation
by use of a PM approximation scheme has been performed. At 2PN level, the
genuine 3-body potential was derived by Schäfer (1987). However, in the reduction
of a 4-body potential derived by Ohta et al. (1973, 1974a, b) to three bodies made
by Schäfer (1987) some combinatorical shortcomings slept in, which were identified
and corrected by Lousto and Nakano (2008), and later by Galaviz and Brügmann
(2011) in different form. The n-body 3.5PN non-autonomous radiation reaction
Hamiltonian1 was obtained by the authors in Jaranowski and Schäfer (1997),
confirming energy balance results in Blanchet and Schäfer (1989), and the equations
of motion out of it were derived by Königsdörffer et al. (2003).

Additionally within the ADM formalism, for the first time in 2001, the
conservative 3PN dynamics for compact binaries has been fully obtained by
Damour and the authors, by also for the first time making extensive use of the
dimensional regularization technique2 (Damour et al. 2001) (for an earlier
mentioning of application of dimensional regularization to classical point particles,
see Damour 1980, 1983a; and for an earlier n-body static result, i.e. a result valid for

1 In such a particle Hamiltonian, the field degrees of freedom are treated as independent from the particle
variables, rendering the particle Hamiltonian an explicit function of time.
2 Dimensional regularization was originally introduced by Bollini and Giambiagi (1972a, b) and ’t Hooft
and Veltman (1972).
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vanishing particle momenta and vanishing reduced canonical variables of the
gravitational field, not based on dimensional regularization, see Kimura and Toiya
1972). Only by performing all calculations in a d-dimensional space the regular-
ization has worked out fully consistently in the limit d ! 3 (later on, a d-dimensional
Riesz kernel calculation has been performed too, Damour et al. 2008a). In purely 3-
dimensional space computations two coefficients, denoted by xkinetic and xstatic,
could not be determined by analytical three-dimensional regularization. The
coefficient xkinetic was shown to be fixable by insisting on global Lorentz invariance
and became thus calculable with the aid of the Poincaré algebra (with value 41/24)
(Damour et al. 2000c, d).3 The first evaluation of the value of xstatic (namely
xstatic ¼ 0) was obtained by Jaranowski and Schäfer (1999, 2000b) by assuming a
matching with the Brill–Lindquist initial-value configuration of two black holes. The
correctness of this value (and thereby the usefulness of considering that the Brill–
Lindquist initial-value data represent a relevant configuration of two black holes) was
later confirmed by dimensional regularization (Damour et al. 2001). Explicit
analytical solutions for the motion of compact binaries through 2PN order were
derived by Damour and Schäfer (1988) and Schäfer and Wex (1993b, c), and through
3PN order by Memmesheimer et al. (2005), extending the seminal 1PN post-
Keplerian parametrization proposed by Damour and Deruelle (1985).

Quite recently, the 4PN binary dynamics has been successfully derived, using
dimensional regularization and sophisticated far-zone matching (Jaranowski and
Schäfer 2012, 2013; Damour et al. 2014; Jaranowski and Schäfer 2015). Let us
remark in this respect that the linear in G (Newtonian gravitational constant) part can
be deduced to all PN orders from the 1PM Hamiltonian derived by Ledvinka et al.
(2008). For the first time, the contributions to 4PN Hamiltonian were obtained by the
authors in Jaranowski and Schäfer (2012) through G2 order, including additionally all
log-terms at 4PN going up to the order G5. Also the related energy along circular
orbits was obtained as function of orbital frequency. The application of the Poincaré
algebra by Jaranowski and Schäfer (2012) clearly needed the noncentre-of-mass
Hamiltonian, though only the centre-of-mass one was published. By Jaranowski and
Schäfer (2013), all terms became calculated with the exception of terms in the

Hamiltonian linear in the symmetric mass ratio m � m1m2=ðm1 þ m2Þ2 (where m1

and m2 denote the masses of binary system components) and of the orders G3, G4,
and G5. Those terms are just adding up to the log-terms mentioned above. However,
taking a numerical self-force solution for circular orbits in the Schwarzschild metric
into account, already the innermost (or last) stable circular orbit could be determined
numerically through 4PN order by Jaranowski and Schäfer (2013).

The computations by Jaranowski and Schäfer (2012, 2013, 2015) are all based on
a straightforward use of the PN expansion, and are thereby a priori only valid in the

3 L. Blanchet (private communication) and P. Bizoń and A. Staruszkiewicz (private communication)
suggested to the authors of Damour et al. (2000d) that the coefficient xkinetic should be fixable by insisting
on global Lorentz invariance. It found explicit verification by Jaranowski and Schäfer (2000b). L. Blanchet
had obtained the analytical value of xkinetic and communicated the three-digit approximate value 1.71 of
xkinetic before completion of Damour et al. (2000d). Derivation of xkinetic in harmonic coordinates
by Blanchet and Faye (2000b, 2001a) crucially relies on the extended Hadamard regularization method,
see Sect. 4.3 below.
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near zone. The formal extension of the 4PN-level near-zone computation to the full
space implies the appearance of infrared (IR) divergences (linked to the formal limit
r ! 1). The regularization of these IR divergences is unambiguous, except for a
single 4PN-level ambiguity coefficient, denoted by C in Damour et al. (2014), linked
to the arbitrariness in the IR regulator scale s entering within a logarithm (see
Eq. (3.7) in Damour et al. 2014). The value of C (C ¼ �1681=1536) was, however,
uniquely determined in Damour et al. (2014) by combining several other previous
results: (1) the understanding that the IR effect responsible for this logarithmic
ambiguity was in precise agreement with a nonlocal 4PN tail effect discovered long
ago Blanchet and Damour (1988)—and recovered within the ADM formalism
by Damour et al. (2016); (2) the “first law of binary black-hole mechanics”
by Le Tiec et al. (2012) allowing one to link the energy-angular-momentum function
Eðj; mÞ to the redshift along circular orbits; and, most importantly from the conceptual
point of view, (3) a computation, at first order in the symmetric mass ratio m, of the
redshift by Bini and Damour (2013), obtained by using an analytical representation
of the (linear in m) metric perturbation in terms of series of hypergeometric functions
(Mano et al. 1996). The crucial point is that the latter analytical representation
incorporated a precise matching between the near-zone metric and the far-zone one,
thereby providing the “beyond-PN” information needed for the analytical determi-
nation of the value of C. Previous results obtained by Le Tiec et al. (2012)
and Barausse et al. (2012a), based on numerical self-force computations (Blanchet
et al. 2010b), had given an approximate numerical knowledge of a PN expansion
coefficient equivalent to the knowledge of C. Applications of 4PN Hamiltonian
dynamics for bound and unbound orbits were performed by Damour et al.
(2015), Bini and Damour (2017).

For spinning bodies, counting spin as 0.5PN effect, the 1.5PN spin-orbit and 2PN
spin-spin Hamiltonians were derived by Barker and O’Connell (1975, 1979), where
the given quadrupole-moment-dependent part can be regarded as representing spin-
squared terms for extended bodies (notice the presence of the tensor product of two
unit vectors pointing each to the spin direction in the quadrupole-moment-dependent
Hamiltonians). For an observationally important application of the spin-orbit
dynamics, see Damour and Schäfer (1988). In 2008, the 2.5PN spin-orbit
Hamiltonian was successfully calculated by Damour et al. (2008c), and the 3PN
spin1-spin2 and spin1-spin1 binary black-hole Hamiltonians by Steinhoff et al.
(2008a, b, c). The 3PN spin1-spin1 Hamiltonian for binary neutron stars was
obtained by Hergt et al. (2010). The 3.5PN spin-orbit and 4PN spin1-spin2
Hamiltonians were obtained by Hartung and Steinhoff (2011a, b) (also see Hartung
et al. 2013 and Levi and Steinhoff 2014). The 4PN spin1-spin1 Hamiltonian was
presented in Levi and Steinhoff (2021). Based on the Dirac approach, the
Hamiltonian of a spinning test-particle in the Kerr metric has been obtained
by Barausse et al. (2009, 2012b). The canonical Hamiltonian for an extended test
body in curved spacetime, to quadratic order in spin, was derived by Vines et al.
(2016). Finally, the radiation-reaction Hamiltonians from the leading-order spin-orbit
and spin1-spin2 couplings have been derived by Steinhoff and Wang (2010)
and Wang et al. (2011).
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1.3 More recent history on non-Hamiltonian results

At the 2PN level of the equations of motion, the Polish school founded by Infeld
succeeded in getting many expressions whereby the most advanced result was
obtained by Ryteń (1961) in her MSc thesis from 1961 using as model for the source
of the gravitational field Infeld’s “good d-function”. Using the same source model as
applied by Fock and Petrova, Kopeikin (1985) and Grishchuk and Kopeikin (1986)
derived the 2PN and 2.5PN equations of motion for compact binaries. However,
already in 1982, Damour and Deruelle had obtained the 2PN and 2.5PN equations of
motion for compact binaries, using analytic regularization techniques (Damour
1982, 1983a, b) (for another such derivation see Blanchet et al. 1998, who
additionally got the metric coefficients at the 2.5PN accuracy). Also Ohta and
Kimura (1988) should be mentioned for a Fokker action derivation of the 2PN
dynamics. Regarding the coordinate conditions used in the papers quoted in the
present subsection, treating spinless particles, all are based on the harmonic gauge
with the exceptions of the ones with a Hamiltonian background and those by Ryteń
or Ohta and Kimura.

The two-point-mass equations of motion at 3PN order in harmonic coordinates
were obtained complete with the exception of one parameter called k (equivalent to
xstatic, see above) by Blanchet and Faye (2000a, b) (see also de Andrade et al. 2001
and Blanchet and Iyer 2003). The derivation used the modified version of the
Hadamard regularization called the extended Hadamard regularization (Blanchet and
Faye 2001a, b, see Sect. 4.3 of our review for more details). This regularization was
not able to resolve the problem of the ambiguity parameter k, but gives a final result
physically equivalent to that of dimensional regularization, except for the unknown
value of this parameter. Using the technique of Einstein, Infeld, and Hoffmann (EIH),
Itoh and Futamase (2003) and Itoh (2004) succeeded in deriving the 3PN equations
of motion for compact binaries, and Blanchet et al. (2004) derived the same 3PN
equations of motion based on dimensional regularization.

The 3.5PN equations of motion were derived within several independent
approaches: by Pati and Will (2002) using the method of direct integration of the
relaxed Einstein equations (DIRE) developed by Pati and Will (2000), Nissanke and
Blanchet (2005) applying Hadamard self-field regularization, by Itoh (2009) using
the EIH technique, and by Galley and Leibovich (2012) within the effective field
theory (EFT) approach. Radiation recoil effects, starting at 3.5PN order, have been
discussed by Bekenstein (1973), Fitchett (1983), Junker and Schäfer (1992), Kidder
(1995), Blanchet et al. (2005).

Bernard et al. (2016) calculated the 4PN Fokker action for binary point-mass
systems and found a nonlocal-in-time Lagrangian inequivalent to the Hamiltonian
obtained by Damour et al. (2014). On the one hand, the local part of the result
of Bernard et al. (2016) differed from the local part of the Hamiltonian of Damour
et al. (2014) only in a few terms. On the other hand, though the nonlocal-in-time part
of the action in Bernard et al. (2016) was the same as the one in Damour et al.
(2014, 2015), Bernard et al. (2016) advocated to treat it (notably for deriving the
conserved energy, and deriving its link with the orbital frequency) in a way which
was inequivalent to the one in Damour et al. (2014, 2015). It was then shown
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by Damour et al. (2016) that: (i) the treatment of the nonlocal-in-time part in Bernard
et al. (2016) was not correct, and that (ii) the difference in local-in-time terms was
composed of a combination of gauge terms and of a new ambiguity structure which
could be fixed either by matching to Damour et al. (2014, 2015) or by using the
results of self-force calculations in the Schwarzschild metric. In their recent articles
(Bernard et al. 2017a, b) Blanchet and collaborators have recognized that the
criticisms of Damour et al. (2016) were founded, and, after correcting their previous
claims and using results on periastron precession first derived by Damour et al.
(2015, 2016), have obtained full equivalence with the earlier derived ADM results.
Let us emphasize that Marchand et al. (2018) (also see Bernard et al. 2017a) have
presented the first self-contained calculation of the full 4PN dynamics (not making
any use of self-force results), which confirms again the correctness of the 4PN
dynamics first obtained by Damour et al. (2014). That calculation is based on
asymptotic expansion of the radiative gravitational field in d dimensions with
matching equations to be regularized first analytically and then dimensionally. An
application of the 4PN dynamics for bound orbits was performed by Bernard et al.
(2017b).

The application of EFT approach to PN calculations, devised by Goldberger and
Rothstein (2006a, b), has also resulted in PN equations of motion for spinless
particles up to the 3PN order (Gilmore and Ross 2008; Kol and Smolkin 2009; Foffa
and Sturani 2011). At the 4PN level, Foffa and Sturani (2013a) calculated a quadratic
in G higher-order Lagrangian, the published version of which was found in
agreement with Jaranowski and Schäfer (2012). The quintic in G part of the 4PN
Lagrangian was derived within the EFT approach by Foffa et al. (2017) (with its
2016 arXiv version corrected by Damour and Jaranowski 2017). Galley et al. (2016)
got the 4PN nonlocal-in-time tail part. Then Porto and Rothstein (2017) and Porto
(2017) performed a deeper analysis of IR divergences in PN expansions.
Recently, Foffa and Sturani (2019) and Foffa et al. (2019b) succeeded for the first
time with a purely d-dimensional derivation of the 4PN dynamics, without use of any
additional regularizations. This again shows the power of dimensional regularization
in PN calculations, which have been established for the first time at 3PN order
by Damour et al. (2001).

The 1.5PN spin-orbit dynamics was derived in Lagrangian form by Tulczyjew
(1959) and Damour (1982). The 2PN spin-spin equations of motion were derived
by D’Eath (1975a, b), and Thorne and Hartle (1985), respectively, for rotating black
holes. The 2.5PN spin-orbit dynamics was successfully tackled by Tagoshi et al.
(2001), and Faye et al. (2006), using harmonic coordinates approach. Within the EFT
approach, Porto (2010) and Levi (2010a) succeeded in determining the same
coupling (also see Perrodin 2011). The 3PN spin1-spin2 dynamics was successfully
tackled by Porto and Rothstein (2008b, 2010b) (based on Porto 2006; Porto and
Rothstein 2006) and by Levi (2010b), and the 3PN spin1-spin1 one, again by Porto
and Rothstein (2008a), but given in 2010 only in fully correct form (Porto and
Rothstein 2010a). For the 3PN spin1-spin1 dynamics, also see Bohé et al. (2015).
The most advanced results for spinning binaries can be found in Levi (2012), Marsat
et al. (2013), Bohé et al. (2013), Marsat (2015), Levi and Steinhoff (2016a, b, 2021),
reaching 3.5PN and 4PN levels (also see Steinhoff 2017). Finally, the radiation-
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reaction dynamics of the leading-order spin-orbit and spin1-spin2 couplings have
been obtained by Wang and Will (2007) and Zeng and Will (2007), based on the
DIRE method (Will 2005) (see also Maia et al. 2017a, b, where the EFT method
became applied). For a review of spin effects in the radiation field, see Blanchet
(2014).

1.4 Most recent history since 2019

The year 2019 can be regarded as the beginning of the epoch of the calculation of
conservative PN approximations beyond 4PN. These calculations have been
dominated by the EFT approach in the treatment of the gravitational field, working
with Lagrangians and action functionals based on harmonic coordinates. Only at the
end of the field calculations, having at hand effective Lagrangians and actions for the
matter sources, the transition to effective Hamiltonians for the particles takes place.
Hereof the effective EOB Hamiltonians can be constructed which are extremely
useful objects for applications and comparisons of different approaches. Bound
binary systems were the first to be addressed at 5PN with calculations of static
potential contributions by Foffa et al. (2019a) and Blümlein et al. (2020a). Blümlein
et al. (2020b) checked their approach by calculating the complete 4PN Hamiltonian
for the binary dynamics.

For the calculation of binary dynamics at 5PN and beyond a new strategy was
devised by Bini et al. (2019), later coined “tutti frutti” (TF) approach (Bini et al.
2021). This strategy combines various analytical approximation methods: PN (post-
Newtonian), PM (post-Minkowskian), MPM (multipolar post-Minkowskian), EFT
(effevtive field theory), SF (gravitational self force), EOB (effective one body), and
Delaunay averaging. Binary Hamiltonians at 5PN order have been derived by Bini
et al. (2020a) and by Blümlein et al. (2021b, 2022b). Up to three rational numbers,
the results do agree. Details are given in Sect. 6.3.3. The TF approch has become
leading through the 6PN order presenting almost complete (with 4 coefficients still
unknown) 6PN effective EOB Hamiltonian (Bini et al. 2020b, c, 2021); also
see Blümlein et al. (2021a, 2020c). In Sect. 6.3.5, PN-knowledge through 6PN order
can be found.

Based on the PM approach, scattering calculations became more and more
important in the determination of the binary Hamiltonian. Here, a new powerful
approach entered, based on advanced calculations of scattering amplitudes using
generalized unitarity, double-copy construction, eikonal resummation, and advanced
multiloop integration methods, in the beginning resulting straight with an ordinary
centre-of-mass 2PM binary Hamiltonian in isotropic gauge (isotropic coordinates for
the canonical momentum) (Cheung et al. 2018), followed by the first computation of
the 3PM two-body Hamiltonian in Bern et al. (2019a, b); also see Kälin et al.
(2020a), using standard EFT techniques. Quite recently, the 4PM binary Hamiltonian
became available, see Bern et al. (2021a, 2022); also see Dlapa et al. (2022a, b).
Evidently, the nPM-order level controls all terms in the corresponding PN
approximation through ðn� 1ÞPN order. Binary scattering is usually treated in the
action language, so Hamiltonians are close by. The problem is to make sure that the
PN parts of the straightforwardly obtained PM Hamiltonians are a priori applicable to
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bound binary systems because of different boundary conditions, see, e.g., Kälin et al.
(2020a).

Recently, the NNNLO quadratic-in-spin (Mandal et al. 2023a; Kim et al. 2023a),
the NLO cubic-in-spin (Levi et al. 2021b, 2023), as well as the quartic-in-spin NLO
(Levi and Teng 2021; Levi and Yin 2023) Hamiltonians were derived; also the spin-
orbit gravitational couplings got obtained through the NNNLO level (Antonelli et al.
2020; Levi et al. 2021a; Mandal et al. 2023b; Kim et al. 2023b), all based on EFT
methods. The complete Hamiltonian for spinning binary systems at 1PM order, exact
to all orders in momentum and spin expansions, was derived in Chung et al. (2020)
(also see Lee and Lee 2023 for comparison of Chung et al. 2020 with other results).
At the 2PM order, binary dynamics through the fifth power of spin was considered
in Bern et al. (2023).

Regarding tidal interactions, Hamiltonians through NNLO post-Newtonian
(Henry et al. 2020a, b) and NLO post-Minkowskian (Cheung and Solon 2020;
Kälin et al. 2020b) order corrections are available, again based on EFT (see also Bern
et al. 2021b). The Wilson coefficients for rotational deformations, our CQa, are called

Cð0Þ
ES2

by Mandal et al. (2023a) and for tidal ones, Cð2Þ
E2 , Cð0Þ

E2S2
. The rotational

coefficient starts at the 2PN level [i.e. at Oðc�2c�1c�1Þ ¼ Oðc�4Þ, where spins are
counted of order Oðc�1Þ], whereas tidal coefficients enter from NNNLO on [i.e. at

O
�ðc�2Þ3c�2c�1c�1

� ¼ Oðc�10Þ, what corresponds to the 5PN level]. Relativistic
theory of tidal Love numbers was presented in Binnington and Poisson (2009); in a
post-Newtonian setting, including Hamiltonian constructions, the leading-order
relativistic theory of tides has been developed by Vines and Flanagan (2013).
Effective one-body description of tidal effects was given in Damour and Nagar
(2010); dynamical tides in general relativity were treated in Steinhoff et al. (2016).
More details on tidal interactions can be found in Sect. 8.

1.5 Notation and conventions

In this article, Latin indices from the mid alphabet are running from 1 to 3 (or d for an
arbitrary number of space dimensions), Greek indices are running from 0 to 3 (or d
for arbitrary space dimensions), whereby x0 ¼ ct. We denote by x ¼ ðxiÞ
(i 2 f1; . . .; dg) a point in the d-dimensional Euclidean space Rd endowed with a
standard Euclidean metric defining a scalar product (denoted by a dot). For any

spatial d-dimensional vector w ¼ ðwiÞ we define jwj � ffiffiffiffiffiffiffiffiffiffiffi
w � wp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dijwiwj
p

, so j � j
stands here for the Euclidean length of a vector, dij ¼ dij denotes Kronecker delta.

The partial differentiation with respect to xl is denoted by ol or by a comma, i.e.,
ol/ � /;l, and the partial derivative with respect to time coordinates t is denoted by

ot or by an overdot, ot/ � _/. The covariant differentiation is generally denoted by
r, but we may also write rað�Þ � ð�Þjja for spacetime or rið�Þ � ð�Þ;i for space

variables, respectively. The signature of the ðd þ 1Þ-dimensional metric glm is
þðd � 1Þ. The Einstein summation convention is adopted. The speed of light is
denoted by c and G is the Newtonian gravitational constant.
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We use the notion of a tensor density. The components of a tensor density of
weight w, k times contravariant and l times covariant, transform, when one changes
one coordinate system to another, by the law [see, e.g., p. 501 in Misner et al. (1973)
or, for more general case, Sects. 3.7–3.9 and 4.5 in Plebański and Krasiński (2006),
where however definition of the density weight differs by sign from the convention
used by us; note the primed notation is on the indices, not on the main symbol]

T
a01...a

0
k

b01...b
0
l
¼ ox0

ox

� ��w

xa
0
1 ;a1 . . .x

a0k ;ak x
b1

;b01
. . .xbl ;b0lT

a1...ak
b1...bl

; ð1:6Þ

where ðox0=oxÞ is the Jacobian of the transformation x ! x0ðxÞ. For example,
determinant of the metric g � detðglmÞ is a scalar density of weight þ2. The
covariant derivative of the tensor density of weight w, k times contravariant and l
times covariant, is computed according to the rule

rcT
a1...ak
b1...bl

¼ ocT
a1...ak
b1...bl

� wCq
qcT

a1...ak
b1...bl

þ
Xk
i¼1

Cai
qic
T

a1...qi...ak
b1...bl

�
Xl
j¼1

C
qj
bjc
T a1...ak

b1...qj...bl
: ð1:7Þ

For the often used case when T a1...ak
b1...bl

¼ jgjw=2T a1...ak
b1...bl

(where Ta1...ak
b1...bl

is a tensor k times

contravariant and l times covariant), Eq. (1.7) implies that the covariant derivative of
T a1...ak

b1...bl
can be computed by means of the rule,

rcT
a1...ak
b1...bl

¼ T a1...ak
b1...bl

rcjgjw=2 þ jgjw=2rcT
a1...ak
b1...bl

¼ jgjw=2rcT
a1...ak
b1...bl

; ð1:8Þ
because

rcjgjw=2 ¼ ocjgjw=2 � wCq
qcjgjw=2 ¼ 0: ð1:9Þ

Letters a, b (a; b ¼ 1; 2) are particle labels, so xa ¼ ðxiaÞ 2 Rd denotes the position of
the ath point mass. We also define ra � x� xa, ra � jraj, na � ra=ra; and for a 6¼ b,
rab � xa � xb, rab � jrabj, nab � rab=rab. The linear momentum vector of the ath
particle is denoted by pa ¼ ðpaiÞ, and ma denotes its mass parameter. We abbreviate
Dirac delta distribution dðx� xaÞ by da (both in d and in 3 dimensions); it fulfills the
condition

R
ddx da ¼ 1.

Thinking in terms of dimensions of space, d has to be an integer, but whenever
integrals within dimensional regularization get performed, we allow d to become an
arbitrary complex number [like in the analytic continuation of factorial n! ¼
Cðnþ 1Þ to CðzÞ]. A thorough introduction to dimensional regularization can be
found in Chapter 4 of Collins (1984).

2 Hamiltonian formalisms of GR

The presented Hamiltonian formalisms do all rely on a ð3þ 1Þ splitting of spacetime
metric glm in the following form:
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ds2 ¼ glmdx
ldxm ¼ �ðNc dtÞ2 þ cijðdxi þ Nic dtÞðdxj þ Njc dtÞ; ð2:1Þ

where

cij � gij; N � ð�g00Þ�1=2; Ni ¼ cijNj with Ni � g0i; ð2:2Þ

here cij is the inverse metric of cij (cikc
kj ¼ dji), c � detðcijÞ; lowering and raising of

spatial indices is with cij. The splitting (2.1), and the associated explicit 3?1
decomposition of Einstein’s equations, was first introduced by Fourès-Bruhat (1956).
The notations N and Ni are due to Arnowitt et al. (1962) and their names, respec-
tively “lapse” and “shift” functions, are due to Wheeler (1964). Let us note the useful
relation between the determinants g � detðglmÞ and c:

g ¼ �N2c: ð2:3Þ
We restrict ourselves to consider only asymptotically flat spacetimes and we employ
quasi-Cartesian coordinate systems ðt; xiÞ which are characterized by the following

asymptotic spacelike behaviour (i.e., in the limit r ! 1 with r �
ffiffiffiffiffiffiffi
xixi

p
and t =

const) of the metric coefficients:

N ¼ 1þ Oð1=rÞ; Ni ¼ Oð1=rÞ; cij ¼ dij þ Oð1=rÞ; ð2:4Þ

N;i ¼ Oð1=r2Þ; Ni
;j ¼ Oð1=r2Þ; cij;k ¼ Oð1=r2Þ: ð2:5Þ

DeWitt (1967) and later, in a more refined way, Regge and Teitelboim (1974)
explicitly showed that the Hamiltonian which generates all Einsteinian field equa-
tions can be put into the form,

H ½cij; pij;N ;Ni; qA; pA� ¼
Z

d3x ðNH� cNiHiÞ

þ c4

16pG

I
i0
dSi ojðcij � dijckkÞ; ð2:6Þ

wherein N and Ni operate as Lagrangian multipliers and where H and Hi are
Hamiltonian and momentum densities, respectively; i0 denotes spacelike flat infinity.
They depend on matter canonical variables qA; pA (through matter Hamiltonian
density Hm and matter momentum density Hmi) and read

H � c4

16pG
�c1=2Rþ 1

c1=2
cikcjlp

ijpkl � 1

2
p2

� �� �
þHm; ð2:7Þ

Hi � c3

8pG
cijrkp

jk þHmi; ð2:8Þ

where R is the intrinsic curvature scalar of the spacelike hypersurfaces of constant-in-
time slices t ¼ x0=c = const; the ADM canonical field momentum is given by the

density c3

16pG p
ij, where
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pij � �c1=2ðKij � KcijÞ; ð2:9Þ

with K � cijKij, where Kij ¼ �NC0
ij is the extrinsic curvature of t = const slices, C0

ij

denote Christoffel symbols; p � cijp
ij; rk denotes the three-dimensional covariant

derivative (with respect to cij). The given densities are densities of weight one with
respect to three-dimensional coordinate transformations. Let us note the useful for-
mula for the density of the three-dimensional scalar curvature of the surface t = const:

ffiffiffi
c

p
R ¼ 1

4

ffiffiffi
c

p 	�
cijclm � cilcjm

�
ckn þ 2

�
cilckm � cikclm

�
cjn


cij;kclm;n

þ oi
�
c�1=2ojðccijÞ

�
: ð2:10Þ

The matter densities Hm and Hmi are computed from components of the matter
energy-momentum tensor Tlm by means of formulae

Hm ¼ ffiffiffi
c

p
Tlmnlnm ¼ ffiffiffi

c
p

N 2T00; ð2:11Þ

Hmi ¼ � ffiffiffi
c

p
Tl
i nl ¼ ffiffiffi

c
p

NT 0
i ; ð2:12Þ

where nl ¼ ð�N ; 0; 0; 0Þ is the timelike unit covector orthogonal to the spacelike
hypersurfaces t = const. Opposite to what the right-hand sides of Eqs. (2.11)–(2.12)
seem to suggest, the matter densities must be independent on lapse N and shift Ni and
expressible in terms of the dynamical matter and field variables qA, pA, cij only (pij

does not show up for matter which is minimally coupled to the gravitational field).
The variation of (2.6) with respect to N and Ni yields the constraint equations

H ¼ 0 and Hi ¼ 0: ð2:13Þ
The most often applied Hamiltonian formalism employs the following coordinate
choice made by ADM (which we call ADMTT gauge),

pii ¼ 0; 3ojcij � oicjj ¼ 0 or cij ¼ wdij þ hTTij ; ð2:14Þ
where the TT piece hTTij is transverse and traceless, i.e., it satisfies ojhTTij ¼ 0 and

hTTii ¼ 0. The TT piece of any field function can be computed by means of the TT
projection operator defined as follows

dTTklij � 1

2
ðPilPjk þ PikPjl � PklPijÞ; Pij � dij � oiojD�1; ð2:15Þ

where D�1 denotes the inverse of the flat space Laplacian, which is taken without
homogeneous solutions for source terms decaying fast enough at infinity (in 3-
dimensional or, if not, then in generalized d-dimensional space). The nonlocality of

the TT-operator dTTklij is just the gravitational analogue of the well-known nonlocality

of the Coulomb gauge in the electrodynamics.
Taking into account its gauge condition as given in Eq. (2.14), the field

momentum c3

16pG p
ij can be split into its longitudinal and TT parts, respectively,
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pij ¼ ~pij þ pijTT; ð2:16Þ

where the TT part pijTT fulfills the conditions ojp
ij
TT ¼ 0 and piiTT ¼ 0 and where the

longitudinal part ~pij can be expressed in terms of a vectorial function V i,

~pij ¼ oiV j þ ojV i � 2

3
dijokV k : ð2:17Þ

It is also convenient to parametrize the field function w from Eq. (2.14) in the
following way

w ¼ 1þ 1

8
/

� �4

: ð2:18Þ

The independent field variables are pijTT and hTTij . Already Kimura (1961) used just

this presentation for applications. The Poisson bracket for the independent degrees of
freedom reads

fFðxÞ;GðyÞg � 16pG
c3

Z
d3z

(
dFðxÞ
dhTTij ðzÞ

�
dTTklij ðzÞ dGðyÞ

dpklTTðzÞ
�

� dGðyÞ
dhTTij ðzÞ

�
dTTklij ðzÞ dFðxÞ

dpklTTðzÞ
�)

; ð2:19Þ

where dFðxÞ=ðdf ðzÞÞ denotes the functional (or Fréchet) derivative. ADM gave the
Hamiltonian in fully reduced form, i.e., after having applied (four) constraint
equations (2.13) and (four) coordinate conditions (2.14). It reads

Hred½hTTij ; pijTT; qA; pA� ¼
c4

16pG

I
i0
dSi ojðcij � dijckkÞ

¼ c4

16pG

Z
d3x oiojðcij � dijckkÞ: ð2:20Þ

The reduced Hamiltonian generates the field equations of the two remaining metric
coefficients (eight metric coefficients are determined by the four constraint equations
and four coordinate conditions combined with four otherwise degenerate field
equations for the lapse and shift functions). By making use of (2.18) the reduced
Hamiltonian (2.20) can be written as

Hred½hTTij ; pijTT; qA; pA� ¼ � c4

16pG

Z
d3xD/½hTTij ; pijTT; qA; pA�: ð2:21Þ

2.1 Hamiltonian formalisms of Dirac and Schwinger

Dirac had chosen the following coordinate system, called “maximal slicing” because
of the field momentum condition,

p � cijp
ij ¼ 0; ojðc1=3cijÞ ¼ 0: ð2:22Þ
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The reason for calling the condition p ¼ 2Kc1=2 ¼ 0 “maximal slicing” is because
the congruence of the timelike unit vectors nl normal to the t = const hypersurfaces
(slices)—as such irrotational—is free of expansion (notice that rlnl ¼ �K). Hereof
it immediately follows that a finite volume in any slice gets unchanged by a small
timelike deformation of the slice which vanishes on the boundary of the volume, i.e.
an extremum principle holds (see, e.g., York 1979). The corresponding independent
field variables are (no implementation of the three differential conditions!)

~pij ¼
	
pij � 1

3
cijp


c1=3; ~gij ¼ c�1=3cij; ð2:23Þ

with the algebraic properties cij ~p
ij ¼ 0 and detð~gijÞ ¼ 1. To leading order linear in the

metric functions, the Dirac gauge coincides with the ADM gauge. The reduction of
the Dirac form of dynamics to the independent tilded degrees of freedom has been
performed by Regge and Teitelboim (1974), including a fully satisfactory derivation
of the Hamiltonian introduced by Dirac. The Poisson bracket for the Dirac variables
reads

fFðxÞ;GðyÞg � 16pG
c3

Z
d3z

(
~dklij ðzÞ

dFðxÞ
d~gijðzÞ

dGðyÞ
d~pklðzÞ �

dGðyÞ
d~gijðzÞ

dFðxÞ
d~pklðzÞ

 !

þ 1

3

	
~pijðzÞ~gklðzÞ � ~pklðzÞ~gijðzÞ


 dFðxÞ
d~pijðzÞ

dGðyÞ
d~pklðzÞ

)
; ð2:24Þ

with

~dklij �
1

2
ðdki dlj þ dlid

k
j Þ �

1

3
~gij ~g

kl; ~gij ¼ c1=3cij; ~gij~g
jk ¼ dki : ð2:25Þ

The Hamiltonian proposed by Dirac results from the expression

HD½~gij; ~pij; qA; pA� ¼ �
Z

d3x c NiHi � c4

16pG

Z
d3x oi

�
c�1=2ojðccijÞ

�
; ð2:26Þ

which itself results from Eq. (2.6) under imposing the Hamiltonian constraint H ¼ 0
[see Eq. (2.13)] as identity, replacing in (2.6) the surface term with another but
equivalent surface term, and implementing the Dirac variables from Eq. (2.23),
which are the independent variables under the maximal slicing condition. The further
reduction, the one with implementing the coordinate conditions on the hypersurfaces,
goes via the Dirac brackets as follows.

The fixation of the coordinates in the hypersurface through oj~gij ¼ 0 results in
Dirac brackets in phase space of the form (Dirac 1959)

fFðxÞ;GðyÞgD � fFðxÞ;GðyÞg þ
Z

d3z

Z
d3z0 Cj

iðz; z0Þ

�
	�

FðxÞ; ok ~gikðzÞ
��

Hjðz0Þ;GðyÞ
�� �FðxÞ;Hjðz0Þ

��
ok ~gikðzÞ;GðyÞ

�

;

ð2:27Þ
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where the matrix Cl
mðz00; z0Þ is defined byZ
d3z0 Cl

mðz00; z0ÞfHlðz0Þ; ok ~gnkðzÞg ¼ dnmdðz� z00Þ: ð2:28Þ

It obeys the differential equation

~gijðxÞoiojCn
mðx0; xÞ þ

1

3
~gnkðxÞokolCl

mðx0; xÞ ¼ dnmdðx� x0Þ: ð2:29Þ

When using Dirac brackets the momentum constraint reads [see Eq. (2.13)]

Hi ¼ c3

8pG

�
~pjkoi~gjk � 2okð~pjk ~gjiÞ

�þHmi ¼ 0; ð2:30Þ

and the corresponding coordinate conditions oj~gij ¼ 0 can be treated as strong
equations, because for an arbitrary functional F

fF;HigD ¼ 0; fF; oj~gijgD ¼ 0: ð2:31Þ
Thus, applying Dirac brackets,

HD½~gij; ~pij; qA; pA� ¼ � c4

16pG

Z
d3x oi

�
c�1=2ojðc2=3~gijÞ

� ð2:32Þ

holds.
For the determination of the surface term in Eq. (2.32) only the determinant c of

the metric must be expressed by independent field variables (2.23). This can be done
through the differential equation

� c4

4pG
~gijoiojj ¼ c4

16pG

	 1

j3
~gij~gkl ~p

ik ~pjl þ B


þHm; j6 ¼ c; ð2:33Þ

resulting from the Hamiltonian constraint, first equation in Eq. (2.13), with

B ¼ 1

4
jðoi~gjkÞðol ~gmnÞ~gjmð~gkn~gil � 2~gin~glkÞ � 2

j
ðoijÞðojjÞ~gij: ð2:34Þ

Schwinger proposed still another set of canonical field variables ðqij;PijÞ, for which
the Hamiltonian and momentum densities have the form

H � c4

16pG
c�1=2

	
� 1

4
qmnomqklonqkl � 1

2
qlnomqklokqmn

� 1

2
qklok lnðq1=2Þol lnðq1=2Þ þ oiojqij þ qikqjlPijPkl � ðqijPijÞ2



þHm;

ð2:35Þ

Hi � c3

16pG

	
�Plmoiqlm þ oið2Plmq

lmÞ � olð2Pimq
lmÞ


þHmi; ð2:36Þ

where Pij � �c�1ðpij � 1
2 pcijÞ, qij � ccij, q � c2; Schwinger’s canonical field
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momentum c3

16pGPij is just c3

16pG c
�1=2Kij. The Poisson bracket for the Schwinger

variables does have the same structure as the one for the ADM variables. The
Schwinger’s reduced Hamiltonian has the form

HS ¼ � c4

16pG

I
i0
dSi ojqij ¼ � c4

16pG

Z
d3x oiojqij: ð2:37Þ

If Schwinger had chosen coordinate conditions corresponding to those introduced
above in Eq. (2.14) (ADM also introduced another set of coordinate conditions to
which Schwinger adjusted), namely

Pii ¼ 0; qij ¼ udij þ f ijTT; ð2:38Þ
a similar simple technical formalism convenient for practical calculations would have

resulted with the independent field variables PTT
ij and f ijTT. To our best knowledge,

only the paper by Kibble (1963) delivers an application of Schwinger’s formalism,
apart from Schwinger himself, namely a Hamiltonian formulation of the Dirac spinor
field in gravity. Much later, Nelson and Teitelboim (1978) completed the same task
within the tetrad-generalized Dirac formalism (Dirac 1962).

Notice that the Dirac Hamiltonian (2.32) shows first derivatives of the metric
coefficients only, plugging in the Hamiltonian constraint. The same holds with the
Hamiltonian proposed by Schwinger, see Eq. (2.37) and the Eq. (2.35) on-shell, i.e.
after application of the Hamiltonian constraint. The Hamiltonians (2.20), (2.32), and
(2.37) are identical as global objects because their integrands differ by total
divergences which do vanish after integration.

2.2 Derivation of the ADM Hamiltonian

The ADM Hamiltonian was derived via the generator of field and spacetime-
coordinates variations. Let the generator of general field variations be defined as (it
corresponds to the generator G � pi dxi of the point-particle dynamics in classical
mechanics with the particle’s canonical momentum pi and position xi)

Gfield � c3

16pG

Z
d3x pijdcij: ð2:39Þ

Let the coefficients of three space-metric cij be fixed by the relations (2.14), then the
only free variations left are

Gfield ¼ c3

16pG

Z
d3x pijTTdh

TT
ij þ c3

16pG

Z
d3x pjjdw ð2:40Þ

or, modulo a total variation,

Gfield ¼ c3

16pG

Z
d3x pijTTdh

TT
ij � c3

16pG

Z
d3xwdpjj: ð2:41Þ

It is consistent with the Einstein field equations in space-asymptotically flat space-
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time with quasi-Cartesian coordinates to put [the mathematically precise meaning of
this equation is detailed in the Appendix B of Arnowitt et al. (1960a)]

ct ¼ � 1

2
D�1pjj; ð2:42Þ

which results in, dropping total space derivatives,

Gfield ¼ c3

16pG

Z
d3x pijTTdh

TT
ij þ c4

8pG

Z
d3xDwdt: ð2:43Þ

Hereof the Hamiltonian easily follows in the form

H ¼ � c4

8pG

Z
d3xDw; ð2:44Þ

which can also be written, using the form of the three-metric from Eq. (2.14),

H ¼ c4

16pG

Z
d3x oiojðcij � dijckkÞ: ð2:45Þ

This expression is valid also in case of other coordinate conditions (Arnowitt et al.
1962). For the derivation of the generator of space translations, the reader is referred
to Arnowitt et al. (1962) or, equivalently, to Schwinger (1963a).

3 The ADM formalism for point-mass systems

3.1 Reduced Hamiltonian for point-mass systems

In this section we consider the ADM canonical formalism applied to a system of self-
gravitating nonrotating point masses (particles). The energy-momentum tensor of
such system reads

T abðxcÞ ¼
X
a

mac

Z 1

�1

uaau
b
affiffiffiffiffiffiffi�g

p dð4Þ
�
xl � xlaðsaÞ

�
dsa; ð3:1Þ

where ma is the mass parameter of ath point mass (a ¼ 1; 2; . . . labels the point

masses), uaa � dxaa=dsa (with c dsa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�glmdx

l
adxma

p
) is the four-velocity along the

worldline xl ¼ xlaðsaÞ of the ath particle. After performing the integration in (3.1)
one gets

T abðx; tÞ ¼
X
a

mac
uaau

b
a

u0a
ffiffiffiffiffiffiffi�g

p dð3Þ
�
x� xaðtÞ

�
; ð3:2Þ

where xa ¼ ðxiaÞ is the position three-vector of the ath particle. The linear four-
momentum of the ath particle equals paa � mauaa, and the three-momentum canoni-
cally conjugate to the position xa comes out to be pa ¼ ðpaiÞ, where pai ¼ mauai.

The action functional describing particles-plus-field system reads
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S ¼
Z

dt
c3

16pG

Z
d3x pijotcij þ

X
a

pai _x
i
a � H0

 !
; ð3:3Þ

where _xia � dxia=dt. The asymptotic value 1 of the lapse function enters as prefactor
of the surface integral in the Hamiltonian H0, which takes the form

H0 ¼
Z

d3x ðNH� cNiHiÞ þ c4

16pG

I
i0
dSi ojðcij � dijckkÞ; ð3:4Þ

where the so-called super-Hamiltonian density H and super-momentum density Hi

can be computed by means of Eqs. (2.7)–(2.8), (2.11)–(2.12), and (3.2). They read

[here we use the abbreviation da for dð3Þðx� xaÞ]

H ¼ c4

16pG
1

c1=2
pijp

j
i �

1

2
p2

� �
� c1=2R

� �
þ
X
a

c m2
ac

2 þ cijapaipaj
� �1=2

da; ð3:5Þ

Hi ¼ c3

8pG
rjp

j
i þ
X
a

paida; ð3:6Þ

where cija � cijregðxaÞ is the finite part of the inverse metric evaluated at the particle

position, which can be perturbatively and, using dimensional regularization, unam-
biguously defined (see Sects. 4.2, 4.4 below and Appendix A 4 of Jaranowski and
Schäfer 2015).

The evolutionary part of the field equations is obtained by varying the action
functional (3.3) with respect to the field variables cij and pij. The resulting equations
read

cij;0 ¼ 2Nc�1=2 pij � 1

2
pcij

� �
þriNj þrjNi; ð3:7Þ

pij;0 ¼ �Nc1=2 Rij � 1

2
cijR

� �
þ 1

2
Nc�1=2cij pmnpmn � 1

2
p2

� �
� 2Nc�1=2 pimpjm � 1

2
ppij

� �
þrmðpijNmÞ � ðrmN

iÞpmj

� ðrmN
jÞpmi þ 1

2

X
a

Nac
ik
a pakc

jl
apal cmna pampan þ m2

ac
2

� ��1=2
da: ð3:8Þ

The constraint part of the field equations results from varying the action (3.3) with
respect to N and Ni. It has the form

H ¼ 0; Hi ¼ 0: ð3:9Þ
The variation of the action (3.3) with respect to xa and pa leads to equations of
motion for the particles,
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_pai ¼ � o
oxia

Z
d3x ðNH� cNkHkÞ

¼ cpaj
oNj

a

oxia
� c m2

ac
2 þ ckla pakpal

� �1=2 oNa

oxia

� cNa

2 m2
ac

2 þ cmna pampan
� �1=2 ocklaoxia

pakpal; ð3:10Þ

_xia ¼
o

opai

Z
d3x NH� cNkHk

� �
¼ cNacijapaj

m2
ac

2 þ ckla pakpal
� �1=2 � cNi

a: ð3:11Þ

Notice the involvement of lapse and shift functions in the equations of motion. Both
the lapse and shift functions, four functions in total, get determined by the application
of the four coordinate conditions (2.14) to the field equations (3.7) and (3.8).

The reduced action, which is fully sufficient for the derivation of the dynamics of
the particles and the gravitational field, reads (only the asymptotic value 1 of the shift
function survives)

S ¼
Z

dt
c3

16pG

Z
d3x pijTToth

TT
ij þ

X
a

pai _x
i
a � Hred

" #
; ð3:12Þ

where both the constraint equations (3.9) and the coordinate conditions (2.14) are
taken to hold. The reduced Hamilton functional Hred is given by

Hred½xa; pa; hTTij ; pijTT� ¼ � c4

16pG

Z
d3xD/½xa; pa; hTTij ; pijTT�: ð3:13Þ

The remaining field equations read

c3

16pG
otp

ij
TT ¼ �dTTijkl

dHred

dhTTkl
;

c3

16pG
othTTij ¼ dTTklij

dHred

dpklTT
; ð3:14Þ

and the equations of motion for the point masses take the form

_pai ¼ � oHred

oxia
; _xia ¼

oHred

opai
: ð3:15Þ

Evidently, there is no involvement of lapse and shift functions in the equations of
motion and in the field equations for the independent degrees of freedom (Arnowitt
et al. 1960b; Kimura 1961).

3.2 Routh functional

The Routh functional (or Routhian) of the system is defined by
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R xa; pa; h
TT
ij ; oth

TT
ij

h i
� Hred � c3

16pG

Z
d3x pijTT oth

TT
ij : ð3:16Þ

This functional is a Hamiltonian for the point-mass degrees of freedom, and a
Lagrangian for the independent gravitational field degrees of freedom. Within the
post-Newtonian framework it was first introduced by Jaranowski and Schäfer
(1998, 2000c). The evolution equation for the gravitational field degrees of freedom
reads

d
dhTTij ðx; tÞ

Z
Rðt0Þ dt0 ¼ 0: ð3:17Þ

The Hamilton equations of motion for the two point masses take the form

_pai ¼ � oR
oxia

; _xia ¼
oR
opai

: ð3:18Þ

For the following treatment of the conservative part of the dynamics only, we will
make now a short model calculation revealing the structure and logic behind the

treatment. Let’s take a Routhian of the form Rðq; p; n; _nÞ. Then the action reads

S½q; p; n� ¼
Z �

p _q� Rðq; p; n; _nÞ�dt: ð3:19Þ

Its variation through the independent variables gives

dS ¼
Z �

d

dt
ðpdqÞ þ _q� oR

op

� �
dpþ � _p� oR

oq

� �
dq

� oR
on

� d

dt

oR

o _n

� �
dn� d

dt

oR

o _n
dn

� ��
dt: ð3:20Þ

Going on-shell with the n-dynamics yields

dS ¼
Z

d

dt
ðpdqÞ þ _q� oR

op

� �
dpþ � _p� oR

oq

� �
dq

� �
dt � oR

o _n
dn

� �þ1

�1
: ð3:21Þ

The vanishing of the last term means—thinking in terms of hTTij and _hTTij , i.e. con-

sidering the term ðR d3x pijTT dhTTij Þþ1
�1 on the solution space of the field equations

(“on-field-shell”)—that as much incoming as outgoing radiation has to be present, or
time-symmetric boundary conditions have to be applied. Thus in the Fokker-type
procedure no dissipation shows up. Assuming a leading-order-type prolongation
(allowing additions of only first time derivatives of q and p) of the form
R ¼ Rðq; p; _q; _pÞ, the autonomous dynamics can be deduced from the variation
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dS ¼
Z

d

dt
ðpdqÞ þ _q� dR

dp

� �
dpþ � _p� dR

dq

� �
dq

� �
dt; ð3:22Þ

where the Euler–Lagrange derivative dA=dz � oA=oz� dðoA=o _zÞ=dt has been
introduced.

Having explained that, the conservative part of the binary dynamics is given by
the higher-order Hamiltonian equal to the on-field-shell Routhian,

Hcon½xa; pa; _xa; _pa; . . .�
� R



xa; pa; h

TT
ij ðxa; pa; _xa; _pa; . . .Þ; _hTTij ðxa; pa; _xa; _pa; . . .Þ

�
;

ð3:23Þ

where the field variables hTTij , _hTTij were “integrated out”, i.e., replaced by their

solutions as functionals of particle variables. The conservative equations of motion
defined by the higher-order Hamiltonian (3.23) read

_paiðtÞ ¼ � d
dxiaðtÞ

Z
Hconðt0Þ dt0; _xiaðtÞ ¼

d
dpaiðtÞ

Z
Hconðt0Þ dt0; ð3:24Þ

where the functional derivative is given by

d
dzðtÞ

Z
Hconðt0Þ dt0 ¼ oHcon

ozðtÞ � d

dt

oHcon

o _zðtÞ þ � � � ; ð3:25Þ

with z ¼ xia or z ¼ pai. Schäfer (1984) and Damour and Schäfer (1991) show that time
derivatives of xa and pa in the higher-order Hamiltonian (3.23) can be eliminated by the
use of lower-order equations of motion, leading to an ordinary Hamiltonian,

Hord
con½xa; pa� ¼ Hcon½xa; pa; _xaðxa; paÞ; _paðxa; paÞ; . . .�: ð3:26Þ

Notice the important point that the two Hamiltonians Hcon and Hord
con do not belong to

the same coordinate system. Therefore, the Hamiltonians Hcon and Hord
con and their

variables should have, say, primed and unprimed notations which usually however
does not happen in the literature due to a slight abuse of notation.

A formal PN expansion of the Routh functional in powers of 1=c2 is feasible to all

PN orders. With the aid of the definition hTTij � 16pG
c4 ĥTTij , we may write

R xa; pa; h
TT
ij ; oth

TT
ij

h i
�
X
a

mac
2 ¼

X1
n¼0

1

c2n
Rn



xa; pa; ĥ

TT
ij ; ot ĥ

TT

ij

�
: ð3:27Þ

Hereof, the field equation for hTTij results in a PN-series form,

D� 1

c2
o2t

� �
ĥTTij ¼

X1
n¼0

1

c2n
DTT

ðnÞij


x; xa; pa; ĥ

TT
kl ; ot ĥ

TT

kl

�
: ð3:28Þ

This equation must now be solved step by step using either retarded integrals for getting
the whole dynamics or time-symmetric ones for only the conservative dynamics defined
by Hcon, which themselves have to be expanded in powers of 1/c. In higher orders,
however, non-analytic in 1/c log-terms do show up (see, e.g., Damour et al. 2014, 2016).

123

Hamiltonian formulation of GR and PN dynamics of compact binaries Page 25 of 139     2 



To calculate the reduced Hamiltonian of Eq. (2.21) for a many-particle system one
has to perturbatively solve for / and ~pij the constraint equations H ¼ 0 and Hi ¼ 0
with the densities H, Hi defined in Eqs. (3.5)–(3.6). Then the transition to the
Routhian of Eq. (3.16) is straightforward using the second equation in (3.14). The
expansion of the Hamiltonian constraint equation up to c�10 leads to the following
equation [in this equation and in the next one we use units c ¼ 1, G ¼ 1=ð16pÞ]4:

�D/ ¼
X
a

�
1� 1

8
/þ 1

64
/2 � 1

512
/3 þ 1

4096
/4

þ 1

2
� 5

16
/þ 15

128
/2 � 35

1024
/3

� �
p2a
m2

a

þ � 1

8
þ 9

64
/� 45

512
/2

� � ðp2aÞ2
m4

a

þ 1

16
� 13

128
/

� � ðp2aÞ3
m6

a

� 5

128

ðp2aÞ4
m8

a

þ � 1

2
þ 9

16
/þ 1

4

p2a
m2

a

� �
paipaj
m2

a

hTTij � 1

16
hTTij

	 
2�
mada

þ 1þ 1

8
/

� � epij
� �2þ 2þ 1

4
/

� �epijpijTT þ pijTT
� �2

þ � 1

2
þ 1

4
/� 5

64
/2

� �
/;ij þ

3

16
� 15

128
/

� �
/;i/;j þ 2epikepjk

� �
hTTij

þ 1

4
� 7

32
/

� �
hTTij;k

	 
2
þ 1

2
þ 1

16
/

� �
hTTij;kh

TT
ik;j

þ D � 1

2
þ 7

16
/

� �
hTTij

	 
2� �
� 1

2
/hTTij h

TT
ik;j þ

1

4
/;k hTTij

	 
2� �
;k

þOðc�12Þ: ð3:29Þ
The expansion of the momentum constraint equation up to c�7 reads

epij
;j ¼ � 1

2
þ 1

4
/� 5

64
/2

� �X
a

paida þ � 1

2
þ 1

16
/

� �
/;jepij

� 1

2
/;jp

ij
TT � epjk

;kh
TT
ij þ epjk 1

2
hTTjk;i � hTTij;k

� �
þOðc�8Þ: ð3:30Þ

In the Eqs. (3.29) and (3.30) dynamical field variables hTTij and pijTT are counted as

being of the orders 1=c4 and 1=c5, respectively [cf. Eq. (3.28)].

3.3 Poincaré invariance

In asymptotically flat spacetimes the Poincaré group is a global symmetry group. Its
generators Pl and Jlm are realized as functions Plðxa; paÞ and Jlmðxa; paÞ on the

4 Equations (3.29) and (3.30) are taken from Jaranowski and Schäfer (1998, 2000c) and they are enough to
calculate 3PN-accurate two-point-mass Hamiltonian. In Jaranowski and Schäfer (2015) one can find
higher-order PN expansion of constraint equations, performed in d dimensions, necessary to compute 4PN
Hamiltonian.
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many-body phase-space. They are conserved on shell and fulfill the Poincaré algebra
relations for the Poisson bracket product (see, e.g., Regge and Teitelboim 1974),

fPl;Pmg ¼ 0; ð3:31Þ

fPl; Jqrg ¼ �glqPr þ glrPq; ð3:32Þ

fJlm; Jqrg ¼ �gmqJlr þ glqJ mr þ grlJqm � grmJql; ð3:33Þ
where the Poisson brackets are defined in an usual way,

fA;Bg �
X
a

oA
oxia

oB
opai

� oA
opai

oB
oxia

� �
: ð3:34Þ

The meaning of the components of Pl and Jlm is as follows: the time component P0

(i.e., the total energy) is realized as the Hamiltonian H � cP0, Pi ¼ Pi is linear
momentum, J i � 1

2 e
iklJkl [with eijk � eijk � 1

2 ði� jÞðj� kÞðk � iÞ, Jkl ¼ J kl, and

Jij ¼ eijkJ k] is angular momentum, and Lorentz boost vector is Ki � J i0=c. The boost
vector represents the constant of motion associated with the centre-of-mass theorem
and can further be decomposed as Ki ¼ Gi � t Pi (with Gi ¼ Gi). In terms of three-
dimensional quantities the Poincaré algebra relations read (see, e.g., Damour et al.
2000c, d)

fPi;Hg ¼ 0; fJi;Hg ¼ 0; ð3:35Þ

fJi;Pjg ¼ eijk Pk ; fJi; Jjg ¼ eijk Jk ; ð3:36Þ

fJi;Gjg ¼ eijk Gk ; ð3:37Þ

fGi;Hg ¼ Pi; ð3:38Þ

fGi;Pjg ¼ 1

c2
H dij; ð3:39Þ

fGi;Gjg ¼ � 1

c2
eijk Jk : ð3:40Þ

The Hamiltonian H and the centre-of-mass vector Gi have the integral representations

H ¼ � c4

16pG

Z
d3xD/ ¼ � c4

16pG

I
i0
r2dX n � r/; ð3:41Þ

Gi ¼ � c2

16pG

Z
d3x xiD/ ¼ � c2

16pG

I
i0
r2dX njðxioj � dijÞ/; ð3:42Þ

where n r2dX (n is the outward radial unit vector) is the two-dimensional surface-
area element at i0. The two quantities H and Gi are the most involved ones of those
entering the Poincaré algebra.
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The Poincaré algebra has been extensively used in the calculations of PN
Hamiltonians for spinning binaries (Hergt and Schäfer 2008a, b). Hereby the most
useful equation was (3.38), which tells that the total linear momentum has to be a
total time derivative. This equation was also used by Damour et al. (2000c, d) to fix
the so called “kinetic ambiguity” in the 3PN ADM two-point-mass Hamiltonian
without using dimensional regularization. In harmonic coordinates, the kinetic
ambiguity got fixed by a Lorentzian version of the Hadamard regularization based on
the Fock–de Donder approach (Blanchet and Faye 2001b).

The explicit form of the generators Plðxa; paÞ and Jlmðxa; paÞ (i.e., P, J, G, and H)
for two-point-mass systems is given in Appendix C with 4PN accuracy.

The global Lorentz invariance results in the following useful expressions (see, e.
g., Rothe and Schäfer 2010; Georg and Schäfer 2015). Let us define the quantity M
through the relation

Mc2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � P2c2

p
or H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c4 þ P2c2

p
; ð3:43Þ

and let us introduce the canonical centre of the system vector X (with components
X i ¼ Xi),

X � Gc2

H
þ 1

M H þMc2ð Þ J� Gc2

H
� P

� �� �
� P: ð3:44Þ

Then the following commutation relations are fulfiled:

Xi; Pj

� � ¼ dij; Xi; Xj

� � ¼ 0; Pi; Pj

� � ¼ 0; ð3:45Þ

M; Pif g ¼ 0; M; Xif g ¼ 0; ð3:46Þ

M; Hf g ¼ 0; Pi; Hf g ¼ 0;
H

c2
Xi; Hf g ¼ Pi: ð3:47Þ

The commutation relations clearly show the complete decoupling of the internal
dynamics from the external one by making use of the canonical variables. The
equations (3.43) additionally indicate that M2 is simpler (or, more primitive) than
M, cf., Georg and Schäfer (2015). A centre-of-energy vector can be defined by
X i
E ¼ XEi ¼ c2Gi=H ¼ c2Gi=H . This vector, however, is not a canonical position

vector, see, e.g., Hanson and Regge (1974).
In view of our later treatment of particles with spin, let us decompose the total

angular momentum Jlm of a single object into orbital angular momentum Llm and
spin Slm, both of them being anti-symmetric tensors,

Jlm ¼ Llm þ Slm: ð3:48Þ
The orbital angular momentum tensor is given by

Llm ¼ ZlPm � ZmPl; ð3:49Þ
where Zl denotes 4-dimensional position vector (with Z0 ¼ ct). The splitting in
space and time results in
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J ij ¼ ZiPj � ZjPi þ Sij; J i0 ¼ ZiH=c� Pict þ Si0: ð3:50Þ
Remarkably, relativity tells us that any object with mass M, spin length S, and
positive energy density must have extension orthogonal to its spin vector of radius of
at least S=ðMcÞ (see, e.g., Misner et al. 1973). Clearly then, the position vector of
such an object is not given a priori but must be defined. As the total angular
momentum should not depend on the fixation of the position vector, the notion of
spin must depend on the fixation of the position vector and vice versa. Thus,
imposing a spin supplementary condition (SSC) fixes the position vector. We enu-
merate here the most often used SSCs (see, e.g., Fleming 1965; Hanson and Regge
1974; Barker and O’Connell 1979).

(i) Covariant SSC (also called Tulczyjew-Dixon SSC):

PmS
lm ¼ 0: ð3:51Þ

The variables corresponding to this SSC are denoted in Sect. 7 by Zi ¼ zi,
Sij, and Pi ¼ pi.

(ii) Canonical SSC (also called Newton-Wigner SSC):

ðPm þMc nmÞSlm ¼ 0; Mc ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�PlPl
p

; ð3:52Þ
where nl ¼ ð�1; 0; 0; 0Þ, nlnl ¼ �1. The variables corresponding to this

SSC are denoted in Sect. 7 by ẑi, Ŝij, and Pi.
(iii) Centre-of-energy SSC (also called Corinaldesi-Papapetrou SSC):

nmS
lm ¼ 0: ð3:53Þ

Here the boost vector takes the form of a spinless object,
Ki ¼ ZiH=c2 � Pit ¼ Gi � Pit.

3.4 Poynting theorem of GR

Let us start with the following local identity, having structure of a Poynting theorem
for GR in local form,

� _hTTij hhTTij ¼ �ok _hTTij h
TT
ij;k

	 

þ 1

2
ot ð _hTTij =cÞ2 þ ðhTTij;kÞ2
h i

; ð3:54Þ

where h � �o2t =c
2 þ D denotes the d’Alembertian. Integrating this equation over

whole space gives, assuming past stationarity,

�
Z
V1

d3x _hTTij hhTTij ¼ 1

2

Z
V1

d3x ot ð _hTTij =cÞ2 þ ðhTTij;kÞ2
h i

; ð3:55Þ
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where V1 is just another expression for R3. Notice that the far or wave zone5 is
understood as area of the t = const slice where gravitational waves are decoupled
from their source and do freely propagate outwards, what means that the relation

hTTij;k ¼ �ðnk=cÞ _hTTij þOðr�2Þ (r being the radial coordinate) is fulfilled in the far

zone at distances r � k=ð2pÞ from the source, where k is characteristic wavelength
of gravitational waves emitted by the source. We always use t = const slices, where
our Hamiltonians are defined on, and explore physical processes by going from one
slice to another one located in the close-by future. This suffices to discriminate
radiation from non-radiation for any given approximation. Spacelike infinity (i0) is
enough for posing reliable boundary conditions, timelike infinity is not needed,
neither for the future nor for the past (past stationarity simply replaces past infinity).
Integration of Eq. (3.54) over the volume Vfz enclosed by its outer boundary located
in the far zone (fz) with dsk ¼ nkr2dX surface-area element of the two-surface of
integration with dX as the solid-angle element, yields

�
Z
Vfz

d3x _hTTij hhTTij ¼ �
I
fz
dsk _hTTij h

TT
ij;k þ

1

2

Z
Vfz

d3x ot ð _hTTij =cÞ2 þ ðhTTij;kÞ2
h i

: ð3:56Þ

To make sure that the surface integral (say over a sphere of radius rfz) in the above
equation is not zero, we have to assume that rfz is located in the far zone, where real
wave propagation happens, i.e. behind the wave front of the out-propagating wave.
Of course, as the system is stationary in the remote past, the wave front has still
infinite distance to i0.

Combining Eqs. (3.55) and (3.56) together, one gets

�
Z
ðV1�VfzÞ

d3x _hTTij hhTTij ¼
I
fz
dsk _hTTij h

TT
ij;k

þ 1

2

Z
ðV1�VfzÞ

d3x ot ð _hTTij =cÞ2 þ ðhTTij;kÞ2
h i

: ð3:57Þ

The volume ðV1 � VfzÞ is meant for t = const and thus reaches i0; it embraces the
radial coordinates rbfz.r.þ1, where rbfz denotes the beginning of the far zone. In
the following we drop the left side of this equation as negligibly small [of the relative
order k=ð2prfzÞ, where rfz is located in the far zone]. Indeed, we can assume that the
source term for hhTTij , which follows from the Routhian field equation (3.17), decays

at least as 1=r3 for r ! 1 (for isolated systems, all source terms for hhTTij decay at

least as 1=r4 if not TT-projected; the TT-projection may raise the decay to 1=r3, e.g.

TT-projection of Dirac delta function). Additionally, _hTTij decays as 1/r, so the inte-

grand on the left side decays in total as 1=r4. This results in

c3

32pG

I
fz
dX r2ð _hTTij Þ2 ¼

c2

32pG
d

dt

Z
ðV1�VfzÞ

d3x ð _hTTij Þ2; ð3:58Þ

5 For precise definition of wave zone see, e.g., Sect. III in Thorne (1980) or Sects. 1.3 and 3.2.3 in Thorne
(1983). We do not separate here the local wave zone from the distant wave zone as, e.g., in Thorne (1980);
for specific tail terms, see our Sect. 3.6.
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with meaning that the energy flux through a surface in the far zone equals the growth
of gravitational energy beyond that surface.

3.5 Near-zone energy loss and far-zone energy flux

The change in time of the matter Routhian reads, assuming R to be local in the
gravitational field,

dR

dt
¼ oR

ot
¼
Z

d3x
oR
ohTTij

_hTTij þ
Z

d3x
oR
ohTTij;k

ok _hTTij þ
Z

d3x
oR

o _hTTij
€hTTij ; ð3:59Þ

where

Rðxa; pa; tÞ �
Z

d3xRðxa; pa; hTTij ðtÞ; hTTij;kðtÞ; _hTTij ðtÞÞ: ð3:60Þ

The equation for dR=dt is valid provided the equations of motion

_pai ¼ � oR
oxia

; _xia ¼
oR
opai

ð3:61Þ

hold. Furthermore, we haveZ
d3x

oR
ohTTij;k

ok _hTTij þ
Z

d3x
oR

o _hTTij
€hTTij ¼

Z
d3x ok

oR
ohTTij;k

_hTTij

 !

þ d

dt

Z
d3x

oR

o _hTTij
_hTTij �

Z
d3x ok

oR
ohTTij;k

 !
_hTTij �

Z
d3x

d

dt

oR

o _hTTij

 !
_hTTij : ð3:62Þ

The canonical field momentum is given by

c3

16pG
pijTT ¼ �dTTijkl

oR

o _hTTkl
: ð3:63Þ

Performing the Legendre transformation

H ¼ Rþ c3

16pG

Z
d3x pijTT _h

TT
ij ; or R ¼ H � c3

16pG

Z
d3x pijTT _h

TT
ij ; ð3:64Þ

the energy loss equation takes the form [using Eq. (3.59) together with (3.62) and
(3.63)]

dH

dt
¼
Z

d3x ok
oR
ohTTij;k

_hTTij

 !
þ
Z

d3x
oR
ohTTij

_hTTij

�
Z

d3x ok
oR
ohTTij;k

 !
_hTTij �

Z
d3x

d

dt

oR

o _hTTij

 !
_hTTij : ð3:65Þ

Application of the field equations
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oR
ohTTij

� ok
oR
ohTTij;k

 !
� d

dt

oR

o _hTTij

 !
¼ 0 ð3:66Þ

yields, assuming past stationarity [meaning that at any finite time t no radiation can
have reached spacelike infinity, so the first (surface) term in the right-hand side of
Eq. (3.65) vanishes],

dH

dt
¼ 0: ð3:67Þ

The Eq. (3.58) shows that the Eq. (3.64) infers, employing the leading-order quad-

ratic field structure of R [R ¼ �ð1=4Þðc2=ð16pGÞÞð _hTTij Þ2 þ � � �; see Eq. (F.3)],

d

dt
R�

Z
Vfz

d3x
oR

o _hTTij
_hTTij

 !
¼ �L; ð3:68Þ

where

L ¼ � c4

32pG

I
fz
dskh

TT
ij;k

_hTTij ¼ c3

32pG

I
fz
dX r2ð _hTTij Þ2 ð3:69Þ

is the well known total energy flux (or luminosity) of gravitational waves. The
Eq. (3.68) can be put into the energy form, again employing the leading-order
quadratic field structure of R,

d

dt
H � c2

32pG

Z
ðV1�VfzÞ

d3x ð _hTTij Þ2
 !

¼ �L: ð3:70Þ

Note that the integral over V1 � Vfz changes with time for radiating sources because
more and more radiation is entering the volume V1 � Vfz, whereas the integral over
Vfz changes on secular damping-time scales only because for stationary time-sections
the volume Vfz is filled with constant amount of radiation energy.

Taking into account the Eqs. (3.29) and (3.41) we find that the second term in the
parenthesis of the left side of Eq. (3.70) exactly subtracts the corresponding terms

from pure ðhTTij;kÞ2 and ðpijTTÞ2 expressions therein. This improves, by one order in

radial distance, the large distance decay of the integrand of the integral of the whole
left side of Eq. (3.70), which runs over the whole hypersurface t = const. We may
now perform near- and far-zone PN expansions of the left and right sides of the
Eq. (3.70), respectively. Though the both series are differently defined—on the left
side, expansion in powers of 1/c around fixed time t of an energy expression which is
time differentiated; on the right side, expansion in powers of 1/c around fixed
retarded time t � r=c—the expansions cannot contradict each other as long as they
are not related term by term. For the latter relation we must keep in mind that PN
expansions are instantaneous expansions so that the two times, t and t � r=c, are not
allowed to be located too far apart from each other. This means that we have to read
off the radiation right when it enters far zone. Time-averaging of the expressions on
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the both sides of Eq. (3.70) over several wave periods [see text below Eq. (3.77)]
makes the difference between the two times negligible as it should be if one is
interested in a one-to-one correspondence between the terms on the both sides. The
Newtonian and 1PN wave generation processes were explicitly shown to fit into this
scheme by Königsdörffer et al. (2003).

3.6 Radiation field

In the far zone, the multipole expansion of the transverse-traceless (TT) part of the
gravitational field, obtained by algebraic projection with

PijklðnÞ � 1

2

	
PikðnÞPjlðnÞ þ PilðnÞPjkðnÞ � PijðnÞPklðn



; ð3:71Þ

PijðnÞ � dij � ninj; ð3:72Þ
where n � x=r (r � jxj) is the unit vector in the direction from the source to the far
away observer, reads (see, e.g., Thorne 1980; Blanchet 2014)

hTT fz
ij ðx; tÞ ¼ G

c4
PijkmðnÞ

r

X1
l¼2

1

c2

� �l�2
2 4

l!
MðlÞ

kmi3...il
t � r�

c

	 

Ni3...il

(

þ 1

c2

� �l�1
2 8l

ðl þ 1Þ! epqðk SðlÞmÞpi3...il t � r�
c

	 

nq Ni3...il

)
; ð3:73Þ

where Ni3...il � ni3 . . .nil and where MðlÞ
i1i2i3...il and SðlÞi1i2i3...il denote the lth time

derivatives of the symmetric and tracefree (STF) radiative mass-type and current-
type multipole moments, respectively. The term with the leading mass-quadrupole
tensor takes the form (see, e.g., Schäfer 1990)

Mð2Þ
ij t � r�

c

	 

¼ M̂ ð2Þ

ij t � r�
c

	 

þ 2Gm

c3

Z 1

0
dv ln

v

2b

	 

þ j

h i
M̂ ð4Þ

ij t � r�
c
� v

	 

þO

1

c4

� �
;

ð3:74Þ
with

r� ¼ r þ 2Gm

c2
ln

r

cb

	 

þO

1

c3

� �
ð3:75Þ

showing the leading-order tail term of the quadrupole radiation (the gauge dependent
relative phase constant j between direct and tail term was not explored by Schäfer
1990; for more details see, e.g., Blanchet and Schäfer 1993 and Blanchet 2014).
Notice the modification of the standard PN expansion through tail terms. This
expression nicely shows that also multipole expansions in the far zone do induce PN

expansions. The mass-quadrupole tensor M̂ ij is just the standard Newtonian one.
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Higher-order tail terms up to “tails-of-tails-of-tails” can be found in Marchand et al.
(2016). Leading-order tail terms result from the backscattering of the leading-order
outgoing radiation, the “tails-of-tails” from their second backscattering, and so on.

Through 1.5PN order, the luminosity expression (3.69) takes the form

LðtÞ ¼ G

5c5
Mð3Þ

ij Mð3Þ
ij þ 1

c2
5

189
Mð4Þ

ijk Mð4Þ
ijk þ 16

9
Sð3Þij Sð3Þij

� �� �
: ð3:76Þ

On reasons of energy balance in asymptotically flat space, for any coordinates or
variables representation of the Einstein theory, the time-averaged energy loss has to
fulfill a relation of the form

� dE t � r�=cð Þ
dt

� �
¼ LðtÞh i; ð3:77Þ

where the time averaging procedure takes into account typical periods of the system
(i.e. it is averaging over several periods of the lowest frequency mode, usually called
“averaging over several wavelengths”; see, e.g., Thorne 1980). Generalizing our
considerations after Eq. (3.70) we may take the observation time t much larger than
the time, say tbfz, the radiation enters the far or wave zone, even larger than the
damping time of the radiating system, by just freely transporting the radiation power
along the null cone with tacitly assuming hLðt; rÞi ¼ hLðtbfz; rbfzÞi, where
t � tbfz ¼ ðr � rbfzÞ=c[ 0. Coming back to Eq. (3.70), time averaging on the left
side of Eq. (3.70) eliminates total time derivatives of higher PN order, so-called
Schott terms, and transforms them into much higher PN orders. The both sides of the
equation (3.77) are gauge (or, coordinate) invariant. We stress that the Eq. (3.77) is
valid for bound systems. In case of scattering processes, a coordinate invariant
quantity is the emitted total energy.

The energy flux to nPN order in the far zone implies energy loss to ðnþ 2:5ÞPN
order in the near zone. The leading-order 2.5PN energy loss is usually called
“Newtonian” because only the Newtonian source dynamics contributes; correspond-
ing notions are applied to the higher order PN fluxes. Hereof it follows that energy-
loss calculations are quite efficient via energy-flux calculations (Blanchet 2014). In
general, only after averaging over orbital periods the both expressions do coincide. In
the case of circular orbits, however, this averaging procedure is not needed.

4 Applied regularization techniques

The most efficient source model for analytical computations of many-body dynamics
in general relativity are point masses (or particles) represented through Dirac delta
functions. If internal degrees of freedom are come into play, derivatives of the delta
functions must be incorporated into the source. Clearly, point-particle sources in field
theories introduce field singularities, which must be regularized in computations.
Two aspects are important: (i) the differentiation of singular functions (i.e. functions
which are not infinitely differentiable), and (ii) the integration of singular functions,
either to new (usually also singular) functions or to the final Routhian/Hamiltonian.
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The item (ii) relates to the integration of the field equations and the item (i) to the
differentiation of their (approximate) solutions. On consistency reasons, differenti-
ation and integration must commute.

The most efficient strategy developed for computation of higher-order PN point-
particle Hamiltonians relies on performing a 3-dimensional full computation in the
beginning (using Riesz-implemented Hadamard regularization defined later in this
section) and then correcting it by a d-dimensional one around the singular points, as
well the local ones (UV divergences) as the one at infinity (IR divergences). A d-
dimensional full computation is not needed. At higher than the 2PN level 3-
dimensional computations with analytical Hadamard and Riesz regularizations show
up ambiguities which require a more powerful treatment. The latter is dimensional
regularization. The first time this strategy was successfully applied in the context of
general relativity was in the 3PN dynamics of binary point particles (Damour et al.
2001); IR divergences did not appear therein, those enter from the 4PN level on only,
the same as the nonlocal-in-time tail terms to which they are connected. At 4PN
order, using different regularization methods for the treatment of IR divergences
(Jaranowski and Schäfer 2015), an ambiguity parameter was left which, however, got
fixed by matching to self-force calculations in the Schwarzschild metric (Le Tiec
et al. 2012; Bini and Damour 2013; Damour et al. 2014).

The regularization techniques needed to perform PN calculations up to (and
including) 4PN order, are described in detail in Appendix A of Jaranowski and
Schäfer (2015).

4.1 Distributional differentiation of homogeneous functions

Besides appearance of UV divergences, another consequence of employing Dirac-
delta sources is necessity to differentiate homogeneous functions using an enhanced
(or distributional) derivative, which comes from standard distribution theory (see,
e.g., Sect. 3.3 in Chapter III of Gel’fand and Shilov 1964).

Let f be a real-valued function defined in a neighbourhood of the origin of R3. f is
said to be a positively homogeneous function of degree k, if for any number a[ 0

f ða xÞ ¼ ak f ðxÞ: ð4:1Þ
Let k :¼ �k� 2. If k is an integer and if k	 � 2 (i.e., k is a nonnegative integer),
then the partial derivative of f with respect to the coordinate xi has to be calculated by
means of the formula

oi f ðxÞ ¼ oi f ðxÞ þ ð�1Þk
k!

okdðxÞ
oxi1 � � � oxik �

I
R
dri f ðx0Þ x0i1 � � � x0ik ; ð4:2Þ

where oi f on the lhs denotes the derivative of f considered as a distribution, while
oi f on the rhs denotes the derivative of f considered as a function (which is com-
puted using the standard rules of differentiation), R is any smooth close surface
surrounding the origin and dri is the surface element on R.

123

Hamiltonian formulation of GR and PN dynamics of compact binaries Page 35 of 139     2 



The distributional derivative does not obey the Leibniz rule. It can easily be seen
by considering the distributional partial derivative of the product 1=ra and 1=r2a. Let
us suppose that the Leibniz rule is applicable here:

oi
1

r3a
¼ oi

1

ra

1

r2a

� �
¼ 1

r2a
oi
1

ra
þ 1

ra
oi
1

r2a
: ð4:3Þ

The right-hand side of this equation can be computed using standard differential
calculus (no terms with Dirac deltas), whereas computing the left-hand side one
obtains some term proportional to oida. The distributional differentiation is necessary
when one differentiates homogeneous functions under the integral sign. For more
details, see Appendix A 5 in Jaranowski and Schäfer (2015).

4.2 Riesz-implemented Hadamard regularization

The usage of Dirac d-functions to model point-mass sources of gravitational field
leads to occurence of UV divergences, i.e., the divergences near the particle locations
xa, as ra � jx� xaj ! 0. To deal with them, Infeld (1954, 1957), Infeld and
Plebański (1960) introduced “good” d-functions, which, besides having the
properties of ordinary Dirac d-functions, also satisfy the condition

1

jx� x0jk
dðx� x0Þ ¼ 0; k ¼ 1; . . .; p; ð4:4Þ

for some positive integer p (in practical calculations one takes p large enough to take
all singularities appearing in the calculation into account). They also assumed that the
“tweedling of products” property is always satisfiedZ

d3x f1ðxÞf2ðxÞdðx� x0Þ ¼ f1regðx0Þf2regðx0Þ; ð4:5Þ

where “reg” means regularized value of the function at its singular point (i.e., x0 in
the equation above) evaluated by means of the rule (4.4).

A natural generalization of the rule (4.4) is the concept of “partie finie” value of
function at its singular point, defined as

fregðx0Þ � 1

4p

Z
dX a0ðnÞ; ð4:6Þ

with (here M is some non-negative integer)

f ðx ¼ x0 þ �nÞ ¼
X1

m¼�M

amðnÞ�m; n � x� x0
jx� x0j : ð4:7Þ

Defining, for a function f singular at x ¼ x0,Z
d3xf ðxÞdðx� x0Þ � fregðx0Þ; ð4:8Þ

the “tweedling of products” property (4.5) can be written as
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ðf1f2Þregðx0Þ ¼ f1regðx0Þf2regðx0Þ: ð4:9Þ
The above property is generally wrong for arbitrary singular functions f1 and f2. In
the PN calculations problems with fulfilling this property begin at the 3PN order.
This is one of the reasons why one should use dimensional regularization.

The Riesz-implemented Hadamard (RH) regularization was developed in the
context of deriving PN equations of motion of binary systems by Jaranowski and
Schäfer (1997, 1998, 2000c) to deal with locally divergent integrals computed in
three dimensions. The method is based on the Hadamard “partie finie” and the Riesz
analytic continuation procedures.

The RH regularization relies on multiplying the full integrand, say iðxÞ, of the
divergent integral by a regularization factor,

iðxÞ �! iðxÞ
	 r1
s1


�1	 r2
s2


�2
; ð4:10Þ

and, after integration, studying the double limit �1 ! 0, �2 ! 0 within analytic
continuation in the complex �1 and �2 planes (here s1 and s2 are arbitrary three-
dimensional UV regularization scales). Let us thus consider such integral performed
over the whole space R3 and let us assume that it develops only local poles (so it is
convergent at spatial infinity). The value of the integral, after performing the RH
regularization in three dimensions, has the structure (this is the most general structure
in the calculation of conservative Hamiltonians up to and including 4PN order)

IRHð3; �1; �2Þ �
Z
R3

iðxÞ
	 r1
s1


�1	 r2
s2


�2
d3x

¼ Aþ c1
	 1

�1
þ ln

r12
s1



þ c2

	 1

�2
þ ln

r12
s2



þOð�1; �2Þ: ð4:11Þ

Let us mention that in the PN calculations regularized integrands
iðxÞðr1=s1Þ�1ðr2=s2Þ�2 depend on x only through x� x1 and x� x2, so they are
translationally invariant. This explains why the regularization result (4.11) depends
on x1 and x2 only through x1 � x2.

In the case of an integral over R3 developing poles only at spatial infinity (so it is
locally integrable) it would be enough to use a regularization factor of the form
ðr=r0Þ� (where r0 is an IR regularization scale), but it is more convenient to use the
factor 	 r1

r0


a�	 r2
r0


b�
ð4:12Þ

and, after integration, study the limit � ! 0. Let us denote the integrand again by
iðxÞ. The integral, after performing the RH regularization in three dimensions, has the
structure

IRHð3; a; b; �Þ �
Z
R3

iðxÞ
	 r1
r0


a�	 r2
r0


b�
d3x ¼ A� c1

�
1

ðaþ bÞ�þ ln
r12
r0

�
þOð�Þ:

ð4:13Þ
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Many integrals appearing in PN calculations were computed using a famous formula
derived in Riesz (1949) in d dimensions. It readsZ

ddx ra1r
b
2 ¼ pd=2

Cðaþd
2 ÞCðbþd

2 ÞCð� aþbþd
2 Þ

Cð� a
2ÞCð� b

2ÞCðaþbþ2d
2 Þ raþbþd

12 : ð4:14Þ

To compute the 4PN-accurate two-point-mass Hamiltonian one needs to employ a
generalization of the three-dimensional version of this formula for integrands of the

form ra1r
b
2ðr1 þ r2 þ r12Þc. Such formula was derived by Jaranowski and Schäfer

(1998, 2000c) and also there an efficient way of implementing both formulae to
regularize divergent integrals was proposed (it employs prolate spheroidal coordi-
nates in three dimensions). See Appendix A 1 of Jaranowski and Schäfer (2015) for
details and Appendix A of Hartung et al. (2013) for generalization of this procedure
to d space dimensions.

4.3 Extended Hadamard regularization

A specific variant of 3-dimensional Hadamard regularization called the extended
Hadamard regularization (EHR) was devised by Blanchet and Faye (2000a, 2001b).
It was used by Blanchet and Faye (2000b, 2001a) at the 3PN-level computations of
two-point-mass equations of motion in harmonic coordinates.

The basic idea of EHR is to associate to any function F 2 F , where the set F
comprises functions which are smooth on R3 except for the two points (around which
they admit a power-like singular expansion), a partie-finie pseudo-function PfF,
which is a linear form acting on functions from F :

hPfF;Gi :¼ Pf s1;s2

Z
d3x FG; for any G 2 F ; ð4:15Þ

where Pf s1;s2 on the right-hand side means partie finie of the divergent integral [see
Eq. (3.1) in Blanchet and Faye (2000a) and the text around for the definition]; it
depends on two—one per each singularity—arbitrary regularization scales s1 and s2.
The Dirac d-functions da are represented by the pseudo-functions Pfda defined by

hPfda;Gi :¼ GregðxaÞ; for any G 2 F ; ð4:16Þ
where the regularized value GregðxaÞ of function at its singular point is defined in
Eqs. (4.6)–(4.7) above. The product Fda is represented by another pseudo-function
Pf ðFdaÞ such that

hPf ðFdaÞ;Gi :¼ ðFGÞregðxaÞ; for any G 2 F : ð4:17Þ
As a consequence, in general

Pf ðFdaÞ 6¼ FregðxaÞPfda: ð4:18Þ
Another ingredient of the EHR relies on the specific treatment of partial derivatives
of singular functions. To ensure the possibility of integration by parts, one requires
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that hoiðPfFÞ;Gi ¼ �hoiðPfGÞ;Fi for any functions F;G 2 F . This requirement
leads to the following definition of the partial derivative of the pseudo-function:

oiðPfFÞ ¼ Pf ðoiFÞ þ Di½F�; ð4:19Þ
where Pf ðoiFÞ denotes the ordinary derivative of F viewed as a pseudo-function, and
Di½F� is the purely distributional part with support concentrated on x1 or x2 [see
Sects. VII–IX of Blanchet and Faye (2000a) for more details]. The derivative Di½F� is
an extended distributional derivative which differs in general from the usual
Schwartz derivative introduced in Eq. (4.2) above. Let us quote the results

Di

h 1
r1

i
¼ 2pPf ðr1ni1d1Þ; Dij

h 1
r1

i
¼ � 4p

3
Pf
	
dij þ 15

2
n̂ij1



d1; ð4:20Þ

where n̂ij1 � ni1n
j
1 � 1

3 d
ij. The Schwartz derivative (4.2) of oið1=r1Þ contains no dis-

tributional part, whereas distributional part of oiojð1=r1Þ equals �ð4p=3Þdijd1.
There is no known generalization of the EHR definitions (4.17) and (4.19) to

generic d-dimensional case. Moreover, these definitions disagree with the dimen-
sional-regularization rules.

(i) In generic d dimensions one can always use

FðdÞðxÞdðdÞðx� xaÞ ¼ FðdÞ
reg ðxaÞdðdÞðx� xaÞ; ð4:21Þ

where FðdÞ is the d-dimensional version of F. This leads to the following
dimensional-regularization rule [see Sect. III A in Blanchet et al. (2004)]:


FðxÞdð3Þðx� xaÞ
�
reg :¼

�
lim
d!3

FðdÞ
reg ðxaÞ

�
dð3Þðx� xaÞ: ð4:22Þ

The property (4.18) disagrees with this.
(ii) The extended differentiation (4.19), when applied to smooth functions of

compact support, coincides with Schwartz differentiation (4.2). However, in
the 3PN-level computations performed by Blanchet and Faye (2000b, 2001a)
it operated with other singular functions and gave the results different from
the results obtained by applying Schwartz differentiation. The definition (4.2)
of Schwartz differentiation is valid in d dimensions (see Sect. 4.4.3 above),
which supports the use of this definition also in the limit of three dimensions.

The computation using the EHR constitutes an approach very different from
dimensional regularization, following a different route which could not be combined
with the latter. This can be clearly seen in the paper by Blanchet et al. (2004) on
dimensional-regularization completion of the 3PN equations of motion in harmonic
coordinates [see the paragraph containing Eq. (1.8) and Sect. III D there]. Before
applying dimensional regularization the authors of Blanchet et al. (2004) had to
subtract from the 3-dimensional results of Blanchet and Faye (2000b, 2001a) all
contributions, which were direct consequences of the use of EHR. However, Blanchet
and Faye (2000b, 2001a) have shown that at the 3PN level the difference between the
final results of EHR and dimensional regularization computations of two-point-mass

123

Hamiltonian formulation of GR and PN dynamics of compact binaries Page 39 of 139     2 



equations of motion can be described in terms of one constant ambiguity parameter
(they called k).

Yang and Estrada (2013) have recently developed the theory of “thick
distributions” in higher dimensions n (where n is an integer larger than 1). This
theory is connected with the extended Hadamard regularization, but is not equivalent
to the latter.

4.4 Dimensional regularization

It was first shown by Damour et al. (2001), that the unambiguous treatment of UV
divergences in the current context requires usage of dimensional regularization (see,
e.g., Collins 1984). It was used both in the Hamiltonian approach and in the one
using the Einstein field equations in harmonic coordinates (Damour et al. 2001;
Blanchet et al. 2004; Jaranowski and Schäfer 2013; Damour et al. 2014; Jaranowski
and Schäfer 2015; Bernard et al. 2016, 2017a; Marchand et al. 2018; Foffa and
Sturani 2019,Foffa et al. 2019b). The dimensional regularization preserves the law of
“tweedling of products” (4.9) and gives all involved integrals, particularly the inverse
Laplacians, a unique definition.

4.4.1 D-dimensional ADM formalism

Dimensional regularization (DR) needs the representation of the Einstein field
equation for arbitray space dimensions, say d for the dimension of space and D ¼
d þ 1 for the spacetime dimension. In the following, GD ¼ GN‘

d�3
0 will denote the

gravitational constant in D-dimensional spacetime and GN the standard Newtonian
one, ‘0 is the DR scale relating both constants.

The unconstraint Hamiltonian takes the form

H ¼
Z

ddx ðNH� cNiHiÞ þ c4

16pGD

I
i0
dd�1Si ojðcij � dijckkÞ; ð4:23Þ

where dd�1Si denotes the ðd � 1Þ-dimensional surface element. The Hamiltonian and
the momentum constraint equations written for many-point-particle systems are
given by

ffiffiffi
c

p
R ¼ 1ffiffiffi

c
p cikcj‘p

ijpk‘ � 1

d � 1
ðcijpijÞ2

� �
þ 16pGD

c3
X
a

ðm2
ac

4 þ cijapaipajÞ
1
2da; ð4:24Þ

�rjp
ij ¼ 8pGD

c3
X
a

cijapajda: ð4:25Þ

The gauge (or coordiante) ADMTT conditions read
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cij ¼ 1þ d � 2

4ðd � 1Þ/
� �4=ðd�2Þ

dij þ hTTij ; pii ¼ 0; ð4:26Þ

where

hTTii ¼ 0; ojhTTij ¼ 0: ð4:27Þ
The field momentum pij splits into its longitudinal and TT parts, respectively,

pij ¼ ~pij þ pijTT ; ð4:28Þ
where the longitudinal part ~pij can be expressed in terms of a vectorial function V i,

~pij ¼ oiV j þ ojV i � 2

d
dijokV k ; ð4:29Þ

and where the TT part satisfies the conditions,

piiTT ¼ 0; ojp
ij
TT ¼ 0: ð4:30Þ

The reduced Hamiltonian of the particles-plus-field system takes the form

Hred



xa; pa; h

TT
ij ; p

ij
TT

� ¼ � c4

16pGD

Z
ddxD/



xa; pa; h

TT
ij ; p

ij
TT

�
: ð4:31Þ

The equations of motion for the particles read

_xa ¼ oHred

opa
; _pa ¼ � oHred

oxa
; ð4:32Þ

and the field equations for the independent degrees of freedom are given by

o
ot
hTTij ¼ 16pGD

c3
dTTklij

dHred

dpklTT
;

o
ot
pijTT ¼ � 16pGD

c3
dTTijkl

dHred

dhTTkl
; ð4:33Þ

where the d-dimensional TT-projection operator is defined by

dTTijkl � 1

2
ðdikdjl þ dildjkÞ � 1

d � 1
dijdkl

� 1

2
ðdikojl þ djloik þ dilojk þ djkoilÞD�1

þ 1

d � 1
ðdijokl þ dkloijÞD�1 þ d � 2

d � 1
oijklD�2: ð4:34Þ

Finally, the Routh functional is defined as

R


xa; pa; h

TT
ij ;

_hTTij
� � Hred



xa; pa; h

TT
ij ; p

ij
TT

�� c3

16pGD

Z
ddx pijTT _h

TT
ij ; ð4:35Þ

and the fully reduced matter Hamiltonian for the conservative dynamics reads
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H ½xa; pa� � R


xa; pa; h

TT
ij ðxa; paÞ; _hTTij ðxa; paÞ

�
: ð4:36Þ

4.4.2 Local and asymptotic dimensional regularization

The technique developed by Damour et al. (2001) to control local (or UV)
divergences boils down to the computation of the difference

lim
d!3

H locðdÞ � HRHlocð3Þ; ð4:37Þ

where HRHlocð3Þ is the “local part” of the Hamiltonian obtained by means of the
three-dimensional RH regularization [it is the sum of all integrals of the type
IRHð3; �1; �2Þ introduced in Eq. (4.11)], H locðdÞ is its d-dimensional counterpart.

Damour et al. (2001) showed that to find the DR correction to the integral
IRHð3; �1; �2Þ of Eq. (4.11) related with the local pole at, say, x ¼ x1, it is enough to
consider only this part of the integrand iðxÞ which develops logarithmic singularities
in three dimensions, i.e., which locally behaves like 1=r31,

iðxÞ ¼ � � � þ ~c1ðn1Þ r�3
1 þ � � � ; when x ! x1: ð4:38Þ

Then the pole part of the integral (4.11) related with the singularity at x ¼ x1 can be
recovered by RH regularization of the integral of ~c1ðn1Þ r�3

1 over the ball Bðx1; ‘1Þ of
radius ‘1 surrounding the particle x1. The RH regularized value of this integral reads

IRH1 ð3; �1Þ �
Z
Bðx1;‘1Þ

~c1ðn1Þ r�3
1

	 r1
s1


�1
d3r1 ¼ c1

Z ‘1

0
r�1
1

	 r1
s1


�1
dr1; ð4:39Þ

where c1=ð4pÞ is the angle-averaged value of the coefficient ~c1ðn1Þ. The expansion
of the integral IRH1 ð3; �1Þ around �1 ¼ 0 equals

IRH1 ð3; �1Þ ¼ c1
	 1

�1
þ ln

‘1
s1



þOð�1Þ: ð4:40Þ

The idea of the technique developed by Damour et al. (2001) relies on replacing the
RH-regularized value of the three-dimensional integral IRH1 ð3; �1Þ by the value of its
d-dimensional version I1ðdÞ. One thus considers the d-dimensional counterpart of the
expansion (4.38). It reads

iðxÞ ¼ � � � þ ‘
kðd�3Þ
0 ~c1ðd; n1Þ r6�3d

1 þ � � � ; when x ! x1: ð4:41Þ
Let us note that the specific exponent 6� 3d of r1 visible here follows from the
r1 ! 0 behaviour of the (perturbative) solutions of the d-dimensional constraint

equations (4.24)–(4.25). The number k in the exponent of ‘kðd�3Þ
0 is related with the

momentum-order of the considered term [e.g., at the 4PN level the term with k is of
the order of Oðp10�2kÞ, for k ¼ 1; . . .; 5; such term is proportional to Gk

D]. The
integral I1ðdÞ is defined as
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I1ðdÞ � ‘
kðd�3Þ
0

Z
Bðx1;‘1Þ

~c1ðd; n1Þ r6�3d
1 ddr1 ¼ c1ðdÞ

Z ‘1

0
r5�2d
1 dr1; ð4:42Þ

where c1ðdÞ=
�
Xd�1‘

kðd�3Þ
0

�
(Xd�1 stands for the area of the unit sphere in Rd) is the

angle-averaged value of the coefficient ~c1ðd; n1Þ,

c1ðdÞ � ‘
kðd�3Þ
0

I
Sd�1ð0;1Þ

~c1ðd; n1Þ dXd�1: ð4:43Þ

One checks that always there is a smooth connection between c1ðdÞ and its three-
dimensional counterpart c1,

lim
d!3

c1ðdÞ ¼ c1ð3Þ ¼ c1: ð4:44Þ

The radial integral in Eq. (4.42) is convergent if the real part <ðdÞ of d fulfills the
condition <ðdÞ\3. Making use of the expansion
c1ðdÞ ¼ c1ð3þ eÞ ¼ c1 þ c01ð3ÞeþOðe2Þ, where e � d � 3, the expansion of the
integral I1ðdÞ around e ¼ 0 reads

I1ðdÞ ¼ � ‘�2e
1

2e
c1ð3þ eÞ ¼ � c1

2e
� 1

2
c01ð3Þ þ c1 ln ‘1 þOðeÞ: ð4:45Þ

Let us note that the coefficient c01ð3Þ usually depends on ln r12 and it has the structure

c01ð3Þ ¼ c011ð3Þ þ c012ð3Þ ln
r12
‘0

þ 2c1 ln ‘0; ð4:46Þ

where c012ð3Þ ¼ ð2� kÞc1 [what can be inferred knowing the dependence of c1ðdÞ on
‘0 given in Eq. (4.43)]. Therefore the DR correction also changes the terms / ln r12.

The DR correction to the RH-regularized value of the integral IRHð3; �1; �2Þ relies
on replacing this integral by

IRHð3; �1; �2Þ þ DI1 þ DI2; ð4:47Þ
where

DIa � IaðdÞ � IRHa ð3; �aÞ; a ¼ 1; 2: ð4:48Þ
Then one computes the double limit

lim
�1 ! 0
�2 ! 0

	
IRHð3; �1; �2Þ þ DI1 þ DI2




¼ A� 1

2

�
c011ð3Þ þ c021ð3Þ

�� 1

2

�
c012ð3Þ þ c022ð3Þ

�
ln
r12
‘0

þ �c1 þ c2
� � 1

2e
þ ln

r12
‘0

� �
þOðeÞ: ð4:49Þ
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Note that all poles / 1=�1; 1=�2 and all terms depending on radii ‘1, ‘2 or scales s1, s2
cancel each other. The result (4.49) is as if all computations were fully done in d
dimensions.

In the DR correcting UV divergences in the 3PN two-point-mass Hamiltonian
performed by Damour et al. (2001), after collecting all terms of the type (4.49)
together, all poles / 1=ðd � 3Þ cancel each other. This is not the case for the UV
divergences of the 4PN two-point-mass Hamiltonian derived by Jaranowski and
Schäfer (2015). As explained in Sect. VIII D of Jaranowski and Schäfer (2015), after
collecting all terms of the type (4.49), one has to add to the Hamiltonian a unique
total time derivative to eliminate all poles / 1=ðd � 3Þ (together with ‘0-dependent
logarithms).

The above described technique of the DR correcting of UV divergences can easily
be transcribed to control IR divergences. This is done by the replacement of the
integrals Z

Bðxa;‘aÞ
ddx iðxÞ ð4:50Þ

by the integral Z
RdnBð0;RÞ

ddx iðxÞ; ð4:51Þ

where Bð0;RÞ means a large ball of radius R (with the centre at the origin 0 of the
coordinate system), and by studying expansion of the integrand iðxÞ for r ! 1. This
technique was not used to regularize IR divergences in the computation of the 4PN
two-point-mass Hamiltonian by Damour et al. (2014) and Jaranowski and Schäfer
(2015). This was so because this technique applied only to the instantaneous part of
the 4PN Hamiltonian is not enough to get rid of the IR poles in the limit d ! 3. For
resolving IR poles it was necessary to observe that the IR poles have to cancel with
the UV poles from the tail part of the Hamiltonian (what can be achieved e.g. after
implementing the so-called zero-bin subtraction in the EFT framework, see Porto and
Rothstein 2017).

Another two different approaches were employed by Damour et al. (2014)
and Jaranowski and Schäfer (2015) to regularize IR divergences in the instantaneous
part of the 4PN Hamiltonian (see Appendix A 3 in Jaranowski and Schäfer 2015): (i)
modifying the behavior of the function hTTð6Þij at infinity,6 (ii) implementing a d-

dimensional version of Riesz–Hadamard regularization. Both approaches were
developed in d dimensions, but the final results of using any of them in the limit
d ! 3 turned out to be identical with the results of computations performed in d ¼ 3
dimensions. Moreover, the results of the two approaches were different in the limit
d ! 3, what indicated the ambiguity of IR regularization, discussed in detail
by Jaranowski and Schäfer (2015) and fixed by Damour et al. (2014). This IR

6 This approach is described in Appendix A 3 a of Jaranowski and Schäfer (2015), where Eqs. (A40)–

(A42) are misprinted: ðr=sÞB €hTTð4Þij should be replaced by

ðr=sÞB €hTTð4Þij�TT. The Eq. (3.6) in Damour et al.

(2014) is the correct version of Eq. (A40) in Jaranowski and Schäfer (2015).
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ambiguity can be expressed in terms of only one unknown parameter, because the
results of two regularization approaches, albeit different, have exactly the same
structure with only different numerical prefactors. This prefactor can be treated as the
ambiguity parameter. The full 4PN Hamiltonian was thus computed up to a single
ambiguity parameter and it was used to calculate, in a gauge invariant form, the
energy of two-body system along circular orbits as a function of frequency. The
ambiguity parameter was fixed by comparison of part of this formula [linear in the
symmetric mass ratio m, see Eq. (6.3) below for the definition] with the analogous
4PN-accurate formula for the particle in the Schwarzschild metric which included
self-force corrections.

Analogous ambiguity was discovered in 4PN-acccurate calculations of two-body
equations of motion done by Bernard et al. (2016) in harmonic coordinates, where
also analytic regularization7 of the IR divergences of the instantaneous part of the
dynamics was performed. However, the computations made by Bernard et al. (2016)
faced also a second ambiguity (Damour et al. 2016; Bernard et al. 2017b), which
must come from their different (harmonic instead of ADMTT) gauge condition and
the potentiality of analytic regularization not to preserve gauge (in contrast to
dimensional regularization). The first method of analytic regularization applied
by Damour et al. (2014) and Jaranowski and Schäfer (2015) is manifest ADMTT
gauge preserving. Finally, Marchand et al. (2018) and Bernard et al. (2017a)
successfully applied in harmonic-coordinates approach d-dimensional regularization
all-over. However, it is worth to emphasize that in intermediate steps their derivation
makes crucial use of an auxiliary regulator parameter g, entering as a factor rg

multiplying the formal expansions of the source. The confidence in the procedure
stems from the fact that the occurring poles in g do cancel each other in d
dimensions. On the other side, the obtained crucial rational number in the tail action,
41/60 or 41/30 depending on representation, was already derived within pure d-
dimensional calculations by Foffa and Sturani (2013b) and Galley et al. (2016) based
on the EFT formalism. Yet only quite recently, a complete pure dimensional-
regularization calculation has been achieved by Foffa and Sturani (2019); Foffa et al.
(2019b), where use has been made of the zero-bin subtraction method for interrelated
UV and IR poles, as discussed in view of the 4PN approximation by Porto (2017)
and Porto and Rothstein (2017).

4.4.3 Distributional differentiation in d dimensions

One can show that the formula (4.2) for distributional differentiation of homoge-
neous functions is also valid (without any change) in the d-dimensional case. It leads,
e.g., to equality

oiojr2�d ¼ ðd � 2Þ d n
inj � dij
rd

� 4pd=2

d Cðd=2� 1Þ dijd: ð4:52Þ

To overcome the necessity of using distributional differentiations it is possible to

7 The analytic regularization in Bernard et al. (2016) is a finite part procedure based on analytic

continuation in B of a regulator ðr=r0ÞB.
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replace Dirac d-function by the class of analytic functions introduced in Riesz
(1949),

d�ðxÞ � Cððd � �Þ=2Þ
pd=22�Cð�=2Þ r

��d; ð4:53Þ

resulting in the Dirac d-function in the limit

d ¼ lim
�!0

d�: ð4:54Þ

On this class of functions, the inverse Laplacian operates as

D�1d� ¼ �d�þ2; ð4:55Þ
and instead of (4.52) one gets

oiojr�þ2�d ¼ ðd � 2� �Þ ðd � �Þninj � dij
rd��

: ð4:56Þ

There is no need to use distributional differentiation here, so no d-functions are
involved.

Though the replacements in the stress-energy tensor density of da through d�a
(with a ¼ 1; 2) do destroy the divergence freeness of the stress-energy tensor and
thus the integrability conditions of the Einstein theory, the relaxed Einstein field
equations (the ones which result after imposing coordinate conditions) do not force
the stress-energy tensor to be divergence free and can thus be solved without
problems. The solutions one gets do not fulfill the complete Einstein field equations
but in the final limits �a ! 0 the general coordinate covariance of the theory is
manifestly recovered. This property, however, only holds if these limits are taken
before the limit d ¼ 3 is performed (Damour et al. 2008a).

5 Point-mass representations of spinless black holes

This section is devoted to an insight of how black holes, the most compact objects in
GR, can be represented by point masses. On the other side, the developments in the
present section show that point masses, interpreted as fictitious point masses
(analogously to image charges in the electrostatics), allow to represent black holes.
Later on, in the section on approximate Hamiltonians for spinning binaries, neutron
stars will also be considered, taking into account their different rotational
deformation. Tidal deformations are considered in Sect. 8.

The simplest black hole is a Schwarzschildian one which is isolated and non-
rotating. Its metric is a static solution of the vacuum Einstein field equations. In
isotropic coordinates, the Schwarzschild metric reads (see, e.g., Misner et al. 1973)

ds2 ¼ � 1� GM
2rc2

1þ GM
2rc2

 !2

c2dt2 þ 1þ GM

2rc2

� �4

dx2; ð5:1Þ
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where M is the gravitating mass of the black hole and ðx1; x2; x3Þ are Cartesian

coordinates in R3 with r2 ¼ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 and

dx2 ¼ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2. The origin of the coordinate system r ¼ 0 is not
located where the Schwarzschild singularity R ¼ 0, with R the radial Schwarzschild
coordinate, is located, rather it is located on the other side of the Einstein–Rosen
bridge, at infinity, where space is flat. The point r ¼ 0 does not belong to the three-
dimensional spacelike curved manifold, so we do have an open manifold excluding
the point r ¼ 0, a so-called “puncture” manifold (see, e.g., Brandt and Brügmann
1997; Cook 2005). However, as we shall see below, the Schwarzschild metric can be
contructed with the aid of a Dirac d function with support at r ¼ 0, located in a
conformally related flat space of dimension smaller than three. Distributional sources
with support at the Schwarzschild singularity are summarized and treated by Pantoja
and Rago (2002), Heinzle and Steinbauer (2002).

A two black hole initial value solution of the vacuum Einstein field equations is
the time-symmetric Brill–Lindquist one (Brill and Lindquist 1963; Lindquist 1963),

ds2 ¼ � 1� b1G
2r1c2

� b2G
2r2c2

1þ a1G
2r1c2

þ a2G
2r2c2

 !2

c2dt2 þ 1þ a1G
2r1c2

þ a2G
2r2c2

� �4

dx2; ð5:2Þ

where ra � x� xa and ra � jraj (a ¼ 1; 2), the coefficients aa and ba can be found
in Jaranowski and Schäfer (2002) (notice that hTTij ¼ 0, pij ¼ 0, and, initially,

otra ¼ 0). Its total energy results from the ADM surface integral [this is the reduced
ADM Hamiltonian from Eq. (2.20) written for the metric (5.2)]

EADM ¼ � c4

2pG

I
i0

dSi oiW ¼ ða1 þ a2Þc2; ð5:3Þ

where dSi ¼ nir2dX is a two-dimensional surface-area element (with unit radial
vector ni � xi=r and solid angle element dX) and

W � 1þ a1G
2r1c2

þ a2G
2r2c2

: ð5:4Þ

Introducing the inversion map x ! x0 defined by Brill and Lindquist (1963)

r01 � r1
a21G

2

4c4r21
¼) r1 ¼ r01

a21G
2

4c4r021
; ð5:5Þ

where r01 � x0 � x1, r01 � jx0 � x1j, the three-metric dl2 ¼ W4dx2 transforms into

dl2 ¼ W04dx02; with W0 � 1þ a1G
2r01c2

þ a1a2G2

4r2r01c4
; ð5:6Þ

where r2 ¼ r01a
2
1 G

2=ð4c4r021 Þ þ r12 with r12 � x1 � x2. From the new metric func-
tion W0 the proper mass of the throat 1 results in,

m1 � � c2

2pG

I
i10

dS0i o
0
iW

0 ¼ a1 þ a1a2G
2r12c2

; ð5:7Þ
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where i10 denotes the black hole’s 1 own spacelike infinity. Hereof the ADM energy
comes out in the form,

EADM ¼ ðm1 þ m2Þc2 � G
a1a2
r12

; ð5:8Þ

where

aa ¼ ma � mb

2
þ c2rab

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ma þ mb

c2rab=G
þ ma � mb

2c2rab=G

� �2
s

� 1

0@ 1A: ð5:9Þ

This construction, as performed by Brill and Lindquist (1963), is a purely geomet-
rical (or vacuum) one without touching singularities. Recall that this energy belongs
to an initial value solution of the Einstein constraint equations with vanishing of both
hTTij and particle together with field momenta. In this initial conditions spurious

gravitational waves are included.
In the following we will show how the vacuum Brill–Lindquist solution can be

obtained with Dirac d-function source terms located at r1 ¼ 0 and r2 ¼ 0 in a
conformally related three-dimensional flat space. To do this we will formulate the
problem in d space dimensions and make analytical continuation in d of the results
down to d ¼ 3. The insertion of the stress-energy density for point masses into the
Hamiltonian constraint equation yields, for pai ¼ 0, hTTij ¼ 0, and pij ¼ 0,

�WD/ ¼ 16pG
c2

X
a

mada; ð5:10Þ

where W and / parametrize the space metric,

cij ¼ W4=ðd�2Þdij; W � 1þ d � 2

4ðd � 1Þ/: ð5:11Þ

If the lapse function N is represented by

N � v
W
; ð5:12Þ

an equation for v results of the form (using the initial-data conditions pai ¼ 0,
hTTij ¼ 0, pij ¼ 0),

W2Dv ¼ 4pG
c2

d � 2

d � 1
v
X
a

mada: ð5:13Þ

With the aid of the relation

D
1

rd�2
a

¼ � 4pd=2

Cðd=2� 1Þ da ð5:14Þ

it is easy to show that for 1\d\2 the equations for W and v do have well-defined
solutions. To obtain these solutions we employ the ansatz
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/ ¼ 4G

c2
Cðd=2� 1Þ

pd=2�1

a1
rd�2
1

þ a2
rd�2
2

� �
; ð5:15Þ

where a1 and a2 are some constants. After plugging the ansatz (5.15) into Eq. (5.10)
we compare the coefficients of the Dirac d-functions on both sides of the equation.
For point mass 1 we get�

1þ Gðd � 2ÞCðd=2� 1Þ
c2ðd � 1Þpd=2�1

	 a1
rd�2
1

þ a2
rd�2
2


�
a1d1 ¼ m1d1: ð5:16Þ

After taking 1\d\2, one can perform the limit r1 ! 0 for the coefficient of d1 in
the left-hand-side of the above equation,�

1þ Gðd � 2ÞCðd=2� 1Þ
c2ðd � 1Þpd=2�1

a2
rd�2
12

�
a1d1 ¼ m1d1: ð5:17Þ

Going over to d ¼ 3 by arguing that the solution is analytic in d results in the relation

aa ¼ ma

1þ G
2c2

ab
rab

; ð5:18Þ

where b 6¼ a and a; b ¼ 1; 2. The ADM energy is again given by, in the limit d ¼ 3,

EADM ¼ ða1 þ a2Þc2: ð5:19Þ
Here we recognize the important aspect that although the metric may describe close
binary black holes with strongly deformed apparent horizons, the both black holes
can still be generated by point masses in conformally related flat space. This is the
justification for our particle model to be taken as model for orbiting black holes.
Obviously black holes generated by point masses are orbiting black holes without
spin, i.e., Schwarzschild-type black holes. The representation of a Schwarzschild-
type black hole in binary–black-hole systems with one Dirac d-function seems not to
be the only possibility. As shown by Jaranowski and Schäfer (2000a), binary–black-
hole configurations defined through isometry-conditions at the apparent horizons
(Misner 1963) need infinitely many Dirac d-functions per each one of the black
holes. Whether or not those black holes are more physical is not known. It has been
found by Jaranowski and Schäfer (1999) that the expressions for ADM energy of the
two kinds of binary black holes do agree through 2PN order, and that at the 3PN level
the energy of the Brill–Lindquist binary black holes is additively higher by
G4m2

1m
2
2ðm1 þ m2Þ=ð8c6r412Þ, i.e. the Misner configuration seems stronger bound.8

The same paper has shown that the spatial metrics of both binary–black-hole con-
figurations coincide through 3PN order, and that at least through 5PN order they can
be made to coincide by shifts of black-hole position variables.

8 This could be an issue for the effacing principle as discussed in Sect. 1.1.
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6 Post-Newtonian Hamilton dynamics of nonspinning compact
binaries

In this section we collect explicit results on Hamilton dynamics of binaries made of
compact and nonspinning bodies. Up to the 4PN order the Hamiltonian of binary
point-mass systems is explicitly known and it can be written as the sum

H ½xa; pa; t� ¼
X
a

mac
2 þ HNðxa; paÞ þ

1

c2
H1PNðxa; paÞ þ

1

c4
H2PNðxa; paÞ

þ 1

c5
H2:5Nðxa; pa; tÞ þ

1

c6
H3PNðxa; paÞ þ

1

c7
H3:5PNðxa; pa; tÞ

þ 1

c8
H4PN½xa; pa� þOðc�9Þ: ð6:1Þ

This Hamiltonian is the PN-expanded reduced ADM Hamiltonian of point-masses
plus field system; the nontrivial procedure of reduction is described in Sects. 3.1 and
3.2 of this review. The non-autonomous dissipative Hamiltonians H2:5PNðxa; pa; tÞ
and H3:5PNðxa; pa; tÞ are written as explicitly depending on time because they depend
on the gravitational field variables (see Sect. 6.5 for more details). The dependence of
the 4PN Hamiltonian H4PN on xa and pa is both pointwise and functional (and this is
why we have used square brackets for arguments of H4PN).

We will display here the conservative Hamiltonians HN to H4PN in the centre-of-
mass reference frame, relegating their generic, noncentre-of-mass forms, to
Appendix C. In the ADM formalism the centre-of-mass reference frame is defined
by the simple requirement

p1 þ p2 ¼ 0: ð6:2Þ
Here we should point out that at the 3.5PN order for the first time recoil arises, hence
the conservation of linear momentum is violated [see, e.g., Fitchett 1983 (derivation
based on wave solutions of linearized field equations) and Junker and Schäfer 1992
(derivation based on wave solutions of non-linear field equations)]. This however has
no influence on the energy through 6.5PN order, if P � p1 þ p2 ¼ 0 holds initially,
because up to 3PN order the Eq. (3.43) is valid and the change of the Hamiltonian H
caused by nonconservation of P equals ðdH=dtÞjM¼const ¼

�ðc2=HÞP�3PN �
ðdP=dtÞ3:5PN ¼ 0 [where M is defined in Eq. (3.43)] through 6.5PN order.

Let us define

M � m1 þ m2; l � m1m2

M
; m � l

M
; ð6:3Þ

where the symmetric mass ratio 0	 m	 1=4, with m ¼ 0 being the test-body case and
m ¼ 1=4 for equal-mass binaries. It is convenient to introduce reduced (or rescaled)
variables r and p (together with the rescaled time variable t̂),

r � x1 � x2
GM

; n � r
jrj ; p � p1

l
¼ � p2

l
; pr � n � p; t̂ � t

GM
; ð6:4Þ

as well as the reduced Hamiltonian [note that H ¼ Mc2, see Eq. (3.43)]
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Ĥ � H �Mc2

l
: ð6:5Þ

6.1 Conservative Hamiltonians through 4PN order

The conservative reduced 4PN-accurate two-point-mass Hamiltonian in the centre-
of-mass frame reads

Ĥ ½r; p� ¼ ĤNðr; pÞ þ 1

c2
Ĥ1PNðr; pÞ þ 1

c4
Ĥ2PNðr; pÞ

þ 1

c6
Ĥ3PNðr; pÞ þ 1

c8
Ĥ4PN½r; p�: ð6:6Þ

The Hamiltonians ĤN through Ĥ3PN are local in time. They explicitly read

ĤNðr; pÞ ¼ p2

2
� 1

r
; ð6:7Þ

Ĥ1PNðr; pÞ ¼ 1

8
ð3m� 1Þp4 � 1

2
ð3þ mÞp2 þ mp2r

 � 1

r
þ 1

2r2
; ð6:8Þ

Ĥ2PNðr; pÞ ¼ 1

16
ð1� 5mþ 5m2Þp6

þ 1

8


ð5� 20m� 3m2Þp4 � 2m2p2r p
2 � 3m2p4r

� 1
r

þ 1

2
½ð5þ 8mÞp2 þ 3mp2r �

1

r2
� 1

4
ð1þ 3mÞ 1

r3
; ð6:9Þ

Ĥ3PNðr; pÞ ¼ 1

128
ð�5þ 35m� 70m2 þ 35m3Þp8

þ 1

16

h
ð�7þ 42m� 53m2 � 5m3Þp6 þ ð2� 3mÞm2p2r p4

þ 3ð1� mÞm2p4r p2 � 5m3p6r

i 1
r
þ
h 1

16
ð�27þ 136mþ 109m2Þp4

þ 1

16
ð17þ 30mÞmp2r p2 þ

1

12
ð5þ 43mÞmp4r

i 1
r2

þ
"

� 25

8
þ 1

64
p2 � 335

48

� �
m� 23

8
m2

� �
p2

þ � 85

16
� 3

64
p2 � 7

4
m

� �
mp2r

#
1

r3

þ 1

8
þ 109

12
� 21

32
p2

� �
m

� �
1

r4
: ð6:10Þ

The total 4PN Hamiltonian Ĥ4PN½r; p� is the sum of the local-in-time piece

Ĥ local
4PN ðr; pÞ and the piece Ĥnonlocal

4PN ½r; p� which is nonlocal in time:
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Ĥ4PN½r; p� ¼ Ĥ local
4PN ðr; pÞ þ Ĥnonlocal

4PN ½r; p�: ð6:11Þ

The local-in-time 4PN Hamiltonian Ĥ local
4PN ðr; pÞ reads

Ĥ local
4PN ðr; pÞ ¼ 7

256
� 63

256
mþ 189

256
m2 � 105

128
m3 þ 63

256
m4

� �
p10

þ
(

45

128
p8 � 45

16
p8mþ 423

64
p8 � 3

32
p2r p

6 � 9

64
p4r p

4

� �
m2

þ � 1013

256
p8 þ 23

64
p2r p

6 þ 69

128
p4r p

4 � 5

64
p6r p

2 þ 35

256
p8r

� �
m3

þ � 35

128
p8 � 5

32
p2r p

6 � 9

64
p4r p

4 � 5

32
p6r p

2 � 35

128
p8r

� �
m4
)
1

r

þ
(
13

8
p6 þ � 791

64
p6 þ 49

16
p2r p

4 � 889

192
p4r p

2 þ 369

160
p6r

� �
m

þ 4857

256
p6 � 545

64
p2r p

4 þ 9475

768
p4r p

2 � 1151

128
p6r

� �
m2

þ 2335

256
p6 þ 1135

256
p2r p

4 � 1649

768
p4r p

2 þ 10353

1280
p6r

� �
m3
)

1

r2

þ
(
105

32
p4 þ 2749

8192
p2 � 589189

19200

� �
p4 þ 63347

1600
� 1059

1024
p2

� �
p2r p

2

�
þ 375

8192
p2 � 23533

1280

� �
p4r

�
mþ

�
18491

16384
p2 � 1189789

28800

� �
p4

� 127

3
þ 4035

2048
p2

� �
p2r p

2 þ 57563

1920
� 38655

16384
p2

� �
p4r

�
m2

þ
�
� 553

128
p4 � 225

64
p2r p

2 � 381

128
p4r

�
m3
)

1

r3

þ
(
105

32
p2 þ 185761

19200
� 21837

8192
p2

� �
p2 þ 3401779

57600
� 28691

24576
p2

� �
p2r

� �
m

þ 672811

19200
� 158177

49152
p2

� �
p2 þ � 21827

3840
þ 110099

49152
p2

� �
p2r

� �
m2
)

1

r4

þ
(

� 1

16
þ � 169199

2400
þ 6237

1024
p2

� �
mþ � 1256

45
þ 7403

3072
p2

� �
m2
)

1

r5
:

ð6:12Þ
The time-symmetric but nonlocal-in-time Hamiltonian Ĥnonlocal

4PN ½r; p� is related with
the leading-order tail effects (Damour et al. 2014). It equals
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Ĥnonlocal
4PN ½r; p� ¼ � 1

5

G2

mc8
I
...

ij ðtÞ � Pf2r12=c

Z þ1

�1

ds
jsj I

...

ijðt þ sÞ; ð6:13Þ

where Pf T is a Hadamard partie finie with time scale T � 2r12=c and where I
...

ij

denotes a third time derivative of the Newtonian quadrupole moment Iij of the binary
system,

Iij �
X
a

ma xiax
j
a �

1

3
dijx2a

� �
: ð6:14Þ

The Hadamard partie finie operation is defined as (Damour et al. 2014)

PfT

Z þ1

0

dv

v
gðvÞ �

Z T

0

dv

v
½gðvÞ � gð0Þ� þ

Z þ1

T

dv

v
gðvÞ: ð6:15Þ

Let us also note that in reduced variables the quadrupole moment Iij and its third time

derivative I
...

ij read

Iij ¼ ðGMÞ2l rirj � 1

3
r2dij

� �
; I

...

ij ¼ � m
Gr2

4nhipji � 3ðn � pÞnhinji
	 


; ð6:16Þ

where h� � �i denotes a symmetric tracefree projection and where in I
...

ij the time
derivatives _r, €r, and r

...
were eliminated by means of Newtonian equations of motion.

From the reduced conservative Hamiltonians displayed above, where a factor of
1=m is factorized out [through the definition (6.5) of the reduced Hamiltonian], the
standard test-body dynamics is very easily obtained, simply by putting m ¼ 0. The

conservative Hamiltonians ĤN through Ĥ4PN serve as basis of the EOB approach,
where with the aid of a canonical transformation the two-body dynamics is put into
test-body form of an effective particle moving in deformed Schwarzschild metric,
with m being the deformation parameter (Buonanno and Damour 1999, 2000;
Damour et al. 2000a, 2015). These Hamiltonians, both directly and through the EOB
approach, constitute an important element in the construction of templates needed to
detect gravitational waves emitted by coalescing compact binaries. Let us stress again
that the complete 4PN Hamiltonian has been obtained only in 2014 (Damour et al.
2014), based on earlier calculations (Blanchet and Damour 1988; Bini and Damour
2013; Jaranowski and Schäfer 2013) and a work published later (Jaranowski and
Schäfer 2015).

6.2 Nonlocal-in-time tail Hamiltonian at 4PN order

The nonlocal-in-time tail Hamiltonian at the 4PN level (derived and applied by
Damour et al. 2014 and Damour et al. 2015, respectively) is the most subtle part of
the 4PN Hamiltonian. It certainly deserves some discussion. Let us remark that
though the tail Hamiltonian derived in 2016 by Bernard et al. (2016) was identical
with the one given in Damour et al. (2014), the derivation there of the equations of
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motion and the conserved energy was incorrectly done, as detailed by Damour et al.
(2016), which was later confirmed by Bernard et al. (2017b).

The 4PN-level tail-related contribution to the action reads

Stail4PN ¼ �
Z

H tail
4PNðtÞ dt; ð6:17Þ

where the 4PN tail Hamiltonian equals

H tail
4PNðtÞ ¼ �G2M

5c8
I
...

ijðtÞ Pf2rðtÞ=c
Z 1

�1

dv

jvj I
...

ijðt þ vÞ: ð6:18Þ

Because formally

I
...

ijðt þ vÞ ¼ exp v
d

dt

� �
I
...

ijðtÞ; ð6:19Þ

the tail Hamiltonian can also be written as

H tail
4PNðtÞ ¼ �G2M

5c8
I
...

ijðtÞ Pf2rðtÞ=c
Z 1

0

dv

v
I
...

ijðt þ vÞ þ I
...

ijðt � vÞ
h i

¼ � 2G2M

5c8
I
...

ijðtÞ Pf2rðtÞ=c
Z 1

0

dv

v
cosh v

d

dt

� �
I
...

ijðtÞ:
ð6:20Þ

Another writing of the tail Hamiltonian is

H tail
4PNðtÞ ¼ � 2G2M

5c8
I
...

ijðtÞ Pf2rðtÞ=c
Z 1

0

dv

v
cosh vX ðH0Þð ÞI...ijðtÞ ð6:21Þ

with

X ðH0Þ �
X
i

oH0

opiðtÞ
o

oxiðtÞ �
oH0

oxiðtÞ
o

opiðtÞ
� �

; H0 ¼ ðpðtÞÞ2
2l

� GMl
rðtÞ : ð6:22Þ

This presentation shows that H tail
4PN can be constructed from positions and momenta at

time t.

For circular orbits, I
...

ijðtÞ is an eigenfunction of cosh v d
dt

	 

, reading

cosh v
d

dt

� �
I
...

ijðtÞ ¼ cos 2vXðtÞð ÞI...ijðtÞ; ð6:23Þ

where X is the angular frequency along circular orbit (pr ¼ 0),

XðtÞ � _u ¼ oH0ðpu; rÞ
opu

¼ puðtÞ
lr2ðtÞ ; H0ðpu; rÞ ¼

p2u
2lr2

� GMl
r

: ð6:24Þ

Notice the representation of XðtÞ as function of the still independent (dynamical
equation _pr ¼ �oH0=or has not yet been used) canonical variables puðtÞ and r(t) (in
Damour et al. 2014, 2016, a more concise representation for circular orbits has been
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applied, based on the orbital angular momentum as only variable). The somewhat
complicated structure of Eq. (6.23) can be made plausible by writing

v ddt ¼ vXðpu; rÞ d
du, see Eq. (6.24), and parametrizing the Eq. (6.16) for circular

orbits (pr ¼ 0) with orbital angle u. The 4PN tail Hamiltonian for circular orbits can
thus be written as

H tail circ
4PN ðtÞ ¼ � 2G2M

5c8
I
...

ijðtÞ
	 
2

Pf 2rðtÞ=c

Z 1

0

dv

v
cos

2p/ðtÞ
lr2ðtÞ v

� �
¼ 2G2M

5c8
I
...

ijðtÞ
	 
2

ln
4p/ðtÞ
lcrðtÞ

� �
þ cE

� �
;

ð6:25Þ

where cE ¼ 0:577. . . denotes Euler’s constant. This representation has been quoted
and used by Bernard et al. (2016), see Eq. (5.32) therein, for a straightforward
comparison of their tail results with the tail results presented by Damour et al. (2014).

6.3 Dynamical invariants of two-body conservative dynamics

The observables of two-body systems that can be measured from infinity by, say,
gravitational-wave observations, are describable in terms of dynamical invariants, i.
e., functions which do not depend on the choice of phase-space coordinates.
Dynamical invariants are easily obtained within a Hamiltonian framework of
integrable systems.

We start from the reduced conservative Hamiltonian Ĥðr; pÞ in the centre-of-mass
frame (we are thus considering here a local-in-time Hamiltonian; for the local
reduction of a nonlocal-in-time 4PN-level Hamiltonian see Sect. 6.3.2 below) and we

employ reduced variables ðr; pÞ. The invariance of Ĥðr; pÞ under time translations
and spatial rotations leads to the conserved quantities

E � Ĥðr; pÞ; j � J
lGM

¼ r� p; ð6:26Þ

where E is the total energy and J is the total orbital angular momentum of the binary
system in the centre-of-mass frame. We further restrict considerations to the plane of
the relative trajectory endowed with polar coordinates ðr;/Þ and we use Hamilton-
Jacobi approach to obtain the motion. To do this we separate the variables t̂ �
t=ðGMÞ and / in the reduced planar action Ŝ � S=ðGlMÞ, which takes the form

Ŝ ¼ �Et̂ þ j/þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðr;E; jÞ
p

dr: ð6:27Þ

Here j � jjj and the effective radial potential R(r, E, j) is obtained by solving the

equation E ¼ Ĥðr; pÞ with respect to pr � n � p, after making use of the relation
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p2 ¼ ðn � pÞ2 þ ðn� pÞ2 ¼ p2r þ
j2

r2
: ð6:28Þ

The Hamilton–Jacobi theory shows that the observables of the two-body dynamics
can be deduced from the (reduced) radial action integral

irðE; jÞ � 2

2p

Z rmax

rmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr;E; jÞ

p
dr; ð6:29Þ

where the integration is defined from minimal to maximal radial distance. The
dimensionless parameter k � DU=ð2pÞ (with DU � U� 2p) measuring the frac-
tional periastron advance per orbit and the periastron-to-periastron period P are
obtained by differentiating the radial action integral:

k ¼ � oirðE; jÞ
oj

� 1; ð6:30Þ

P ¼ 2pGM
oirðE; jÞ

oE
: ð6:31Þ

It is useful to express the Hamiltonian as a function of the Delaunay (reduced) action
variables (see, e.g., Goldstein 1981) defined by

n � ir þ j ¼ N

lGM
; j ¼ J

lGM
; m � jz ¼ Jz

lGM
: ð6:32Þ

The angle variables conjugate to n, j, and m are, respectively: the mean anomaly, the
argument of the periastron, and the longitude of the ascending node. In the quantum
language, N =�h is the principal quantum number, J=�h the total angular-momentum
quantum number, and Jz=�h the magnetic quantum number. They are adiabatic
invariants of the dynamics and they are, according to the Bohr–Sommerfeld rules of
the old quantum theory, (approximately) quantized in integers. Knowing the

Delaunay Hamiltonian Ĥðn; j;mÞ one computes the angular frequencies of the

(generic) rosette motion of the binary system by differentiating Ĥ with respect to the
action variables. Namely,

xradial ¼ 2p
P

¼ 1

GM

oĤðn; j;mÞ
on

; ð6:33Þ

xperiastron ¼ DU
P

¼ 2pk
P

¼ 1

GM

oĤðn; j;mÞ
oj

: ð6:34Þ

Here, xradial is the angular frequency of the radial motion, i.e., the angular frequency
of the return to the periastron, while xperiastron is the average angular frequency with
which the major axis advances in space.
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6.3.1 3PN-accurate results

The dynamical invariants of two-body dynamics were computed by Damour and
Schäfer (1988) at the 2PN level and then generalized to the 3PN level of accuracy
by Damour et al. (2000b). We are displaying here 3PN-accurate formulae. The
periastron advance parameter k reads9

k ¼ 3

c2j2

(
1þ 1

c2
5

4
ð7� 2mÞ 1

j2
þ 1

2
ð5� 2mÞE

� �

þ 1

c4

"
5

2

 
77

2
þ 41

64
p2 � 125

3

� �
mþ 7

4
m2
!

1

j4

þ
 
105

2
þ 41

64
p2 � 218

3

� �
mþ 45

6
m2
!
E

j2

þ 1

4
ð5� 5mþ 4m2ÞE2

#
þOðc�6Þ

)
: ð6:35Þ

The 3PN-accurate formula for the orbital period reads

P ¼ 2pGM

ð�2EÞ3=2
(
1� 1

c2
1

4
ð15� mÞE

þ 1

c4
3

2
ð5� 2mÞ ð�2EÞ3=2

j
� 3

32
ð35þ 30mþ 3m2ÞE2

" #

þ 1

c6

" 
105

2
þ 41

64
p2 � 218

3

� �
mþ 45

6
m2
!
ð�2EÞ3=2

j3

� 3

4
ð5� 5mþ 4m2Þ ð�2EÞ5=2

j

þ 5

128
ð21� 105mþ 15m2 þ 5m3ÞE3

#
þOðc�8Þ

)
: ð6:36Þ

These expressions have direct applications to binary pulsars (Damour and Schäfer
1988). Explicit analytic orbit solutions of the conservative dynamics through 3PN
order are given by Memmesheimer et al. (2005). The 4PN periastron advance was
first derived by Damour et al. (2015, 2016), with confirmation provided in a later
rederivation (Bernard et al. 2017b); also see Blanchet and Le Tiec (2017).

All conservative two-body Hamiltonians respect rotational symmetry, therefore
the Delaunay variable m does not enter these Hamiltonians. The 3PN-accurate
Delaunay Hamiltonian reads (Damour et al. 2000b)

9 Let us note a misprint in Eq. (4.16) of Damour et al. (2000b): the prefactor “3” in the term proportional
to i3ðmÞ should be removed.
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bH ðn; j;mÞ ¼ � 1

2n2

�
1þ 1

c2

�
6

jn
� 1

4
ð15� mÞ 1

n2

�
þ 1

c4

�
5

2
ð7� 2mÞ 1

j3n
þ 27

j2n2
� 3

2
ð35� 4mÞ 1

jn3
þ 1

8
ð145� 15mþ m2Þ 1

n4

�
þ 1

c6

��
231

2
þ
	 123

64
p2 � 125



mþ 21

4
m2
�

1

j5n
þ 45

2
ð7� 2mÞ 1

j4n2

þ
�
� 303

4
þ
	 1427

12
� 41

64
p2


m� 10m2

�
1

j3n3
� 45

2
ð20� 3mÞ 1

j2n4

þ 3

2
ð275� 50mþ 4m2Þ 1

jn5
� 1

64
ð6363� 805mþ 90m2 � 5m3Þ 1

n6

�
þOðc�8Þ

�
: ð6:37Þ

Additional insight into the 3PN dynamics can be found in a paper by Le Tiec (2015),
where the first law of mechanics for binary systems of point masses (Le Tiec et al.
2012) was generalized to generic eccentric orbits.

6.3.2 Results at 4PN order

The reduced 4PN Hamiltonian Ĥ4PN½r; p� can be decomposed in two parts in a way
slightly different from the splitting shown in Eq. (6.11). Namely,

Ĥ4PN½r; p� ¼ Ĥ I
4PNðr; p; sÞ þ Ĥ II

4PN½r; p; s�; ð6:38Þ
where the first part is local in time while the second part is nonlocal in time;
s � sphys=ðGMÞ is a reduced scale with dimension of 1/velocity2, where sphys is a

scale with dimension of a length. The Hamiltonian Ĥ I
4PN is a function of phase-space

variables ðr; pÞ of the form

Ĥ I
4PNðr; p; sÞ ¼ Ĥ loc

4PNðr; pÞ þ Fðr; pÞ ln r
s
; Fðr; pÞ � 2

5

G2

m
ðI...ijÞ2; ð6:39Þ

where the Hamiltonian Ĥ loc
4PN is given in Eq. (6.12) above. The Hamiltonian Ĥ II

4PN is a
functional of phase-space trajectories ðrðtÞ; pðtÞÞ,

Ĥ II
4PN½r; p; s� ¼ � 1

5

G2

m
I
...

ijðtÞ � Pf2sphys=c

Z þ1

�1

ds
jsj I

...

ijðt þ sÞ: ð6:40Þ

The nonlocal Hamiltonian Ĥ II
4PN½r; p; s� differs from what is displayed in Eq. (6.13) as

the nonlocal part of the 4PN Hamiltonian. There the nonlocal piece of Ĥ4PN is
defined by taking as regularization scale in the partie finie operation entering
Eq. (6.13) the time 2r12=c instead of 2sphys=c appearing in (6.40). Thus the arbitrary

scale sphys enters both parts Ĥ I
4PN and Ĥ II

4PN of Ĥ4PN, though it cancels out in the total
Hamiltonian. Damour et al. (2015) has shown that modulo some nonlocal-in-time
shift of the phase-space coordinates, one can reduce a nonlocal dynamics defined by
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the Hamiltonian Ĥ ½r; p; s� � ĤNðr; pÞ þ Ĥ II
4PN½r; p; s� to an ordinary (i.e., local in

time) one. We will sketch here this reduction procedure, which employs the
Delaunay form of the Newtonian equations of motion. In the circular motion case
things are much simpler and we can directly perform the integral in the nonlocal
Hamiltonian, Eq. (6.25).

It is enough to consider the planar case. In that case the action-angle variables are
ðL; ‘;G; gÞ, using the standard notation of Brouwer and Clemence (1961) (with
L � n and G � j). The variable L is conjugate to the “mean anomaly” ‘, while G is
conjugate to the argument of the periastron g ¼ x. The variables L and G are related
to the usual Keplerian variables a (semimajor axis) and e (eccentricity) via

L � ffiffiffi
a

p
; G �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

p
: ð6:41Þ

By inverting (6.41) one can express a and e as functions of L and G:

a ¼ L2; e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G

L

� �2
s

: ð6:42Þ

We use here rescaled variables: in particular, a denotes the rescaled semimajor axis
a � aphys=ðGMÞ. We also use the rescaled time variable t̂ � tphys=ðGMÞ appropriate
for the rescaled Newtonian Hamiltonian

ĤNðLÞ ¼ 1

2
p2 � 1

r
¼ � 1

2L2 : ð6:43Þ

The explicit expressions of the Cartesian coordinates (x, y) of a Newtonian motion in
terms of action-angle variables are given by

xðL; ‘;G; gÞ ¼ cos g x0 � sin g y0; yðL; ‘;G; gÞ ¼ sin g x0 þ cos g y0; ð6:44Þ

x0 ¼ aðcos u� eÞ; y0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin u; ð6:45Þ

where the “eccentric anomaly” u is the function of ‘ and e defined by solving
Kepler’s equation

u� e sin u ¼ ‘: ð6:46Þ
The solution of Kepler’s equation can be written in terms of Bessel functions:

u ¼ ‘þ
X1
n¼1

2

n
JnðneÞ sinðn ‘Þ: ð6:47Þ

Note also the following Bessel-Fourier expansions of cos u and sin u [which directly
enter ðx0; y0Þ and thereby (x, y)]

cos u ¼ � e

2
þ
X1
n¼1

1

n
½Jn�1ðneÞ � Jnþ1ðneÞ� cos n ‘; ð6:48Þ
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sin u ¼
X1
n¼1

1

n
½Jn�1ðneÞ þ Jnþ1ðneÞ� sin n ‘: ð6:49Þ

For completeness, we also recall the expressions involving the “true anomaly” f
(polar angle from the periastron) and the radius vector r:

r ¼ að1� e cos uÞ ¼ að1� e2Þ
1þ e cos f

; ð6:50Þ

x0
r
¼ cos f ¼ cos u� e

1� e cos u
;

y0
r
¼ sin f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin u

1� e cos u
: ð6:51Þ

The above expressions allow one to evaluate the expansions of x, y, and therefrom the
components of the quadrupole tensor Iij, as power series in e and Fourier series in ‘.

Let us then consider the expression

Fðt; sÞ � I
...

ijðtÞI
...

ijðt þ sÞ; ð6:52Þ
which enters the nonlocal-in-time piece (6.40) of the Hamiltonian. In order to
evaluate the order-reduced value of F ðt; sÞ one needs to use the equations of motion,
both for computing the third time derivatives of Iij, and for expressing the phase-
space variables at time t þ s in terms of the phase-space variables at time t. One
employs the zeroth-order equations of motion following from the Newtonian
Hamiltonian (6.43),

d‘

dt̂
¼ oĤN

oL
¼ 1

L3 � XðLÞ; dg

dt̂
¼ oĤN

oG
¼ 0; ð6:53Þ

dL

dt̂
¼ � oĤN

o‘
¼ 0;

dG

dt̂
¼ � oĤN

og
¼ 0; ð6:54Þ

where XðLÞ � L�3 is the (t̂-time) rescaled Newtonian (anomalistic) orbital fre-
quency X ¼ GMXphys (it satisfies the rescaled third Kepler’s law: X ¼ a�3=2). The
fact that g, L, and G are constant and that ‘ varies linearly with time, makes it easy to

compute I
...

ijðt þ sÞ in terms of the values of ð‘; g;L;GÞ at time t. It suffices to use
(denoting by a prime the values at time t0 � t þ s)

‘0 � ‘ðt þ sÞ ¼ ‘ðtÞ þ XðLÞŝ; ð6:55Þ
where ŝ � s=ðGMÞ, together with g0 ¼ g, L0 ¼ L, and G0 ¼ G. The order-reduced
value of Fðt; sÞ is given by (using d=dt̂ ¼ X d=d‘)

Fð‘; ŝÞ ¼
�
XðLÞ
GM

�6 d3Iij
d‘3

ð‘Þ d
3Iij
d‘3

ð‘þ XðLÞŝÞ: ð6:56Þ

Inserting the expansion of Iijð‘Þ in powers of e and in trigonometric functions of ‘
and g, yields F in the form of a series of monomials of the type

123

    2 Page 60 of 139 Review Article



F ð‘; ŝÞ ¼
X

n1;n2;
n3

C

n1n2n3

en1 cosðn2 ‘
 n3 X ŝÞ; ð6:57Þ

where n1, n2, n3 are natural integers. (Because of rotational invariance, and of the
result g0 ¼ g, there is no dependence of F on g.)

All the terms in the expansion (6.57) containing a nonzero value of n2 will, after

integrating over ŝ with the measure dŝ=j ^sj as indicated in Eq. (6.40), generate a

corresponding contribution to Ĥ II
4PN which varies with ‘ proportionally to cosðn2 ‘Þ.

One employs now the standard Delaunay technique: any term of the type

AðLÞ cosðn‘Þ in a first-order perturbation eH1ðL; ‘Þ � Ĥ II
4PNðL; ‘Þ of the leading-

order Hamiltonian H0ðLÞ � HNðLÞ can be eliminated by a canonical transformation
with generating function of the type egðL; ‘Þ � eBðLÞ sinðn‘Þ. Indeed,

dgH1 ¼ fH0ðLÞ; gg ¼ � oH0ðLÞ
oL

og
o‘

¼ �nXðLÞBðLÞ cosðn‘Þ; ð6:58Þ

so that the choice B ¼ A=ðnXÞ eliminates the term A cosðn‘Þ in H1. This shows that
all the periodically varying terms (with n2 6¼ 0) in the expansion (6.57) of F can be
eliminated by a canonical transformation. Consequently one can simplify the non-

local part Ĥ II
4PN of the 4PN Hamiltonian by replacing it by its ‘-averaged value,

�̂H II
4PNðL;G; sÞ �

1

2p

Z 2p

0
d‘ Ĥ II

4PN½r; p; s� ¼ � 1

5

G2

mc8
Pf 2s=c

Z þ1

�1

dŝ
jŝj

�F ; ð6:59Þ

where �F denotes the ‘-average of Fð‘; ŝÞ [which is simply obtained by dropping all
the terms with n2 6¼ 0 in the expansion (6.57)]. This procedure yields an averaged

Hamiltonian �̂H II
4PN which depends only on L, G (and s) and which is given as an

expansion in powers of e (because of the averaging this expansion contains only even
powers of e). Damour et al. (2015) derived the ‘-averaged Hamiltonian as a power
series of the form10

�̂H II
4PNðL;G; sÞ ¼

4

5

m

c8L10

X1
p¼1

p6jÎ pijðeÞj2 ln 2p
ecEs

cL3

� �
; ð6:60Þ

where Î pij ðeÞ are coefficients in the Bessel-Fourier expansion of the dimensionless

reduced quadrupole moment Îij � Iij=½ðGMÞ2la2�,

Îijð‘; eÞ ¼
Xþ1

p¼�1
Î pij ðeÞeip‘: ð6:61Þ

Equation (6.60) is the basic expression for the transition of the tail-related part of the
4PN dynamics to the EOB approach (Damour et al. 2015).

For another approach to the occurrence and treatment of the ð‘; ‘0Þ-structure in
nonlocal-in-time Hamiltonians the reader is referred to Damour et al. (2016) (therein,
‘ is called k). Generalized quasi-Keplerian parametrization for eccentric orbits at 4PN

10 Here e ¼ 2:718. . . should be distinguished from the eccentricity e.
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order was studied in Cho et al. (2022) (ignoring certain oscillatory terms arising due
to 4PN tail effects).

6.3.3 Results at 5PN order

To compactify the expressions for higher-order PN Hamiltonians it is most
convenient to go over to the canonically equivalent Hamiltonians of the EOB
formalism (Buonanno and Damour 1999, 2000) (let us remind that the EOB
approach is not in the scope of this review). Within this formalism the nPN-accurate
Hamiltonian H	 nPNðx; pÞ of the two-body system, in the centre of mass frame, is
replaced by the real (i.e. giving the evolution equations with respect to the real ADM
time coordinate tADM and the real two-body energy) and improved (i.e. representing a
nonperturbative resummed estimate of the PN Hamiltonian) Hamiltonian

H improved
real ðx0ðx; pÞ; p0ðx; pÞÞ (Buonanno and Damour 2000). The Hamiltonian

H improved
real is related to the effective EOB Hamiltonian HEOB

eff through the equation
(Damour et al. 2000a)

HEOB
eff

lc2
¼ ðH improved

real Þ2 � m2
1c

4 � m2
2c

4

2m1m2c4
; ð6:62Þ

resulting in the useful representation of H improved
real in terms of HEOB

eff ,

H improved
real ¼ Mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m ĤEOB

eff � 1
� �q

; ð6:63Þ

where ĤEOB
eff :¼ HEOB

eff =ðlc2Þ denotes the reduced effective EOB Hamiltonian. In
turn, the EOB effective Hamiltonian is defined as HEOB

eff :¼ �c p00, where p00 is the
solution of a general mass-shell condition of the form

glmeff ðx0Þp0lp0m þ Qðx0; p0rÞ ¼ �l2c2; ð6:64Þ
where the scalar Q denotes contributions which are at least quartic in momenta; one
can reduce the dependence of Q on momenta to a dependence on the sole radial
momentum p0r. The spherically symmetric effective metric gefflm is a m-dependent
deformation of Schwarzschild metric,

gefflm dx
0ldx0m ¼ �Aðr0; mÞc2dt02 þ �Aðr0; mÞ �Dðr0; mÞ��1

dr02

þ r02ðdh02 þ sin2 h0 d/02Þ: ð6:65Þ
Solving Eq. (6.64) [with the metric (6.65)] with respect to p00 gives the reduced
effective EOB Hamiltonian of the form
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ĤEOB
eff ðx0; p0; mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðu; mÞ

	
1þ p̂02 þ

	
Aðu; mÞ �Dðu; mÞ � 1



p̂02r þ Q̂ðu; p̂0r; mÞ


r
;

ð6:66Þ
where Q̂ ¼ Q=ðlc2Þ, u :¼ GM=ðr0c2Þ, p̂0r :¼ p0r=ðlcÞ, p̂0 :¼ p0=ðlcÞ with

p0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02r þ p02h =r02 þ p02/=ðr02 sin2 h0Þ

q
.

The 5PN-accurate PN expansions of the potentials A, �D, and Q̂ read [let us note
that u ¼ Oðc�2Þ and p0r ¼ Oðc�1Þ]

Aðu; mÞ ¼ 1þ
X4
k¼1

akðmÞuk þ
X6
k¼5

�
ackðmÞ þ alnk ðmÞ ln u

�
uk ; ð6:67aÞ

�Dðu; mÞ ¼ 1þ
X3
k¼2

�dkðmÞuk þ
X5
k¼4

�
�dckðmÞ þ �d

ln
k ðmÞ ln u

�
uk ; ð6:67bÞ

Qðu; p0r; mÞ ¼
	
q42ðmÞu2 þ q43ðmÞu3 þ

�
qc44ðmÞ þ qln44ðmÞ ln u

�
u4


p04r

þ
	
q62ðmÞu2 þ

�
qc63ðmÞ þ qln63ðmÞ ln u

�
u3


p06r

þ
	
q81ðmÞuþ q82ðmÞu2



p08r : ð6:67cÞ

Up to the 3PN level, the coefficients read as follows (Buonanno and Damour
1999; Damour et al. 2000a):

At 0PN: a1ðmÞ ¼ �2; ð6:68aÞ

at 1PN: a2ðmÞ ¼ 0; ð6:68bÞ

at 2PN: a3ðmÞ ¼ 2m; �d2ðmÞ ¼ 6m; ð6:68cÞ

at 3PN: a4ðmÞ ¼ 94

3
� 41

32
p2

� �
m; �d3ðmÞ ¼ 52m� 6m2;

q42ðmÞ ¼ 8m� 6m2:

ð6:68dÞ

At the 4PN level, the coefficients read (Damour et al. 2015; Bini et al. 2020a)

ac5ðmÞ ¼
2275

512
p2 � 4237

60
þ 128

5
cE þ

256

5
ln 2

� �
mþ 41

32
p2 � 221

6

� �
m2; ð6:69aÞ

aln5 ðmÞ ¼
64

5
m; ð6:69bÞ
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�dc4ðmÞ ¼ � 533

45
� 23761

1536
p2 þ 1184

15
cE �

6496

15
ln 2þ 2916

5
ln 3

� �
m

þ 123

16
p2 � 260

� �
m2; ð6:69cÞ

�dln4 ðmÞ ¼
592

15
m; ð6:69dÞ

q43ðmÞ ¼ � 5308

15
þ 496256

45
ln 2� 33048

5
ln 3

� �
m� 83m2 þ 10m3; ð6:69eÞ

q62ðmÞ ¼ � 827

3
� 2358912

25
ln 2þ 1399437

50
ln 3þ 390625

18
ln 5

� �
m

� 27

5
m2 þ 6m3; ð6:69f Þ

q81ðmÞ ¼ � 35772

175
þ 21668992

45
ln 2þ 6591861

350
ln 3� 27734375

126
ln 5

� �
m: ð6:69gÞ

At the 5PN level, solution with unique numerical prefactors is not available. The
TF approach yields all 5PN-order coefficients of the EOB potentials (6.67) except for
numerical prefactors of two terms proportional to m2 entering the coefficients ac6ðmÞ
and �dc5ðmÞ. Also, Blümlein et al. (2022a, b) disagree with obtained by Bini et al.
(2019, 2020a) local contribution to a term proportional to m2 in the coefficient qc44ðmÞ.
The coefficients of the 5PN-order EOB potentials read (Bini et al. 2019, 2020a)

ac6ðmÞ ¼ � 1066621

1575
þ 246367

3072
p2 � 14008

105
cE �

31736

105
ln 2þ 243

7
ln 3

� �
m

þ a62m
2 þ 4m3; ð6:70aÞ

aln6 ðmÞ ¼ � 7004

105
m� 144

5
m2; ð6:70bÞ

�dc5ðmÞ ¼
294464

175
� 63707

512
p2 � 2840

7
cE þ

120648

35
ln 2� 19683

7
ln 3

� �
m

þ �d52m
2 þ 1069

3
� 205

16
p2

� �
m3; ð6:70cÞ

�dln5 ðmÞ ¼ � 1420

7
m� 3392

15
m2; ð6:70dÞ

qc44ðmÞ ¼
�
1295219

350
� 93031

1536
p2 þ 10856

105
cE �

40979464

315
ln 2þ 14203593

280
ln 3

þ 9765625

504
ln 5

�
mþ q442m

2 þ 640� 615

32
p2

� �
m3; ð6:70eÞ
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qln44ðmÞ ¼
5428

105
m� 592

5
m2; ð6:70f Þ

qc63ðmÞ ¼
�
2613083

1050
þ 6875745536

4725
ln 2� 23132628

175
ln 3� 101687500

189
ln 5

�
m

þ
�
159089

75
� 4998308864

1575
ln 2� 45409167

350
ln 3þ 26171875

18
ln 5

�
m2

þ 116m3 � 14m4; ð6:70gÞ

qln63ðmÞ ¼ 0; ð6:70hÞ

q82ðmÞ ¼
�
5790381

2450
� 16175693888

1575
ln 2� 393786545409

156800
ln 3

þ 875090984375

169344
ln 5þ 13841287201

17280
ln 7

�
m

þ
�
870976

525
þ 703189497728

33075
ln 2þ 332067403089

39200
ln 3

� 468490234375

42336
ln 5� 13 841 287 201

4 320
ln 7

�
m2 þ 24

7
m3 � 6m4: ð6:70iÞ

The nonlocal part of the potential q82 was computed in Appendix G of Bini et al.
(2020c).

The non computed in Bini et al. (2019, 2020a) prefactors a62 and �d52 enter the
local-in-time parts of the EOB potentials,

a62 ¼ anloc62 þ aloc62 ;
�d52 ¼ �dnloc52 þ �dloc52 ; ð6:71Þ

where the prefactors anloc62 and �dnloc52 related with the nonlocal-in-time parts are well
confirmed and equal [see Table IV in Bini et al. (2020a)]

anloc62 ¼ 64

5
� 288

5
cE þ

928

35
ln 2� 972

7
ln 3; ð6:72aÞ

�dnloc52 ¼ 67 736

105
� 6 784

15
cE �

326 656

21
ln 2þ 58 320

7
ln 3: ð6:72bÞ

The EFT approach by Blümlein et al. (2021b, 2022b) gives,

aloc62 ¼ aloc62ðratÞ þ aloc62ðp2Þ; aloc62ðratÞ ¼ � 584881

525
; aloc62ðp2Þ ¼

25911

256
p2; ð6:73aÞ

�dloc52 ¼ �dloc52ðratÞ þ �dloc52ðp2Þ; �dloc52ðratÞ ¼ � 10442728

1575
; �dloc52ðp2Þ ¼

306545

512
p2: ð6:73bÞ

The coefficients aloc62ðp2Þ and �dloc52ðp2Þ are confirmed by TF.

The computed in Bini et al. (2019, 2020a) prefactor q442 is the sum of the local-in-
time and the nonlocal-in-time parts,
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q442 ¼ qnloc442 þ qloc442; ð6:74Þ
where the nonlocal-in-time part qnloc442 reads [see Table IV in Bini et al. (2020a)]

qnloc442 ¼ 74 436

35
� 1 184

5
cE þ

33 693 536

105
ln 2� 6 396 489

70
ln 3� 9 765 625

126
ln 5:

ð6:75Þ
The local-in-time part qloc442 equals

qloc442 ¼ qloc442ðratÞ þ qloc442ðp2Þ; qloc442ðp2Þ ¼
31 633

512
p2; ð6:76Þ

where the transcendental part qloc442ðp2Þ is confimed by both Bini et al. (2019, 2020a)

and Blümlein et al. (2022a, b). However, the rational part qloc442ðratÞ has incompatible

values according to Bini et al. (2019, 2020a) (TF) and Blümlein et al. (2022a, b)
(BMMS),

qlocTF442ðratÞ ¼ � 9 367

15
; qlocBMMS

442ðratÞ ¼ � 1 252 924

1 575
: ð6:77Þ

Agreement between the TF and BMMS results could be achieved by a possibly
missing conservative quadratic radiation-reaction (anti-symmetric)2 term mentioned
in Bini et al. (2021), which could lead to the following change of the TF Hamiltonian
(Blümlein et al. 2022a, b),

dH ðreacÞ2
rad ¼ a m2p04r u

4; a 2 R: ð6:78Þ

The agreement would be achieved for a ¼ �168=5 (Blümlein et al. 2022a, b).
The genuine (i.e., not the 1PN corrections coming from 4PN level) local and

nonlocal tail Hamiltonians at the 5PN order are (Foffa and Sturani 2020; Bini et al.
2021; Almeida et al. 2021; Blümlein et al. 2021b, 2022b)

H tail;nloc
5PN ¼ �GM

c3
Pf 2r12=c

Z 1

�1

ds
jsjF

split
1PNðt; t þ sÞ; ð6:79aÞ

H tail;loc
5PN ¼ �GM

c3
Roct;eF

split;MQ2

1PN ðt; tÞ þ Rquad;mF
split;MJ2

1PN ðt; tÞ
	 


: ð6:79bÞ

Here, M denotes the total ADM conserved mass-energy of the binary system
[M ¼ M þOðc�2Þ] and the indices MQ2 and MJ 2 are denoting the mass-type (or
electric-type) octupole-moment (Qijk) and the spin-type (or magnetic-type) quadru-
pole-moment (Jij) contributions, respectively, and

F
split
1PNðt; t0Þ ¼

G

c5
1

c2
1

189
Qð4Þ

ijk ðtÞQð4Þ
ijk ðt0Þ þ

16

45
J ð3Þij ðtÞJ ð3Þij ðt0Þ

� �
; ð6:80aÞ

RTF
oct;e ¼ RFS

oct;e ¼ RBMMS
oct;e ¼ 82

35
; ð6:80bÞ
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RTF
quad;m ¼ RAFS

quad;m ¼ RBMMS
quad;m ¼ 49

20
: ð6:80cÞ

We have used here the notation f ðnÞðtÞ � df ðtÞ=dtn to denote the n-th derivative with
respect to time t.

The magnetic-type quadrupole moment Jij ¼ Jji comes in via the most subtle form
1
2R0iab�abjJij, valid in 3 dimensions only. Its d-dimensional generalization needs the
avatar Jijab, antisymmetric with respect to i and b, Jijab ¼ �Jbjai, that satisfies the
cyclic identity Jijab þ Jajbi þ Jbjia ¼ 0. It reads (Henry et al. 2021; Bini et al. 2021)

Jijab ¼ mðm2 � m1Þ
�	

xixa � x � x
d � 1

dia


vb �

	
xaxb � x � x

d � 1
dab


vi

� x � v
d � 1

ðxidab � xbdiaÞ
�
: ð6:81Þ

Then �abjJij � Jbjia,

J ð3Þij J ð3Þij ! 1

2
J ð3ÞijabJ

ð3Þ
ijab: ð6:82Þ

The following relations have been derived within TF (Bini et al. 2021), using Roct;e

and Rquad;m,

aloc62 ¼ 25 911

256
p2 þ Ra6ðCQQL;CQQQ1 ;CQQQ2Þ; ð6:83aÞ

�dloc52 ¼ 306 545

512
p2 þ Rd5ðCQQL;CQQQ1 ;CQQQ2Þ; ð6:83bÞ

where Ra6 and Rd5 are given rational-valued functions of the three numerical con-
stants CQQA (A ¼ L;Q1;Q2) which are defined by specific terms in the effective
action for the radiation-type graviton exchange:

SQQL ¼ CQQLG
2
Z

dt Qð4Þ
il Qð3Þ

jl �ijkLk ; ð6:84aÞ

SQQQ1 ¼ CQQQ1G
2

Z
dt Qð4Þ

il Qð4Þ
jl Qij; ð6:84bÞ

SQQQ2 ¼ CQQQ2G
2
Z

dt Qð3Þ
il Qð3Þ

jl Qð2Þ
ij ; ð6:84cÞ

with values all having been calculated by Foffa and Sturani (2020, 2021), Blümlein
et al. (2022a, 2022b), and Almeida et al. (2023b) using in-out and in-in (or, closed-
time) formalisms, respectively,11

CAFS
QQL ¼ � 1

30
¼ 1

16
CBMMS
QQL ; ð6:85aÞ
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CmemFS
QQQ1

¼ � 1

15
¼ 4

3
CmemBMMS
QQQ1

; ð6:85bÞ

CcontBMMS
QQQ1

¼ 1

8
; ð6:85cÞ

CmemFS
QQQ2

¼ � 4

105
¼ 4

3
CmemBMMS
QQQ2

: ð6:85dÞ

The abbreviations “mem” and “cont” denote so-called memory and contact terms,
respectively.

In terms of doubled in-in position variables, xia;1 (moving forward in time) and xia;2
(moving backward in time), with then xia;� ¼ ðxia;1 � xia;2Þ=

ffiffiffi
2

p
and xia;þ ¼ ðxia;1 þ

xia;2Þ=
ffiffiffi
2

p
or, alternatively, xia;� ¼ xia;1 � xia;2 and xia;þ ¼ ðxia;1 þ xia;2Þ=2, the action

functionals obtained in respectively Blümlein et al. (2022a, b) and Almeida et al.
(2023a) coincide. The classical limit reads xia;1 ¼ xia;2 ¼ xia. In the extractions of

classical dynamics information, however, Blümlein et al. (2022a, b) and Almeida
et al. (2023a) did obtain different results.

By TF (Bini et al. 2021), the following constraint equation is derived from the

condition on scattering-angles vcons;EFT4 � vcons;TF4 ¼ 0 of conservative dynamics,

where vcons;TF4 is based on a general rule on mass-polynomiality (Damour 2020) that
terms proportional to m2 are not present,

0 ¼ 2973

350
� 69

2
CQQL þ 253

18
CQQQ1 þ

85

9
CQQQ2 ; ð6:86Þ

where the pure rational number is obtained for a specific value of q44. That condition
gets fulfilled by neither the values from Foffa and Sturani (2020, 2021) nor those
from Blümlein et al. (2022a, b). Also Almeida et al. (2023a) does not stay in
agreement.

To sum up: on the local-in-time level, the 5PN EOB numerical coefficients aloc62ðratÞ,
�dloc52ðratÞ, and qloc442ðratÞ are still controversial.

6.3.4 Results at 5.5PN order

Half-integer-power PN contributions to conservative two-body dynamics start at the
5.5PN order (Shah et al. 2014; Blanchet et al. 2014). The complete 5.5PN
conservative Hamiltonian comes from the second-order tail (i.e., tail-of-tail or tail2)
effects and it reads (Damour et al. 2015; Bini et al. 2020a)

H tail2;nloc
5:5PN ¼ � 107

210

G2M2

c6

Z 1

�1

ds
s
½Gsplitðt; t þ sÞ � Gsplitðt; t � sÞ�; ð6:87Þ

11 The numerical value �1=30 of the coefficient CAFS
QQL computed in Almeida et al. (2023b) corrects the

value �8=15 obtained by means of an incomplete computation by Foffa and Sturani (2020, 2021). The
value �1=30 was also recently confirmed by Henry and Larrouturou (2023) by means of the Fokker
Lagrangian method and dimensional regularization.
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where

Gsplitðt; t0Þ :¼ G

5c5
Qð3Þ

ij ðtÞQð4Þ
ij ðt0Þ: ð6:88Þ

The contribution of the 5.5PN Hamiltonian H tail2;nloc
5:5PN to an effective EOB dynamics

was computed in (Damour et al. 2015; Bini et al. 2020a).

6.3.5 Results at 6PN order

The TF approach succeeded with 6PN level to some remarkable extent (Bini et al.
2020b, c) and the EFT approach to some part (Blümlein et al. 2020c, 2021a). Only
four numerical coefficients of the EOB representation of the 6PN dynamics are
unknown [two of them are prefactors of terms proportional to m2 and m3 in the
potential Aðu; mÞ, the remaining two are prefactors of terms proportional to m2

entering the �Dðu; mÞ and Qðu; p0r; mÞ potentials]. Each of these coefficients is predicted
to be the sum of a rational number and a transcendental number.

The nonlocal-in-time 6PN Hamiltonian is known explicitly and reads

H tail;nloc
6PN ¼ �GM

c3
Pf 2r12=c

Z 1

�1

ds
jsjF

split
2PNðt; t þ sÞ; ð6:89Þ

F
split
2PNðt; t0Þ ¼

G

c5
1

c4
1

9072
Qð5Þ

ijklðtÞQð5Þ
ijklðt0Þ þ

1

84
J ð4Þijk ðtÞJ ð4Þijk ðt0Þ

� �
; ð6:90Þ

Qijkl and Jijk denoting mass-type hexadecapole and magnetic-type octupole moments.
The R-coefficients, cf. (6.79b), of the corresponding local-in-time part are known,
even through all PN orders, see Almeida et al. (2021). Not known are many other
local-in-time expressions. All these expressions contribute to the four coefficients
listed at the beginning of this subsection.

6.4 The innermost stable circular orbit

The innermost stable circular orbit (ISCO) of a test-body orbiting in the
Schwarzschild metric is located at R ¼ 6MG=c2, in Schwarzschild coordinates.
Within a Hamiltonian formalism the calculation of the ISCO for systems made of
bodies of comparable masses is rather straightforward. It is relevant to start with the
discussion of dynamics of a two-body system along circular orbits.

The centre-of-mass conservative Hamiltonian Ĥðr; pÞ can be reduced to circular

orbits by setting pr ¼ n � p ¼ 0 and p2 ¼ j2=r2, then Ĥ ¼ Ĥðr; jÞ. Moreover,

oĤðr; jÞ=or ¼ 0 along circular orbits, what gives the link between r and j, r ¼ rðjÞ.
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Finally the energy Êcirc along circular orbits can be expressed as a function of j only,

ÊcircðjÞ � ĤðrðjÞ; jÞ. The link between the (reduced) centre-of-mass energy Êcirc and
the (reduced) angular momentum j is explicitly known up to the 4PN order. It reads
(Bini and Damour 2013; Damour et al. 2014)

Êcircðj; mÞ ¼ � 1

2j2

(
1þ

�
9

4
þ 1

4
m

�
1

j2
þ
�
81

8
� 7

8
mþ 1

8
m2
�
1

j4

þ
�
3861

64
þ
�
41p2

32
� 8833

192

�
m� 5

32
m2 þ 5

64
m3
�
1

j6

þ
�
53703

128
þ
�
6581p2

512
� 989911

1920
� 64

5

�
2cE þ ln

16

j2

��
m

þ
�
8875

384
� 41p2

64

�
m2 � 3

64
m3 þ 7

128
m4
�
1

j8
þOðj�10Þ

)
: ð6:91Þ

An important observational quantity is the angular frequency of circular orbits, xcirc.
It can be computed as

xcirc ¼ 1

GM

dÊcirc

dj
: ð6:92Þ

It is convenient to introduce the coordinate-invariant dimensionless variable (which
can also serve as small PN expansion parameter)

x � GMxcirc

c3

� �2=3

: ð6:93Þ

Making use of Eqs. (6.92) and (6.93) it is not difficult to translate the link of

Eq. (6.91) into the dependence of the energy Êcirc on the parameter x. The 4PN-
accurate formula reads (Bini and Damour 2013; Damour et al. 2014)

Êcircðx; mÞ ¼ � x

2

(
1�

�
3

4
þ m
12

�
xþ

�
� 27

8
þ 19m

8
� m2

24

�
x2

þ
�
� 675

64
þ 34445

576
� 205p2

96

� �
m� 155m2

96
� 35m3

5184

�
x3

þ
�
� 3969

128
þ
�
9037p2

1536
� 123671

5760
þ 448

15

�
2cE þ lnð16xÞ��m

þ 3157p2

576
� 498449

3456

� �
m2 þ 301m3

1728
þ 77m4

31104

�
x4 þOðx5Þ

)
: ð6:94Þ

In the test-mass limit m ! 0 (describing motion of a test particle on a circular orbit in

the Schwarzschild spacetime) the link Êcircðx; mÞ is exactly known,
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Êcircðx; 0Þ ¼ 1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1: ð6:95Þ

The location xISCO ¼ 1=6 of the ISCO in the test-mass limit corresponds to the

minimum of the function Êcircðx; 0Þ, i.e.
dÊcircðx; 0Þ

dx

����
x¼xISCO

¼ 0: ð6:96Þ

Therefore the most straightforward way of locating the ISCO for m[ 0 relies on

looking for the minimum of the function Êcircðx; mÞ, i.e., for a given value of m, the
location of the ISCO is obtained by (usually numerically) solving the equation

dÊcircðx; mÞ=ðdxÞ ¼ 0 (Blanchet 2002). Equivalently the location of the ISCO can be

defined as a solution of the set of simultaneous equations oĤðr; jÞ=or ¼ 0 and

o2Ĥðr; jÞ=or2 ¼ 0. Both approaches are equivalent only for the exact Hamiltonian

Ĥðr; jÞ, see however Sect. IV A 2 in Buonanno et al. (2003, 2006) for subtleties
related to equivalence of both approaches when using post-Newtonian-accurate
Hamiltonians. With the aid of the latter method Schäfer and Wex (1993a) computed
the nPN-accurate ISCO of the test mass in the Schwarzschild metric through 9PN
order in three different coordinate systems, obtaining three different results. Clearly,
the application of the first method only results in a nPN-accurate ISCO described by
parameters which are coordinate invariant.

Let us consider the 4PN-accurate expansion of the exact test-mass-limit formula
(6.95),

Êcircðx; 0Þ ¼ � x

2

�
1� 3

4
x� 27

8
x2 � 675

64
x3 � 3969

128
x4 þOðx5Þ

�
: ð6:97Þ

Let us compute the succesive PN estimations of the exact ISCO frequency parameter
xISCO ¼ 1=6 ffi 0:166667 in the test-mass limit, by solving the equations

dÊcirc
nPNðx; 0Þ=ðdxÞ ¼ 0 for n ¼ 1; . . .; 4, where the function Êcirc

nPNðx; 0Þ is defined as the
Oðxnþ1Þ-accurate truncation of the right-hand-side of Eq. (6.97). They read:
0.666667 (1PN), 0.248807 (2PN), 0.195941 (3PN), 0.179467 (4PN). One sees that
the 4PN prediction for the ISCO frequency parameter is still � 8% larger than the
exact result. This suggests that the straightforward Taylor approximants of the energy

function Êcircðx; mÞ do not converge fast enough to determine satisfactorily the fre-
quency parameter of the ISCO also in m[ 0 case, at least for sufficiently small values
of m. The extrapolation of this statement for larger m is supported by the values of the
ISCO locations in the equal-mass case (m ¼ 1=4), obtained by solving the equations

dÊcirc
nPNðx; 1=4Þ=ðdxÞ ¼ 0 for n ¼ 1; . . .; 4, where the function Êcirc

nPNðx; mÞ is now
defined as the Oðxnþ1Þ-accurate truncation of the right-hand-side of Eq. (6.94). For
the approximations from 1PN up to 4PN the ISCO locations read (Damour et al.
2000a; Blanchet 2002; Jaranowski and Schäfer 2013): 0.648649 (1PN), 0.265832
(2PN), 0.254954 (3PN), and 0.236599 (4PN).12
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To overcome the problem of the slow convergence of PN expansions several new
methods of determination of the ISCO for comparable-mass binaries were devised
by Damour et al. (2000a). They use different “resummation” techniques and are
based on the consideration of gauge-invariant functions. One of the methods, called
the “j-method” by Damour et al. (2000a), employs the invariant function linking the
angular momentum and the angular frequency along circular orbits and uses Padé
approximants. The ISCO is defined in this method as the minimum, for the fixed
value of m, of the function j2ðx; mÞ, where j is the reduced angular momentum
[introduced in Eq. (6.26)]. The function j2ðx; mÞ is known in the test-mass limit,

j2ðx; 0Þ ¼ 1

xð1� 3xÞ ; ð6:98Þ

and its minimum coincides with the exact “location“ xISCO ¼ 1=6 of the test-mass
ISCO. The form of this function suggests to use Padé approximants instead of direct
Taylor expansions. It also suggests to require that all used approximants have a pole
for some xpole, which is related with the test-mass “light-ring” orbit occurring for
xlr ¼ 1=3 in the sense that xpoleðmÞ ! 1=3 when m ! 0. The 4PN-accurate function
j2ðx; mÞ has the symbolic structure ð1=xÞð1þ xþ . . .þ x4 þ x4 ln xÞ. In the j-method
the Taylor expansion at the 1PN level with symbolic form 1þ x is replaced by Padé
approximant of type (0,1), at the 2PN level 1þ xþ x2 is replaced by (1,1)
approximant, at the 3PN level 1þ xþ x2 þ x3 is replaced by (2,1) approximant, and
finally at the 4PN level 1þ xþ x2 þ x3 þ x4 is replaced by (3,1) Padé approximant
[the explicit form of the (0,1), (1,1), and (2,1) approximants can be found in
Eqs. (4.16) of Damour et al. 2000a]. At all PN levels the test-mass result is recovered
exactly and Jaranowski and Schäfer (2013) showed that the ISCO locations resulting
from 3PN-accurate and 4PN-accurate calculations almost coincide for all values of m,
0	 m	 1

4. The ISCO locations in the equal-mass case m ¼ 1=4 for the approximations
from 1PN up to 4PN are as follows (Jaranowski and Schäfer 2013): 0.162162 (1PN),
0.185351 (2PN), 0.244276 (3PN), 0.242967 (4PN).

6.5 Dissipative Hamiltonians

To discuss dissipative Hamiltonians it is convenient to use the toy model from

Sect. 3.2 with the Routhian Rðq; p; n; _nÞ and its corresponding Hamiltonian

Hðq; p; n; pÞ ¼ Rþ p _n. The Hamilton equations of motion for the (q, p) variables
read

12 The 4PN value of the ISCO frequency parameter given here, 0.236599, is slightly different from the
value 0.236597 published in Jaranowski and Schäfer (2013). The reason is that in Jaranowski and Schäfer
(2013) the only then known approximate value 153.8803 of the linear-in-m coefficient in the 4PN-order
term in Eq. (6.94) was used, whereas the numerical exact value of this coefficient reads 153:8837968 � � �.
From the same reason the 4PN ISCO frequency parameter determined by the j-method described below in
this section, is equal 0.242967, whereas the value published in Jaranowski and Schäfer (2013) reads
0.247515.
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_p ¼ � oH
oq

¼ � oR
oq

; _q ¼ oH
op

¼ oR
op

; ð6:99Þ

and the Euler–Lagrange equation for the n variable is

oR
on

� d

dt

oR

o _n
¼ 0: ð6:100Þ

Alternatively, the Hamilton equations of motion for the ðn; pÞ variables can be used.
Solutions of the Euler–Lagrange equation are functions n ¼ nðq; pÞ. Under those
solutions, the Hamilton equations of motion for the (q, p) variables become

_p ¼ � oR
oq

����
n¼nðq;pÞ

; _q ¼ oR
op

����
n¼nðq;pÞ

: ð6:101Þ

These autonomous equations in the (q, p) variables contain the full conservative and
dissipative content of the (q, p) dynamics. The time-symmetric part of R yields the
conservative equations of motion and the time-antisymmetric part the dissipative
ones. The conservative equations of motion agree with the Fokker-type ones showing

the same boundary conditions for the ðn; _nÞ variables. When going from the ðn; _nÞ
variables to the field variables hTT and _hTT, those time-symmetric boundary condi-
tions mean as much incoming as outgoing radiation.

To describe astrophysical systems one should use the physical boundary
conditions of no incoming radiation and past stationarity. Clearly, radiative
dissipation happens now and the time-symmetric part of the whole dynamics makes
the conservative part. In linear theories the conservative part just results from the
symmetric Green function Gs, whereas the dissipative one comes from the
antisymmetric Green function Ga, which is a homogeneous solution of the wave
equation. They both together combine to the retarded Green function Gret ¼ Gs þ Ga,
with Gs ¼ ð1=2ÞðGret þ GadvÞ and Ga ¼ ð1=2ÞðGret � GadvÞ, where Gadv denotes the
advanced Green function. In non-linear theories time-symmetric effects can also
result from homogeneous solutions, e.g., the tail contributions.

For a binary system, the leading-order direct and tail radiation reaction enter the
Routhian in the form

Rrrðxa; pa; tÞ ¼ � 1

2
hTT rr
ij ðtÞ p1ip1j

m1
þ p2ip2j

m2
� Gm1m2

r12
ni12n

j
12

� �
; ð6:102Þ

where hTT rr
ij ðtÞ decomposes into a direct radiation-reaction term and a tail one

(Damour et al. 2016),

hTT rr
ij ðtÞ ¼ � 4G

5c5
I ð3Þij ðtÞ þ 4GM

c3

Z 1

0
ds ln

cs
2sphys

� �
I ð5Þij ðt � sÞ

� �
: ð6:103Þ

The last term on the right side results in a Routhian, which reproduces the corre-
sponding tail effects in Blanchet (1993) and Galley et al. (2016).

The conservative (time-symmetric) part in hTT rr
ij reads
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hTT rr con
ij ðtÞ ¼ � 8G2M

5c8
Pf 2sphys=c

Z 1

�1

dt0

jt � t0j I
ð4Þ
ij ðt0Þ; ð6:104Þ

and the dissipative (time-antisymmetric) one equals

hTT rr dis
ij ðtÞ ¼ � 4G

5c5
I ð3Þij ðtÞ � 8G2M

5c8
Pf 2sphys=c

Z 1

�1

dt0

t � t0
I ð4Þij ðt0Þ; ð6:105Þ

where use has been made of the relations

Pf s0

Z 1

�1

dt0f ðt0Þ
jt � t0j ¼

Z 1

0
ds ln

s
s0

� �
½f ð1Þðt � sÞ � f ð1Þðt þ sÞ�; ð6:106Þ

Pf s0

Z 1

�1

dt0f ðt0Þ
t � t0

¼
Z 1

0
ds ln

s
s0

� �
½f ð1Þðt � sÞ þ f ð1Þðt þ sÞ�: ð6:107Þ

The leading-order 2.5PN dissipative binary orbital dynamics is described by the non-
autonomous Hamiltonian (Schäfer 1995),

H2:5PNðxa; pa; tÞ ¼
2G

5c5
I
...

ij

�
x0ka ðtÞ

� p1ip1j
m1

þ p2ip2j
m2

� Gm1m2

r12
ni12n

j
12

� �
; ð6:108Þ

where Iij is the Newtonian mass-quadrupole tensor,

Iij
�
x0ka ðtÞ

� �X
a

ma

�
x0iaðtÞx0jaðtÞ �

1

3
x02a ðtÞdij

�
: ð6:109Þ

Only after the Hamilton equations of motion have been obtained the primed position

and momentum variables coming from I
...

ij are allowed to be identified with the
unprimed position and momentum variables, also see Galley (2013). Generally, the
treatment of dissipation with Hamiltonians or Lagrangians necessarily needs dou-
bling of variables (Bateman 1931). In quantum mechanics, that treatment was
introduced by Schwinger (1961) and Keldysh (1965). In the EFT approach as well a
doubling of variables is needed if one wants to treat dissipative systems in a full-
fledged manner at the action level (see, e.g., Galley and Leibovich 2012 and Galley
et al. 2016). However, one should keep in mind that in quantum mechanics damping
can also be treated without doubling of variables by making use of the fact that the
Feynman Green function GF, the analogue of the retarded Green function of classical
physics, decomposes into real and imaginary parts, GF ¼ Gs þ ði=2ÞGð1Þ, where both
Gs from above and Gð1Þ, Hadamard’s elementary function, are symmetric Green
functions, Gð1Þ solving homogeneous wave equation as Ga does. The imaginary part
in e.g. the Eq. (8.7.57) in the book by Brown (1992) yields nothing but the dipole
radiation loss formula and this without any doubling of variables (also see Sect. 9–4
in Feynman and Hibbs 1965). Note, however, that the statement concerning the
Feynman propagator applies only to the calculation of the energy flux, not to that of
the gravitational-wave amplitude.
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Applications of the 2.5PN Hamiltonian can be found in, e.g., Kokkotas and
Schäfer (1995), Ruffert et al. (1996), Buonanno and Damour (1999), Gopakumar and
Schäfer (2008), where in Gopakumar and Schäfer (2008) a transformation to the
Burke-Thorne gauge (coordinate conditions) is performed. More information on the
2.5PN dissipation can be found in Damour (1987a). The 3.5PN Hamiltonian for
many point-mass systems is known too, it is displayed in Appendix E (Jaranowski
and Schäfer 1997; Königsdörffer et al. 2003). Recently the 4.5PN radiation-reaction
acceleration for nonspinning binary was computed using the EFT approach
(Leibovich et al. 2023). Regarding gravitational spin interaction, see the next
section, also for this case radiation reaction Hamiltonians have been derived through
leading order spin-orbit and spin-spin couplings (Steinhoff and Wang 2010; Wang
et al. 2011). Recent related developments within the EFT formalism are found
in Maia et al. (2017a, 2017b).

Let us mention that the already cited article Galley et al. (2016) contains two
interesting results improving upon and correcting an earlier article by Foffa and
Sturani (2013b): on the one hand it confirms the conservative part of the tail action,
particularly the additional rational constant 41/30 which corresponds to the famous 5/
6 in the Lamb shift (see, e.g., Brown 2000), and on the other side it correctly delivers
the dissipative part of the tail interaction. It is worth noting that in the both articles
the involved calculations were performed in harmonic coordinates.

7 Generalized ADM formalism for spinning objects

In this section we review the relatively recent generalization of ADM formalism
describing dynamics of systems made of spinning point masses or, more precisely,
pole-dipole particles. We start from reviewing the generalization which is of fully
reduced form (i.e., without unresolved constraints, spin supplementary and
coordinate conditions) and which is valid to linear order in spin variables (our
presentation of linear-in-spins dynamics closely follows that of Steinhoff and Schäfer
(2009a)).

7.1 Dynamics linear in spins

In this section Latin indices from the middle of the alphabet i, j, k, . . . are running
through f1; 2; 3g. We utilize three different reference frames here, denoted by
different indices. Greek indices refer to the coordinate frame ðxlÞ and have the values
l ¼ 0; 1; 2; 3. Lower case Latin indices from the beginning of the alphabet refer to
the local Lorentz frame with its associated tetrad fields

�
elaðxmÞ

�
(ela denotes thus the

l coordinate-frame component of the tetrad vector of label a), while upper case ones
denote the so-called body-fixed Lorentz frame with its associated “tetrad”

�
K a

AðzlÞ
�
,

where ðzlÞ denotes coordinate-frame components of the body’s position (so K a
A is the
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a local-Lorentz-frame component of the tetrad vector of label A). The values of these
Lorentz indices are marked by round and square brackets as a ¼ ð0Þ; ðiÞ and
A ¼ ½0�; ½i�, respectively, e.g., A ¼ ½0�; ½1�; ½2�; ½3�. The basics of the tetrad formalism
in GR can be found in, e.g., Sect. 12.5 of Weinberg (1972).

In GR, the coupling of a spinning object to a gravitational field, in terms of a
Lagrangian density, reads

LM ¼
Z

ds pl � 1

2
Sab x

ab
l

� �
dzl

ds
þ 1

2
Sab

dhab

ds

� �
dð4Þðxm � zmðsÞÞ: ð7:1Þ

The linear momentum variable is pl and the spin tensor is denoted by Sab. The

object’s affine time variable is s and dð4Þðxm � zmðsÞÞ is the 4-dimensional Dirac delta

function (from now on we will abbreviate it to dð4Þ). The angle variables are rep-
resented by some Lorentz matrix satisfying KAaKBbgAB ¼ gab or KAaKBbgab ¼ gAB,
where gAB ¼ diag ð�1; 1; 1; 1Þ ¼ gab, which must be respected upon infinitesimal

Lorentz transformations (see Hanson and Regge 1974), so dhab � K a
CdK

Cb ¼ �dhba.
The Ricci rotation coefficients x ab

l are given by

xlab ¼ eaaebbx ab
l ¼ �Cð4Þ

bal þ eca;lecb, with Cð4Þ
bal ¼ 1

2 ðgba;l þ gbl;a � gal;bÞ as the 4-
dimensional Christoffel symbols of the first kind with glm ¼ ealebmgab the 4-di-

mensional metric. As in Hanson and Regge (1974), the matrix KCa can be subjected
to right (or left) Lorentz transformations, which correspond to transformations of the
local Lorentz reference frame (or the body-fixed frame, respectively). In the action
(7.1) only a minimal coupling between spin variables and gravitational field is
employed; for more general (than minimal) couplings, the reader is referred to Bailey
and Israel (1975).

The matter constraints are given by, also in terms of a Lagrangian density,

LC ¼
Z

ds ka1p
bSab þ k2½i�K½i�apa � k3

2
ðp2 þ m2c2Þ

� �
dð4Þ; ð7:2Þ

where m is the constant mass of the object, p2 � plpl, and ka1, k2½i�, k3 are the
Lagrange multipliers. The constraint

pbSab ¼ 0 ð7:3Þ
is called the spin supplementary condition (SSC), it states that in the rest frame the
spin tensor contains the 3-dimensional spin SðiÞðjÞ only (i.e., the mass-dipole part

Sð0ÞðiÞ vanishes).
13 The conjugate constraint K½i�apa ¼ 0 ensures that KCa is a pure 3-

dimensional rotation matrix in the rest frame (no Lorentz boosts), see Hanson and
Regge (1974). Finally, the gravitational part is given by the usual Einstein-Hilbert
Lagrangian density

LG ¼ c4

16pG
ffiffiffiffiffiffiffi�g

p
Rð4Þ; ð7:4Þ

where g is the determinant of the 4-dimensional metric and Rð4Þ is the 4-dimensional

123

    2 Page 76 of 139 Review Article



Ricci scalar. Using a second-order form of the gravitational action, i.e., not varying
the connection independently, ensures that the torsion tensor vanishes, see, e.g.,
Nelson and Teitelboim (1978). The complete Lagrangian density is the sum

L ¼ LG þ LM þ LC: ð7:5Þ
We assume space-asymptotic flatness as a boundary condition of the spacetime. The
total action is given in a second-order form, where the Ricci rotation coefficients are
not independent field degrees of freedom and where no torsion of spacetime shows
up. It reads

W ½eal; zl; pl;KCa; Sab; k
a
1; k2½i�; k3� ¼

Z
dt d3xL; ð7:6Þ

and must be varied with respect to the tetrad field eal, the Lagrange multipliers ka1,
k2½i�, k3, position zl and linear momentum pl of the object, as well as with respect to

angle-type variables KCa and spin tensor Sab associated with the object.
Variation of the action dW ¼ 0 leads to the equations of motion for the matter

variables (here d and D denote ordinary and covariant total derivatives,
respectively14)

DSab
Ds

¼ 0;
DKCa

Ds
¼ 0; ul � dzl

ds
¼ k3p

l; ð7:7Þ

Dpl
Ds

¼ � 1

2
Rð4Þ
lqabu

qSab; ð7:8Þ

as well as to the usual Einstein equations with the stress-energy tensor (cf. Tulczyjew
1957 and Sect. 12.5 in Weinberg 197215)

Tlm ¼ elaffiffiffiffiffiffiffi�g
p dðLM þ LCÞ

deam

¼
Z

ds k3p
lpm

dð4Þffiffiffiffiffiffiffi�g
p þ

�
uðlSmÞa

dð4Þffiffiffiffiffiffiffi�g
p

�
jja

" #
; ð7:9Þ

where Rð4Þ
lqab is the 4-dimensional Riemann tensor in mixed indices, jja denotes the 4-

dimensional covariant derivative. Here it was already used that preservation of the
constraints in time requires ka1 to be proportional to pa and k2½i� to be zero, so that ka1
and k2½i� drop out of the matter equations of motion and the stress-energy tensor. The
Lagrange multiplier k3 ¼ k3ðsÞ represents the reparametrization invariance of the

action (notice k3 ¼
ffiffiffiffiffiffiffiffiffi
�u2

p
=m). Further, an antisymmetric part of the stress-energy

tensor vanishes,

13 For more details about SSCs, see Sect. 3.3 of our review.
14 Covariant derivative of an object with Greek index means application of the Christoffel symbols (apart
from zl which are four scalars), in case of a small Latin index the application of the Ricci rotation
coeffients, and in case of a capital Latin index just the ordinary derivative of a scalar.
15 Especially Eq. (12.5.35) there.
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1

2

Z
ds Slmuq

dð4Þffiffiffiffiffiffiffi�g
p

 !
jjq
¼ 1

2

Z
ds

DSlm

Ds
dð4Þffiffiffiffiffiffiffi�g
p ¼ 0; ð7:10Þ

and Tlmjjm ¼ 0 holds by virtue of the matter equations of motion. Obviously, the spin

length s as defined by 2 s2 � SabSab is conserved.
A fully reduced action is obtained by the elimination of all constraints and gauge

degrees of freedom. However, after that the action has still to be transformed into
canonical form by certain variable transformations. To perform this reduction we
employ 3?1 splitting of spacetime by spacelike hypersurfaces t ¼ const. The
timelike unit covector orthogonal to these hypersurfaces reads nl ¼ ð�N ; 0; 0; 0Þ or
nl ¼ ð1;�NiÞ=N . The three matter constraints can then be solved in terms of pi, Sij,

and K½i�ðkÞ as

np � nlpl ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ cijpipj

q
; ð7:11Þ

nSi � nlSli ¼ pkckjSji
np

¼ cijnS
j; ð7:12Þ

K½j�ð0Þ ¼ K½j�ðiÞ pðiÞ
pð0Þ

; K½0�a ¼ � pa

mc
: ð7:13Þ

We take LC ¼ 0 from now on. A split of the Ricci rotation coefficients results in

xkij ¼ �Cjik þ eai;keaj; ð7:14Þ

nlxkli ¼ Kki � gij
N j
;k

N
þ eai

N
ðea0;k � eal;kN

lÞ; ð7:15Þ

x0ij ¼ NKij � Nj;i þ eai;0eaj; ð7:16Þ

nlx0li ¼ KijN
j � N;i � cij

N j
;0

N
þ eai

N
ðea0;0 � eal;0N

lÞ; ð7:17Þ

where ;i denotes the 3-dimensional covariant derivative, Cjik the 3-dimensional
Christoffel symbols, and the extrinsic curvature Kij is given by
2NKij ¼ �cij;0 þ 2Nði;jÞ, where ð���Þ denotes symmetrization.

It is convenient to employ here the time gauge (see Schwinger 1963a and also
Dirac 1962; Kibble 1963; Nelson and Teitelboim 1978),

elð0Þ ¼ nl: ð7:18Þ
Then lapse and shift turn into Lagrange multipliers in the matter action, like in the
ADM formalism for nonspinning matter points. The condition (7.18) leads to the
following relations:

eð0Þi ¼ 0 ¼ e0ðiÞ; eð0Þ0 ¼ N ¼ 1=e0ð0Þ; ð7:19Þ
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Ni ¼ �Neið0Þ; eðiÞ0 ¼ NjeðiÞj ; ð7:20Þ

cij ¼ eðmÞi eðmÞj; cij ¼ eiðmÞe
ðmÞj; ð7:21Þ

which effectively reduce the tetrad eal to a triad eðiÞj.
The matter part of the Lagrangian density, after making use of the covariant SSC

(7.3), turns into

LM ¼ LMK þ LMC þ LGK þ ð tdÞ; ð7:22Þ
where ð tdÞ denotes an irrelevant total divergence. After fixing the yet arbitrary
parameter s by choosing s ¼ z0 ¼ ct, where t is the time coordinate, the terms
attributed to the kinetic matter part are given by

LMK ¼
�
pi þ KijnS

j þ AkleðjÞke
ðjÞ
l;i �

�
1

2
Skj þ

pðknSjÞ
np

�
Ckj

i

�
_zidþ nSi

2np
_pid

þ
�
SðiÞðjÞ þ

nSðiÞpðjÞ � nSðjÞpðiÞ
np

�KðiÞ
½k� _K

½k�ðjÞ

2
d; ð7:23Þ

where d � dðxi � ziðtÞÞ and Aij is defined by

cikcjlA
kl ¼ 1

2
Sij þ nSipj

2np
: ð7:24Þ

The matter parts of the gravitational constraints result from

LMC ¼ �NHmatter þ NiHmatter
i ; ð7:25Þ

where the densities Hmatter and Hmatter
i are computed from Eqs. (2.11)–(2.12) and

(7.9). After employing the covariant SSC one gets (Steinhoff et al. 2008c)

Hmatter ¼ ffiffiffi
c

p
Tlmn

lnm ¼ �npd� Kij pinSj
np

d� ðnSkdÞ;k ; ð7:26Þ

Hmatter
i ¼ � ffiffiffi

c
p

Timn
m ¼ ðpi þ KijnS

jÞdþ
�
1

2
cmkSikdþ dðki c

lÞm pknSl
np

d

�
;m

: ð7:27Þ

Further, some terms attributed to the kinetic part of the gravitational field appear as

LGK ¼ AijeðkÞi _e
ðkÞ
j d: ð7:28Þ

Now we proceed to Newton-Wigner (NW) variables ẑi, Pi, ŜðiÞðjÞ, and K̂½i�ðjÞ, which
turn the kinetic matter part LMK into canonical form. The variable transformations
read

zi ¼ ẑi � nSi

mc� np
; nSi ¼ � pkckjŜji

mc
; ð7:29Þ
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Sij ¼ Ŝij � pinSj
mc� np

þ pjnSi
mc� np

; ð7:30Þ

K½i�ðjÞ ¼ K̂½i�ðkÞ
�
dkj þ

pðkÞpðjÞ

mcðmc� npÞ
�
; ð7:31Þ

Pi ¼ pi þ KijnS
j þ ÂkleðjÞke

ðjÞ
l;i �

�
1

2
Skj þ

pðknSjÞ
np

�
Ckj

i ; ð7:32Þ

where Âij is given by

cikcjl Â
kl ¼ 1

2
Ŝij þ

mcpðinSjÞ
npðmc� npÞ : ð7:33Þ

The NW variables have the important properties ŜðiÞðjÞŜðiÞðjÞ ¼ 2 s2 ¼ const and

K̂ðiÞ
½k�K̂

½k�ðjÞ ¼ dij, which implies that dĥðiÞðjÞ � K̂ðiÞ
½k�dK̂

½k�ðjÞ is antisymmetric. The

redefinitions of position, spin tensor, and angle-type variables are actually quite
natural generalizations of their Minkowski space versions to curved spacetime,
cf., Hanson and Regge (1974) and Fleming (1965). However, there is no difference
between linear momentum pi and canonical momentum Pi in the Minkowski case. In
these NW variables, one has

LGK þ LMK ¼ L̂GK þ L̂MK þ ðtdÞ; ð7:34Þ
with [from now on d ¼ dðxi � ẑiðtÞÞ]

L̂MK ¼ Pi
_̂zidþ 1

2
ŜðiÞðjÞ

_̂h
ðiÞðjÞ

d; ð7:35Þ

L̂GK ¼ ÂijeðkÞie
ðkÞ
j;0 d: ð7:36Þ

Notice that all _pi terms in the action have been canceled by the redefinition of the
position and also all Kij terms were eliminated from LMC and LMK by the redefinition

of the linear momentum. If the terms explicitly depending on the triad eðiÞj are
neglected, the known source terms of Hamilton and momentum constraints in
canonical variables are obtained [cf. Equations (4.23) and (4.25) in Steinhoff et al.
(2008c)].

The final step goes with the ADM action functional of the gravitational field
(Arnowitt et al. 1962; DeWitt 1967; Regge and Teitelboim 1974), but in tetrad form
as derived by Deser and Isham (1976). The canonical momentum conjugate to eðkÞj is
given by

�pðkÞj ¼ 8pG
c3

oL
oeðkÞj;0

¼ eðkÞi pij þ eðkÞi
8pG
c3

Âijd; ð7:37Þ

where the momentum pij is given by
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pij ¼ ffiffiffi
c

p ðcijckl � cikcjlÞKkl: ð7:38Þ
Legendre transformation leads to

L̂GK þ LG ¼ c3

8pG
�pðkÞjeðkÞj;0 � c4

16pG
E i;i þ LGC þ ðtdÞ: ð7:39Þ

In asymptotically flat spacetimes the quantity E i is given by [cf. Eq. (2.6)]

E i ¼ cij;j � cjj;i: ð7:40Þ
The total energy then reads

E ¼ c4

16pG

I
d2si E i: ð7:41Þ

The constraint part of the gravitational Lagrangian density takes the form

LGC ¼ �NHfield þ NiHfield
i ; ð7:42Þ

with

Hfield ¼ � c4

16pG
ffiffiffi
c

p cRþ 1

2
cijp

ij
� �2�cijcklp

ikpjl
� �

; ð7:43Þ

Hfield
i ¼ c3

8pG
cijp

jk
;k ; ð7:44Þ

where R is the 3-dimensional Ricci scalar. Due to the symmetry of pij, not all
components of �pðkÞj are independent variables (i.e., the Legendre map is not
invertible), leading to the additional constraint (½. . .� denotes anti-symmetrization)

�p½ij� ¼ 8pG
c3

Â½ij�d: ð7:45Þ

This constraint will be eliminated by going to the spatial symmetric gauge (for the
frame eðiÞj)

eðiÞj ¼ eij ¼ eji; eðiÞj ¼ eij ¼ eji: ð7:46Þ
Then the triad is fixed as the matrix square-root of the 3-dimensional metric,
eijejk ¼ cik , or, in matrix notation,

ðeijÞ ¼
ffiffiffiffiffiffiffiffi
ðcijÞ

q
: ð7:47Þ

Therefore, we can define a quantity Bkl
ij as
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ek½iej�k;l ¼ Bkl
ij ckl;l; ð7:48Þ

or, in explicit form,

2Bkl
ij ¼ emi

oemj
ogkl

� emj
oemi
ogkl

: ð7:49Þ

This expression may be evaluated perturbatively, cf., Steinhoff et al. (2008c). One
also has Bkl

ij dkl ¼ 0. Furthermore,

eðkÞie
ðkÞ
j;l ¼ Bkl

ij ckl;l þ
1

2
cij;l; ð7:50Þ

which yields

�pðkÞjeðkÞj;0 ¼ 1

2
pijcancij;0; ð7:51Þ

with the new canonical field momentum

pijcan ¼ pij þ 8pG
c3

ÂðijÞdþ 16pG
c3

Bij
klÂ

½kl�d: ð7:52Þ

The gravitational constraints arising from the variations dN and dNi read,

Hfield þHmatter ¼ 0; Hfield
i þHmatter

i ¼ 0: ð7:53Þ
They are eliminated by imposing the gauge conditions

3cij;j � cjj;i ¼ 0; piican ¼ 0; ð7:54Þ
which allow for the decompositions

cij ¼ W4dij þ hTTij ; pijcan ¼ ~pijcan þ pijTTcan ; ð7:55Þ
where hTTij and pijTTcan are transverse and traceless quantities, and longitudinal part ~pijcan
is related to a vector potential V i

can by

~pijcan ¼ V i
can;j þ V j

can;i �
2

3
dijV

k
can;k: ð7:56Þ

Let us note that in the construction of V i
can the operator D

�1 is employed [see the text
below Eq. (2.15)].

The gravitational constraints can now be solved for W and ~pijcan, leaving hTTij and

pijTTcan as the final degrees of freedom of the gravitational field. Notice that our gauge
condition piican ¼ 0 deviates from the original ADM one pii ¼ 0 by spin corrections
(which enter at 5PN order). The final fully reduced action reads,

W ¼ c4

16pG

Z
d4x pijTTcan h

TT
ij;0 þ

Z
dt

�
Pi
_̂zi þ 1

2
ŜðiÞðjÞ

_̂h
ðiÞðjÞ � E

�
: ð7:57Þ
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The dynamics is completely described by the ADM energy E, which is the total
Hamiltonian (E ¼ H) once it is expressed in terms of the canonical variables. This
Hamiltonian can be written as the volume integral

H ½ẑi;Pi; ŜðiÞðjÞ; hTTij ; p
ijTT
can � ¼ � c4

2pG

Z
d3xDW½ẑi;Pi; ŜðiÞðjÞ; hTTij ; p

ijTT
can �: ð7:58Þ

The equal-time Poisson bracket relations take the standard form,

fẑi;Pjg ¼ dij; fŜðiÞ; ŜðjÞg ¼ �ijk ŜðkÞ; ð7:59Þ

fhTTij ðx; tÞ; pklTTcan ðx0; tÞg ¼ 16pG
c3

dTTklij dðx� x0Þ; ð7:60Þ

zero otherwise, where ŜðiÞ ¼ 1
2 �ðiÞðjÞðkÞŜðjÞðkÞ, �ðiÞðjÞðkÞ ¼ �ijk ¼ ði� jÞðj� kÞðk � iÞ=2,

and dTTijmn is the TT-projection operator, see, e.g., Steinhoff et al. (2008c). Though the
commutation relations (7.59) and (7.60) are sufficient for the variables on which the
Hamiltonian (7.58) depends on, for completeness we add the non-trivial ones needed

when a Hamiltonian, besides ŜðiÞðjÞ, also depends on the 3-dimensional rotation

matrix K̂½i�ðjÞ (“angle” variables). They read

fK̂½i�ðjÞ; ŜðkÞðlÞg ¼ K̂½i�ðkÞdlj � K̂½i�ðlÞdkj: ð7:61Þ

The angular velocity tensor X̂ðiÞðjÞ, the Legendre dual to ŜðiÞðjÞ, i.e.

X̂ðiÞðjÞ ¼ 2oH=oŜðiÞðjÞ, is defined by X̂ðiÞðjÞ ¼ dĥðiÞðjÞ=dt ¼ K̂ ðiÞ
½k�

_̂K
½k�ðjÞ

, and the time

derivative of the spin tensor thus reads

_̂SðiÞðjÞ ¼ 2ŜðkÞ½ðiÞXðjÞ�ðkÞ þ K̂½k�ðjÞ oH

oK̂½k�ðiÞ � K̂½k�ðiÞ oH

oK̂½k�ðjÞ : ð7:62Þ

The Hamiltonian H of Eq. (7.58) generates the time evolution in the reduced mat-
ter?field phase space. Generalization and application to many-body systems is quite
straightforward, see Steinhoff et al. (2008c). The total linear (Ptot

i ) and angular (J totij )

momenta take the forms (particle labels are denoted by a),

Ptot
i ¼

X
a

Pai � c3

16pG

Z
d3x pklTTcan hTTkl;i; ð7:63Þ

J totij ¼
X
a

ðẑiaPaj � ẑjaPai þ ŜaðiÞðjÞÞ � c3

8pG

Z
d3x ðpikTTcan hTTkj � pjkTTcan hTTki Þ

� c3

16pG

Z
d3x ðxipklTTcan hTTkl;j � xjpklTTcan hTTkl;iÞ; ð7:64Þ

and are obtained from the reduced action in the standard Noether manner.
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7.2 Spin-squared dynamics

For the construction of the spin-squared terms we resort to the well-known stress-
energy tensor for pole-dipole particles but augmented by quadrupolar terms. The
stress-energy tensor density then reads (Steinhoff et al. 2008b)ffiffiffiffiffiffiffi�g

p
Tlm ¼

Z
ds

�
tlmdð4Þ þ ðtlmadð4ÞÞjja þ ðtlmabdð4ÞÞjjab

�
: ð7:65Þ

The quantities tlm... ¼ tml... only depend on the four-velocity ul � dzl=ds, where
zlðsÞ is the parametrization of the worldline in terms of its proper time s, and on the
spin and quadrupole tensors. Notice that, in general, the quadrupole expressions
include not only the mass-quadrupole moment, but also the current-quadrupole
moment and the stress-quadrupole moment (see, e.g., Steinhoff and Puetzfeld 2010).
For the pole-dipole particle tlmab is zero. In contrast to the stress-energy tensor of
pole-dipole particles, the Riemann tensor shows up at the quadrupolar level. How-
ever, the source terms of the constraints,

c
1
2Tlmnlnm ¼ Hmatter; �c

1
2T l

i nl ¼ Hmatter
i ; ð7:66Þ

at the approximation considered here, do not include the Riemann tensor.

Regarding rotating black holes, the mass-quadrupole tensor Qij
1 of object 1 is given

by Steinhoff et al. (2008b) (also see, e.g., Thorne 1980 and Damour 2001)

m1c
2Qij

1 � cikcjlcmnŜ1kmŜ1nl þ 2

3
S21c

ij ¼ eiðkÞe
j
ðlÞ
�
S1ðkÞS1ðlÞ �

1

3
S21dðkÞðlÞ

�
; ð7:67Þ

where S1 ¼ ðS1ðiÞÞ is the three-dimensional Euclidean spin vector related to a spin

tensor Ŝ1ij with the help of a dreibein eiðjÞ by Ŝ1ij ¼ eiðkÞejðlÞ�klmS1ðmÞ. The quantity S21
is conserved in time,

2S21 ¼ cikcjl Ŝ1ijŜ1kl ¼ const : ð7:68Þ
The source terms of the constraints in the static case (independent from the linear
momenta Pi of the objects, what means taking Pi ¼ 0, but pi 6¼ 0) read

Hmatter
S21 ; static

¼ c1 c2Qij
1d1

� �
;ij
þ 1

8m1
cmnc

pjcqlcmi;pc
nk

;qŜ1ijŜ1kld1

þ 1

4m1
cijcmnckl;mŜ1lnŜ1jkd1
	 


;i
; ð7:69Þ

Hmatter
i static ¼

1

2
cmkŜikd
� �

;m
þOðŜ3Þ: ð7:70Þ

The c1 is some constant that must be fixed by additional considerations, like
matching to the Kerr metric. The noncovariant terms are due to the transition from
three-dimensional covariant linear momentum pi to canonical linear momentum Pi

given by [cf. Eq. (4.24) in Steinhoff et al. 2008c or Eq. (7.32) above]
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pi ¼ Pi � 1

2
cijc

lmcjk;mŜkl þOðP2Þ þOðŜ2Þ: ð7:71Þ

Thus the source terms are indeed covariant when the point-mass and linear-in-spin
terms depending on the (noncovariant) canonical linear momentum are added, cf.
Eqs. (7.26) and (7.27).

The simple structure of the Qij
1 term in Eq. (7.69) is just the structure of minimal

coupling of the Minkowski space mass-quadrupole term to gravity. As shown
by Steinhoff et al. (2008b), the most general ansatz for the spin-squared coupling
including the three-dimensional Ricci tensor reduces to the shown term. Here we
may argue that the correct limit to flat space on the one side and on the other side, an
undefined multiplication with a second delta-function, resulting in that limit from the
Ricci tensor of the spinning “point” particle, makes the ansatz unique. A deeper
analysis of the structure of nonlinear-in-spin couplings can be found in, e.g., Levi and
Steinhoff (2015).

7.3 Approximate Hamiltonians for spinning binaries

All the approximate Hamiltonians presented in this subsection have been derived or
rederived in recent papers by one of the authors and his collaborators employing
canonical formalisms presented in Sects. 7.1 and 7.2 (Damour et al. 2008c; Steinhoff
et al. 2008b, c). They are two-point-particle Hamiltonians, which can be used to
approximately model binaries made of spinning black holes. For the rest of this
section, canonical variables (which are arguments of displayed Hamiltonians) are not
hatted any further. We use a; b ¼ 1; 2 as the bodies labels, and for a 6¼ b we define
rabnab � xa � xb with n2ab ¼ 1.

The Hamiltonian of leading-order (LO) spin-orbit coupling reads (let us note that
in the following pa will denote the canonical linear momenta)

HLO
SO ¼

X
a

X
b6¼a

G

c2r2ab
ðSa � nabÞ � 3mb

2ma
pa � 2pb

� �
; ð7:72Þ

and the one of leading-order spin(1)-spin(2) coupling is given by

HLO
S1S2

¼
X
a

X
b 6¼a

G

2c2r3ab

�
3ðSa � nabÞðSb � nabÞ � ðSa � SbÞ

�
: ð7:73Þ

The more complicated Hamiltonian is the one with spin-squared terms because it
relates to the rotational deformation of spinning black holes. To leading order, say for
spin(1), it reads

HLO
S21

¼ Gm2

2c2m1r312

�
3ðS1 � n12Þ2 � S21

�
: ð7:74Þ

The LO spin-orbit and spin(a)-spin(b) centre-of-mass vectors take the form
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GLO
SO ¼

X
a

1

2c2ma
ðpa � SaÞ; GLO

S1S2
¼ 0; GLO

S21
¼ 0: ð7:75Þ

The LO spin Hamiltonians have been applied to studies of binary pulsar and solar
system dynamics, including satellites on orbits around the Earth (see, e.g., Barker and
O’Connell 1979 and Schäfer 2004). Another application to the coalescence of
spinning binary black holes via the effective-one-body approach is given in Damour
(2001). The LO spin dynamics was analysed for black holes and other extended
objects in external fields by D’Eath (1975a) and Thorne and Hartle (1985), and for
binary black holes in the slow-motion limit by D’Eath (1975b). In Barausse et al.
(2009, 2012b) the spinning test-particle dynamics in the Kerr metric has been
explored at LO within Hamiltonian formalism based on Dirac brackets. In the arti-
cle Kidder (1995) the LO spin-orbit and spin1-spin2 dynamics for compact binaries
is treated in full detail, even including their influence on the gravitational waves and
the related gravitational damping, particularly the quasi-circular inspiraling and the
recoil of the linear momuntum from the LO spin coupling was obtained.

The Hamiltonian of the next-to-leading-order (NLO) spin-orbit coupling reads

HNLO
SO ¼ �G

ððp1 � S1Þ � n12Þ
c4r212

 
5m2p21
8m3

1

þ 3ððp1 � p2Þ þ ðn12 � p1Þðn12 � p2ÞÞ
4m2

1

� 3ðp22 � 2ðn12 � p2Þ2Þ
4m1m2

!
þ G

ððp1 � S1Þ � p2Þ
c4r212

2ðn12 � p2Þ
m1m2

� 3ðn12 � p1Þ
4m2

1

� �
þ G

ððp2 � S1Þ � n12Þ
c4r212

ðp1 � p2Þ þ 3ðn12 � p1Þðn12 � p2Þ
m1m2

� G2 ððp1 � S1Þ � n12Þ
c4r312

11m2

2
þ 5m2

2

m1

� �
þ G2 ððp2 � S1Þ � n12Þ

c4r312
6m1 þ 15m2

2

� �
þ ð1 $ 2Þ: ð7:76Þ

This Hamiltonian was derived by Damour et al. (2008c). The equivalent derivation of
the NLO spin-orbit effects in two-body equations of motion was done in harmonic
coordinates by Blanchet et al. (2006, 2007, 2010a).

The NLO spin(1)-spin(2) Hamiltonian is given by
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HNLO
S1S2

¼ G

2c4m1m2r312

h
6ððp2 � S1Þ � n12Þððp1 � S2Þ � n12Þ

þ 3

2
ððp1 � S1Þ � n12Þððp2 � S2Þ � n12Þ

� 15ðS1 � n12ÞðS2 � n12Þðn12 � p1Þðn12 � p2Þ
� 3ðS1 � n12ÞðS2 � n12Þðp1 � p2Þ þ 3ðS1 � p2ÞðS2 � n12Þðn12 � p1Þ
þ 3ðS2 � p1ÞðS1 � n12Þðn12 � p2Þ þ 3ðS1 � p1ÞðS2 � n12Þðn12 � p2Þ
þ 3ðS2 � p2ÞðS1 � n12Þðn12 � p1Þ � 3ðS1 � S2Þðn12 � p1Þðn12 � p2Þ
þ ðS1 � p1ÞðS2 � p2Þ �

1

2
ðS1 � p2ÞðS2 � p1Þ þ

1

2
ðS1 � S2Þðp1 � p2Þ

i
þ 3G

2c4m2
1r

3
12

h
� ððp1 � S1Þ � n12Þððp1 � S2Þ � n12Þ

þ ðS1 � S2Þðn12 � p1Þ2 � ðS1 � n12ÞðS2 � p1Þðn12 � p1Þ
i

þ 3G

2c4m2
2r

3
12

h
� ððp2 � S2Þ � n12Þððp2 � S1Þ � n12Þ

þ ðS1 � S2Þðn12 � p2Þ2 � ðS2 � n12ÞðS1 � p2Þðn12 � p2Þ
i

þ 6G2ðm1 þ m2Þ
c4r412

½ðS1 � S2Þ � 2ðS1 � n12ÞðS2 � n12Þ�: ð7:77Þ

The calculation of the LO and NLO S21 -Hamiltonians needs employing the source
terms (7.69)–(7.70). In the case of polar-dipolar-quadrupolar particles which are to

model spinning black holes, Qij
1 is the quadrupole tensor of the black hole 1 resulting

from its rotational deformation and the value of the constant c1 is fixed by matching
to the test-body Hamiltonian in a Kerr background: c1 ¼ �1=2. Additionally one has
to use the Poincaré algebra for unique fixation of all coefficients in momentum-
dependent part of the Hamiltonian. The NLO S21-Hamiltonian was presented for the
first time by Steinhoff et al. (2008b).16 It reads

16 Slightly earlier a fully dynamical calculation of that dynamics was made by Porto and Rothstein
(2008a). This result turned out to be incomplete due to an omitted term in a specific Feynman diagram
(Porto and Rothstein 2010a).
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HNLO
S21

¼ G

c4r312

�
m2

m3
1

�
1

4
p1 � S1ð Þ2þ 3

8
p1 � n12ð Þ2S21 �

3

8
p21 S1 � n12ð Þ2

� 3

4
p1 � n12ð Þ S1 � n12ð Þ p1 � S1ð Þ

�
þ 3

4m1m2

h
3p22 S1 � n12ð Þ2

� p22S
2
1

i
þ 1

m2
1

�
3

4
p1 � p2ð ÞS21 �

9

4
p1 � p2ð Þ S1 � n12ð Þ2

� 3

2
p1 � n12ð Þ p2 � S1ð Þ S1 � n12ð Þ þ 3 p2 � n12ð Þ p1 � S1ð Þ S1 � n12ð Þ

þ 3

4
p1 � n12ð Þ p2 � n12ð ÞS21 �

15

4
p1 � n12ð Þ p2 � n12ð Þ S1 � n12ð Þ2

��
� G2m2

2c4r412

�
9ðS1 � n12Þ2 � 5S21 þ

14m2

m1
ðS1 � n12Þ2 � 6m2

m1
S21

�
: ð7:78Þ

The spin precession equations corresponding to the Hamiltonians HNLO
S1S2

and HNLO
S21

have been calculated also by Porto and Rothstein (2008b)17 and Porto and Rothstein
(2008a),18 respectively.

The NLO spin-orbit and spin(a)-spin(b) centre-of-mass vectors take the form

GNLO
SO ¼ �

X
a

p2a
8c4m3

a

ðpa � SaÞ

þ
X
a

X
b 6¼a

Gmb

4c4marab

�
½ðpa � SaÞ � nab� 5xa þ xb

rab
� 5ðpa � SaÞ

�
þ
X
a

X
b 6¼a

G

c4rab

�
3

2
ðpb � SaÞ � 1

2
ðnab � SaÞðpb � nabÞ

� ½ðpa � SaÞ � nab� xa þ xb
rab

�
; ð7:79Þ

GNLO
S1S2

¼ G

2c4
X
a

X
b6¼a

�
3ðSa � nabÞðSb � nabÞ � ðSa � SbÞ½ � xa

r3ab
þ ðSb � nabÞ Sa

r2ab

�
;

ð7:80Þ

17 The paper Porto and Rothstein (2008b) has benefited from Steinhoff et al. (2008a) when forgotten terms
from spin-induced velocity corrections in the LO spin-orbit coupling could be identified (so-called
subleading corrections), see Eq. (57) in Porto and Rothstein (2008b).
18 The final spin precession equation of the paper (Porto and Rothstein 2008a) deviates from the
corresponding one in Steinhoff et al. (2008c). A detailed inspection has shown that the last term in Eq. (60)
of Porto and Rothstein (2008a) has opposite sign (Steinhoff and Schäfer 2009b; a typo according to Porto
and Rothstein 2010a). Using the reverse sign, after redefinition of the spin variable, agreement with the
Hamiltonian of Steinhoff et al. (2008c) is achieved.
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GNLO
S21

¼ 2Gm2

c4m1

�
3 S1 � n12ð Þ2

8r312
x1 þ x2ð Þ þ S21

8r312
3x1 � 5x2ð Þ � S1 � n12ð ÞS1

r212

�
:

ð7:81Þ
We can sum up all centre-of-mass vectors displayed in this subsection in the fol-
lowing equation:

G ¼ GN þG1PN þG2PN þG3PN þG4PN þGLO
SO þGNLO

SO þGNLO
S1S2

þGNLO
S21

þGNLO
S22

;

ð7:82Þ
where GN up to G4PN represent the pure orbital contributions, which do not depend
on spin variables (the explicit formulae for them one can find in Jaranowski and
Schäfer (2015)). The last term in Eq. (7.82) can be obtained from the second last one
by means of the exchange ð1 $ 2Þ of the bodies’ labels.

The explicitly given above and in Appendices C and D conservative binary
Hamiltonians, modeling binaries made of spinning black holes, can be summarized
as follows:

H ¼ HN þ H1PN þ H2PN þ H3PN þ H4PN

þ HLO
SO þ HLO

S21
þ HLO

S1S2
þ HLO

S22

þ HNLO
SO þ HNLO

S21
þ HNLO

S1S2
þ HNLO

S22

þ HNNLO
SO þ HNNLO

S21
þ HNNLO

S1S2
þ HNNLO

S22

þ HLO
S31

þ HLO
S21S2

þ HLO
S1S22

þ HLO
S32

þ HLO
S41

þ HLO
S31S2

þ HLO
S21S

2
2
þ HLO

S1S32
þ HLO

S42
; ð7:83Þ

where the first line comprises pure orbital, i.e., spin-independent, Hamiltonians. The
Hamiltonians from the second and the third line are explicitly given above. The
NNLO spin-orbit HNNLO

SO and spin1-spin2 HNNLO
S1S2

Hamiltonians were obtained
by Hartung et al. (2013), their explicit forms can be found in Appendix D. Levi and
Steinhoff (2021) derived, applying the EFT method to extended bodies, the NNLO
spin-squared Hamiltonians HNNLO

S21
and HNNLO

S22
. All the Hamiltonians cubic and

quartic in the spins were derived by Hergt and Schäfer (2008a, b) with the aid of
approximate ADMTT coordinates of the Kerr metric and application of the Poincaré
algebra.19 Their generalizations to general extended objects were achieved by Levi
and Steinhoff (2015), where also for the first time the Hamiltonians HLO

S41
and HLO

S42

were obtained (correcting Hergt and Schäfer 2008a). All the Hamiltonians cubic and
quartic in the spins and displayed in Eq. (7.83) are explicitly given in Appendix D.
Notice that not all Hamiltonians from Eq. (7.83) are necessarily given in the ADM
gauge, because any use of the equations of motion in their derivation has changed
gauge. E.g., for spinless particles the highest conservative Hamiltonian in ADM
gauge is H2PN.

19 The HLO
S41

and HLO
S42

terms were incorrectly claimed to be zero by Hergt and Schäfer (2008a).
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For completeness we also give the spin-squared Hamiltonians for neutron stars
through next-to-leading order (Porto and Rothstein 2008a, 2010a; Hergt et al. 2010).
They depend on the quantity CQ, which parametrizes quadrupolar deformation effects
induced by spins. The LO Hamiltonian reads (cf., e.g., Barker and O’Connell 1979)

HLO
S21 ðNSÞ ¼

Gm1m2

2c2r312
CQ1 3

ðS1 � n12Þ2
m2

1

� S21
m2

1

 !
: ð7:84Þ

The NLO Hamiltonian equals

HNLO
S21 ðNSÞ ¼

G

c4r312

"
m2

m3
1

 
�21

8
þ9

4
CQ1

� �
p21ðS1 �n12Þ2þ

3

2
CQ1 �

5

4

� �
ðS1 �p1Þ2

þ 15

4
�9

2
CQ1

� �
ðp1 �n12ÞðS1 �n12ÞðS1 �p1Þ

þ �9

8
þ3

2
CQ1

� �
ðp1 �n12Þ2S21þ

5

4
�5

4
CQ1

� �
p21S

2
1

!

þ 1

m2
1

 
�15

4
CQ1ðp1 �n12Þðp2 �n12ÞðS1 �n12Þ2

þ 3�21

4
CQ1

� �
ðp1 �p2ÞðS1 �n12Þ2

þ �3

2
þ9

2
CQ1

� �
ðp2 �n12ÞðS1 �n12ÞðS1 �p1Þ

þ �3þ3

2
CQ1

� �
ðp1 �n12ÞðS1 �n12ÞðS1 �p2Þ

þ 3

2
�3

2
CQ1

� �
ðS1 �p1ÞðS1 �p2Þ

þ 3

2
�3

4
CQ1

� �
ðp1 �n12Þðp2 �n12ÞS21

þ �3

2
þ9

4
CQ1

� �
ðp1 �p2ÞS21

!

þ CQ1

m1m2

	9
4
p22ðS1 �n12Þ2�

3

4
p22S

2
1


#

þG2m2

c4r412

"
2þ1

2
CQ1 þ

m2

m1

�
1þ2CQ1

�� �
S21

þ �3�3

2
CQ1 �

m2

m1

�
1þ6CQ1

�� �
ðS1 �n12Þ2

#
: ð7:85Þ

This Hamiltonian for CQ1 ¼ 1 agrees with that given in Eq. (7.78) describing black-hole
binaries (for neutron stars, CQ1 ¼ 2–8 holds; see, e.g., Mandal et al. 2023a). It has been
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derived fully correctly for the first time by Porto and Rothstein (2010a) using the EFT
method. Shortly afterwards, an independent calculation by Hergt et al. (2010), in part
based on the Eqs. (7.69) and (7.70) including (7.67), has confirmed the result.

The radiation-reaction (or dissipative) Hamiltonians for leading-order spin-orbit
and spin1-spin2 couplings are derived by Steinhoff and Wang (2010) and Wang et al.
(2011). All the known dissipative Hamiltonians can thus be summarized as

Hdiss ¼ H2:5PN þ H3:5PN þ HLOdiss
SO þ HLOdiss

S1S2
; ð7:86Þ

where H2:5PN and H3:5PN are spin-independent (purely orbital) dissipative Hamilto-
nians. The leading-order Hamiltonian H2:5PN is given in Eq. (6.108) for two-point-
mass and in Appendix E for many-point-mass systems, and the next-to-leading-order
Hamiltonian H3:5PN is explicitly given in the Appendix E (also for many-point-mass
systems). The spin-dependent dissipative Hamiltonians HLOdiss

SO and HLOdiss
S1S2

can be

read off from the Hamiltonian H spin
3:5PN given in the Appendix E (we keep here the

notation of the Hamiltonian used by Wang et al. 2011, which indicates spin cor-
rections to the spinless 3.5PN dynamics).

8 Tidal interactions

The work done in this field through higher PN orders relies on the effective Fokker
action with non-minimal matter couplings. The Hamiltonians are obtained from
higher-order Lagrangians in harmonic coordinates via order reduction and Legendre
transforms. Here we tightly follow Henry et al. (2020a, b); also see Damour and
Nagar (2010), Bini et al. (2012), Steinhoff et al. (2016).

The action for the gravitational field is given in harmonic gauge through

Sg ¼ c3

16pG

Z
d4x

ffiffiffiffiffiffiffi�g
p

R� 1

2
glmC

lCm

� �
; ð8:1Þ

where Cl :¼ gqrCl
qr. The ansatz for the matter action, in sufficient approximation for

our intended presentation, is given by

Sm ¼
X
a

Z
dsa

�
� mac

2 þ lð2Þa

4
Ga

lmG
lm
a þ rð2Þa

6c2
Ha

lmH
lm
a

þ lð3Þa

12
Ga

klmG
klm
a þO

�tidal
c6

	 
�
; ð8:2Þ

with the bodies’, labeling a, tidal mass quadrupole Glm
a , tidal current quadrupole Hlm

a ,
and tidal mass octupole Gklm

a moments; �tidal � 1=c10 denotes order of the dominant
tidal effect. The static (equilibrium) deformability coefficients are denoted, including

their orders, by lð2Þa ¼ Oð�tidalÞ, rð2Þa ¼ Oð�tidalÞ, and lð3Þa ¼ Oð�tidal=c4Þ. The first
tidal term is leading order plus NLO plus NNLO, the second is NLO plus NNLO,
and the third one is solely NNLO.

The tidal moments are related with the Weyl or Riemann tensor, centered at the
point masses (particles) in the forms
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Ga
lm ¼ �c2½Rlqmr�auqaura ; ð8:3aÞ

Ha
lm ¼ 2c3½R�

ðlqmÞr�auqaura ; ð8:3bÞ

Ga
klm ¼ �c2½r?

ðkRlqmÞr�auqaura ; ð8:3cÞ
with the underlined index q being excluded from symmetrization and
r?

l :¼ ðdml þ ulumÞrm.

Making use of the gothic metric deviation hlm ¼ ffiffiffiffiffiffiffi�g
p

glm � glm, with then

defining the vector variable h � ðh00ii; h0i; hijÞ with h00ii � h00 þ dijhij, and decom-
posing h ¼ hpp þ htidal, where hpp comes from the metric generated by structureless
point particles (pp) and htidal ¼ ð�tidal=c2; �tidal=c3; �tidal=c4Þ, the Fokker action
SF½MV�, and as well the Fokker Lagrangian LF with

R
dt LFðMVÞ ¼ SF½MV�, with

MV denoting matter variables, similarly to our Routhian procedure, results in the
form

SF½MV� ¼ Stotal½MV; hpp�; ð8:4Þ
where we have used

Stotal½MV; h� ¼ Stotal½MV; hpp� þ
Z

d4x
dStotal
dh

½MV; hpp�htidal þOðh2tidalÞ
¼ Stotal½MV; hpp� þOð�2tidalÞ; ð8:5Þ

also see Appendix C in Damour and Schäfer (1985).
The explicit form of the NNLO tidal Hamiltonian can be found in Henry et al.

(2020a). It reads

Htidal ¼ G2m2
2

r612

(
� 3

2
lð2Þ1 þ 1

c2
wNLO þ 1

c4
wNNLO � 15lð3Þ1

2r212

)
þ ð1 $ 2Þ

þO
�tidal
c6

	 

; ð8:6Þ

where

wNLO ¼ � 12rð2Þ1 p22
m2

2

þ ðn12 � p2Þ2
m2

2

	
�18lð2Þ1 þ 12rð2Þ1



þ ðn12 � p1Þðn12 � p2Þ

m1m2

	
18lð2Þ1 � 24rð2Þ1



þ ðp1 � p2Þ

m1m2

	9
2
lð2Þ1 þ 24rð2Þ1



þ ðn12 � p1Þ2

m2
1

	9
2
lð2Þ1 þ 12rð2Þ1



þ p21
m2

1

	
� 15

4
lð2Þ1 � 12rð2Þ1



þ G

r12

	
3m1 þ 21

2
m2



lð2Þ1 ; ð8:7aÞ
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wNNLO¼ðn12 �p2Þ4
m4

2

	
�63

2
lð2Þ1 �60rð2Þ1



þðp22Þ2

m4
2

	
�9lð2Þ1 �12rð2Þ1



þðp1 �p2Þp22

m1m3
2

	99
4
lð2Þ1 þ60rð2Þ1



þðn12 �p2Þ2

m2
2

�
p22
m2

2

	
54lð2Þ1 þ72rð2Þ1



þðp1 �p2Þ

m1m2

	
�54lð2Þ1 �144rð2Þ1


�
þðp1 �p2Þ2

m2
1m

2
2

	
�45

2
lð2Þ1 �60rð2Þ1



þðn12 �p1Þ3ðn12 �p2Þ

m3
1m2

	
18lð2Þ1 þ48rð2Þ1



þ p21
m2

1

�ðn12 �p2Þ2
m2

2

	45
2
lð2Þ1 þ66rð2Þ1



þ p22
m2

2

	
�45

4
lð2Þ1 �30rð2Þ1



þðp1 �p2Þ

m1m2

	81
4
lð2Þ1 þ48rð2Þ1


�
þðn12 �p1Þ

m1

�ðn12 �p2Þ3
m3

2

	
54lð2Þ1 þ144rð2Þ1



þðn12 �p2Þp21

m2
1m2

	
�63

2
lð2Þ1 �48rð2Þ1



þðn12 �p2Þ

m2

�
p22
m2

2

	
�36lð2Þ1 �60rð2Þ1



þðp1 �p2Þ

m1m2

	
45lð2Þ1 þ120rð2Þ1


��
þðn12 �p1Þ4

m4
1

	
�9

2
lð2Þ1 �12rð2Þ1



þðp21Þ2

m4
1

	
�45

16
lð2Þ1 �6rð2Þ1



þðn12 �p1Þ2

m2
1

�ðn12 �p2Þ2
m2

2

	
�45lð2Þ1 �120rð2Þ1



þ p22
m2

2

	
9lð2Þ1 þ24rð2Þ1



þðp1 �p2Þ

m1m2

	
�18lð2Þ1 �48rð2Þ1



þ p21
m2

1

	27
4
lð2Þ1 þ18rð2Þ1


�
þ G

r12

�
m1

�ðn12 �p2Þ2
m2

2

	
207lð2Þ1 �80rð2Þ1



þ p22
m2

2

	
�45

2
lð2Þ1 þ80rð2Þ1



þðn12 �p1Þðn12 �p2Þ

m1m2

	
�1341

8
lð2Þ1 þ172rð2Þ1



þðp1 �p2Þ

m1m2

	3
8
lð2Þ1 �172rð2Þ1



þðn12 �p1Þ2

m2
1

	
�183

2
lð2Þ1 �92rð2Þ1



þ p21
m2

1

	123
4

lð2Þ1 þ92rð2Þ1


�
þm2

�ðn12 �p2Þ2
m2

2

	331
2

lð2Þ1 �120rð2Þ1



þ p22
m2

2

	61
4
lð2Þ1 þ120rð2Þ1



þðn12 �p1Þðn12 �p2Þ

m1m2

	
�1189

8
lð2Þ1 þ228rð2Þ1



þðp1 �p2Þ

m1m2

	
�401

8
lð2Þ1 �228rð2Þ1



þðn12 �p1Þ2

m2
1

	
�81

2
lð2Þ1 �108rð2Þ1



þ p21
m2

1

	135
4

lð2Þ1 þ108rð2Þ1


��
þG2

r212

	303
28

m2
1�

455

8
m1m2�39m2

2



lð2Þ1 : ð8:7bÞ

The NNNLO tidal effects were recently computed in Mandal et al. (2023).
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A Hamiltonian dynamics of ideal fluids in Newtonian gravity

In the Newtonian theory the equations for gravitating ideal fluids are usually given in
the following form:

(i) The equation for the conservation of mass,20

ot.� þ divð.�vÞ ¼ 0; ðA:1Þ
where .� is the mass density and v ¼ ðviÞ is the velocity field of the fluid.

(ii) The equations of motion,

.�otvþ
.�
2

grad v2 � .� v� curl v ¼ �grad pþ .� gradU ; ðA:2Þ

where p is the pressure in the fluid and U the gravitational potential.
(iii) The equation of state,

� ¼ �ð.�; sÞ with d� ¼ hd.� þ .�Tds; or dp ¼ .�dh� .�Tds;

ðA:3Þ
with the temperature T, the internal energy density � and the specific
enthalpy h.

(iv) The conservation law for the specific entropy s along the flow lines,

otsþ v � grad s ¼ 0: ðA:4Þ

(v) The Newtonian gravitational field equation,

DU ¼ �4pG.�; ðA:5Þ
where D is the Laplacian. The gravitational potential hereof reads

Uðx; tÞ ¼ G

Z
d3x0

.�ðx0; tÞ
jx� x0j : ðA:6Þ

Within the Hamilton framework the equations of motion are obtained from the
relation otAðx; tÞ ¼ fAðx; tÞ;Hg, valid for any function Aðx; tÞ living in phase space,
i.e. built out of the fundamental variables .�, pi, and s, with the Hamiltonian given by
H ¼ H ½.�; pi; s�, where pi is the linear momentum density of the fluid (Holm 1985).
The brackets f�; �g are called Lie-Poisson brackets. They may be defined byZ

d3x nipi; F½.�; s; pi�
� �

¼
Z

d3x
dF
d.�

Ln.� þ
dF
ds

Lnsþ dF
dpi

Lnpi

� �
; ðA:7Þ

where F is a functional of .�, s, and pi, Ln denotes the Lie derivative along the vector
field ni, and dF=dð� � �Þ are the Fréchet derivatives of the functional F [see, e.g.,
Appendix C of Blanchet et al. (1990) and references therein].

20 In a Cartesian spatial coordinate system ðxiÞ and for any vector field w and any scalar field / we define:
divw � oiwi, ðcurlwÞi � eijkojwk , ðgrad/Þi � oi/.
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Explicitly, the equations in (i), (ii), and (iv) take the following Hamiltonian form
[the equations in (iii) and (v) remain unchanged]:

(i) The mass conservation equation

o.�
ot

¼ �oi
dH
dpi

.�

� �
; ðA:8Þ

notice that vi ¼ dH
dpi
.

(ii) The equations of motion

opi
ot

¼ �oj
dH
dpj

pi

� �
� oi

dH
dpj

� �
pj � oi

dH
d.�

� �
.� þ

dH
ds

ois: ðA:9Þ

(iv) The entropy conservation law

os
ot

¼ � dH
dpi

ois: ðA:10Þ

The following kinematical Lie-Poisson bracket relations between the fundamental
variables are fulfiled:

fpiðx; tÞ; .�ðx0; tÞg ¼ o
ox0i

½.�ðx0; tÞdðx� x0Þ�; ðA:11Þ

fpiðx; tÞ; sðx0; tÞg ¼ osðx0; tÞ
ox0i

dðx� x0Þ; ðA:12Þ

fpiðx; tÞ; pjðx0; tÞg ¼ piðx0; tÞ o
ox0j

dðx� x0Þ � pjðx; tÞ o
oxi

dðx� x0Þ; ðA:13Þ

and other brackets are zero. More explicitly the Hamiltonian of the fluid takes the
form,

H ¼ 1

2

Z
d3x

pipi
.�

� G

2

Z
d3x d3x0

.�ðx; tÞ.�ðx0; tÞ
jx� x0j þ

Z
d3x �: ðA:14Þ

For point masses, the momentum and mass densities are given by

pi ¼
X
a

paidðx� xaÞ; .� ¼
X
a

madðx� xaÞ; ðA:15Þ

and we have also h ¼ p ¼ s ¼ 0. The position and momentum variables fulfill the
standard Poisson bracket relations,

fxia; pajg ¼ dij; zero otherwise ; ðA:16Þ
and the Hamiltonian results in

H ¼ 1

2

X
a

p2a
ma

� G

2

X
a6¼b

mamb

jxa � xbj ; ðA:17Þ
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where the internal and self-energy terms have been dropped (after performing a
proper regularization, see Sect. 4.2 in our review).

Let us remark that for fluids a canonical formalism with standard Poisson brackets
can be obtained with the transition to Lagrangian coordinates bAðxi; tÞ, such that
otbA þ v � grad bA ¼ 0. Then,

pA ¼ biApi with biA ¼ oxi

obA
: ðA:18Þ

The variables bA and pB are canonically conjugate to each other, i.e.

fbAðxi; tÞ; pBðyj; tÞg ¼ dABðxi � yiÞ: ðA:19Þ

The mass density in Lagrangian coordinates, say lðbA; tÞ, is defined by .� d
3x ¼

l d3b and relates to the usual mass density as .� ¼ lðbA; tÞ detðbBj Þ.

B Hamiltonian dynamics of ideal fluids in GR

The general-relativistic equations governing the dynamics of gravitating ideal fluids
are as follows (see, e.g., Holm 1985; Blanchet et al. 1990).

(i) The equation for the conservation of mass,

olð ffiffiffiffiffiffiffi�g
p

.ulÞ ¼ 0 or ot.� þ divð.�vÞ ¼ 0; ðB:1Þ
where . denotes the proper rest-mass density and ul the four-velocity field
of the fluid (glmulum ¼ �1), .� ¼ ffiffiffiffiffiffiffi�g

p
u0. is the coordinate mass density

and v the velocity field of the fluid, vi ¼ cui=u0.
(ii) The equations of motion,

ol
ffiffiffiffiffiffiffi�g

p
Tl
i

� �� 1

2

ffiffiffiffiffiffiffi�g
p

Tlm oiglm ¼ 0; ðB:2Þ

where

Tlm ¼ .ðc2 þ hÞulum þ pglm ðB:3Þ
is the stress-energy tensor of the fluid with pressure p and specific enthalpy
h.

(iii) The equation of state, using the energy density e ¼ .ðc2 þ hÞ � p,

e ¼ eð.; sÞ with de ¼ ðc2 þ hÞd.þ .Tds or dp ¼ .dh� .Tds:

ðB:4Þ

(iv) The conservation law for the specific entropy s along the flow lines,

ulols ¼ 0 or otsþ v � grad s ¼ 0: ðB:5Þ

(v) The Einsteinian field equations for gravitational potential (or metric)
functions glm,
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Rlm ¼ 8pG
c4

Tlm � 1

2
glmgabT

ab

� �
: ðB:6Þ

The variables of the canonical formalism get chosen to be

.� ¼
ffiffiffiffiffiffiffi�g

p
u0.; s; pi ¼ 1

c

ffiffiffiffiffiffiffi�g
p

T0
i : ðB:7Þ

They do fulfill the same (universal, free of spacetime metric) kinematical Lie–
Poisson bracket relations as in the Newtonian theory (see Holm 1985 or also
Blanchet et al. 1990),

fpiðx; tÞ; .�ðx0; tÞg ¼ o
ox0i

½.�ðx0; tÞdðx� x0Þ�; ðB:8Þ

fpiðx; tÞ; sðx0; tÞg ¼ osðx0; tÞ
ox0i

dðx� x0Þ; ðB:9Þ

fpiðx; tÞ; pjðx0; tÞg ¼ piðx0; tÞ o
ox0j

dðx� x0Þ � pjðx; tÞ o
oxi

dðx� x0Þ: ðB:10Þ

Written as Hamiltonian equations of motion, i.e. otAðx; tÞ ¼ fAðx; tÞ;Hg, the
equations in (i), (ii), and (iv) take the following form [the equations in (iii) and (v)
remain unchanged]:

(i) The mass conservation equation

o.�
ot

¼ �oi
dH
dpi

.�

� �
; ðB:11Þ

notice vi ¼ dH
dpi
.

(ii) The equations of motion

opi
ot

¼ �oj
dH
dpj

pi

� �
� oi

dH
dpj

� �
pj � oi

dH
d.�

� �
.� þ

dH
ds

ois: ðB:12Þ

(iv) The entropy conservation law

os
ot

¼ � dH
dpi

ois; ðB:13Þ

where the Hamiltonian functional is given by H ¼ H ½.�; pi; s�, see Holm
(1985).

Point-mass systems fulfill

h ¼ p ¼ s ¼ 0; ðB:14Þ
(just as for dust) and the momentum and mass densities read

123

Hamiltonian formulation of GR and PN dynamics of compact binaries Page 97 of 139     2 



pi ¼
X
a

paidðx� xaÞ; .� ¼
X
a

madðx� xaÞ; via ¼
dxia
dt

: ðB:15Þ

The position and momentum variables again fulfill the standard Poisson bracket
relations,

fxia; pajg ¼ dij; zero otherwise : ðB:16Þ
Hereof the standard Hamilton equations are recovered,

dpai
dt

¼ � oH
oxia

;
dxia
dt

¼ oH
opai

: ðB:17Þ

Remarkably, the difference to the Newtonian theory solely results from the Hamil-
tonian, so the difference between GR and the Newtonian theory is essentially a
dynamical and not a kinematical one. This statement refers to the matter only and not
to the gravitational field. The latter is much more complicated in GR, dynamically
and kinematically as well.

C 4PN-accurate generators of Poincaré symmetry for two-point-mass
systems

Generators of Poincaré symmetry for two-point-mass systems are realized as
functions on the two-body phase-space ðx1; x2; p1; p2Þ. In the 3þ 1 splitting the 10
generators are: Hamiltonian H, linear momentum Pi, angular momentum J i, and
centre-of-energy vector Gi (related to boost vector Ki through Ki ¼ Gi � tPi). They
all fulfill the Poincaré algebra relations (3.35)–(3.40). In this Appendix we show
4PN-accurate formulae for these generators derived within the ADM formalism (see
Bernard et al. 2018 for recent derivation of corresponding and equivalent formulae
for integrals of motion in harmonic coordinates).

The gauge fixing used in the ADM formalism manifestly respects the Euclidean
group (which means that the Hamiltonian H is translationally and rotationally
invariant), therefore the generators Pi and J i are simply realized as

Piðxa; paÞ ¼
X
a

pai; J iðxa; paÞ ¼
X
a

eik‘ x
k
a pa‘: ðC:1Þ

These formula are exact (i.e., valid at all PN orders).
The 4PN-accurate conservative Hamiltonian H	 4PN is the sum of local and

nonlocal-in-time parts,

H	 4PN½xa; pa� ¼ H local
	 4PNðxa; paÞ þ Hnonlocal

4PN ½xa; pa�; ðC:2Þ
where the nonlocal-in-time piece equals

Hnonlocal
4PN ½xa; pa� ¼ � 1

5

G2M

c8
I
...

ijðtÞ � Pf2r12=c

Z þ1

�1

ds
jsj I

...

ijðt þ sÞ: ðC:3Þ
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The third time derivative of Iij, after replacing all time derivatives of xa by using the
Newtonian equations of motion, can be written as

I
...

ij ¼ � 2Gm1m2

r212
4nhi12

p1ji
m1

� p2ji
m2

� �
� 3

ðn12 � p1Þ
m1

� ðn12 � p2Þ
m2

� �
nhi12n

ji
12

� �
¼ � 2Gm1m2

r312
4xhi12v

ji
12 �

3

r12
ðn12 � v12Þxhi12xji12

� �
; ðC:4Þ

where the relative velocity v12 � p1=m1 � p2=m2 (h� � �i denotes a symmetric trace-
free projection). This formula is valid in an arbitrary reference frame and it is
obviously Galileo-invariant. Consequently the nonlocal-in-time Hamiltonian (C.3) is
Galileo-invariant as well. The local part of the 4PN-accurate Hamiltonian reads

H local
	 4PNðxa;paÞ ¼ Mc2 þ HNðxa; paÞ þ H1PNðxa; paÞ þ H2PNðxa; paÞ

þ H3PNðxa; paÞ þ H local
4PN ðxa; paÞ: ðC:5Þ

The Hamiltonians HN to H3PN in generic, i.e. noncentre-of-mass, reference frame, are
equal to [the operation “þ�1 $ 2

�
” used below denotes the addition for each term,

including the ones which are symmetric under the exchange of body labels, of
another term obtained by the label permutation 1 $ 2]

HNðxa; paÞ ¼
p21
2m1

� Gm1m2

2r12
þ �1 $ 2

�
; ðC:6Þ

c2 H1PNðxa; paÞ ¼ � ðp21Þ2
8m3

1

þ Gm1m2

4r12

 
� 6p21

m2
1

þ 7ðp1 � p2Þ
m1m2

þ ðn12 � p1Þðn12 � p2Þ
m1m2

!
þ G2m2

1m2

2r212
þ �1 $ 2

�
; ðC:7Þ

c4 H2PNðxa; paÞ ¼
ðp21Þ3
16m5

1

þ Gm1m2

8r12

 
5
ðp21Þ2
m4

1

� 11

2

p21 p
2
2

m2
1m

2
2

� ðp1 � p2Þ2
m2

1m
2
2

þ 5
p21 ðn12 � p2Þ2

m2
1m

2
2

� 6
ðp1 � p2Þ ðn12 � p1Þðn12 � p2Þ

m2
1m

2
2

� 3

2

ðn12 � p1Þ2ðn12 � p2Þ2
m2

1m
2
2

!
þ G2m1m2

4r212

 
m2 10

p21
m2

1

þ 19
p22
m2

2

� �

� 1

2
ðm1 þ m2Þ 27 ðp1 � p2Þ þ 6 ðn12 � p1Þðn12 � p2Þ

m1m2

!

� G3m1m2ðm2
1 þ 5m1m2 þ m2

2Þ
8r312

þ �1 $ 2
�
; ðC:8Þ
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c6 H3PNðxa; paÞ ¼ � 5ðp21Þ4
128m7

1

þ Gm1m2

32r12

 
� 14ðp21Þ3

m6
1

þ 4

�ðp1 � p2Þ2 þ 4p21 p
2
2

�
p21

m4
1m

2
2

þ 6p21ðn12 � p1Þ2ðn12 � p2Þ2
m4

1m
2
2

� 10

�
p21 ðn12 � p2Þ2 þ p22 ðn12 � p1Þ2

�
p21

m4
1m

2
2

þ 24
p21 ðp1 � p2Þðn12 � p1Þðn12 � p2Þ

m4
1m

2
2

þ 2
p21 ðp1 � p2Þðn12 � p2Þ2

m3
1m

3
2

þ
�
7 p21 p

2
2 � 10 ðp1 � p2Þ2

�ðn12 � p1Þðn12 � p2Þ
m3

1m
3
2

þ
�
p21 p

2
2 � 2 ðp1 � p2Þ2

�ðp1 � p2Þ
m3

1m
3
2

þ 15
ðp1 � p2Þðn12 � p1Þ2ðn12 � p2Þ2

m3
1m

3
2

� 18
p21 ðn12 � p1Þðn12 � p2Þ3

m3
1m

3
2

þ 5
ðn12 � p1Þ3ðn12 � p2Þ3

m3
1m

3
2

!

þ G2m1m2

r212

 
1

16
ðm1 � 27m2Þ ðp

2
1Þ2
m4

1

� 115

16
m1

p21 ðp1 � p2Þ
m3

1m2

þ 1

48
m2

25 ðp1 � p2Þ2 þ 371 p21 p
2
2

m2
1m

2
2

þ 17

16

p21ðn12 � p1Þ2
m3

1

þ 5

12

ðn12 � p1Þ4
m3

1

� 1

8
m1

�
15 p21 ðn12 � p2Þ þ 11 ðp1 � p2Þ ðn12 � p1Þ

�ðn12 � p1Þ
m3

1m2

� 3

2
m1

ðn12 � p1Þ3ðn12 � p2Þ
m3

1m2
þ 125

12
m2

ðp1 � p2Þ ðn12 � p1Þðn12 � p2Þ
m2

1m
2
2

þ 10

3
m2

ðn12 � p1Þ2ðn12 � p2Þ2
m2

1m
2
2

� 1

48
ð220m1 þ 193m2Þp

2
1ðn12 � p2Þ2
m2

1m
2
2

!

þ G3m1m2

r312

 
� 1

48

�
425m2

1 þ
	
473� 3

4
p2


m1m2 þ 150m2

2

�
p21
m2

1

þ 1

16

�
77ðm2

1 þ m2
2Þ þ

	
143� 1

4
p2


m1m2

� ðp1 � p2Þ
m1m2

þ 1

16

�
20m2

1 �
	
43þ 3

4
p2


m1m2

� ðn12 � p1Þ2
m2

1

þ 1

16

�
21ðm2

1 þ m2
2Þ þ

	
119þ 3

4
p2


m1m2

� ðn12 � p1Þðn12 � p2Þ
m1m2

!

þ G4m1m3
2

8r412

 �
227

3
� 21

4
p2
�
m1 þ m2

!
þ �1 $ 2

�
: ðC:9Þ

The formula for the Hamiltonian H local
4PN is large, therefore we display it in smaller

pieces:
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c8 H local
4PN ðxa; paÞ ¼

7ðp21Þ5
256m9

1

þ Gm1m2

r12
H48ðxa; paÞ þ

G2m1m2

r212
m1 H46ðxa; paÞ

þ G3m1m2

r312

	
m2

1 H441ðxa; paÞ þ m1m2 H442ðxa; paÞ



þ G4m1m2

r412

	
m3

1 H421ðxa; paÞ þ m2
1m2 H422ðxa; paÞ



þ G5m1m2

r512
H40ðxa; paÞ þ

�
1 $ 2

�
; ðC:10Þ

where

H48ðxa; paÞ ¼
45ðp21Þ4
128m8

1

� 9ðn12 � p1Þ2ðn12 � p2Þ2ðp21Þ2
64m6

1m
2
2

þ 15ðn12 � p2Þ2ðp21Þ3
64m6

1m
2
2

� 9ðn12 � p1Þðn12 � p2Þðp21Þ2ðp1 � p2Þ
16m6

1m
2
2

� 3ðp21Þ2ðp1 � p2Þ2
32m6

1m
2
2

þ 15ðn12 � p1Þ2ðp21Þ2p22
64m6

1m
2
2

� 21ðp21Þ3p22
64m6

1m
2
2

� 35ðn12 � p1Þ5ðn12 � p2Þ3
256m5

1m
3
2

þ 25ðn12 � p1Þ3ðn12 � p2Þ3p21
128m5

1m
3
2

þ 33ðn12 � p1Þðn12 � p2Þ3ðp21Þ2
256m5

1m
3
2

� 85ðn12 � p1Þ4ðn12 � p2Þ2ðp1 � p2Þ
256m5

1m
3
2

� 45ðn12 � p1Þ2ðn12 � p2Þ2p21ðp1 � p2Þ
128m5

1m
3
2

� ðn12 � p2Þ2ðp21Þ2ðp1 � p2Þ
256m5

1m
3
2

þ 25ðn12 � p1Þ3ðn12 � p2Þðp1 � p2Þ2
64m5

1m
3
2

þ 7ðn12 � p1Þðn12 � p2Þp21ðp1 � p2Þ2
64m5

1m
3
2

� 3ðn12 � p1Þ2ðp1 � p2Þ3
64m5

1m
3
2

þ 3p21ðp1 � p2Þ3
64m5

1m
3
2

þ 55ðn12 � p1Þ5ðn12 � p2Þp22
256m5

1m
3
2

� 7ðn12 � p1Þ3ðn12 � p2Þp21p22
128m5

1m
3
2

� 25ðn12 � p1Þðn12 � p2Þðp21Þ2p22
256m5

1m
3
2

� 23ðn12 � p1Þ4ðp1 � p2Þp22
256m5

1m
3
2

þ 7ðn12 � p1Þ2p21ðp1 � p2Þp22
128m5

1m
3
2

� 7ðp21Þ2ðp1 � p2Þp22
256m5

1m
3
2

� 5ðn12 � p1Þ2ðn12 � p2Þ4p21
64m4

1m
4
2

þ 7ðn12 � p2Þ4ðp21Þ2
64m4

1m
4
2

� ðn12 � p1Þðn12 � p2Þ3p21ðp1 � p2Þ
4m4

1m
4
2

þ ðn12 � p2Þ2p21ðp1 � p2Þ2
16m4

1m
4
2

� 5ðn12 � p1Þ4ðn12 � p2Þ2p22
64m4

1m
4
2

þ 21ðn12 � p1Þ2ðn12 � p2Þ2p21p22
64m4

1m
4
2

� 3ðn12 � p2Þ2ðp21Þ2p22
32m4

1m
4
2

� ðn12 � p1Þ3ðn12 � p2Þðp1 � p2Þp22
4m4

1m
4
2

þ ðn12 � p1Þðn12 � p2Þp21ðp1 � p2Þp22
16m4

1m
4
2

þ ðn12 � p1Þ2ðp1 � p2Þ2p22
16m4

1m
4
2

� p21ðp1 � p2Þ2p22
32m4

1m
4
2

þ 7ðn12 � p1Þ4ðp22Þ2
64m4

1m
4
2

� 3ðn12 � p1Þ2p21ðp22Þ2
32m4

1m
4
2

� 7ðp21Þ2ðp22Þ2
128m4

1m
4
2

; ðC:11Þ
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H46ðxa; paÞ ¼
369ðn12 � p1Þ6

160m6
1

� 889ðn12 � p1Þ4p21
192m6

1

þ 49ðn12 � p1Þ2ðp21Þ2
16m6

1

� 63ðp21Þ3
64m6

1

� 549ðn12 � p1Þ5ðn12 � p2Þ
128m5

1m2
þ 67ðn12 � p1Þ3ðn12 � p2Þp21

16m5
1m2

� 167ðn12 � p1Þðn12 � p2Þðp21Þ2
128m5

1m2
þ 1547ðn12 � p1Þ4ðp1 � p2Þ

256m5
1m2

� 851ðn12 � p1Þ2p21ðp1 � p2Þ
128m5

1m2
þ 1099ðp21Þ2ðp1 � p2Þ

256m5
1m2

þ 3263ðn12 � p1Þ4ðn12 � p2Þ2
1280m4

1m
2
2

þ 1067ðn12 � p1Þ2ðn12 � p2Þ2p21
480m4

1m
2
2

� 4567ðn12 � p2Þ2ðp21Þ2
3840m4

1m
2
2

� 3571ðn12 � p1Þ3ðn12 � p2Þðp1 � p2Þ
320m4

1m
2
2

þ 3073ðn12 � p1Þðn12 � p2Þp21ðp1 � p2Þ
480m4

1m
2
2

þ 4349ðn12 � p1Þ2ðp1 � p2Þ2
1280m4

1m
2
2

� 3461p21ðp1 � p2Þ2
3840m4

1m
2
2

þ 1673ðn12 � p1Þ4p22
1920m4

1m
2
2

� 1999ðn12 � p1Þ2p21p22
3840m4

1m
2
2

þ 2081ðp21Þ2p22
3840m4

1m
2
2

� 13ðn12 � p1Þ3ðn12 � p2Þ3
8m3

1m
3
2

þ 191ðn12 � p1Þðn12 � p2Þ3p21
192m3

1m
3
2

� 19ðn12 � p1Þ2ðn12 � p2Þ2ðp1 � p2Þ
384m3

1m
3
2

� 5ðn12 � p2Þ2p21ðp1 � p2Þ
384m3

1m
3
2

þ 11ðn12 � p1Þðn12 � p2Þðp1 � p2Þ2
192m3

1m
3
2

þ 77ðp1 � p2Þ3
96m3

1m
3
2

þ 233ðn12 � p1Þ3ðn12 � p2Þp22
96m3

1m
3
2

� 47ðn12 � p1Þðn12 � p2Þp21p22
32m3

1m
3
2

þ ðn12 � p1Þ2ðp1 � p2Þp22
384m3

1m
3
2

� 185p21ðp1 � p2Þp22
384m3

1m
3
2

� 7ðn12 � p1Þ2ðn12 � p2Þ4
4m2

1m
4
2

þ 7ðn12 � p2Þ4p21
4m2

1m
4
2

� 7ðn12 � p1Þðn12 � p2Þ3ðp1 � p2Þ
2m2

1m
4
2

þ 21ðn12 � p2Þ2ðp1 � p2Þ2
16m2

1m
4
2

þ 7ðn12 � p1Þ2ðn12 � p2Þ2p22
6m2

1m
4
2

þ 49ðn12 � p2Þ2p21p22
48m2

1m
4
2

� 133ðn12 � p1Þðn12 � p2Þðp1 � p2Þp22
24m2

1m
4
2

� 77ðp1 � p2Þ2p22
96m2

1m
4
2

þ 197ðn12 � p1Þ2ðp22Þ2
96m2

1m
4
2

� 173p21ðp22Þ2
48m2

1m
4
2

þ 13ðp22Þ3
8m6

2

;

ðC:12Þ
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H441ðxa; paÞ ¼
5027ðn12 � p1Þ4

384m4
1

� 22993ðn12 � p1Þ2p21
960m4

1

� 6695ðp21Þ2
1152m4

1

� 3191ðn12 � p1Þ3ðn12 � p2Þ
640m3

1m2
þ 28561ðn12 � p1Þðn12 � p2Þp21

1920m3
1m2

þ 8777ðn12 � p1Þ2ðp1 � p2Þ
384m3

1m2
þ 752969p21ðp1 � p2Þ

28800m3
1m2

� 16481ðn12 � p1Þ2ðn12 � p2Þ2
960m2

1m
2
2

þ 94433ðn12 � p2Þ2p21
4800m2

1m
2
2

� 103957ðn12 � p1Þðn12 � p2Þðp1 � p2Þ
2400m2

1m
2
2

þ 791ðp1 � p2Þ2
400m2

1m
2
2

þ 26627ðn12 � p1Þ2p22
1600m2

1m
2
2

� 118261p21p
2
2

4800m2
1m

2
2

þ 105ðp22Þ2
32m4

2

; ðC:13Þ

H442ðxa;paÞ¼
2749p2

8192
�211189

19200

� �ðp21Þ2
m4

1

þ 375p2

8192
�23533

1280

� �ðn12 �p1Þ4
m4

1

þ 63347

1600
�1059p2

1024

� �ðn12 �p1Þ2p21
m4

1

þ 10631p2

8192
�1918349

57600

� �ðp1 �p2Þ2
m2

1m
2
2

þ 13723p2

16384
�2492417

57600

� �
p21p

2
2

m2
1m

2
2

þ 1411429

19200
�1059p2

512

� �ðn12 �p2Þ2p21
m2

1m
2
2

þ 248991

6400
�6153p2

2048

� �ðn12 �p1Þðn12 �p2Þðp1 �p2Þ
m2

1m
2
2

� 30383

960
þ36405p2

16384

� �ðn12 �p1Þ2ðn12 �p2Þ2
m2

1m
2
2

þ 2369

60
þ35655p2

16384

� �ðn12 �p1Þ3ðn12 �p2Þ
m3

1m2

þ 1243717

14400
�40483p2

16384

� �
p21ðp1 �p2Þ
m3

1m2

þ 43101p2

16384
�391711

6400

� �ðn12 �p1Þðn12 �p2Þp21
m3

1m2

þ 56955p2

16384
�1646983

19200

� �ðn12 �p1Þ2ðp1 �p2Þ
m3

1m2
; ðC:14Þ

H421ðxa; paÞ ¼
64861p21
4800m2

1

� 91ðp1 � p2Þ
8m1m2

þ 105p22
32m2

2

� 9841ðn12 � p1Þ2
1600m2

1

� 7ðn12 � p1Þðn12 � p2Þ
2m1m2

; ðC:15Þ
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H422ðxa; paÞ ¼
1937033

57600
� 199177p2

49152

� �
p21
m2

1

þ 282361

19200
� 21837p2

8192

� �
p22
m2

2

þ 176033p2

24576
� 2864917

57600

� � ðp1 � p2Þ
m1m2

þ 698723

19200
þ 21745p2

16384

� � ðn12 � p1Þ2
m2

1

þ 63641p2

24576
� 2712013

19200

� � ðn12 � p1Þðn12 � p2Þ
m1m2

þ 3200179

57600
� 28691p2

24576

� � ðn12 � p2Þ2
m2

2

; ðC:16Þ

H40ðxa; paÞ ¼ �m4
1

16
þ 6237p2

1024
� 169799

2400

� �
m3

1m2

þ 44825p2

6144
� 609427

7200

� �
m2

1m
2
2: ðC:17Þ

The centre-of-energy vector Giðxa; paÞ was constructed with 3PN-accuracy (using
the method of undetermined coefficients) by Damour et al. (2000c, d), and at the 4PN
level by Jaranowski and Schäfer (2015). It can be written as21

Giðxa; paÞ ¼
X
a

	
Maðxb; pbÞ xia þ Naðxb; pbÞ pai



; ðC:18Þ

where the functions Ma and Na possess the following 4PN-accurate expansions

Maðxa; paÞ ¼ ma þ 1

c2
M1PN

a ðxa; paÞ þ
1

c4
M 2PN

a ðxa; paÞ

þ 1

c6
M 3PN

a ðxa; paÞ þ
1

c8
M 4PN

a ðxa; paÞ; ðC:19Þ

Naðxa; paÞ ¼
1

c4
N2PN
a ðxa; paÞ þ

1

c6
N3PN
a ðxa; paÞ þ

1

c8
N 4PN
a ðxa; paÞ: ðC:20Þ

The functions M 1PN
1 to M3PN

1 read

M 1PN
1 ðxa; paÞ ¼

p21
2m1

� Gm1m2

2r12
; ðC:21Þ

21 Let us note that the centre-of-energy vector Gi does not contain a nonlocal-in-time piece which would
correspond to the nonlocal-in-time tail-related part of the 4PN Hamiltonian. The very reason for this is that
the integrals contributing to Gi

4PN are less singular than those for H4PN, and the singular structure of terms
contributing to Gi

4PN rather relates to the singular structure of terms contributing to H3PN.
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M2PN
1 ðxa; paÞ ¼ � ðp21Þ2

8m3
1

þ Gm1m2

4r12

 
� 5p21

m2
1

� p22
m2

2

þ 7ðp1 � p2Þ
m1m2

þ ðn12 � p1Þðn12 � p2Þ
m1m2

!
þ G2m1m2ðm1 þ m2Þ

4r212
; ðC:22Þ

M 3PN
1 ðxa; paÞ ¼

ðp21Þ3
16m5

1

þ Gm1m2

16r12

 
9
ðp21Þ2
m4

1

þ ðp22Þ2
m4

2

� 11
p21 p

2
2

m2
1m

2
2

� 2
ðp1 � p2Þ2
m2

1m
2
2

þ 3
p21 ðn12 � p2Þ2

m2
1m

2
2

þ 7
p22 ðn12 � p1Þ2

m2
1m

2
2

� 12
ðp1 � p2Þ ðn12 � p1Þðn12 � p2Þ

m2
1m

2
2

� 3
ðn12 � p1Þ2ðn12 � p2Þ2

m2
1m

2
2

!

þ G2m1m2

24r212

 
ð112m1 þ 45m2Þ p

2
1

m2
1

þ ð15m1 þ 2m2Þ p
2
2

m2
2

� 1

2
ð209m1 þ 115m2Þ ðp1 � p2Þm1m2

þ ðn12 � p1Þ2
m1

� ðn12 � p2Þ2
m2

� ð31m1 þ 5m2Þ ðn12 � p1Þðn12 � p2Þm1m2

!

� G3m1m2ðm2
1 þ 5m1m2 þ m2

2Þ
8r312

: ðC:23Þ

The function M 4PN
1 has the following structure:

M 4PN
1 ðxa; paÞ ¼ � 5ðp21Þ4

128m7
1

þ Gm1m2

r12
M46ðxa; paÞ

þ G2m1m2

r212

	
m1 M441ðxa; paÞ þ m2 M442ðxa;paÞ



þ G3m1m2

r312

	
m2

1 M421ðxa; paÞ þ m1m2 M422ðxa; paÞ

þ m2
2 M423ðxa; paÞ



þ G4m1m2

r412
M40ðxa; paÞ; ðC:24Þ

where
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M46ðxa;paÞ ¼ � 13ðp21Þ3
32m6

1

� 15ðn12 � p1Þ4ðn12 � p2Þ2
256m4

1m
2
2

� 91ðn12 � p2Þ2ðp21Þ2
256m4

1m
2
2

þ 45ðn12 � p1Þ2ðn12 � p2Þ2p21
128m4

1m
2
2

� 5ðn12 � p1Þ3ðn12 � p2Þðp1 � p2Þ
32m4

1m
2
2

þ 25ðn12 � p1Þðn12 � p2Þp21ðp1 � p2Þ
32m4

1m
2
2

þ 5ðn12 � p1Þ2ðp1 � p2Þ2
64m4

1m
2
2

þ 7p21ðp1 � p2Þ2
64m4

1m
2
2

þ 11ðn12 � p1Þ4p22
256m4

1m
2
2

� 47ðn12 � p1Þ2p21p22
128m4

1m
2
2

þ 91ðp21Þ2p22
256m4

1m
2
2

þ 5ðn12 � p1Þ3ðn12 � p2Þ3
32m3

1m
3
2

� 7ðn12 � p1Þðn12 � p2Þ3p21
32m3

1m
3
2

þ 15ðn12 � p1Þ2ðn12 � p2Þ2ðp1 � p2Þ
32m3

1m
3
2

þ 7ðn12 � p2Þ2p21ðp1 � p2Þ
32m3

1m
3
2

� 5ðn12 � p1Þðn12 � p2Þðp1 � p2Þ2
16m3

1m
3
2

� 11ðn12 � p1Þ3ðn12 � p2Þp22
32m3

1m
3
2

� ðp1 � p2Þ3
16m3

1m
3
2

þ 7ðn12 � p1Þðn12 � p2Þp21p22
32m3

1m
3
2

� 5ðn12 � p1Þ2ðp1 � p2Þp22
32m3

1m
3
2

þ p21ðp1 � p2Þp22
32m3

1m
3
2

þ 15ðn12 � p1Þ2ðn12 � p2Þ4
256m2

1m
4
2

� 11ðn12 � p2Þ4p21
256m2

1m
4
2

þ 5ðn12 � p1Þðn12 � p2Þ3ðp1 � p2Þ
32m2

1m
4
2

� 5ðn12 � p2Þ2ðp1 � p2Þ2
64m2

1m
4
2

� 21ðn12 � p1Þ2ðn12 � p2Þ2p22
128m2

1m
4
2

þ 7ðn12 � p2Þ2p21p22
128m2

1m
4
2

þ ðp1 � p2Þ2p22
64m2

1m
4
2

� ðn12 � p1Þðn12 � p2Þðp1 � p2Þp22
32m2

1m
4
2

þ 11ðn12 � p1Þ2ðp22Þ2
256m2

1m
4
2

þ 37p21ðp22Þ2
256m2

1m
4
2

� ðp22Þ3
32m6

2

; ðC:25Þ

M441ðxa;paÞ¼
7711ðn12 �p1Þ4

3840m4
1

�2689ðn12 �p1Þ2p21
3840m4

1

þ2683ðp21Þ2
1920m4

1

�67ðn12 �p1Þ3ðn12 �p2Þ
30m3

1m2
þ1621ðn12 �p1Þðn12 �p2Þp21

1920m3
1m2

�411ðn12 �p1Þ2ðp1 �p2Þ
1280m3

1m2
�25021p21ðp1 �p2Þ

3840m3
1m2

þ289ðn12 �p1Þ2ðn12 �p2Þ2
128m2

1m
2
2

�259ðn12 �p2Þ2p21
128m2

1m
2
2

þ689ðn12 �p1Þðn12 �p2Þðp1 �p2Þ
192m2

1m
2
2

þ11ðp1 �p2Þ2
48m2

1m
2
2

�147ðn12 �p1Þ2p22
64m2

1m
2
2

þ283p21p
2
2

64m2
1m

2
2

þ7ðn12 �p1Þðn12 �p2Þ3
12m1m3

2

þ49ðn12 �p2Þ2ðp1 �p2Þ
48m1m3

2

�7ðn12 �p1Þðn12 �p2Þp22
6m1m3

2

�7ðp1 �p2Þp22
48m1m3

2

�9ðp22Þ2
32m4

2

; ðC:26Þ
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M442ðxa; paÞ ¼ � 45ðp21Þ2
32m4

1

þ 7p21ðp1 � p2Þ
48m3

1m2
þ 7ðn12 � p1Þðn12 � p2Þp21

6m3
1m2

� 49ðn12 � p1Þ2ðp1 � p2Þ
48m3

1m2
� 7ðn12 � p1Þ3ðn12 � p2Þ

12m3
1m2

þ 7ðp1 � p2Þ2
24m2

1m
2
2

þ 635p21p
2
2

192m2
1m

2
2

� 983ðn12 � p1Þ2p22
384m2

1m
2
2

þ 413ðn12 � p1Þ2ðn12 � p2Þ2
384m2

1m
2
2

� 331ðn12 � p2Þ2p21
192m2

1m
2
2

þ 437ðn12 � p1Þðn12 � p2Þðp1 � p2Þ
64m2

1m
2
2

þ 11ðn12 � p1Þðn12 � p2Þ3
15m1m3

2

� 1349ðn12 � p2Þ2ðp1 � p2Þ
1280m1m3

2

� 5221ðn12 � p1Þðn12 � p2Þp22
1920m1m3

2

� 2579ðp1 � p2Þp22
3840m1m3

2

þ 6769ðn12 � p2Þ2p22
3840m4

2

� 2563ðp22Þ2
1920m4

2

� 2037ðn12 � p2Þ4
1280m4

2

; ðC:27Þ

M421ðxa; paÞ ¼ � 179843p21
14400m2

1

þ 10223ðp1 � p2Þ
1200m1m2

� 15p22
16m2

2

þ 8881ðn12 � p1Þðn12 � p2Þ
2400m1m2

þ 17737ðn12 � p1Þ2
1600m2

1

; ðC:28Þ

M422ðxa; paÞ ¼
8225p2

16384
� 12007

1152

� �
p21
m2

1

þ 143

16
� p2

64

� � ðp1 � p2Þ
m1m2

þ 655

1152
� 7969p2

16384

� �
p22
m2

2

þ 6963p2

16384
� 40697

3840

� � ðn12 � p1Þ2
m2

1

þ 119

16
þ 3p2

64

� � ðn12 � p1Þðn12 � p2Þ
m1m2

þ 30377

3840
� 7731p2

16384

� � ðn12 � p2Þ2
m2

2

;

ðC:29Þ

M423ðxa; paÞ ¼ � 35p21
16m2

1

þ 1327ðp1 � p2Þ
1200m1m2

þ 52343p22
14400m2

2

� 2581ðn12 � p1Þðn12 � p2Þ
2400m1m2

� 15737ðn12 � p2Þ2
1600m2

2

; ðC:30Þ
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M40ðxa;paÞ ¼
m3

1

16
þ 3371p2

6144
� 6701

1440

� �
m2

1m2

þ 20321

1440
� 7403p2

6144

� �
m1m

2
2 þ

m3
2

16
: ðC:31Þ

The functions N2PN
1 and N3PN

1 equal

N2PN
1 ðxa; paÞ ¼ � 5

4
G ðn12 � p2Þ; ðC:32Þ

N3PN
1 ðxa; paÞ ¼

G

8m1m2

	
2 ðp1 � p2Þðn12 � p2Þ � p22 ðn12 � p1Þ

þ 3 ðn12 � p1Þðn12 � p2Þ2


þ G2

48r12

	
19m2 ðn12 � p1Þ

þ 130m1 þ 137m2ð Þðn12 � p2Þ


: ðC:33Þ

The more complicated function N4PN
1 has the structure:

N4PN
1 ðxa; paÞ ¼ Gm2N45ðxa; paÞ þ

G2m2

r12

	
m1 N431ðxa; paÞ

þ m2 N432ðxa; paÞ


þ G3m2

r212

	
m2

1 N411ðxa; paÞ

þ m1m2 N412ðxa; paÞ þ m2
2 N413ðxa; paÞ



; ðC:34Þ

where

N45ðxa;paÞ ¼�5ðn12 �p1Þ3ðn12 �p2Þ2
64m3

1m
2
2

þðn12 �p1Þðn12 �p2Þ2p21
64m3

1m
2
2

þ 5ðn12 �p1Þ2ðn12 �p2Þðp1 �p2Þ
32m3

1m
2
2

�ðn12 �p2Þp21ðp1 �p2Þ
32m3

1m
2
2

þ 3ðn12 �p1Þðp1 �p2Þ2
32m3

1m
2
2

�ðn12 �p1Þ3p22
64m3

1m
2
2

�ðn12 �p1Þp21p22
64m3

1m
2
2

þðn12 �p1Þ2ðn12 �p2Þ3
32m2

1m
3
2

� 7ðn12 �p2Þ3p21
32m2

1m
3
2

þ 3ðn12 �p1Þðn12 �p2Þ2ðp1 �p2Þ
16m2

1m
3
2

þðn12 �p2Þðp1 �p2Þ2
16m2

1m
3
2

� 9ðn12 �p1Þ2ðn12 �p2Þp22
32m2

1m
3
2

þ 5ðn12 �p2Þp21p22
32m2

1m
3
2

� 3ðn12 �p1Þðp1 �p2Þp22
16m2

1m
3
2

� 11ðn12 �p1Þðn12 �p2Þ4
128m1m4

2

þðn12 �p2Þ3ðp1 �p2Þ
32m1m4

2

þ 7ðn12 �p1Þðn12 �p2Þ2p22
64m1m4

2

þðn12 �p2Þðp1 �p2Þp22
32m1m4

2

� 3ðn12 �p1Þðp22Þ2
128m1m4

2

;

ðC:35Þ
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N431ðxa;paÞ ¼�387ðn12 �p1Þ3
1280m3

1

þ 10429ðn12 �p1Þp21
3840m3

1

� 751ðn12 �p1Þ2ðn12 �p2Þ
480m2

1m2
þ 2209ðn12 �p2Þp21

640m2
1m2

� 6851ðn12 �p1Þðp1 �p2Þ
1920m2

1m2

þ 43ðn12 �p1Þðn12 �p2Þ2
192m1m2

2

� 125ðn12 �p2Þðp1 �p2Þ
192m1m2

2

þ 25ðn12 �p1Þp22
48m1m2

2

� 7ðn12 �p2Þ3
8m3

2

þ 7ðn12 �p2Þp22
12m3

2

; ðC:36Þ

N432ðxa; paÞ ¼
7ðn12 � p2Þp21
48m2

1m2
þ 7ðn12 � p1Þðp1 � p2Þ

24m2
1m2

� 49ðn12 � p1Þ2ðn12 � p2Þ
48m2

1m2

þ 295ðn12 � p1Þðn12 � p2Þ2
384m1m2

2

� 5ðn12 � p2Þðp1 � p2Þ
24m1m2

2

� 155ðn12 � p1Þp22
384m1m2

2

� 5999ðn12 � p2Þ3
3840m3

2

þ 11251ðn12 � p2Þp22
3840m3

2

; ðC:37Þ

N411ðxa; paÞ ¼ � 37397ðn12 � p1Þ
7200m1

� 12311ðn12 � p2Þ
2400m2

; ðC:38Þ

N412ðxa; paÞ ¼
5005p2

8192
� 81643

11520

� � ðn12 � p1Þ
m1

þ 773p2

2048
� 61177

11520

� � ðn12 � p2Þ
m2

;

ðC:39Þ

N413ðxa; paÞ ¼ � 7073ðn12 � p2Þ
1200m2

: ðC:40Þ

D Higher-order spin-dependent conservative Hamiltonians

In this appendix we present explicit formulae for higher-order spin-dependent
conservative Hamiltonians not displayed in the main body of the review. We start
with the next-to-next-to-leading-order spin-orbit Hamiltonian, which was calculated
by Hartung et al. (2013) (see also Hartung and Steinhoff 2011a). It reads

123

Hamiltonian formulation of GR and PN dynamics of compact binaries Page 109 of 139     2 



HNNLO
SO ðxa;pa;SaÞ¼

G

c6r212

��
7m2ðp21Þ2
16m5

1

þ9ðn12 �p1Þðn12 �p2Þp21
16m4

1

þ3p21ðn12 �p2Þ2
4m3

1m2
þ45ðn12 �p1Þðn12 �p2Þ3

16m2
1m

2
2

þ9p21ðp1 �p2Þ
16m4

1

�3ðn12 �p2Þ2ðp1 �p2Þ
16m2

1m
2
2

�3ðp21Þðp22Þ
16m3

1m2
�15ðn12 �p1Þðn12 �p2Þp22

16m2
1m

2
2

þ3ðn12 �p2Þ2p22
4m1m3

2

�3ðp1 �p2Þp22
16m2

1m
2
2

� 3ðp22Þ2
16m1m3

2

�
ððn12�p1Þ �S1Þ

þ
�
�3ðn12 �p1Þðn12 �p2Þp21

2m3
1m2

�15ðn12 �p1Þ2ðn12 �p2Þ2
4m2

1m
2
2

þ3p21ðn12 �p2Þ2
4m2

1m
2
2

�p21ðp1 �p2Þ
2m3

1m2
þðp1 �p2Þ2

2m2
1m

2
2

þ3ðn12 �p1Þ2p22
4m2

1m
2
2

�ðp21Þðp22Þ
4m2

1m
2
2

�3ðn12 �p1Þðn12 �p2Þp22
2m1m3

2

�ðp1 �p2Þp22
2m1m3

2

�
ððn12�p2Þ �S1Þþ

�
�9ðn12 �p1Þp21

16m4
1

þp21ðn12 �p2Þ
m3

1m2

þ27ðn12 �p1Þðn12 �p2Þ2
16m2

1m
2
2

�ðn12 �p2Þðp1 �p2Þ
8m2

1m
2
2

�5ðn12 �p1Þp22
16m2

1m
2
2

þðn12 �p2Þp22
m1m3

2

�
ððp1�p2Þ �S1Þ

�
þ G2

c6r312

(�
27m2

2

8m3
1

�3m2

2m2
1

� �
p21�

3m2ðn12 �p1Þ2
2m2

1

þ 177

16m1
þ 11

m2

� �
ðn12 �p2Þ2

þ 11

2m1
þ9m2

2m2
1

� �
ðn12 �p1Þðn12 �p2Þþ

23

4m1
þ9m2

2m2
1

� �
ðp1 �p2Þ

� 159

16m1
þ 37

8m2

� �
p22

�
ððn12�p1Þ �S1Þþ

�
4ðn12 �p1Þ2

m1
þ13p21

2m1

þ5ðn12 �p2Þ2
m2

þ53p22
8m2

� 211

8m1
þ 22

m2

� �
ðn12 �p1Þðn12 �p2Þ

� 47

8m1
þ 5

m2

� �
ðp1 �p2Þ

�
ððn12�p2Þ �S1Þþ

�
� 8

m1
þ9m2

2m2
1

� �
ðn12 �p1Þ

þ 59

4m1
þ 27

2m2

� �
ðn12 �p2Þ

�
ððp1�p2Þ �S1Þ

)

þ G3

c6r412

�
181m1m2

16
þ95m2

2

4
þ75m3

2

8m1

� �
ððn12�p1Þ �S1Þ

� 21m2
1

2
þ473m1m2

16
þ63m2

2

4

� �
ððn12�p2Þ �S1Þ

�
þð1$2Þ: ðD:1Þ
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The next-to-next-to-leading-order spin1-spin2 Hamiltonian was calculated for the
first time by Hartung et al. (2013). Its explicit form reads

HNNLO
S1S2

ðxa; pa; SaÞ ¼
G

c6r312

� ððp1 � p2Þ � S1Þððp1 � p2Þ � S2Þ
16m2

1m
2
2

� 9ððp1 � p2Þ � S1Þððn12 � p2Þ � S2Þðn12 � p1Þ
8m2

1m
2
2

� 3ððn12 � p2Þ � S1Þððp1 � p2Þ � S2Þðn12 � p1Þ
2m2

1m
2
2

þ ððn12 � p1Þ � S1Þððn12 � p1Þ � S2Þ
�
9p21
8m4

1

þ 15ðn12 � p2Þ2
4m2

1m
2
2

� 3p22
4m2

1m
2
2

�
þ ððn12 � p2Þ � S1Þððn12 � p1Þ � S2Þ

�
� 3p21
2m3

1m2
þ 3ðp1 � p2Þ

4m2
1m

2
2

� 15ðn12 � p1Þðn12 � p2Þ
4m2

1m
2
2

�
þ ððn12 � p1Þ � S1Þððn12 � p2Þ � S2Þ

�
�

3p21
16m3

1m2
� 3ðp1 � p2Þ

16m2
1m

2
2

� 15ðn12 � p1Þðn12 � p2Þ
16m2

1m
2
2

�
þ ðp1 � S1Þðp1 � S2Þ

�
3ðn12 � p2Þ2
4m2

1m
2
2

� p22
4m2

1m
2
2

�
þ ðp1 � S1Þðp2 � S2Þ

�
� p21
4m3

1m2
þ ðp1 � p2Þ

4m2
1m

2
2

�
þ ðp2 � S1Þðp1 � S2Þ

�
5p21

16m3
1m2

� 3ðp1 � p2Þ
16m2

1m
2
2

� 9ðn12 � p1Þðn12 � p2Þ
16m2

1m
2
2

�
þ ðn12 � S1Þðp1 � S2Þ

�
9ðn12 � p1Þp21

8m4
1

� 3ðn12 � p2Þp21
4m3

1m2
� 3ðn12 � p2Þp22

4m1m3
2

�
þ ðp1 � S1Þðn12 � S2Þ

�
� 3ðn12 � p2Þp21

4m3
1m2

� 15ðn12 � p1Þðn12 � p2Þ2
4m2

1m
2
2

þ 3ðn12 � p1Þp22
4m2

1m
2
2

� 3ðn12 � p2Þp22
4m1m3

2

�
þ ðn12 � S1Þðn12 � S2Þ

�
� 3ðp1 � p2Þ2

8m2
1m

2
2

þ 105ðn12 � p1Þ2ðn12 � p2Þ2
16m2

1m
2
2

� 15ðn12 � p2Þ2p21
8m2

1m
2
2

þ 3p21ðp1 � p2Þ
4m3

1m2
þ 3p21p

2
2

16m2
1m

2
2

þ 15p21ðn12 � p1Þðn12 � p2Þ
4m3

1m2

�
þ ðS1 � S2Þ

�ðp1 � p2Þ2
16m2

1m
2
2

� 9ðn12 � p1Þ2p21
8m4

1

� 5ðp1 � p2Þp21
16m3

1m2
� 3ðn12 � p2Þ2p21

8m2
1m

2
2

� 15ðn12 � p1Þ2ðn12 � p2Þ2
16m2

1m
2
2

þ 3p21p
2
2

16m2
1m

2
2

þ 3p21ðn12 � p1Þðn12 � p2Þ
4m3

1m2
þ 9ðp1 � p2Þðn12 � p1Þðn12 � p2Þ

16m2
1m

2
2

��
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þ G2

c6r412

�
ððn12 � p1Þ � S1Þððn12 � p1Þ � S2Þ

�
12

m1
þ 9m2

m2
1

�
� 81

4m1
ððn12 � p2Þ � S1Þððn12 � p1Þ � S2Þ

� 27

4m1
ððn12 � p1Þ � S1Þððn12 � p2Þ � S2Þ

� 5

2m1
ðp1 � S1Þðp2 � S2Þ þ

29

8m1
ðp2 � S1Þðp1 � S2Þ �

21

8m1
ðp1 � S1Þðp1 � S2Þ

þ ðn12 � S1Þðp1 � S2Þ
�

33

2m1
þ 9m2

m2
1

� �
ðn12 � p1Þ �

14

m1
þ 29

2m2

� �
ðn12 � p2Þ

�
þ ðp1 � S1Þðn12 � S2Þ

�
4

m1
ðn12 � p1Þ �

11

m1
þ 11

m2

� �
ðn12 � p2Þ

�
þ ðn12 � S1Þðn12 � S2Þ

�
� 12

m1
ðn12 � p1Þ2 �

10

m1
p21 þ

37

4m1
ðp1 � p2Þ

þ 255

4m1
ðn12 � p1Þðn12 � p2Þ

�
þ ðS1 � S2Þ

�
� 25

2m1
þ 9m2

m2
1

� �
ðn12 � p1Þ2

þ 49

8m1
p21 þ

35

4m1
ðn12 � p1Þðn12 � p2Þ �

43

8m1
ðp1 � p2Þ

��
þ G3

c6r512

�
� ðS1 � S2Þ 63

4
m2

1 þ
145

8
m1m2

� �
þ ðn12 � S1Þðn12 � S2Þ 105

4
m2

1 þ
289

8
m1m2

� ��
þ ð1 $ 2Þ: ðD:2Þ

Leading-order cubic in spin Hamiltonians (which are also proportional to the linear
momenta of the bodies) were derived by Hergt and Schäfer (2008a, b) and Levi and
Steinhoff (2015). They are collected here into the single Hamiltonian HLO

S3 , which equals

HLO
S3 ðxa; pa; SaÞ � HLO

S31
þ HLO

S21S2
þ HLO

S1S22
þ HLO

S32

¼ G

c4m2
1r

4
12

�
3

2

�
S21 ðS2 � ðn12 � p1ÞÞ þ ðS1 � n12Þ ðS2 � ðS1 � p1ÞÞ

þ ðn12 � ðS1 � S2ÞÞ
�ðS1 � p1Þ � 5ðS1 � n12Þðp1 � n12Þ

�
� 5ðS1 � n12Þ2 ðS2 � ðn12 � p1ÞÞ �

3m1

2m2

	
S21 ðS2 � ðn12 � p2ÞÞ

þ 2ðS1 � n12ÞðS2 � ðS1 � p2ÞÞ � 5ðS1 � n12Þ2ðS2 � ðn12 � p2ÞÞ

�

� ðS1 � n12Þ �
	
p2 �

m2

4m1
p1



S21 � 5 S1 � n12ð Þ2
	 
�

þ ð1 $ 2Þ:

ðD:3Þ
Leading-order quartic in spin Hamiltonians were derived by Levi and Steinhoff
(2015). They are collected here into the single Hamiltonian HLO

S4 , which reads
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HLO
S4 ðxa; SaÞ � HLO

S21S
2
2
þ HLO

S1S32
þ HLO

S2S31
þ HLO

S41
þ HLO

S42

¼ � 3G

2c4m1m2r512

�
1

2
S21S

2
2 þ S1 � S2ð Þ2� 5

2
S21 S2 � n12ð Þ2þS22 S1 � n12ð Þ2
	 


� 10ðS1 � n12Þ ðS2 � n12Þ ðS1 � S2Þ � 7

4
ðS1 � n12Þ ðS2 � n12Þ

� ��
� 3G

2c4m2
1r

5
12

�
S21 ðS1 � S2Þ � 5ðS1 � S2ÞðS1 � n12Þ2

� 5S21 ðS1 � n12Þ ðS2 � n12Þ þ
35

3
ðS2 � n12ÞðS1 � n12Þ3

�
� 3Gm2

8c4m3
1r

5
12

�
ðS21Þ2 � 10S21 S1 � n12ð Þ2þ 35

3
S1 � n12ð Þ4

�
þ ð1 $ 2Þ:

ðD:4Þ
Let us note that it is possible to compute the leading-order Hamiltonians to all orders
in spin (Vines and Steinhoff 2018).

E Dissipative many-point-mass Hamiltonians

In this appendix we display all known dissipative Hamiltonians for many-body
systems (i.e. for systems comprising any number of components), made of both
spinless or spinning bodies. We start by displaying the dissipative leading-order
2.5PN and next-to-leading-order 3.5PN ADM Hamiltonians valid for spinless bodies.
The 2.5PN Hamiltonian is given in Eq. (6.108) for two-body systems, but in this
appendix we display formula for it valid for many-body systems. The 3.5PN
Hamiltonian was computed for the first time by Jaranowski and Schäfer (1997). The
Hamiltonians read [in this Appendix we use units in which c ¼ 1 and
G ¼ 1=ð16pÞ]22

H2:5PNðxa; pa; tÞ ¼ 5p _vð4ÞijðtÞ vð4Þijðxa; paÞ; ðE:1Þ

H3:5PNðxa; pa; tÞ ¼ 5p vð4Þijðxa; paÞ
�
_P1ijðtÞ þ _P2ijðtÞ þ €P3ijðtÞ

�
þ 5p _vð4ÞijðtÞ

�
P1ijðxa; paÞ þ eP2ijðxa; tÞ

�
� 5p €vð4ÞijðtÞP3ijðxa; paÞ
þ _vð4ÞijðtÞ

�
Q0

ijðxa; pa; tÞ þ Q00
ijðxa; tÞ

�
þ o3

ot3
�
R0ðxa; pa; tÞ þ R00ðxa; tÞ

�
: ðE:2Þ

22 In Jaranowski and Schäfer (1997), Eq. (58) for H3:5PN contains misprints, which were corrected in
Eq. (2.8) of Königsdörffer et al. (2003).
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To display the building blocks of these Hamiltonians we adopt the notation that the
explicit dependence on time t is through canonical variables with primed indices
only, e.g., vð4ÞijðtÞ � vð4Þijðxa0 ðtÞ; pa0 ðtÞÞ. We also define sabc � rab þ rbc þ rca,

saa0b0 � raa0 þ rab0 þ ra0b0 , and saba0 � rab þ raa0 þ rba0 . The building blocks are then
defined as follows23

vð4Þijðxa; paÞ �
8

15

1

16p

X
a

1

ma
p2adij � 3paipaj
� �

þ 4

15

1

ð16pÞ2
X
a

X
b 6¼a

mamb

rab

�
3niabn

j
ab � dij

�
; ðE:3Þ

P1ijðxa; paÞ �
4

15

1

16p

X
a

p2a
m3

a

�p2adij þ 3paipaj
� �

þ 8

5

1

ð16pÞ2
X
a

X
b 6¼a

mb

marab

�� 2p2adij þ 5paipaj þ p2an
i
abn

j
ab

�
þ 1

5

1

ð16pÞ2
X
a

X
b 6¼a

1

rab

n

19ðpa � pbÞ � 3ðnab � paÞðnab � pbÞ

�
dij

� 42paipbj � 3


5ðpa � pbÞ þ ðnab � paÞðnab � pbÞ

�
niabn

j
ab

þ 6ðnab � pbÞ
�
niabpaj þ njabpai

�o
þ 41

15

1

ð16pÞ3
X
a

X
b 6¼a

m2
amb

r2ab

�
dij � 3niabn

j
ab

�
þ 1
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1

ð16pÞ3
X
a

X
b 6¼a

X
c 6¼a;b

mambmc

�
18

rabrca

�
dij � 3niabn

j
ab

�
� 180

sabc

1

rab
þ 1

sabc

� �
niabn

j
ab þ

1

sabc
niabn

j
bc

� �
þ 10

sabc
4

1

rab
þ 1

rbc
þ 1

rca

� �
� r2ab þ r2bc þ r2ca

rabrbcrca

� �
dij

�
; ðE:4Þ

23 In Jaranowski and Schäfer (1997), Eqs. (56) and (57) for Q00
ij and R00, respectively, contain misprints,

which were corrected in Eqs. (2.9) of Königsdörffer et al. (2003).
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P2ijðxa; paÞ �
1
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1
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a

X
b 6¼a
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n
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�
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�
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o
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1

ð16pÞ3
X
a

X
b 6¼a

m2
amb

r2ab

�
3niabn

j
ab � dij

�
þ 1

10

1

ð16pÞ3
X
a

X
b 6¼a

X
c 6¼a;b

mambmc�
5rca
r3ab

1� rca
rbc

� �
þ 1

rab

13

rca
� 40

sabc

� �� �
dij

þ 3
rab
r3ca

þ r2bc
rabr3ca

� 5

rabrca
þ 40

sabc

1

rab
þ 1

sabc

� �� �
niabn

j
ab

þ 2
ðrab þ rcaÞ

r3bc
� 16

1

r2ab
þ 1

r2ca

� �
þ 88

s2abc

� �
niabn

j
ca

�
; ðE:5Þ

P3ij xa; pað Þ � 1

5

1

ð16pÞ2
X
a

X
b6¼a

mb

�� 5ðnab � paÞdij

þ ðnab � paÞniabnjab þ 7ðniabpaj þ njabpaiÞ
�
; ðE:6Þ

eP2ijðxa; tÞ � 1

5

1

ð16pÞ2
X
a

X
a0

ma

ma0raa0

n�
5ðnaa0 � pa0 Þ2 � p2a0

�
dij � 2pa0ipa0j

þ �5p2a0 � 3ðnaa0 � pa0 Þ2
�
niaa0n

j
aa0 � 6ðnaa0 � pa0 Þðniaa0pa0j þ njaa0pa0iÞ

o
þ 1

10

1

ð16pÞ3
X
a

X
a0

X
b0 6¼a0

mama0mb0

�
32

saa0b0
1

ra0b0
þ 1

saa0b0

� �
nia0b0n

j
a0b0

þ 16

�
1

r2a0b0
� 2

s2aa0b0

�
ðniaa0nja0b0 þ njaa0n

i
a0b0 Þ

� 2
raa0 þ rab0

r3a0b0
þ 12

s2aa0b0

� �
niaa0n

j
ab0

þ raa0

r3a0b0

raa0

rab0
þ 3

� �
� 5

ra0b0raa0
þ 8

saa0b0
1

raa0
þ 1

saa0b0

� �� �
niaa0n

j
aa0

þ 5
raa0

r3a0b0
1� raa0

rab0

� �
þ 17

ra0b0raa0
� 4

raa0rab0
� 8

saa0b0
1

raa0
þ 4

ra0b0

� �� �
dij

�
;

ðE:7Þ

Q0
ijðxa; pa; tÞ � � 1

16

1

16p

X
a

X
a0

ma0

maraa0

�
2paipaj þ 12ðnaa0 � paÞniaa0paj

� 5p2an
i
aa0n

j
aa0 þ 3ðnaa0 � paÞ2niaa0njaa0

�
; ðE:8Þ
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Q00
ijðxa; tÞ �

1

32

1

ð16pÞ2
X
a

X
b6¼a

X
a0

mambma0

�
32

saba0
1

rab
þ 1

saba0

� �
niabn

j
ab

þ 3
raa0

r3ab
� 5

rabraa0
þ r2ba0
r3abraa0

þ 8

saba0
1

raa0
þ 1

saba0

� �� �
niaa0n

j
aa0

� 2
raa0 þ rba0

r3ab
þ 12

s2aba0

� �
niaa0n

j
ba0 � 32

1

r2ab
� 2

s2aba0

� �
niabn

j
aa0

�
; ðE:9Þ

R0ðxa; pa; tÞ �
2

105

1

16p

X
a

X
a0

r2aa0
mama0

�� 5p2ap
2
a0 þ 11ðpa � pa0 Þ2

þ 4ðnaa0 � pa0 Þ2p2a þ 4ðnaa0 � paÞ2p2a0 � 12ðnaa0 � pa0 Þðnaa0 � paÞðpa � pa0 Þ
�

� 1

105

1

ð16pÞ2
X
a

X
a0

X
b0 6¼a0

ma0mb0

ma

�
2
r4aa0
r3a0b0

� 2
r2aa0r

2
ab0

r3a0b0
� 5

r2aa0
ra0b0

� �
p2a

þ 4
r2aa0
ra0b0

ðnaa0 � paÞ2 þ 17
r2aa0
ra0b0

þ ra0b0

� �
ðna0b0 � paÞ2

þ 2 6
r3aa0
r2a0b0

þ 17raa0

� �
ðnaa0 � paÞðna0b0 � paÞ

�
; ðE:10Þ

R00ðxa; tÞ � 1

105

1

ð16pÞ2
X
a

X
b6¼a

X
a0

mamb

ma0

�
5
r2aa0
rab

þ 2
r2aa0r

2
ba0

r3ab
� 2

r4aa0
r3ab

� �
p2a0

� 17
r2aa0
rab

þ rab

� �
ðnab � pa0 Þ2 � 4

r2aa0
rab

ðnaa0 � pa0 Þ2

þ 2
6r3aa0
r2ab

þ 17raa0

� �
ðnab � pa0 Þðnaa0 � pa0 Þ

�
þ 1

210

1

ð16pÞ3
X
a

X
b6¼a

X
a0

X
b0 6¼a0

mambma0mb0

�
2

r2aa0
rabr3a0b0

r2aa0 � r2ab0
� �

þ 2
r2aa0

r3abra0b0
r2aa0 � r2ba0
� �þ 4

rabr2aa0
r3a0b0

� 5
r2aa0

rabra0b0
� 2

r3ab
r3a0b0

þ rab
ra0b0

� �
� 4

rabraa0rbb0

r3a0b0
ðnaa0 � nbb0 Þ þ 17

rab
ra0b0

þ ra0b0

rab
þ r2aa0
rabra0b0

� �
ðnab � na0b0 Þ2

þ 6
r4aa0

r2abr
2
a0b0

ðnab � na0b0 Þ þ 34r2aa0
1

r2ab
þ 1

r2a0b0

� �
ðnab � na0b0 Þ

�
: ðE:11Þ

The leading-order Hamiltonian for systems made of any number of spinning bodies
was derived by Wang et al. (2011). It reads24

24 We keep here the total time derivative as given in Wang et al. (2011), though it could be dropped as
correspondingly done in the Eq. (E.2), because it can be removed by performing a canonical
transformation.

123

    2 Page 116 of 139 Review Article



H spin
3:5PNðxa; pa;Sa; tÞ ¼ 5p

	
vð4Þijðxa; paÞ

�
_Pspin
1ij ðtÞ þ _Pspin

2ij ðtÞ þ €Pspin
3ij ðtÞ

�
þ _vð4ÞijðtÞ

�
Pspin

1ij ðxa; pa;SaÞ þ ePspin
2ij ðxa; tÞ

�
� €vð4ÞijðtÞPspin

3ij ðxa;SaÞ


þ _vð4ÞijðtÞQ0 spin

ij ðxa; pa;Sa; tÞ

þ o3

ot3

	
R0 spinðxa; pa;Sa; tÞ þ R00 spinðxa; tÞ



� d

dt

	
_vð4ÞijðtÞOspin

ij ðpa;SaÞ


; ðE:12Þ

where Sa is the spin tensor associated with ath body, with components SaðiÞðjÞ. The

function vð4Þij is defined in Eq. (E.3) above and the functions Pspin
1ij , P

spin
2ij , P

spin
3ij ,ePspin

2ij , Q
0 spin
ij , R0 spin, R00 spin, and Ospin

ij are given by

Pspin
1ij ðxa; pa;SaÞ � 4

5ð16pÞ2
X
a

X
b6¼a

�
1

r2ab

h
3ðnab � pbÞnkab

�
njabSaðiÞðkÞ

þ niabSaðjÞðkÞ
�� 3pbk

�
njabSaðiÞðkÞ þ niabSaðjÞðkÞ

�� 3nkab
�
pbjSaðiÞðkÞ

þ pbiSaðjÞðkÞ
�þ 4ð3niabnjab � dijÞnkabpblSaðkÞðlÞ

i
þ mb

ma

1

r2ab

h
pakðnjabSaðiÞðkÞ

þ niabSaðjÞðkÞÞ þ ð4dij � 6niabn
j
abÞnkabpalSaðkÞðlÞ þ 4nkab

�
pajSaðiÞðkÞ

þ paiSaðjÞðkÞ
�i� SaðkÞðlÞ

r3ab

h
ð3niabnjab � dijÞSbðkÞðlÞ þ 3nkab

�
njabSbðiÞðlÞ

þ niabSbðjÞðlÞ
�þ 3ðdij � 5niabn

j
abÞnkabnnabSbðnÞðlÞ

i�
; ðE:13Þ

Pspin
2ij ðxa; pa;SaÞ � � 4

5ð16pÞ2
X
a

X
b 6¼a

mb

ma

1

r2ab

n
� 2pak

�
niabSaðjÞðkÞ

þ njabSaðiÞðkÞ
�þ nkabðpaiSaðjÞðkÞ þ pajSaðiÞðkÞÞ þ 3ðnab � paÞnkab

�
niabSaðjÞðkÞ

þ njabSaðiÞðkÞ
�þ ðdij þ 3niabn

j
abÞnkabpalSaðkÞðlÞ

o
; ðE:14Þ

Pspin
3ij ðxa; pa;SaÞ � 4

5ð16pÞ2
X
a

X
b6¼a

mb

rab
nkab
�
njabSaðiÞðkÞ þ niabSaðjÞðkÞ

�
; ðE:15Þ

ePspin

2ij ðxa; tÞ � � 4

5ð16pÞ2
X
a

X
a0

ma

ma0

1

r2aa0

n
2pa0kðniaa0Sa0ðjÞðkÞ þ njaa0Sa0ðiÞðkÞÞ

� nkaa0 ðpa0iSa0ðjÞðkÞ þ pa0jSa0ðiÞðkÞÞ � ðdij þ 3niaa0n
j
aa0 Þnkaa0pa0lSa0ðkÞðlÞ

� 3ðnaa0 � pa0 Þnkaa0 ðniaa0Sa0ðjÞðkÞ þ njaa0Sa0ðiÞðkÞÞ
o
; ðE:16Þ
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Q0 spin
ij ðxa; pa;Sa; tÞ � 1

4ð16pÞ
X
a

X
a0

ma0

ma

1

r2aa0

n
2pak

�
niaa0SaðjÞðkÞ

þ njaa0SaðiÞðkÞ
�� nkaa0 ðpaiSaðjÞðkÞ þ pajSaðiÞðkÞÞ

� 3ðnaa0 � paÞnkaa0 ðniaa0SaðjÞðkÞ þ njaa0SaðiÞðkÞÞ
� ðdij þ 3niaa0n

j
aa0 Þnkaa0palSaðkÞðlÞ

o
; ðE:17Þ

R0 spinðxa; pa;Sa; tÞ � 1

15ð16pÞ
X
a

X
a0

SaðiÞðjÞ

�
4ra0a
ma0ma

�
p2a0n

i
a0apaj

� ðna0a � pa0 Þpa0ipaj � 2ðpa0 � paÞnia0apa0j
�

þ 1

7ð16pÞ
X
b0 6¼a0

ma0mb0

ma

�
17nia0b0paj �

2ra0a
ra0b0

�
17ðna0b0 � paÞnia0b0nja0a

þ 7nia0apaj
�þ 6r2a0a

r2a0b0

�
nia0b0paj þ 2ðna0a � paÞnia0b0nja0a

�
þ 8ra0a

r3a0b0

�
r2a0an

i
a0apaj � r2b0an

i
a0apaj

���
þ 4

15ð16pÞ
X
a

X
a0

raa0

ma0ma
Sa0ðiÞðjÞ

	
p2an

i
aa0pa0j � 2ðpa0 � paÞniaa0paj

þ ðnaa0 � paÞpa0ipaj


þ 2

15ð16pÞ
X
a

X
a0 6¼a

1

ma0ma
SaðiÞðjÞ

	
3pa0kpaiSa0ðkÞðjÞ

� 2ðpa0 � paÞSa0ðiÞðjÞ � 2pa0ipakSa0ðkÞðjÞ


; ðE:18Þ

R00 spinðxa; tÞ � 2

15ð16pÞ2
X
a

X
b 6¼a

X
a0

mamb

ma0

ra0a
rab

Sa0ðiÞðjÞ
	
nia0apa0j

� 2ðnab � pa0 Þnia0anjab � ðna0a � nabÞniabpa0j


; ðE:19Þ

Ospin
ij ðpa;SaÞ �

X
a

1

8m2
a

pak
�
paiSaðkÞðjÞ þ pajSaðkÞðiÞ

�
: ðE:20Þ

F Closed-form 1PM Hamiltonian for point-mass systems

The first post-Minkowskian (1PM) closed-form Hamiltonian for point-mass systems
has been derived by Ledvinka et al. (2008). The starting point is the ADM reduced
Hamiltonian describing N gravitationally interacting point masses with positions xa
and linear momenta pa (a ¼ 1; . . .;NÞ. The 1PM Hamiltonian is, by definition,
accurate through terms linear in G and it reads (setting c ¼ 1)
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Hlin ¼
X
a

ma � 1

2
G
X
a;b6¼a

mamb

rab
1þ p2a

m2
a

þ p2b
m2

b

� �
þ 1

4
G
X
a;b 6¼a

1

rab
7 pa � pb þ ðpa � nabÞðpb � nabÞð Þ

� 1

2

X
a

paipaj
ma

hTTij ðx ¼ xaÞ þ 1

16pG

Z
d3x

1

4
hTTij;k h

TT
ij;k þ pijTTp

ij
TT

� �
; ðF:1Þ

where ma � m2
a þ p2a

� �1
2 and nabrab � xa � xb (with jnabj ¼ 1). The independent

degrees of freedom of the gravitational field, hTTij and pijTT, are treated to linear order

in G. Denoting x� xa � najx� xaj and cos ha � ðna � _xaÞ=j _xaj, the solution for
hTTij ðxÞ was found to be

hTTij ðxÞ ¼ dTT kl
ij

X
b

4G

mb

1

jx� xbj
pbkpblffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� _xb2 sin
2 hb

p : ðF:2Þ

An autonomous point-mass Hamiltonian needs the field part in the related Routhian,

Rf ¼ 1

16pG

Z
d3x

1

4
hTTij;k h

TT
ij;k � _hTTij _hTTij

	 

; ðF:3Þ

to be transformed into an explicit function of particle variables. Using the Gauss law
in the first term and integrating by parts the term containing the time derivatives one
arrives at

Rf ¼ � 1

16pG

Z
d3x

1

4
hTTij DhTTij � o2t h

TT
ij

	 

þ 1

64pG

I
dSkðhTTij hTTij;kÞ

� 1

64pG
d

dt

Z
d3x ðhTTij _hTTij Þ: ðF:4Þ

The field equations imply that the first integral directly combines with the “inter-
action” term containing

P
m�1

a pai paj hTTij ðxaÞ, so only its coefficient gets changed.

The remaining terms in Rf , the surface integral and the total time derivative, do not
modify the dynamics of the system since in our approximation of unaccelerated field-
generating particles, the surface integral vanishes at large jxj. The reduced Routhian
thus takes the form, now referred to as H because it is a Hamiltonian for the particles,

Hlinðxc; pc; _xcÞ ¼
X
a

ma � 1

2
G
X
a;b 6¼a

mamb

rab
1þ 2

p2a
m2

a

� �
þ 1

4
G
X
a;b6¼a

1

rab
7 ðpa � pbÞ þ ðpa � nabÞðpb � nabÞð Þ

� 1

4

X
a

paipaj
ma

hTTij ðx ¼ xa; xb; pb; _xbÞ: ðF:5Þ

Though dropping a total time derivative, which implies a canonical transformation,
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the new canonical coordinates keep their names. A further change of coordinates has
to take place to eliminate the velocities _xa in the Hamiltonian. This can be achieved
by simply putting _xa ¼ pa=ma (again without changing names of the variables).

Using the shortcut yba � m�1
b ½m2

b þ nba � pbð Þ2�12, the Hamiltonian comes out in the
final form (Ledvinka et al. 2008)

Hlin ¼
X
a

ma � 1

2
G
X
a;b6¼a

mamb

rab
1þ p2a

m2
a

þ p2b
m2

b

� �
þ 1

4
G
X
a;b 6¼a

1

rab
7 ðpa � pbÞ þ ðpa � nabÞðpb � nabÞð Þ

� 1

4
G
X
a;b 6¼a

1

rab

ðmambÞ�1

ðyba þ 1Þ2yba

(
2
	
2ðpa � pbÞ2ðpb � nbaÞ2

� 2ðpa � nbaÞðpb � nbaÞðpa � pbÞp2b þ ðpa � nbaÞ2p4b � ðpa � pbÞ2p2b

 1

m2
b

þ 2
h
ðpa � pbÞ2 � p2aðpb � nbaÞ2 þ ðpa � nbaÞ2ðpb � nbaÞ2

þ 2ðpa � nbaÞðpb � nbaÞðpa � pbÞ � ðpa � nbaÞ2p2b
i

þ
h
p2ap

2
b � 3p2aðpb � nbaÞ2 þ ðpa � nbaÞ2ðpb � nbaÞ2

þ 8ðpa � nbaÞðpb � nbaÞðpa � pbÞ � 3ðpa � nbaÞ2p2b
i
yba

)
: ðF:6Þ

This is the Hamiltonian for a many-point-mass system through 1PM approximation,
i.e., including all terms linear in G. It is given in closed form and entirely in terms of
the canonical variables of the particles.

The usefulness of that Hamiltonian has been proved in several applications (see, e.
g., Foffa and Sturani 2011; Jaranowski and Schäfer 2012; Foffa and Sturani 2013a;
Damour 2016; Feng et al. 2018). Especially in Jaranowski and Schäfer (2012) it was
checked that the terms linear in G in the 4PN-accurate ADM Hamiltonian derived
there, are, up to adding a total time derivative, compatible with the 4PN-accurate
Hamiltonian which can be obtained from the exact 1PM Hamiltonian (F.6). Let us
also note that Damour (2016) has shown that, after a suitable canonical transfor-
mation, the rather complicated Hamiltonian (F.6) is equivalent (modulo the EOB
energy map) to the much simpler Hamiltonian of a test particle moving in a (linearized)
Schwarzschild metric. The binary centre-of-mass 2PM Hamiltonian has been derived
most recently by Damour (2018) in an EOB-type form and also the gravitational spin-
orbit coupling in binary systems has been achieved at 2PM order by Bini and Damour
(2018) (for other 2PM results see, e.g., Bel et al. 1981; Westpfahl 1985).
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G Skeleton Hamiltonian for binary black holes

The skeleton approach to GR developed by Faye et al. (2004), is a truncation of GR
such that an analytic PN expansion exists to arbitrary orders which, at the same time,
is explicitly calculable. The approach imposes the conformal flat condition for the
spatial three-metric for all times (not only initially as for the Brill–Lindquist
solution), together with a specific truncation of the field-momentum energy density. It
exactly recovers the general relativity dynamical equations in the limits of test-body
and 1PN dynamics. The usefulness of the skeleton approach in the construction of
initial data needed for numerical solving binary black hole dynamics was studied
by Bode et al. (2009).

The conformally flat metric

cij ¼ ð1þ 1

8
/Þ4dij ðG:1Þ

straightforwardly results in maximal slicing, using the ADM coordinate conditions,

pijcij ¼ 2
ffiffiffi
c

p
cijKij ¼ 0: ðG:2Þ

Our coordinates fit to the both ADM and Dirac coordinate conditions. The
momentum constraint equations now become

pji; j ¼ � 8pG
c3
X
a

paida: ðG:3Þ

The solution of these equations is constructed under the condition that pji is purely
longitudinal, i.e.,

pji ¼ oiVj þ ojVi � 2

3
dijolVl: ðG:4Þ

This condition is part of the definition of the skeleton model.
Furthermore, in the Hamiltonian constraint equation, which in our case reads

D/ ¼ � pjip
i
j

ð1þ 1
8/Þ7

� 16pG
c2

X
a

mada
ð1þ 1

8/Þ
�
1þ p2a

ð1þ 1
8/Þ4m2

ac
2

�1=2

; ðG:5Þ

a truncation of the numerator of the first term is made in the following form

pjip
i
j � �2Vjoipij þ oið2Vjp

i
jÞ ! �2Vjoipij ¼

16pG
c3

X
a

pajVjda ; ðG:6Þ

i.e., dropping from pjip
i
j the term oið2VjpijÞ. This is the second crucial truncation

condition additional to the conformal flat one. Without this truncation neither an
explicit analytic solution can be constructed nor a PN expansion is feasible.
From Jaranowski and Schäfer (1998, 2000c), it is known that at the 3PN level the

hTTij -field is needed to make the sum pjip
i
j analytic in 1/c.

With the aid of the ansatz
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/ ¼ 4G

c2
X
a

aa
ra

ðG:7Þ

and by making use of dimensional regularization, the energy and momentum con-
straint equations result in an algebraic equation for aa of the form (Faye et al. 2004),

aa ¼ ma

1þ Gab
2rabc2

1þ p2a=ðm2
ac

2Þ
1þ Gab

2rabc2

	 
4
264

375
1=2

þ paiVai=c

1þ Gab
2rabc2

	 
7 ; b 6¼ a: ðG:8Þ

With these inputs the skeleton Hamiltonian for binary black holes results in

Hsk ¼ � c4

16pG

Z
d3xD/ ¼

X
a

aac
2: ðG:9Þ

The Hamilton equations of motion read

_xa ¼ oHsk

opa
; _pa ¼ � oHsk

oxa
: ðG:10Þ

We will present the more explicit form of the binary skeleton Hamiltonian in the
centre-of-mass reference frame of the binary, which is defined by the equality
p1 þ p2 ¼ 0. We define

p � p1 ¼ �p2; r � x1 � x2; r � jrj: ðG:11Þ
It is also convenient to introduce dimensionless quantities25 (here M � m1 þ m2 and
l � m1m2=M )

r̂ � rc2

GM
; p̂ � p

lc
; p̂2 ¼ p̂2r þ ĵ

2
=r̂2 with p̂r �

pr
lc

and ĵ � Jc

GMl
;

ðG:12Þ
where pr � p � r=r is the radial linear momentum and J � r� p is the orbital angular
momentum in the centre-of-mass frame. The reduced binary skeleton Hamiltonian

Ĥsk � Hsk=ðlc2Þ [it defines equations of motion with respect to dimensionless time
t̂ � tc3=ðGMÞ] can be put into the following form (Gopakumar and Schäfer 2008):

Ĥsk ¼ 2 r̂ðw1 þ w2 � 2Þ; ðG:13Þ
where the functions w1 and w2 are solutions of the following system of coupled
equations

w1 ¼ 1þ v�
4 r̂w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2 p̂r

2 þ ĵ2=r̂2
� �
v2� w4

2

s
� 8 p̂r

2 þ 7ĵ2=r̂2
� �

m2

8 r̂2w7
2

; ðG:14Þ

25 Let us note the they differ from the reduced variables introduced in Sect. 6 in Eq. (6.4).
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w2 ¼ 1þ vþ
4 r̂w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2 p̂r

2 þ ĵ2=r̂2
� �
v2þ w4

1

s
� 8 p̂r

2 þ 7ĵ2=r̂2
� �

m2

8 r̂2w7
1

; ðG:15Þ

where v� � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 m

p
and vþ � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4 m
p

, with m � l=M .
Beyond the properties mentioned in the beginning, the conservative skeleton

Hamiltonian reproduces the Brill–Lindquist initial-value solution. It is remarkable
that the skeleton Hamiltonian allows a PN expansion in powers of 1=c2 to arbitrary
orders. The skeleton Hamiltonian thus describes the evolution of a kind of black
holes under both conformally flat condition and the condition of analyticity in 1=c2.
Along circular orbits the two-black-hole skeleton solution is quasistationary and it
satisfies the property of the equality of Komar and ADM masses (Komar
1959, 1963). Of course, gravitational radiation emission is not included. It can,
however, be added to some reasonable extent, see Gopakumar and Schäfer (2008).

Restricting to circular orbits and defining x � ðGMx=c3Þ2=3, where x is the
orbital angular frequency, the skeleton Hamiltonian reads explicitly to 3PN order,

Ĥsk ¼ � x

2
þ
�
3

8
þ m
24

�
x2 þ

�
27

16
þ 29

16
m� 17

48
m2
�
x3

þ
�
675

128
þ 8585

384
m� 7985

192
m2 þ 1115

10368
m3
�
x4 þOðx5Þ: ðG:16Þ

In Faye et al. (2004), the coefficients of this expansion are given to the order x11

inclusively. We recall that the 3PN-accurate result of general relativity reads [cf.
Eq. (6.94)],

Ĥ	 3PN ¼ � x

2
þ
�
3

8
þ m
24

�
x2 þ

�
27

16
� 19

16
mþ 1

48
m2
�
x3

þ
 
675

128
þ
�
205

192
p2 � 34445

1152

�
mþ 155

192
m2 þ 35

10368
m3
!
x4: ðG:17Þ

In the Isenberg–Wilson–Mathews approach to general relativity only the conformal
flat condition is employed. Through 2PN order, the Isenberg–Wilson–Mathews
energy of a binary is given by

ĤIWM ¼ � x

2
þ
�
3

8
þ m
24

�
x2 þ

�
27

16
� 39

16
m� 17

48
m2
�
x3: ðG:18Þ

The difference between ĤIWM and Ĥsk shows the effect of truncation in the field-
momentum part of Ĥsk through 2PN order and the difference between ĤIWM and

Ĥ	 3PN reveals the effect of conformal flat truncation. In the test-body limit, m ¼ 0,
the three Hamiltonians coincide.
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