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Abstract The study of higher-dimensional black holes is a subject which has recently
attracted vast interest. Perhaps one of the most surprising discoveries is a realization
that the properties of higher-dimensional black holes with the spherical horizon topol-
ogy and described by the Kerr–NUT–(A)dS metrics are very similar to the properties
of the well known four-dimensional Kerr metric. This remarkable result stems from
the existence of a single object called the principal tensor. In our review we discuss
explicit and hidden symmetries of higher-dimensional Kerr–NUT–(A)dS black hole
spacetimes. We start with discussion of the Killing and Killing–Yano objects repre-
senting explicit and hidden symmetries. We demonstrate that the principal tensor can
be used as a “seed object” which generates all these symmetries. It determines the
form of the geometry, as well as guarantees its remarkable properties, such as spe-
cial algebraic type of the spacetime, complete integrability of geodesic motion, and
separability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review
also contains a discussion of different applications of the developed formalism and its
possible generalizations.
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1 Introduction

1.1 Black holes in four and higher dimensions

The study of four-dimensional black holes has begun long time ago. Their detailed
characteristics were obtained in the 1960s and 1970s, also known as the “golden age”
of the general relativity. A summary of the obtained results can be found, for example,
in the books by Misner et al. (1973), Wald (1984), Hawking and Ellis (1973), Chan-
drasekhar (1983), Frolov and Novikov (2012), Frolov and Zelnikov (2011). According
to the proven theorems, assuming the weak energy condition for the matter, the black
hole horizon has to have spherical topology. The most general stationary vacuum black
hole solution of the Einstein equations is axially symmetric and can be described by
the Kerr metric.

The interest in four-dimensional black holes is connected with the important role
these objects play in modern astrophysics. Namely, there exist strong evidences that
the stellar mass black holes manifest themselves in several X -ray binaries. Supermas-
sive black holes were discovered in the centers of many galaxies, including our own
Milky Way. Great discovery made by LIGO on September 14, 2015 gives first direct
confirmation that strong gravitational waves have been emitted in the process of the
coalescence of two black holes with masses around 30 solar mass (Abbott et al. 2016).
Three month later LIGO registered gravitational waves from another merging black
hole binary. These events marked the beginning of the gravitational waves astronomy.
In all previous observations the information concerning astrophysical black holes was
obtained by registering the electromagnetic waves emitted by the matter in the black
hole vicinity. Such matter usually forms an accretion disc whose temperature and size
are determined by the mass and angular momentum of the black hole. Before reaching
a distant observer, the emitted radiation propagates in a strong gravitational field of
the black hole; to extract the information contained in astrophysical observations one
needs to solve the equations for particle and wave propagation in the Kerr spacetime.
Fortunately, the remarkable properties of this geometry, namely the complete integra-
bility of geodesics and the separability of wave equations, greatly simplify the required
calculations. Based on these results there were developed powerful tools for study-
ing physical effects in the black hole vicinity and their observational manifestation.
Similar tools were also used for the study of quantum evaporation of mini-black holes.

In this review we mainly concentrate on black holes in dimensions greater than four,
with a particular focus on their recently discovered remarkable geometric properties.
Black holes in higher dimensions, see e.g., Emparan and Reall (2008), Horowitz
(2012) for extended reviews, have attracted much attention for several reasons. A first
reason is connected with the development of string theory and the demand for the
corresponding black hole solutions. In order to make this theory consistent one needs
to assume that besides usual four dimensions there exist (at least six) additional spatial
dimensions.

A second reason stems from the (in past 20 years very popular) brane-world mod-
els (Maartens and Koyama 2010; Pavsic 2002; Raychaudhuri and Sridhar 2016).
In these models the usual matter and the non-gravitational fields are confined to a
four-dimensional brane, representing our world. This brane is embedded in higher-
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dimensional bulk spacetime where only gravity can propagate. Higher-dimensional
black holes play a very special role in the brane-world models. Being just a clot of
gravity, they can ‘live’ both on and outside the brane. Mini-black-holes whose size is
smaller than the size of extra dimensions thus play a role of probes of extra dimensions.
One of the intriguing features of the brane-world models that is intensively discussed
in the literature is a possibility of mini-black-hole formation in the collision of high
energy particles in modern TeV colliders (see e.g., Landsberg 2015; Aad et al. 2014
and references therein). Numerous discussions of this effect generated a great interest
in the study of properties of higher-dimensional black holes.

A third main reason to study higher-dimensional black holes comes from the desire
to better understand the nature of gravitational theory and in particular to identify
which properties of gravitational fields are specific to four dimensions and which of
them are valid more generally irrespective of the spacetime dimension (Emparan and
Reall 2008).

1.2 Remarkable properties of the Kerr black hole

The Kerr metric has the following remarkable properties: the equations of motion for
a free particle in this geometry are completely integrable and the physically interest-
ing field equations allow for the separation of variables. What stands behind these
properties?

In a simpler case, when a black hole does not rotate, the answer is well known.
The corresponding Schwarzschild solution is static and spherically symmetric. As a
result of this symmetry, the energy of the particle and the three components of its
angular momentum are conserved. One can thus construct four integrals of geodesic
motion that are functionally independent and mutually Poisson commute, choosing,
for example, the (trivial) normalization of the four-velocity, the particle’s energy, the
square of its total angular momentum, and a projection of the angular momentum to an
arbitrary ‘axis. According to the Liouville’s theorem, the existence of such quantities
makes the geodesic motion in the spherically symmetric black hole case completely
integrable.

For rotating black holes the situation is more complicated since the total angular
momentum is no longer conserved. Surprisingly, even in this case there exists another
integral of motion, nowadays known as the Carter’s constant. Obtained in 1968 by
Carter by a method of separation of variables in the Hamilton–Jacobi equation (Carter
1968a, b), this additional integral of motion is quadratic in momentum, and, as shown
later by Walker and Penrose (1970), it is in one-to-one correspondence with the rank 2
Killing tensor of the Kerr geometry. A rank 2 Killing tensor kab is a symmetric tensor
whose symmetrized covariant derivative vanishes, ∇(ckab) = 0. It was demonstrated
by Carter in the same papers (Carter 1968a, b) that not only the Hamilton–Jacobi
equation but also the Klein–Gordon equation allows for a complete separation of
variables in the Kerr spacetime.

Remark This fact may not be as surprising as it looks at first sight. In fact, the fol-
lowing 3 problems: complete integrability of geodesic equations, separability of the
Hamilton–Jacobi equation, and separability of the Klein–Gordon equation are closely
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related. Namely, looking for a quasi-classical solution Φ ∼ exp(i S) of the Klein–
Gordon equation (gab∇a∇b − m2)Φ = 0, one obtains the Hamilton–Jacobi equation
gab∇a S∇b S + m2 = 0. By identifying ∇a S with the momentum pa , one reduces the
problem of finding the action function S to the problem of integrating the Hamilton
equations of motion for a relativistic particle. ��

Following Carter’s success a boom of discoveries regarding the remarkable prop-
erties of the Kerr geometry has taken place. Teukolsky (1972, 1973) decoupled
the equations for the electromagnetic and gravitational perturbations and separated
variables in the obtained master equations. Equations for massless neutrinos were
separated Unruh (1973) and Teukolsky (1973), and the equations for the massive
Dirac field were separated by Chandrasekhar (1976) and Page (1976).

Penrose (1973) and Floyd (1973) demonstrated that in the Kerr geometry there exists
a new fundamental object, the so called Killing–Yano tensor fab, which behaves as
a ‘square root’ of the Killing tensor. This object is a 2-form that obeys the following
equation: ∇(c fa)b = 0. If fab is non-degenerate, the integrability conditions for this
equation imply that the spacetime is algebraically special, of Petrov type D (Collinson
1974). Hughston and Sommers (1973) showed that the existence of such Killing–
Yano tensor necessarily implies that the corresponding spacetime admits also two
commuting Killing vectors, generating time translation and rotation.

It is interesting to note that some of the above described properties extend beyond
the case of the vacuum Kerr geometry. Namely, in 1968 Carter obtained a 6-parametric
solution of the Einstein–Maxwell equations with a cosmological constantΛ that shares
with the Kerr geometry many of the remarkable properties (Carter 1968b, c). Besides
the cosmological constantΛ, the mass M and the angular momentum J , this solution
contains also an electric charge Q, a magnetic monopole P , and the NUT parameter
N . The whole class of Carter’s metrics admits the Killing–Yano tensor (Demianski
and Francaviglia 1980; Carter 1987).

Carter’s solution is now called the charged Kerr–NUT–(A)dS metric. In the absence
of the NUT parameter it is the most general regular solution describing a stationary
isolated black hole in the four-dimensional asymptotically flat (Λ = 0) or (anti) de Sit-
ter (Λ �= 0) space. The hidden symmetries of the four-dimensional Kerr–NUT–(A)dS
metric and its generalization by Plebański and Demiański (1976) will be discussed in
detail in Chap. 3.

1.3 Higher-dimensional black objects

With the advent of interest in higher-dimensional black holes at the beginning of
this century the following questions arose: (i) How far can the results on the four-
dimensional black holes be generalized to higher dimensions? (ii) What is the most
general solution describing a stationary black hole in asymptotically flat and/or asymp-
totically (anti) de Sitter space? iii) What can one say about particle motion and field
propagation in the gravitational field of such black holes? By now partial answers to
some of these questions have been obtained.

The ‘zoo’ of higher-dimensional black holes is vast: there exist extended objects
such as as black strings and branes, and the topology of the horizon of an isolated sta-
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tionary higher-dimensional black hole needs not to be spherical, see e.g. Emparan and
Reall (2002a), Elvang and Figueras (2007), Kunduri and Lucietti (2014). In particular,
in 2002 Emparan and Reall obtained an exact solution of 5-dimensional vacuum Ein-
stein equation which describes a stationary rotating black hole with toroidal horizon
(Emparan and Reall 2002b). Later many new exact 5-dimensional vacuum stationary
black hole solutions with a more complicated structure of the horizon were found.
There are strong arguments that similar solutions do also exist in more than five
dimensions, though the stability of all these objects is in question, e.g., Santos and
Way (2015). Many useful references on this subject can be found in the remarkable
review by Emparan and Reall (2008), see also Emparan et al. (2010), Kunz (2015),
Kleihaus and Kunz (2017).

The problem of uniqueness and stability of the higher dimensional black holes is
far from its solution—see e.g. a review Hollands and Ishibashi (2012) and references
therein.

1.4 Higher-dimensional Kerr–NUT–(A)dS black holes

Within this ‘zoo’ of higher dimensional black objects there exists a large important fam-
ily of black hole solutions which are natural generalizations of the four-dimensional
Kerr–NUT–(A)dS solution. Called higher-dimensional Kerr–NUT–(A)dS metrics,
these solutions will be in the main focus of this review. They have the spherical
topology of the horizon, and in the absence of the NUT parameters, describe isolated
rotating black holes in either asymptotically flat or asymptotically (A)dS spacetime.

Remark Let us emphasize, that even if the stationary black hole maintains the spherical
horizon topology, its horizon may be ‘distorted’—the sizes of symmetric cycles on the
horizon may vary non-monotonically with the polar angle. Such ‘bumpy’ black holes
were conjectured to exist in Emparan and Myers (2003) and later found numerically
in Emparan et al. (2014). These black holes do not belong to the Kerr–NUT–(A)dS
family and are not studied in this review. However, it might be an interesting problem
for future studies to see whether some of the integrability results presented here for
‘smooth’ Kerr–NUT–(A)dS black holes could be extended to bumpy black holes or
other black holes as well. ��

Let us briefly recapitulate a history of study of the Kerr–NUT–(A)dS family of black
hole solutions. Denote by D = 2n + ε a total number of spacetime dimensions, with
ε = 0 in even dimensions and ε = 1 in odd dimensions. A higher-dimensional
generalization of the Schwarzschild black hole solution was readily obtained by
Tangherlini (1963). The Tangherlini solution is static and spherically symmetric, it
admits SO(D − 1) group of rotational symmetries, and contains exactly one arbitrary
parameter which can be identified with the gravitational radius and is related to the
black hole mass. A task of finding a higher-dimensional generalization of the Kerr
geometry is much harder and was achieved by Myers and Perry (1986). The gen-
eral solution contains, besides the mass M , up to (n − 1 + ε) independent rotation
parameters.

In ‘our three-dimensional world’ we are used to think about rotations as operations
about a given axis and identify the angular momentum with a 3-vector J a . In a general
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case, however, the angular momentum is described by a rank 2 antisymmetric tensor
Jab. In three dimensions one can write J a = εabc Jbc, where εabc is the totally anti-
symmetric tensor, and the usual description is recovered. In higher dimensions such
relation no longer exists. Nevertheless, one can always write Jab in a canonical form
by finding a set of mutually orthogonal 2-planes such that the components of Jab van-
ish unless the two indices ‘belong’ to the same 2-plane. Since the number of spatial
dimensions is D − 1, the largest possible number of mutually orthogonal 2-planes
(and hence the number of independent components of the angular momentum tensor)
is (n − 1 + ε). This is also the number of independent components of the angular
momentum of the black hole which enters the general Myers–Perry solution.

It took another 20 years to find a generalization of the Myers–Perry metric which
includes the cosmological constant. Hawking et al. (1999) found singly-spinning Kerr–
(A)dS metrics in all dimensions. These metrics were then generalized by Gibbons et al.
(2005) and Gibbons et al. (2004) to the case of a general multiple spin. After several
attempts to include NUT parameters (e.g., Chong et al. 2005; Chen et al. 2007), Chen
et al. (2006a) finally found the most general higher-dimensional Kerr–NUT–(A)dS
metric, generalizing the higher-dimensional Carter-like ansatz studied previously in
Klemm (1998). It is the purpose of this review to study the most general Kerr–NUT–
(A)dS metric (Chen et al. 2006a) and its remarkable symmetries.

1.5 Explicit and hidden symmetries

Despite of being significantly more complicated, the most general Kerr–NUT–(A)dS
metrics in all dimensions have very similar properties to their four-dimensional
‘cousin’, the Kerr metric. A discussion of this similarity and its origin is the subject
of the present review. Namely, we shall describe a fundamental geometric structure
which is responsible for the remarkable properties of the Kerr–NUT–(A)dS metrics.
These properties stem from the existence a complete set (‘tower’) of explicit and hid-
den symmetries that are ‘miraculously’ present in these spacetimes. Moreover, the
existence of such a Killing tower of symmetries is also a characteristic property of the
Kerr–NUT–(A)dS spacetimes. It is possible that some of the hidden symmetries may
also exist in other higher-dimensional black object spacetimes and their study is an
open interesting problem. But we concentrate on the case when the metric possesses
the complete tower of hidden symmetries.

What do we mean by a hidden symmetry? We say, that a spacetime possesses a
symmetry if there exists a transformation which preserves its geometry. This means that
the metric, as well as all other quantities constructed from it (for example curvature),
remain unchanged by such a transformation. Continuous symmetry transformations
are generated by Killing vector fields; we call the corresponding symmetries explicit.
By famous Noether’s theorem they generate conserved charges. Let us demonstrate
this on an example of particle motion.

The motion of a free particle in a curved spacetime can be described using the
Hamiltonian formalism. A state of the particle is characterized by a point (xa, pa)

in the phase space. Its motion is defined by the Hamiltonian, which is quadratic in
momenta. The explicit symmetry generated by the Killing vector ξa implies that the
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quantity paξ
a remains constant along the particle’s worldline, it is an integral of

motion. Integrals of motion are phase space observables that Poisson commute with
the Hamiltonian.

An important property of integrals of motion generated by spacetime symmetries
is that they are linear in momentum. However, this does not exhaust all possibili-
ties. There may exist integrals of motion that are higher-order polynomials in particle
momenta. The existence of such integrals implies that the spacetime admits a spe-
cial geometric structure, known as a Killing tensor. Killing tensors are in one-to-one
correspondence with constants of geodesic motion that are homogeneous in particle
momenta, namely, a rank r Killing tensor gives rise to a homogeneous constant of
motion of degree r in momentum. Inhomogeneous polynomial integrals of geodesic
motion can be decomposed into their homogeneous parts and are associated with
Killing tensors of various ranks.

Perhaps the best known example of a Killing tensor is the spacetime metric itself.
The corresponding conserved quantity is the Hamiltonian for the relativistic particle
and its value is proportional to the square of particle’s mass. Familiar Killing vectors,
associated with the explicit spacetime symmetry, are Killing tensors of rank 1. To
distinguish from this case, we call the geometric structure of the spacetime encoded
in Killing tensors of rank 2 and higher a hidden symmetry.

1.6 Complete integrability of geodesic motion

The existence of integrals of motion simplifies the study of dynamical systems. There
exits a very special case, when the number of independent commuting integrals of
motion of a dynamical system with N degrees of freedom, described by a 2N -
dimensional phase space, is equal to N . Such a system is called completely integrable
and its solution can be written in terms of integrals, a result known as the Liouville
theorem (Liouville 1855). Specifically, the equation of motion for a free relativis-
tic particle in a D-dimensional spacetime can be explicitly solved if there exist D
independent Killing vectors and Killing tensors, including the metric, which are ‘in
involution’.

Remark For Killing tensor fields there exists an operation, a generalization of the
Lie bracket, which allows one to construct from two Killing tensors a new one. This
operation, called the Schouten–Nijenhuis commutator, will be defined in Sect. 2.1. ‘In
involution’ then means that the Schouten–Nijenhuis commutator of the correspond-
ing tensor fields mutually vanishes. On the level of the phase-space observables this
is equivalent to the statement that the corresponding conserved quantities mutually
Poisson-commute. ��

Consider, for example, a five-dimensional Myers–Perry metric with two inde-
pendent rotation parameters. This metric has three Killing vectors: one generates
translations in time, and the other two correspond to rotations in the two independent
2-planes of rotation. Together with the normalization of the 5-velocity this gives 4
integrals of geodesic motion. For complete integrability, an additional integral corre-
sponding to a Killing tensor is needed. This tensor can be found by Carter’s method,
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that is by separating the variables in the Hamilton–Jacobi equation written in the
standard Boyer–Lindquist coordinates (Frolov and Stojković 2003a, b), making the
geodesic motion completely integrable in this case. Interestingly, in more than five
dimensions and for general multiply-spinning black holes the Boyer–Lindquist type
coordinates are not ‘nice’ anymore and Carter’s method no longer works. This mislead
people to believe that the geodesic motion in these spacetimes is no longer integrable
and black holes of smaller generality were studied.

1.7 Principal tensor and its Killing tower

It turns out that the restriction on rotation parameters is not necessary and even for
the most general multiply-spinning Kerr–NUT–(A)dS black holes one can find special
coordinates in which the Hamilton–Jacobi equation separates, proving the geodesic
motion completely integrable. A breakthrough in solving this problem occurred in
2007, when it was demonstrated that the Myers–Perry metric as well as the most
general Kerr–NUT–(A)dS spacetime in any number of dimensions both admit a
non-degenerate closed conformal Killing–Yano 2-form (Frolov and Kubizňák 2007;
Kubizňák and Frolov 2007). The claim is that the very existence of this single object
implies complete integrability of geodesic motion in all dimensions. Let us explain
why this is the case.

Starting with the four-dimensional Kerr metric, we already know that the integra-
bility is guaranteed by the existence of a Killing tensor k, which in its turn is written
as a square of the Killing–Yano 2-form f . Its Hodge dual h = ∗ f is again a 2-form
which obeys the following equation:

∇chab = gcaξb − gcbξa, ξa = 1

D − 1
∇bhb

a . (1.1)

The object that satisfies such an equation is called a closed conformal Killing–Yano
2-form. Closed conformal Killing–Yano tensors of higher ranks obey a similar type
of equation and they are Hodge dual to Killing–Yano tensors. A remarkable prop-
erty of closed conformal Killing–Yano tensors is that their wedge product is again
a closed conformal Killing–Yano tensor (Krtouš et al. 2007a; Frolov 2008; Frolov
and Kubizňák 2008). In particular, given a single closed conformal Killing–Yano
2-form in (2n + ε) dimensions, one can construct up to n non-trivial closed conformal
Killing–Yano tensors of increasing rank by taking its wedge powers.

In four dimensions this does not help much. Already at the first step of this pro-
cedure, one obtains a 4-form that is proportional to the totally antisymmetric tensor.
In higher dimensions, however, the story is quite different: there is enough room to
‘accommodate’ non-trivial higher-rank closed conformal Killing–Yano tensors. It is
evident, that the smaller is the tensor-rank of the original form h the larger number of
its non-trivial higher-rank “successors” one can obtain. This makes the case of a 2-form
h a special one. One can also assume that the matrix rank of this 2-form is the largest
possible, that is, the 2-form is non-degenerate. In (2n + ε)-dimensional spacetime the
maximal matrix rank is 2n. By ‘squaring’ the Killing–Yano tensors obtained as Hodge
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duals of the so constructed ‘successors’ of h, one obtains the whole Killing tower of
n independent Killing tensors (Krtouš et al. 2007a). Supplemented by the (n + ε)

integrals of motion corresponding to explicit symmetries (as we shall see later such
symmetries can also be generated from h), one obtains a set of D = 2n+ε (generically
independent) mutually Poisson commuting constants of geodesic motion, making such
a motion completely integrable. In the following chapters we discuss these results in
very details, and give the corresponding references.

Since the expression “non-degenerate closed conformal Killing–Yano 2-form” is
quite long, and since this object is a ‘main hero’ of our review we shall simply call
it a principal tensor. It happens that the existence of the principal tensor has conse-
quences extending far beyond the above described property of complete integrability
of geodesic motion. Being a maximal rank 2-form, the principal tensor can be written
as

h =
n∑

μ=1

xμeμ ∧ êμ, (1.2)

where 1-forms eμ and êμ form an orthonormal basis. Let us include in the definition
of the principal tensor one additional requirement. Namely, that all the eigenvalues xμ
are independent and different, and that this is valid not only at a point, but in some
spacetime domain. In other words, xμ are functionally independent scalar functions
in this domain and they can be used as coordinates. We shall demonstrate that the
other n + ε coordinates ψk can be chosen so that the Killing vectors, corresponding
to explicit symmetries, take the form ∂ψk . The coordinates (xμ,ψk) are called the
canonical coordinates.

Using canonical coordinates, internally connected with and determined by the prin-
cipal tensor h, greatly simplifies the study of properties of a spacetime which admits
such an object. Namely, we demonstrate that the corresponding spacetime necessarily
possesses the following remarkable properties (Houri et al. 2007; Krtouš et al. 2008;
Houri et al. 2008b): (i) When the Einstein equations are imposed one obtains the
most general Kerr–NUT–(A)dS metric. (ii) The geodesic motion in such a space is
completely integrable, and the Hamilton–Jacobi, Klein–Gordon, and Dirac equations
allow for complete separation of variables. The separation of variables occurs in the
canonical coordinates determined by the principal tensor.

1.8 ‘Hitchhikers guide’ to the review

The review is organized as follows. In Chap. 2 we introduce the Killing vectors,
Killing tensors, and the family of Killing–Yano objects and discuss their basic prop-
erties. In particular, the principal tensor is defined and its most important properties
are overviewed. Chapter 3 contains a summary of the symmetry properties of the
four-dimensional Kerr metric and its Kerr–NUT–(A)dS and Plebański–Demiański
generalizations. We demonstrate how the explicit and hidden symmetries of the Kerr
spacetime arise from the principal tensor. Chapter 4 gives a comprehensive descrip-
tion of the higher-dimensional Kerr–NUT–(A)dS metrics. In Chap. 5, starting from
the principal tensor which exists in a general higher-dimensional Kerr–NUT–(A)dS
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spacetime, we construct a tower of Killing and Killing–Yano objects, responsible for
the explicit and hidden symmetries of this metric. In Chap. 6 we discuss a free par-
ticle motion in the higher-dimensional Kerr–NUT–(A)dS spacetime and show how
the existence of the principal tensor in these metrics leads to a complete integrability
of geodesic equations. We also demonstrate the separability of the Hamilton–Jacobi,
Klein–Gordon and Dirac equations in these spacetimes. Chapter 7 contains additional
material and discusses further possible generalizations of the theory of hidden sym-
metries presented in this review.

To help the reader with various concepts used in the review, we included some
complementary material in appendices. Appendix A summarizes our notation and
conventions on exterior calculus; Appendix B reviews the symplectic geometry,
the concept of complete integrability, and the requirements for separability of the
Hamilton–Jacobi equation. Appendix F covers basic notions of a theory of spinors in a
curved spacetime, discusses symmetry operators of the Dirac operator, as well as intro-
duces Killing spinors and reviews their relationship to special Killing–Yano forms.
Integrability conditions for the Killing–Yano objects are summarized in Appendix C.
Appendix E discusses the Myers–Perry solutions in its original and Kerr–Schild forms
and supplements thus material in Sect. 4.4. Finally, various identities and quantities
related to the Kerr–NUT–(A)dS metric are displayed in Appendix D.

Before we begin our exploration, let us mention several other review papers devoted
to hidden symmetries and black holes that might be of interest to the reader (Frolov
and Kubizňák 2008; Kubizňák 2008, 2009a; Yasui and Houri 2011; Cariglia et al.
2012; Frolov 2014; Cariglia 2014; Chervonyi and Lunin 2015).
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2 Hidden symmetries and Killing objects

In this chapter we discuss Killing vectors and Killig tensors, which are responsible
for explicit and hidden symmetries of spacetime. We also introduce the Killing–Yano
tensors which are generators of hidden symmetries and discuss their basic properties.
Named after Yano (1952), these new symmetries are in some sense ‘more fundamental’
than the Killing tensors. A special attention is devoted to a subclass of closed conformal
Killing–Yano tensors and in particular to the principal tensor which plays a central
role for the theory of higher-dimensional black holes.

2.1 Particle in a curved spacetime

Geometrical properties of a curved spacetime and its various symmetries can be studied
through investigation of geodesic motion. For this reason we start with a short overview
of the description of relativistic particle in a curved spacetime, formulated both from
a spacetime perspective and in terms of the phase space language.

2.1.1 Phase space description

Let us consider a D-dimensional spacetime (configuration space) M and a point-like
particle moving in it. In the Hamilton approach the motion is described by a trajectory
in the 2D-dimensional phase space. A point in the phase space represents a position
x and a momentum p of the system. The momenta p are naturally represented as
covectors (1-forms) on the configuration space, the phase space Γ thus corresponds
to a cotangent bundle over the configuration space.

The cotangent bundle has a natural symplectic structure Ω . Namely, let xa be
coordinates on the configuration space M , then the components pa of the momentum
p = padxa with respect to the co-frame dxa serve as remaining coordinates on the
phase space, (xa, pa). The natural symplectic structure takes the form1:

Ω = dxa ∧ d pa, (2.1)

so (xa, pa) are in fact canonical coordinates on the phase space. Although we used
a particular choice of the spacetime coordinates, the symplectic structure Ω is inde-
pendent of such a choice.

Using the symplectic structure we can introduce the standard machinery of the
symplectic geometry: we can define symplectic potential θ , the Poisson brackets { , },
or the Hamiltonian vector field XF associated with an observable F . The overview
of the symplectic geometry and the convention used in this review can be found in
Sect. B.1 of the appendix, cf. also standard books Arnol’d (1989), Goldstein et al.
(2002).

1 The sum over configuration space indices a = 1, . . . , D is assumed.
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2.1.2 Nijenhuis–Schouten bracket

An observable A is a function on the phase space. In what follows let us concentrate
on observables that are monomial in momenta, also called the tensorial powers of
momenta, that is observables of the form

A = aa1...ar (x) pa1 . . . pas , (2.2)

where aa1...as = a(a1...as ) are components of a symmetric tensor field of rank s on the
configuration space.

It is straightforward to check that given two such observables A and B, of orders
r and s, respectively, their Poisson bracket C = {A, B} is again a tensorial power of
order r + s − 1 with the tensorial coefficient c. The Poisson brackets of monomial
observables thus define an operation c = [a, b]NS on symmetric tensor fields, called
the Nijenhuis–Schouten bracket,

C = {A, B} ⇔ c = [a, b]NS. (2.3)

It is explicitly given by

ca1...ar−1cb1...bs−1 = r ae(a1...ar−1 ∇ebcb1...bs−1) − s be(b1...bs−1 ∇eaca1...ar−1). (2.4)

If one of the tensors, say a, is of rank one, i.e., a vector field, the Nijenhuis–Schouten
bracket reduces to the Lie derivative along a,

[a, k]NS = £ak. (2.5)

In particular, for two vectors it reduces to the Lie bracket,

[a, b]NS = [a, b]. (2.6)

2.1.3 Time evolution and conserved quantities

The time evolution in the phase space is determined by the Hamiltonian H . Namely,
the time derivative of an observable F is given by

Ḟ = {F, H}. (2.7)

In particular, for canonical coordinates (xa, pa) one gets the Hamilton canonical equa-
tions

ẋa = ∂H

∂pa
, ṗa = − ∂H

∂xa
, (2.8)

which fully determine dynamical trajectories in phase space.
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An observable K , which remains constant along the dynamical trajectories, is called
a conserved quantity or an integral/constant of motion. Thanks to (2.7), it must com-
mute with the Hamiltonian H ,

{K , H} = 0. (2.9)

2.1.4 Relativistic particle and propagation of light

The motion of a free relativistic particle in a curved spacetime is given by the following
simple Hamiltonian:

H = 1

2
gab pa pb. (2.10)

The Hamilton canonical equations read

ẋa = gab pb, ṗa = −1

2
gbc

,a pb pc, (2.11)

and lead to the geodesic equation

pb∇b pa = 0, (2.12)

with the covariant derivative determined by the metric.
The value of the Hamiltonian (2.10) remains constant, H = − 1

2 m2, and determines
the mass m of the particle. It gives the normalization of the momenta as

gab pa pb = −m2. (2.13)

With this normalization, the affine time parameter σ entering these equation is related
to the proper time τ of the particle as

τ = mσ. (2.14)

With minor modifications, the above formalism can also describe the propagation
of light, understood as a motion of massless particles. The only difference is that
one has to consider solutions for which the value of the Hamiltonian (2.10) vanishes.
Denoting by l the momentum in the massless case, we thus have

gablalb = 0. (2.15)

The corresponding Hamilton equations lead to the null geodesic equation

la∇alb = 0. (2.16)

Remark The normalization (2.13) fixes the norm of the momentum. The momentum
thus has D − 1 independent components. For a massive particle one can identify these
with the spatial velocities, while the energy (the time component of the momentum) is
computable from the normalization. In the massless case, one cannot chose an arbitrary
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magnitude of velocity, only a direction of the ray. At the same time, there exists an
ambiguity in the choice of the affine parameter along the ray. Its rescaling results in the
transformation la → l̃a = αla , where α is constant. Although two such null particles
differ just by a scale of their momenta and they follow geometrically the same path in
the spacetime, they correspond to two physically different photons: they differ by their
energy, or, intuitively, by their ‘color’. Instead of a freedom of choosing an arbitrary
magnitude of velocity for massive particles, in the case of null particles we have thus
a freedom choosing an arbitrary energy, i.e., an arbitrary ‘color’. ��

In the description of the relativistic particle above the configuration space is the
whole D-dimensional spacetime, suggesting thus D degrees of freedom. However, the
correct counting of the physical degrees of freedom is D − 1. The difference is related
to the existence of the constraint H = const and the remaining time-reparametrization
freedom σ → σ + const. For more details on the time-reparametrization symmetry
and related constraints see, e.g., Frolov and Zelnikov (2011), Sundermeyer (1982),
Thirring (1992), Rohrlich (2007).

A charged relativistic particle under the influence of electromagnetic force can be
described in a similar way, starting from the Hamiltonian

H = 1

2
gab (pa − q Aa)(pb − q Ab). (2.17)

Combining the Hamilton canonical equations yields the equation of motion:

ẋb∇b ẋa = q Fa
bẋb, (2.18)

where Fab = Ab,a − Aa,b is the Maxwell’s tensor.

2.2 Explicit and hidden symmetries

If the spacetime has some symmetries they can be always ‘lifted up’ to the phase space
symmetries. The corresponding integrals of motion are observables in the phase space
which are linear in momenta. However, the contrary is not true: not every phase space
symmetry can be easily reduced to the configuration space. Symmetries which have
the direct counterpart on the configuration space will be called the explicit symmetries,
those which cannot be reduced to the configuration space transformation are called
the hidden symmetries.

2.2.1 Killing vectors

We start with the description of explicit continuous symmetries of the spacetime geom-
etry. These are described by Killing vectors. A curved spacetime with metric g admits
a continuous symmetry (isometry) if there exists its continuous transformation into
itself preserving the metric. Simply speaking, any measurement of the local space-
time properties (such as curvature) gives the same result before and after the symmetry
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transformation. Such a transformation is generated by the corresponding Killing vector
ξ and the isometry condition can be written in the following form:

£ξ g = 0, (2.19)

which is equivalent to the so called Killing vector equation

∇(a ξb) = 0. (2.20)

Two isometries can be composed together, giving again an isometry; the symmetries
of the metric form a Lie group called the isometry group. Generators of the symme-
tries, the Killing vectors, form the corresponding Lie algebra, i.e., a linear space with
antisymmetric operation given by the Lie bracket. Indeed, any linear (with constant
coefficients) combination of Killing vectors is again a Killing vector, and for two
Killing vectors ξ and ζ their commutator [ξ , ζ ] is also a Killing vector.

The dynamics of a free relativistic particle is completely determined by the space-
time geometry, cf. Hamiltonian (2.10). According to Noether’s theorem the continuous
symmetry implies the existence of an integral of motion, which can be written in terms
of the Killing vector ξ as I = ξ · p = ξa pa . The corresponding Hamiltonian vector
field reads

XI = ξa ∂xa − ξb
,a pb ∂ pa . (2.21)

Upon a canonical projection to the spacetime manifold it reduces back to the Killing
vector ξ :

π∗XI = ξa ∂xa = ξ . (2.22)

When the canonical projection of a phase space symmetry to the spacetime reduces
to a well defined spacetime transformation, which is a symmetry of the spacetime
geometry, we say that the symmetry is explicit. Killing vectors thus generate explicit
symmetries.

The well-definiteness of the projection requires that it is a quantity solely dependent
on the spacetime variables, i.e., independent of the momentum. Clearly it means that
the ∂xa -term in the Hamiltonian vector field XI must not depend on the momentum,
which requires that the observable I is linear in momentum. The integrals of particle
motion in curved space that correspond to explicit symmetries are thus linear in
particle’s momentum.

Remark The applicability of Killing vectors extends also to the infinite-dimensional
dynamical systems, for example, those describing various fields. Namely, given a
Killing vector ξ and a conserved energy momentum tensor T ab, we have the following
conserved current:

J a = T abξb, (2.23)

which in its turn implies the existence of the corresponding conserved charge. Indeed,
upon using the Killing equation (2.20) and the fact that T ab is symmetric, we have

∇a J a = ∇a(T
abξb) = ξb∇aT ab + T ab∇aξb = T ab∇(aξb) = 0. ��
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2.2.2 Killing tensors

Besides the conserved quantities which are linear in momentum, there might also
exist more complicated conserved quantities that indicate the existence of deeper
and less evident symmetries. For the motion of relativistic particles these hidden
symmetries are encoded in Killing tensors. Namely, the Killing tensors are in one-
to-one correspondence with the integrals of geodesic motion that are monomial in
momenta.

Let us assume that the system has an integral of motion K of the monomial
form (2.2), K = ka1...as (x) pa1 . . . pas , where the tensor k is completely symmet-
ric, ka1...as = k(a1...as ). Calculating the Poisson bracket

{K , H} = ∂K

∂xc

∂H

∂pc
− ∂H

∂xc

∂K

∂pc
, (2.24)

with the Hamiltonian (2.10), we obtain

{K , H} = ka1...as
,c gca pa pa1 . . . pas − s

1

2
gkl

,a1 ka1...as pa2 . . . pas pk pl . (2.25)

Introducing the covariant derivative ∇ corresponding to the metric g, the last expres-
sion can be rewritten in a covariant form

{K , H} = (∇a0 ka1...as ) pa0 pa1 . . . pas . (2.26)

Requiring that K is the integral of motion, the condition {K , H} = 0 must hold for
an arbitrary choice of pa , which gives that the tensor k has to obey

∇(a0 ka1...as ) = 0. (2.27)

This relation is called the Killing tensor equation and the symmetric tensor k that
solves it is a Killing tensor of rank s (Stackel 1895). A (trivial) example of a Killing
tensor, which is present in every spacetime, is the metric itself. The Killing tensor of
rank s = 1 reduces to the Killing vector discussed above.

The condition {K , H} = 0 can be also written in terms of the Nijenhuis–Schouten
bracket [k, g]NS = 0, (2.28)

which can be regarded as an alternative form of the Killing tensor equation.
The conserved quantity K corresponds to a symmetry of the phase space which is

generated by the Hamiltonian vector field:

XK = s kac2...cs pc2 . . . pcs ∂xa − kc1...cs
,a pc1 . . . pcs ∂ pa . (2.29)

Its point-by-point projection into spacetime gives

π∗XK = s kac2...cs pc2 . . . pcs ∂xa , (2.30)

123



Black holes, hidden symmetries, and complete integrability Page 21 of 221 6

which for s ≥ 2 explicitly depends on particle’s momenta and cannot thus be regarded
as a pure spacetime quantity. This means that the phase space symmetry generated by
K does not have a simple description in the spacetime. We call such symmetries the
hidden symmetries.

In other words, Killing tensors of order s ≥ 2 represent symmetries that do not
generate a spacetime diffeomorphism and in that sense they are not ‘encoded’ in the
spacetime manifold. Their presence, however, can be ‘discovered’ by studying the
particle dynamics in the spacetime. This is to be compared to the action of Killing
vectors, s = 1, for which the projection defines a spacetime isometry and the symmetry
is explicit, cf. (2.22).

Given two constants of geodesic motion K(1) and K(2) of the type (2.2), their Poisson
bracket {K(1), K(2)} is also an integral of motion of the same type. This immediately
implies that provided k(1) and k(2) are two Killing tensors, so is their Nijenhuis–
Schouten bracket [k(1), k(2)]NS. Slightly more generally, an integral of motion that
is polynomial in the momentum corresponds to an inhomogeneous Killing tensor,
defined as a formal sum of Killing tensors of different ranks. Such objects together
form the Lie algebra under the Nijenhuis–Schouten bracket.

Similarly, given two monomial integrals of geodesic motion K(1) and K(2) of order
s1 and s2, respectively, their product K = K(1)K(2) is also a monomial constant of
geodesic motion of order s = s1 + s2. This means that K corresponds to a Killing

tensor k given by ka1...as = k
(a1...as1
(1) k

as1+1...as )

(2) . In other words, a symmetrized product
of two Killing tensors is again a Killing tensor.

This hints on the following definition. A Killing tensor is called reducible, if it can
be decomposed in terms of the symmetrized products of other Killing tensors and
Killing vectors. Otherwise it is irreducible.

Remark An interesting generalization of Killing tensors has been recently proposed in
Aoki et al. (2016). It follows from considering ‘inconstructible rational first integrals’
of the type C = A/B, where A and B are monomials of arbitrary orders. By requiring
that the resultant ratio C is an integral of geodesic motion, the corresponding tensor
a (and similarly b) has to obey the following generalized Killing tensor equation:

∇(aaa1...as ) = α(aaa1...as ), (2.31)

for some vector α. We refer the interested reader to Aoki et al. (2016) for more details
on this development. ��

2.2.3 Conformal Killing vectors and Killing tensors

So far we have discussed monomial integrals of relativistic particle motion (of order
s in momentum) and have shown that they correspond to Killing vectors (s = 1)
and Killing tensors (s ≥ 2). Let us now briefly mention conformal generalizations
of these objects that provide integrals for propagation of light. These quantities are
conserved only along null geodesics. A conformal Killing vector ξ is a vector obeying
the conformal Killing vector equation
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∇(aξb) = αgab, (2.32)

for some function α. Obviously, for α = 0 we recover a Killing vector. Given a
conformal Killing vector ξ , we can construct the observable I conserved along null
geodesics: I = ξ · l = ξala . Indeed, using the null geodesic equation (2.16) and the
constraint (2.15), we have

İ = la∇a I = la∇a(ξ
blb) = lalb∇aξb = lalb∇(aξb) = α lalbgab = 0. (2.33)

Remark Similarly to Killing vectors, conformal Killing vectors provide conserved
quantities for any matter and fields whose energy momentum tensors T ab is (i) con-
served: ∇aT ab = 0 and (ii) traceless: T abgab = 0. Namely, the current J a = T abξb

obeys the conservation law, ∇a J a = 0, as a result of the conformal Killing equation.
Indeed, we have

∇a J a = ∇a(T
abξb) = ξb∇aT ab + T ab∇aξb = T ab∇(aξb) = αT abgab = 0. ��

Considering next a monomial observable K of rank s, (2.2), we find that it is an
integral of null geodesic motion if the symmetric tensor k satisfies the conformal
Killing tensor equation (Walker and Penrose 1970; Hughston et al. 1972):

∇(a0 ka1...as ) = g(a0a1αa2...as ), (2.34)

with α being some (symmetric) tensor of rank s − 1. For α = 0 we recover Killing
tensors.

It is obvious that symmetries generated by conformal Killing tensors (for s ≥ 2)
are again hidden. Moreover, by the same arguments as in the case of Killing tensors, it
can be shown that the Nijenhuis–Schouten bracket of two conformal Killing tensors is
again a conformal Killing tensor. Similarly, a symmetrized product of two conformal
Killing tensors is again a conformal Killing tensor.

2.3 Separability structures

The geodesic motion in any number of spacetime dimensions can be also studied using
the Hamilton–Jacobi equation. This approach is reviewed in Sect. B.3 of the appendix.
In this approach, the family of trajectories can be integrated as orbits of the momentum
field, which is determined as the gradient of the Hamilton’s characteristic function S.
This function is the solution of the (time-independent) Hamilton–Jacobi equation

H
(

q,
∂S

∂q
(q)
)

= E . (2.35)

The important case of interest is when this equation can be solved by a separation
of variables. As explained in Appendix B, this is closely related to the integrability
of the given dynamical system. For a motion of free relativistic particle there exists
a beautiful intrinsic geometric characterization for separability of the corresponding
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Hamilton–Jacobi equation. It is described by the theory of separability structures
(Benenti and Francaviglia 1979, 1980; Demianski and Francaviglia 1980; Kalnins
and Miller 1981).

Separability structures are classes of separable charts for which the Hamilton–
Jacobi equation allows an additive separation of variables. For each separability
structure there exists such a family of separable coordinates which admits a maxi-
mal number of, let us say r , ignorable coordinates. Each system in this family is called
a normal separable system of coordinates. We call the corresponding structure the
r -separability structure. Its existence is governed by the following theorem:

Theorem A manifold M with a metric g admits an r-separability structure if and
only if it admits r Killing vectors l(i) (i = 0, . . . , r − 1) and D − r rank 2 Killing
tensors k(α) (α = 1, . . . , D − r), all of them independent, which:

(i) all mutually (Nijenhuis–Schouten) commute:

[
k(α), k(β)

]
NS

= 0,
[
l(i), k(β)

]
NS

= 0,
[
l(i), l( j)

]
NS

= 0, (2.36)

(ii) Killing tensors k(α) have in common D − r eigenvectors m(α), such that

[m(α),m(β)] = 0, [m(α), l(i)] = 0, g(m(α), l(i)) = 0. (2.37)

It is evident, that the existence of a separability structure implies the complete
integrability of geodesic motion. Indeed, the requirement of independence means
that r linear in momenta constants of motion L(i) associated with Killing vectors
l(i) and (D − r) quadratic in momenta constants of motion K(α) corresponding to
Killing tensors k(α) are functionally independent. Moreover, equations (2.36) and the
discussion in the Appendix B imply that all such constants are in involution, that is
obey conditions (B.19). Hence the geodesic motion is completely integrable.

Let us mention yet another theorem which relates the (additive) separability of the
Hamilton–Jacobi equation with the (multiplicative) separability of the Klein–Gordon
equation

�φ = m2φ, (2.38)

with the wave operator � = gab∇a∇b. Following Benenti and Francaviglia (1979) we
have the following:

Theorem The Klein–Gordon equation allows a multiplicative separation of variables
if and only if the manifold possesses a separability structure in which the vectors m(α)

are eigenvectors of the Ricci tensor. In particular, if the manifold is an Einstein space,
the Hamilton–Jacobi equation is separable if and only if the same holds for the wave
equation.

The existence of a separable structure has strong consequences for the geometry: it
restricts significantly a form of the metric in the normal separable coordinates. Namely,
let ya = (ψi , xα) be separable coordinates, where we denoted by ψi the ignorable
coordinates associated with the Killing vectors l(i) = ∂ψi . The inverse metric (β = 1)
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and other Killing tensors (β = 2, . . . , D − r) then read

k(β) =
D−r∑

α=1

[
(M−1)αβ(∂xα )

2 +
∑

i, j

N i j
α (xα)(M

−1)αβ∂ψi ∂ψ j

]
. (2.39)

Here, M is a (D − r)× (D − r) Stäckel matrix, that is a non-degenerate matrix whose
each β-th column depends on a variable xβ only, Mα

β = Mα
β(xβ), and Nα = Nα(xα)

are (D − r) of r × r matrices of one variable.
We will see a particular realization of this structure in Chap. 5 where we write

down the metric consistent with a special example of separable structure, namely the
off-shell Kerr–NUT–(A)dS metric. The separable structure of the Kerr–NUT–(A)dS
spacetimes justifies the complete integrability of geodesic motion, as well as the fact
that the Hamilton–Jacobi equation and the wave equations allow for a separation of
variables, see Chap. 6.

2.4 Defining the Killing–Yano family

2.4.1 Motivation: parallel transport

In the previous section we have discussed observables F(x, p), depending on a posi-
tion x and momenta p, which are conserved along geodesics. Namely, we have seen
that the monomials in momenta, (2.2), are in one-to-one correspondence with Killing
tensors (2.27). Interestingly, this construction can be generalized to tensorial quanti-
ties. Let us consider a rank-s tensorial quantity

wa1...as = Bc1...cr a1...as pc1 . . . pcr , (2.40)

depending on the particle momenta p and the position x through the tensor B. Using the
particle’s equations of motion (2.12), we can show that the quantity (2.40) is parallel-
transported along geodesics if and only if the tensor B satisfies the generalized Killing
tensor equation

∇(c0 Bc1...cr )a1...as = 0, (2.41)

as discussed by Collinson and Howarth (2000).
A special case occurs when r = 1 and the tensor B is completely antisymmetric.

In such a case it is called a Killing–Yano form (Yano 1952) and we denote it by f :

fa0a1...as = f[a0a1...as ], ∇(b fc)a1...as = 0. (2.42)

The corresponding conserved tensorial quantity w

wa1...as = fca1...as pc (2.43)
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has now the special property that, apart from being parallel-transported, it is also
‘perpendicular’ to particle’s momentum at every index,

wa1...a j ...as pa j = 0. (2.44)

This property has been used for an explicit construction of the parallel-transported
frame in the Kerr geometry (Marck 1983b, a) and its higher-dimensional general-
izations (Connell et al. 2008; Kubizňák et al. 2009), see Chap. 7 for more details.
Conversely, any skew-symmetric quantity w that is liner in momenta and parallel-
transported along and orthogonal to any geodesic, defines the Killing–Yano tensor f .

2.4.2 Decomposition of the covariant derivative

One can arrive at the definition of the Killing–Yano tensor, (2.42), also by studying
a general decomposition of the covariant derivative of an antisymmetric form into its
irreducible parts, e.g., Semmelmann (2003). Such a covariant derivative belongs to
the space T∗⊗ � M of tensors with all but the first indices antisymmetric. This space
naturally splits into three subspaces given by the projectors A, C, and T , defined as

(Aσ)aa1...ap = σ[aa1...ap], (2.45)

(Cσ)aa1...ap = p

D−p+1
ga[a1σ

b|b|a2...ap], (2.46)

(T σ)aa1...ap = σaa1...ap − σ[aa1...ap] − p

D−p+1
ga[a1σ

b |b|a2...ap], (2.47)

with σ ∈ T∗⊗ � M , i.e., with σ satisfying σaa1,...ap = σa[a1...ap]. These projectors are
orthogonal with respect to the natural scalar product given by the metric and close to
the identity Id = A + C + T .

Using these projectors, the covariant derivative of an antisymmetric form ω decom-
poses as

∇ω = A∇ω + C∇ω + T ∇ω. (2.48)

The first term is called an antisymmetric part and depends only on the exterior deriva-
tive dω, the second term is called a divergence part and depends only on the divergence
(co-derivative) ∇ · ω ≡ −δω. The third term is given by the action of the so called
twistor operator (Semmelmann 2003; Moroianu and Semmelmann 2003; Leitner
2004):

Taωa1...ap = (T ∇ω)aa1...ap

= ∇aωa1...ap − ∇[aωa1...ap] − p

D−p+1
ga[a1∇bω|b|a2...ap].

(2.49)

Remark Note that we have defined here the twistor operator as an operator acting on the
space of antisymmetric forms. Perhaps better known is the twistor operator defined on
Dirac spinors which naturally complements the Dirac operator. Both twistor operators
are closely related, but not identical. In particular, any p-form constructed from a
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twistor spinor (by sandwiching gamma matrices) belongs to the kernel of the above
p-form twistor operator, see Appendix F. ��

Differential forms with vanishing exterior derivative are called closed forms, forms
with vanishing divergence are called divergence-free or co-closed. Such forms play
important role for example in the Hodge decomposition or in the de Rham cohomol-
ogy. Here we are mostly interested in forms for which the twistor operator vanishes.
These forms are called conformal Killing–Yano forms (Kashiwada 1968; Tachibana
1969), see also Benn et al. (1997), Benn and Charlton (1997), Kress (1997), Jezierski
(1997), Cariglia (2004), or twistor forms e.g. Semmelmann (2003), Moroianu and
Semmelmann (2003), Leitner (2004). They satisfy the condition

∇aωa1...ap = ∇[aωa1...ap] + p

D−p+1
ga[a1∇bω|b|a2...ap]. (2.50)

The space of conformal Killing–Yano forms has two important subspaces: Killing–
Yano and closed conformal Killing–Yano forms.

The form f is called a Killing–Yano form (Yano 1952; Yano and Bochner 1953) if
its covariant derivative is just given by the antisymmetric part. It obeys the condition:

∇a fa1...ap = ∇[a fa1...ap], (2.51)

and is clearly divergence-free.
The form h is called a closed conformal Killing–Yano form (Krtouš et al. 2007a;

Carter 1987; Semmelmann 2003; Moroianu and Semmelmann 2003; Leitner 2004)
if its covariant derivative is given just by the divergence part. It obeys the following
equation:

∇aha1...ap = p

D−p+1
ga[a1∇bh|b|a2...ap], (2.52)

and is obviously closed.
Finally, we could identify forms for which the covariant derivative is given by the

twistor operator. Since for such objects both the exterior derivative and coderivative
vanish, they are called harmonic forms. A special subcase of all types of forms intro-
duced above are covariantly constant forms. All these definitions are summarized in
the following table:

Decomposition of the covariant derivative of a form ω

General form ∇ω = A∇ω + C∇ω + T ∇ω

Closed form ∇ω = C∇ω + T ∇ω dω = 0
Divergence-free co-closed form ∇ω = A∇ω + T ∇ω δω = 0
Conformal Killing–Yano form ∇ω = A∇ω + C∇ω Tω = 0
Killing–Yano form ∇ω = A∇ω δω = 0,Tω = 0
Closed conformal Killing–Yano form ∇ω = C∇ω dω = 0,Tω = 0
Harmonic form ∇ω = T ∇ω dω = 0, δω = 0
Covariantly constant form ∇ω = 0 dω = 0, δω = 0,Tω = 0
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2.4.3 Alternative definitions

The definition of conformal Killing–Yano forms (2.50) can be reformulated in a
slightly modified form:

Theorem The antisymmetric form ω is a conformal Killing–Yano form if and only if
there exists antisymmetric forms κ and ξ such that the covariant derivative ∇ω can
be written as

∇aωa1...ap = κaa1...ap + p ga[a1ξa2...ap]. (2.53)

The forms κ and ξ are then uniquely given by the following expressions:

κa0a1...ap = ∇[a0ωa1...ap], ξa2...ap = 1

D − p + 1
∇aωaa2...ap . (2.54)

Indeed, by antisymmetrizing (2.53) one obtains the first relation (2.54). Similarly, con-
tracting the first two indices in (2.53) leads to the second relation (2.54). Substituting
these two relations back to (2.53) one recovers the definition (2.50).

Similarly, f is a Killing–Yano form if there exist a form κ such that

∇a fa1...ap = κaa1...ap . (2.55)

A p-form h is a closed conformal Killing–Yano form if there exist a form ξ such that

∇aha1...ap = p ga[a1ξa2...ap], (2.56)

with κ and ξ given by expressions analogous to (2.54).
Alternatively, the symmetrization of (2.53) in first two indices leads to

∇(a0ωa1)a2...ap = ga0a1ξa2...ap − (p − 1) g[a2|(a0ξa1)|a3...ap], (2.57)

which was originally postulated as a definition of conformal Killing–Yano forms
(Kashiwada 1968; Tachibana 1969). The equivalence of (2.53) and (2.57) follows
from the fact that one can reconstruct ∇a0ωa1...ap from ∇[a0ωa1...ap] and ∇(a0ωa1)a2...ap .
Killing–Yano forms are those for which ξ = 0, which gives

∇(a0 fa1)a2...ap = 0, (2.58)

recovering the definition (2.42).

2.4.4 Killing–Yano objects in a differential form notation

Contracting (2.53) with a vector X we see that the p-form ω is a conformal Killing–
Yano form if and only if its covariant derivative can be written as (see Appendix A for
notations on differential forms)

∇Xω = X · κ + X ∧ ξ , (2.59)
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for ‘some’ (p + 1)-form κ and ‘some’ (p − 1)-form ξ . These forms are then given by

κ = 1

p + 1
∇ ∧ ω, ξ = 1

D − p + 1
∇ · ω, (2.60)

cf. (2.54), giving the following explicit definition, see (2.50):

∇Xω = 1

p+1
X · (∇ ∧ ω)+ 1

D−p+1
X ∧ (∇ · ω). (2.61)

The Killing–Yano forms are then defined as objects obeying

∇X f = X · κ, (2.62)

whereas closed conformal Killing–Yano tensors are those satisfying

∇Xh = X ∧ ξ . (2.63)

Definitions (2.59), (2.62), and (2.63) remain equally valid for inhomogeneous
(closed conformal) Killing–Yano forms, provided κ and ξ satisfy

π κ = ∇ ∧ f , (D − π) ξ = ∇ · h, (2.64)

using the rank operator π introduced in (A.16).

2.5 Basic properties of conformal Killing–Yano forms

2.5.1 Conformal Killing–Yano forms

The conformal Killing–Yano tensors have a nice behavior under the Hodge duality.
Namely, using the relations (A.8), (A.10), it is easy to show that equation (2.61) implies

∇X (∗ω) = 1

p∗ + 1
X · (∇ ∧ ∗ω)+ 1

D − p∗ + 1
X ∧ (∇ · ∗ω), with p∗ = D − p.

(2.65)
This relation means that

– The Hodge dual of a conformal Killing–Yano tensor is again a conformal Killing–
Yano tensor.

– The Hodge dual of a closed conformal Killing–Yano tensor is a Killing–Yano
tensor and vice versa.

The name “conformal” Killing–Yano tensor is connected with the behavior of these
objects under a conformal rescaling. Namely, if ω is a conformal Killing–Yano p-form
on a manifold with metric tensor g, then

ω̃ = Ω p+1ω (2.66)
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is a conformal Killing–Yano p-form with the conformally scaled metric g̃ = Ω2g
(Benn and Charlton 1997).

The existence of conformal Killing–Yano tensors implies the existence of a con-
formal Killing tensor and hence also a conserved quantity for null geodesics. Namely,
having two conformal Killing–Yano p-forms ω1 and ω2, obeying (2.59), the following
object:

kab = ω1
(a

c2...cp ω2
b)c2...cp , (2.67)

is a rank-2 conformal Killing tensor which gives rise to a quantity

K = kablalb (2.68)

that is conserved along any null geodesic with momentum l . To prove this statement,
let us calculate the symmetrized covariant derivative of k,

∇(akbc) = ω2
(a

e2...ep ∇bω1
c)e2...ep + ω1

(a
e2...ep ∇bω2

c)e2...ep . (2.69)

Substituting relation (2.57) for the symmetrized covariant derivative of ω1 and ω2,
only the first term in (2.57) survives the contraction with the second form, and we
obtain

∇(akbc) = g(ab (ω2
c)

e2...ep ξ1
e2...ep + ω1

c)
e2...ep ξ2

e2...ep
)
, (2.70)

which proves that k satisfies the conformal tensor equation (2.34).
The conservation of (2.68) along null geodesics is related to the conservation of

another tensorial quantity
F = l ∧ (l · ω), (2.71)

which is parallel-transported along any null geodesic with momentum l , Ḟ = ∇l F =
0. Indeed, using the geodesic equation (2.16), conformal Killing–Yano condition
(2.59), Leibniz rule (A.4), and l2 = 0, we have

Ḟ = l ∧ (l · ∇lω) = l ∧ [l · (l · κ + l ∧ ξ)] = l ∧ [l2ξ − l ∧ (l · ξ)] = 0. (2.72)

Defining F1 and F2 for ω1 and ω2, any product of F’s, l’s, and the metric g is also
parallel-propagated along null geodesics. In particular, this is true for

F1ac2...cp F2b
c2...cp = lalb K , (2.73)

with K given by (2.68). This means that K̇ = 0, and we again obtained that kab must
be a conformal Killing tensor.

Contrary to conformal Killing tensors, conformal Killing–Yano tensors do not form
in general a graded Lie algebra, though they do in constant curvature spacetimes (Kas-
tor et al. 2007). See Cariglia et al. (2011a), Ertem and Acik (2016), Ertem (2016) for
attempts to generalize this property using the suitably modified Schouten–Nijenhuis
brackets.
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Remark It is well known that skew-symmetric tensors form a (graded) Lie algebra
with respect to the skew-symmetric Schouten–Nijenhuis (SSN) bracket (Schouten
1940, 1954; Nijenhuis 1955), defined as

[α, β]SSN
a1...ap+q−1

= p αb[a1...ap−1∇bβap ...ap+q−1] + (−1)pqq βb[a1...aq−1∇bαaq ...ap+q−1], (2.74)

for a p-form α and a q-form β. This fact led Kastor et al. (2007) to investigate
whether, similar to Killing vectors, Killing–Yano tensors form a subalgebra of this
algebra. Unfortunately, such statement is not true in general, the authors were able to
give counter examples disproving the conjecture. On the other hand, the statement is
true in maximally symmetric spaces. We also have the following property: let ξ be a
conformal Killing vector satisfying £ξ g = 2λg, and ω be a conformal Killing–Yano
p-form. Then

ω̃ = [ξ ,ω]SSN = £ξω − (p + 1)λω (2.75)

is a new conformal Killing–Yano p-form (Benn and Charlton 1997; Cariglia et al.
2011a). ��

Let us finally mention that conformal Killing–Yano tensors are closely related to
twistor spinors, and play a crucial role for finding symmetries of the massless Dirac
operator. At the same time the subfamilies of Killing–Yano and closed conformal
Killing–Yano tensors are responsible for symmetries of the massive Dirac equation
(Carter and McLenaghan 1979; Benn and Charlton 1997; Cariglia 2004; Cariglia et al.
2011a), see the discussion in Sect. 6.4 and Appendix F.

2.5.2 Killing–Yano forms

An important property of Killing–Yano tensors is that they ‘square’ to Killing tensors.
Namely, having two Killing–Yano p-forms f 1 and f 2, their symmetrized product

kab = f1
(a

c2...cp f2
b)c2...cp (2.76)

is a rank-2 Killing tensor. This property again follows by taking a symmetrized covari-
ant derivative and employing the Killing–Yano condition (2.58). It can also be obtained
by contracting the associated forms w1 and w2 defined by (2.43). Since they are both
parallel-transported, the contracted quantity

K = w1c1...cp w2
c2...cp = kab pa pb (2.77)

is also conserved and hence k is a Killing tensor.
It is obvious that this property can be immediately generalized to other cases. For

example, let f 1, f 2, and f 3 be three Killing–Yano 3-forms. Then

kabc = f1
(a|d|

e f2
b|e|

f f3
c) f

d (2.78)
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is a rank-3 Killing tensor and gives rise to a constant of geodesic motion, given by the
contracted product of associated forms wi (2.43),

K = Tr(w1 · w2 · w3) = kabc pa pb pc. (2.79)

Similar is true for other products of the associated parallel transported w’s.

Remark Similar to Killing vectors, Killing–Yano tensors provide conserved charges
for the fields. For simplicity, let us consider a Killing–Yano 2-form f . A naive gener-
alization of (2.23) would read

jab = T ac fc
b. (2.80)

It is easy to verify that by using the Killing–Yano equation (2.58), the ‘current’ j is
again divergence free, ∇ · j = 0. However, it is no longer completely antisymmetric
and hence one cannot use the Stokes theorem to construct the corresponding conserved
quantities. For this reason, Kastor and Traschen (2004) considered an ‘upgraded’
current, given by

jab = f cd Rcd
ab − 2 f ac Rc

b + 2 f bc Rc
a + f ab R, (2.81)

which is both manifestly antisymmetric and divergence-free. This property can be
immediately generalized for higher-rank Killing–Yano tensors and leads to a definition
of ‘intensive’ Yano–ADM charges, see Kastor and Traschen (2004); Kastor et al.
(2005) for more details. ��

2.5.3 Closed conformal Killing–Yano forms

Closed conformal Killing–Yano tensors are conformal Killing–Yano tensors that are in
addition closed with respect to the exterior derivative. This additional property implies
the following two important results.

Consider a (non-null) geodesic with a momentum p and denote by

Pa
b = δa

b − pa pb

p2 (2.82)

a projector to the space orthogonal to its tangent vector (which is proportional to the
momentum). It satisfies

P · p = 0, ∇p P = 0. (2.83)

Let h be a rank-s closed conformal Killing–Yano tensor. It allows us to define a new
s-form

Fa1...as = Pb1
a1
. . . Pbs

as
hb1...bs , (2.84)

which is parallel-transported along the geodesic. Indeed, using the properties (2.83)
and employing the defining property (2.63) one has

pa∇a Fa1...as = Pb1
a1
. . . Pbs

as
pa∇ahb1...bs = s Pb1

a1
. . . P

bp
as p[b1ξb2...bs ] = 0. (2.85)
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In fact the converse is also true. When a form F defined by (2.84) is parallel-transported
along any geodesic, it implies that h is a closed conformal Killing–Yano form.

The second property of closed conformal Killing–Yano forms which plays a key role
in the construction of hidden symmetries in higher-dimensional black hole spacetimes
is the following statement (Krtouš et al. 2007a; Frolov 2008):

Theorem Let h1 and h2 be two closed conformal Killing–Yano p-form and q-form,
respectively. Then their exterior product

h = h1 ∧ h2 (2.86)

is a closed conformal Killing–Yano (p + q)-form.

This property can be considered as an ‘antisymmetric analogue’ of the statement that
a symmetrized product of (conformal) Killing tensors is again a (conformal) Killing
tensor. In order to prove this theorem, we take the covariant derivative of h along
an arbitrary direction X , use the Leibniz rule, and closed conformal Killing–Yano
condition (2.63) for both h1 and h2, to obtain

∇Xh = (∇Xh1) ∧ h2 + h1 ∧ (∇Xh2) = (X ∧ ξ1) ∧ h2 + h1 ∧ (X ∧ ξ2) = X ∧ ξ ,

(2.87)

with
ξ = ξ1 ∧ h2 + (−1)ph1 ∧ ξ2, (2.88)

which proves that h also satisfies the condition (2.63) for closed conformal Killing–
Yano forms.

2.6 Integrability conditions and method of prolongation

The conformal Killing–Yano equation (2.61) represents an over-determined system
of partial differential equations (Dunajski 2008) and significantly restricts a class of
geometries for which nontrivial solutions may exist. For this reason it is very useful
to formulate and study integrability conditions for these objects. For example, it was
shown in Mason and Taghavi-Chabert (2010) that the integrability condition for a non-
degenerate conformal Killing–Yano 2-form implies that the spacetime is necessary of
type D of higher-dimensional algebraic classification (Coley et al. 2004; Milson et al.
2005). We refer to Appendix C for detailed derivation of integrability conditions for
(closed conformal) Killing–Yano tensors.

Taking into account that (closed conformal) Killing–Yano conditions impose severe
restrictions on the spacetime geometry, it is natural to ask the following questions: (i)
What is the maximum possible number of independent Killing–Yano symmetries that
may in principle exist? (ii) Given a spacetime, is there an algorithmic procedure to
determine how many Killing–Yano symmetries are present? Fortunately, the answers
to both of these questions are known. Given a geometry, there is an effective method,
called the method of prolongation, that provides an algorithmic tool for determining
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how many at most solutions of an over-determined system of Killing–Yano equations
may exist (Houri and Yasui 2015). See also Houri et al. (2017) for a recent study of
the prolongation of the Killing tensor equation.

2.6.1 Prolongation of the Killing vector equation

Let us first consider the case of Killing vectors. For a Killing vector ξ , the Ricci
identities give the following integrability condition:

∇a∇b ξc = −Rbca
eξe, (2.89)

see (C.15) for a more general formula and its proof. We can thus rewrite the Killing
equation (2.20) and its integrability condition as a system of first-order partial differ-
ential equations for the 1-form ξa and a 2-form Lab:

∇aξb = Lab, ∇a Lbc = −Rbca
dξd . (2.90)

These relations imply that all higher derivatives of ξa and Lab at a given point x are
uniquely determined by the values of ξa and Lab at this point. Hence, the Killing
vector ξ in the neighborhood of x is determined by the initial values of ξa and Lab

at x . The maximum possible number of Killing vector fields is thus given by the
maximum number of these initial values. Since Lab is antisymmetric, the maximum
number reads

NKV(D) = D + 1

2
D(D − 1) = 1

2
D(D + 1). (2.91)

As can be expected, the maximum number of Killing vectors exists in maximally
symmetric spacetimes, see below.

Let us now explain the algorithm for finding the number of independent Killing
vectors in a given spacetime. In the first step we take a derivative of the second equation
(2.90), employ the Ricci identity and the first equation (2.90), to obtain

ξe∇a Rbcd
e − ξe∇d Rbca

e − Radb
e Lce + Radc

e Lbe − Rbca
e Lde + Rbcd

e Lae = 0.
(2.92)

Given the spacetime, the Riemmann tensor and its derivatives are known and this
condition represents a system of D2(D2 − 1)/12 linear algebraic equations for ξa

and Lab at any point. Although some of these equations may be trivially satisfied,
some will reduce the number of possible independent Killing vector solutions. In the
second step we differentiate this equation further, and employing the Ricci identity
and equations (2.90) again, obtain another set of algebraic equations, and so on. After
a finite number of steps the algorithm terminates. This procedure determines the actual
number of Killing vectors in our spacetime.

2.6.2 Maximum number of (closed conformal) Killing–Yano forms

The method of prolongation has been readily extended to (closed conformal) Killing–
Yano tensors, in which case one can use an elegant description in terms of the so called

123



6 Page 34 of 221 V. P. Frolov et al.

Killing connection. We refer to the work by Houri and Yasui (2015) for details and
state only the formulae for the maximum number of (closed conformal) Killing–Yano
tensors, e.g. Kastor and Traschen (2004).

Using the Killing–Yano equation (2.55) for a Killing–Yano p-form f and its inte-
grability conditions (C.15), we find

∇a fa1,...ap = κaa1...ap ,

∇aκa0a1,...ap = p + 1

2
Rca[a0a1 f c

a2,...ap].
(2.93)

Since both fa1...ap and κa0a1...ap are completely antisymmetric, we have at most

NKY(D, p) =
(

D

p

)
+
(

D

p + 1

)
=
(

D + 1

p + 1

)
= (D + 1)!
(D − p)! (p + 1)! (2.94)

Killing–Yano p-forms.
Similarly, using the equation (2.56) for a closed conformal Killing–Yano p-form

h and its integrability conditions (C.27), we find

∇aha1,...ap = p ga[a1ξa2...ap]

∇aξa2...ap = 1

D − p

(
−Rba hb

a2...ap + p − 1

2
Rbca[a2 hbc

a3...ap]
)
.

(2.95)

Again, since both ha1...ap and ξa2...ap are completely antisymmetric, we have at most

NCCKY(D, p) =
(

D

p

)
+
(

D

p − 1

)
=
(

D + 1

p

)
= (D + 1)!
(D − p + 1)! p! (2.96)

closed conformal Killing–Yano forms. The same result can be obtained realizing that
any closed conformal Killing–Yano tensor h of rank p is given by a Hodge dual of a
Killing–Yano (D − p)-form. We can thus substitute p → D − p in (2.94) obtaining
again (2.96).

We refer the reader to a recent paper by Batista (2015), where the integrability
conditions are studied for a general conformal Killing–Yano tensor and to Appendix C
for the overview and derivations of the integrability conditions for Killing–Yano and
closed conformal Killing–Yano forms.

2.7 Killing–Yano tensors in maximally symmetric spaces

The maximally symmetric spaces possess the maximum number of Killing–Yano and
closed conformal Killing–Yano tensors. Their special properties have been studied in
Batista (2015). In what follows let us write explicitly a basis for these tensors in the
simple case of a D-dimensional flat space, using the Cartesian coordinates.

Consider a set A of p ordered indices,

A = {a1, . . . ap} such that 1 ≤ a1 < a2 < · · · < ap ≤ D. (2.97)
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Then the following
(D

p

)
objects:

f {a1,...ap} = dxa1 ∧ dxa2 ∧ · · · ∧ dxap , (2.98)

labeled by such a set, are (covariantly constant) translational Killing–Yano p-forms
Kastor and Traschen (2004).

Furthermore, the following
( D

p+1

)
objects:

f̂
{a0,...ap} = x [a0dxa1 ∧ dxa2 ∧ · · · ∧ dxap], (2.99)

labeled by a set of p + 1 indices, are the rotational Killing–Yano forms Kastor and
Traschen (2004). Indeed, taking the covariant derivative, we have

∇ f̂
{a0,...ap} = 1

p + 1
dx [a0 ∧ dxa1 ∧ dxa2 ∧ · · · ∧ dxap], (2.100)

which proves the statement. The total number of Killing–Yano tensors (2.98) and
(2.99) is

(D
p

)+( D
p+1

) = NKY(D, p), giving thus a complete set of linearly independent
Killing–Yano p-forms in flat space.

A basis in the space of closed conformal Killing–Yano p-forms can be constructed
as the Hodge dual of the basis in the space of Killing–Yano (D−p)-forms. Let Ā be
a complimentary set to set A, (2.97), consisting of all integers 1, . . . , D which are
different from those in A. Clearly, the Hodge dual of the translation Killing–Yano

form fA is, up to a sign, given again by the same type of the form, ∗ fA = ± f Ā,
only indexed by the complimentary set Ā. Ignoring the unimportant sign, we can thus
define the (covariantly constant) translational closed conformal Killing–Yano forms
by the same formula as above,

h{a1,...ap} = dxa1 ∧ dxa2 ∧ · · · ∧ dxap , (2.101)

labeled again by a set of p indices. Since any closed form h can locally be written as
h = db, for our translation forms we may, for example, write

hA = d f̂A. (2.102)

Hence, in flat space, the rotational Killing–Yano forms are potentials for the transla-
tional closed conformal Killing–Yano forms.

Similarly, we can define the rotational closed conformal Killing–Yano p-forms
as Hodge duals of the rotational Killing–Yano (D−p)-forms. Let us consider f̂A

labeled by a set A of (D−p+1) indices. Expanding the antisymmetrization in (2.99)
with respect to the first index and taking the Hodge dual gives

∗ f̂A = ± 1

D − p + 1

(
∑

a∈A
xadxa

)
∧ ∗ fA. (2.103)

123



6 Page 36 of 221 V. P. Frolov et al.

Ignoring unimportant prefactors and renaming the labeling set Ā → A, we can define
the following basis of rotational closed conformal Killing–Yano p-forms:

ĥA =
⎛

⎝
∑

a∈Ā
xadxa

⎞

⎠ ∧ hA, (2.104)

labeled by a set A of p − 1 indices. The divergences of these forms are

ξ̂A = 1

D − p + 1
∇ · ĥA = hA. (2.105)

Each of the closed conformal Killing–Yano forms (2.104) can be obtained from the
potential

b̂A = 1

2

⎛

⎝
∑

a∈Ā
(xa)2

⎞

⎠ hA. (2.106)

2.8 Principal tensor

There exists a very deep geometrical reason why the properties of higher-dimensional
rotating black holes are very similar to the properties of their four-dimensional
‘cousins’. In both cases, the spacetimes admit a special geometric object which we call
the principal tensor. As we shall see, this tensor generates a complete set of explicit
and hidden symmetries and uniquely determines the geometry, given by the off-shell
Kerr–NUT–(A)dS metric. The purpose of this section is to introduce the principal
tensor, a ‘superhero’ of higher-dimensional black hole physics, and discuss its basic
properties.

2.8.1 Definition

We define the principal tensor h as a non-degenerate closed conformal Killing–Yano
2-form. Being a closed conformal Killing–Yano 2-form it obeys the equation

∇chab = gcaξb − gcbξa, ξa = 1

D − 1
∇bhba, (2.107)

or in the language of differential forms

∇Xh = X ∧ ξ , ξ = 1

D − 1
∇ · h. (2.108)

Note that since h is closed, there exists, at least locally, a potential 1-form b such that

h = db. (2.109)

123



Black holes, hidden symmetries, and complete integrability Page 37 of 221 6

The condition of non-degeneracy means that the principal tensor has the maximal
possible (matrix) rank and possesses the maximal number of functionally independent
eigenvalues.2

2.8.2 Darboux and null frames

In order to explain the imposed condition of non-degeneracy in more details and
to exploit the algebraic structure of the principal tensor we shall now introduce the
Darboux frame. Consider a (D = 2n +ε)-dimensional manifold with (Riemannian—
see later) metric g. For any 2-form h in this space there exists an orthonormal frame
(eμ, êμ, ê0

), called the Darboux frame, so that we can write

h =
∑

μ

xμeμ ∧ êμ, (2.110)

g =
∑

μ

(
eμ eμ + êμ êμ

)+ ε ê0 ê0
. (2.111)

Here, the 1-forms eμ and êμ, μ = 1 . . . , n, accompanied in odd dimensions with
ê0, are orthogonal to each other and normalized with respect to the metric, and the
quantities xμ are related to the ‘eigenvalues’ of the 2-form h (see below).

The condition that the principal tensor is non-degenerate requires that there are
exactly n nonvanishing eigenvalues xμ, which, in a suitable neighborhood, give n
functionally independent (non-constant and with linearly independent gradients) func-
tions.

The Darboux frame is closely related to eigenvectors of the principal tensor. Let
us denote by �h a variant of the principal tensor with the first index raised by the
metric,3 (�h)ab = gachcb. This is a real linear operator on the tangent space which is
antisymmetric with respect to the transposition given by the metric. As such, it has
complex eigenvectors coming in complex conjugate pairs (mμ, m̄μ) with imaginary
eigenvalues ±i xμ,

�h · mμ = −i xμ mμ,
�h · m̄μ = i xμ m̄μ, (2.112)

and a subspace of real eigenvectors with the vanishing eigenvalue. The maximal possi-
ble rank guarantees that in even dimensions there is no eigenvector with the vanishing
eigenvalue and in odd dimensions there is exactly one eigenvector ê0 with the vanishing
eigenvalue,

�h · ê0 = 0. (2.113)

2 In the Lorentzian signature we additionally assume certain generality of eigenvectors and eigenvalues,
see the discussion below.
3 We will use this notation just in this section since we want to be more explicit here. Elsewhere we raise
indices implicitly, without the sharp symbol.
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The eigenvectors are null and satisfy the null-orthonormality conditions4

g(mμ,mν) = 0, g(m̄μ, m̄ν) = 0, g(mμ, m̄ν) = δμν. (2.114)

These eigenvectors can be used to define the Darboux frame. Namely, the vectors

eμ = − i√
2

(
mμ − m̄μ

)
, êμ = 1√

2

(
mμ + m̄μ

)
, (2.115)

together with ê0 in odd dimensions, form an orthonormal basis and satisfy

�h · eμ = −xμ êμ, �h · êμ = xμ eμ, �h · ê0 = 0. (2.116)

The dual frame of 1-forms (eμ, êμ, ê0
) is exactly the Darboux frame in which the

principal tensor takes the form (2.110). At the same time, the null-orthonormality
conditions (2.114) for the basis eigenvectors (mμ, m̄μ, ê0) imply that the inverse
metric can be written as

g−1 =
∑

μ

(
mμ m̄μ + m̄μ mμ

)+ ε ê0 ê0, (2.117)

recovering (2.111) upon the use of (eμ, êμ, ê0
).

The Darboux basis can also be understood in terms of the eigenvectors of tensor
Q, defined as the square of the principal tensor,

Qab = ha
c hbc. (2.118)

Being a particular case of definition (2.67), Q is a conformal Killing tensor. Since it
can clearly be written as

Q =
∑

μ

x2
μ

(
eμeμ + êμ êμ

)
, (2.119)

one gets the following eigenvector equations:

Q · eμ = x2
μ eμ, Q · êμ = x2

μ êμ, Q · ê0 = 0. (2.120)

To summarize, the 2-form algebraic structure of the principal tensor splits the
tangent space into orthogonal 2-planes, each of which is spanned on the pair of vectors
(eμ, êμ), in odd dimensions supplemented by an additional one-dimensional subspace
spanned on ê0.

4 The eigenvectors can be chosen orthonormal with respect to the hermitian scalar product on the
complexification of the tangent space, 〈a, b〉 = g(ā, b). Such orthonormality relations translate into null-
orthonormality conditions (2.114) written in terms of the metric.
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2.8.3 Metric signature

All the formulae so far were adjusted to the Euclidean signature. For other signatures
of the metric, most of the formulae can be written in the same way, only the reality
of various quantities is different. In particular, for the Lorentzian signature one of
the 1-forms in the Darboux frame is imaginary and two of the null eigenvectors are
real (and not complex conjugate anymore). One can also perform a suitable ‘Wick
rotation’ and define real and properly normalized canonical frames. This will be done,
for example, in the next chapter when discussing the canonical Darboux basis for
the Kerr spacetime in four dimensions. In higher dimension, on other hand, we will
use mostly the formal Euclidean definitions even in the case of Lorentzian signature
(Chap. 5) and we will perform the Wick rotation only for the coordinate form of the
metric, see Sect. 4.4.

However, the non-Euclidean signatures allow also other possibilities. The Darboux
frame can take an exceptional ‘null form’ when some of the vectors in (2.110) are
null, cf. Milson (2004). It can also happen that some of the eigenvalues xμ have a null
gradient dxμ which complicates the choice of the special Darboux frame discussed
below, see (2.122). We do not consider such exceptional cases in our review. We
assume that the principal tensor allows the choice of the Darboux frame in the form
(2.122) and that eigenvalues xμ are not globally null (although they can become null
on special surfaces as, for example, at the horizon). A study and the classification of
the exceptional null cases is an interesting open problem.

2.8.4 Special Darboux frame

In order to write down the Darboux frame above, we just exploited the algebraic
properties of the principal tensor: that it is a maximally non-degenerate 2-form in the
space with metric. Such a frame is not fixed uniquely. We still have a freedom which
allows us to independently rotate each 2-plane spanned on eμ, êμ:

eμ → cosα eμ − sin α êμ, mμ → exp(−iα)mμ,

êμ → sin α eμ + cosα êμ, m̄μ → exp(iα) m̄μ.
(2.121)

This freedom allows one to further simplify the key objects related to the principal
tensor, for example, to obtain a nice expression (2.131) below for the 1-form ξ .

Namely, by using the property that the principal tensor is a closed conformal
Killing–Yano form, one can require Krtouš et al. (2008) that

êμ · dxν = 0 (2.122)

for any μ and ν. Moreover, with this condition the dual frame 1-forms eμ satisfy

dxμ = √
Qμ eμ, (2.123)

where Qμ is metric component Qμ = gμμ. We call such a frame the special Dar-
boux basis. We will see that the special Darboux frame is used when the metric is
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specified, see Chap. 3 for the case of four dimensions and Chap. 4 for a general
higher-dimensional case.

To justify that conditions (2.122) and (2.123) can be enforced, we take the covariant
derivative of the eigenvector equation (2.112) along the direction mν . After employing
the closed conformal Killing–Yano condition (2.107), one obtains

(�h + i xμ I) · ∇mνmμ + (mμ · ξ)mν + i(mν · dxμ)mμ = 0. (2.124)

Taking component in mμ direction and using the eigenvector condition (2.112) again,
one finds

mν · dxμ = 0 for μ �= ν, (2.125)

and
mμ · dxμ = imμ · ξ (2.126)

when μ = ν. In odd dimensions, by a similar argument, one gets also

ê0 · dxμ = 0. (2.127)

With the help of (2.117), (2.125), and (2.127), the function Qμ ≡ gμμ = dxμ · g−1 ·
dxμ can be written as Qμ = 2

∣∣mμ · dxμ
∣∣2. It means that

mμ · dxμ = i√
2

√
Qμ exp(iα) (2.128)

for some phase α. Now we can take an advantage of the freedom (2.121) and fix the
phase so that

mμ · dxμ = i√
2

√
Qμ. (2.129)

Relations (2.115) then immediately imply

eμ · dxμ = √
Qμ, eν · dxμ = 0 for ν �= μ, êκ · dxμ = 0, ê0 · dxμ = 0,

(2.130)
which proves all the assertions given above.

As a bonus, the equation (2.126) now yields

ξ =
∑

μ

√
Qμ êμ +√

Q0 ê0, (2.131)

with yet unspecified function Q0. Upon contracting with the principal tensor (2.110)
and using (2.123), we obtain

ξ · h = −
∑

μ

xμ
√

Qμ eμ = −d
(1

2

∑

μ

x2
μ

)
. (2.132)

Employing further the Cartan identity and the closeness of h, we finally obtain

£ξ h = ξ · dh + d(ξ · h) = 0. (2.133)

Note that although we used the special Darboux frame to prove this relation, it is of
course valid universally: the principal tensor is conserved along the flow generated by
ξ .
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Importantly, by further studying the integrability conditions for the principal tensor,
it can be shown that Krtouš et al. (2008), Houri et al. (2009), Yasui and Houri (2011),
Krtouš (2017)

£ξ g = 0. (2.134)

ξ is thus a Killing vector which we call the primary Killing vector.
The two properties (2.133) and (2.134) play a crucial role in the construction of

the canonical metric admitting the principal tensor, see the discussion in Chap. 5 and
original papers Houri et al. (2007), Krtouš et al. (2008), Houri et al. (2009).

2.8.5 Killing tower

The special Darboux frame is only the first consequence of the existence of the principal
tensor. One of the keystone properties of the principal tensor is that it can be used to
generate a rich symmetry structure which we call the Killing tower. It is a sequence of
various symmetry objects which, in turn, guarantee many important properties of the
physical systems in spacetimes with the principal tensor. Here we only shortly sketch
how the Killing tower is build to get an impression of this symmetry structure. We
return to the Killing tower in Chap. 5, where we explore its definitions and properties
in much more detail, and in Chap. 6, where we review its main physical consequences.

Starting with the principal tensor h, we can build the following objects Krtouš et al.
(2007a), Frolov (2008), Frolov and Kubizňák (2008):

(i) Closed conformal Killing–Yano forms h( j) of rank 2 j :

h( j) = 1

j ! h
∧ j . (2.135)

(ii) Killing–Yano forms f ( j) of rank (D − 2 j):

f ( j) = ∗h( j). (2.136)

(iii) Rank-2 Killing tensors k( j),

kab
( j) = 1

(D−2 j−1)! f ( j)a
c1...cD−2 j−1 f ( j)bc1...cD−2 j−1 . (2.137)

(iv) Rank-2 conformal Killing tensors Q( j):

Qab
( j) = 1

(2 j−1)! h( j)a
c1...c2 j−1 h( j)bc1...c2 j−1 . (2.138)

(v) Killing vectors l( j):
l( j) = k( j) · ξ . (2.139)

For j = 0, the Killing tensor reduces to the metric, k(0) = g, and the Killing vector
l(0) coincides with the primary Killing vector, l(0) = ξ . We call the other Killing
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vectors l( j) the secondary Killing vectors. Note also that for j = 1, h(1) = h, and the
conformal Killing tensor reduces to the previously defined object (2.118), Q(1) = Q.

Remark To show that l( j) are indeed Killing vectors, we note that taking covariant
derivative of (2.139) and employing the Killing tensor equation (2.27) for k( j) and ξ

gives Houri et al. (2007)

∇(alb)
( j) = 1

2
£ξ kab

( j) − ξ c∇ckab
( j). (2.140)

Since the Killing tensor k( j) is build up only using h and g, the Lie derivative in
the first term vanishes due to conditions (2.133) and (2.134). Similarly, the covariant
derivative in the second term vanishes thanks to ∇ξ h = 0 which is a direct conse-
quence of the principal tensor equation (2.108). Let us, however, note that this proof
relies on the condition (2.134), which is difficult to prove; see discussion in Chap. 5,
especially Sect. 5.4. The character of the other objects in the Killing tower follows
from the general properties of conformal Killing–Yano forms discussed previously in
this section. See Chap. 5 for further discussion. ��

The objects in the Killing tower encode symmetry properties of the geometry.
Killing vectors characterize its explicit symmetries, while Killing tensors describe the
hidden symmetries. Together they generate a sufficient set of conserved quantities for
a free particle motion, yielding such a motion completely integrable. They also define
symmetry operators for the wave operator. The objects in the Killing–Yano tower
enable one to separate the Dirac equation. We will discuss all these consequences in
Chap. 6.

2.8.6 Geometry admitting the principal tensor

As can be expected, the existence of the principal tensor imposes very restrictive
conditions on the geometry. In fact, it determines the geometry: the most general
geometry consistent with the existence of the principal tensor is the off-shell Kerr–
NUT–(A)dS geometry. This geometry is the main object of our study in the following
sections. Since it contains, as a special subcase, the metric for a general multiply-
spinning black hole, it represents a generalization of the Kerr solution to an arbitrary
dimension. For this reason, we start in the next section with a review of the properties
of the four-dimensional Kerr solution.

In Chap. 4 we introduce the general higher dimensional off-shell Kerr–NUT–(A)dS
geometry. We define canonical coordinates in which the metric acquires a manageable
form. With this machinery we shall return back to the discussion of the principal tensor
in Chap. 5.

The Killing tower can be build directly from the principal tensor, without referring
to a particular form of the metric. This construction, sketched above, is discussed in
detail in Chap. 5. However, it is also useful to present these objects in an explicit
coordinate form. This is the reason why we are postponing the further discussion of
the Killing tower till Chap. 5, only after we introduce the metric itself. Since the metric
is determined by the existence of the principal tensor, the utilization of the metric in
the discussion of the principal tensor does not mean a loss of generality.
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3 Kerr metric and its hidden symmetries

The main goal of this review is to describe properties of Kerr–NUT–(A)dS family of
higher-dimensional black holes related to hidden symmetries. As we shall see many
of these properties are similar to those of the Kerr metric. A deep reason for this
is the existence of the principal tensor. In order to prepare a reader for ‘a travel’ to
higher dimensions, where all the formulas and relations look more complicated and
the calculations are more technically involved, we summarize the results concerning
the properties of the Kerr metric and its four-dimensional generalization described
by the Kerr–NUT–(A)dS spacetime in this chapter. We also briefly discuss a related
family of Plebański–Demiański spacetimes which share with the Kerr metric some of
its hidden symmetries.

3.1 Kerr metric

The Kerr metric describes a rotating black hole. Found by Kerr (1963), it is the
most general stationary vacuum solution of Einstein’s equations in an asymptot-
ically flat spacetime with a regular event horizon. The general properties of the
Kerr metric are well known and can be found in many textbooks, see, e.g., Mis-
ner et al. (1973), Hawking and Ellis (1973), Wald (1984), Chandrasekhar (1983),
Frolov and Novikov (2012), Frolov and Zelnikov (2011). In this section, we dis-
cuss the Kerr solution from a perspective of its hidden symmetries. As we shall
demonstrate later, many of the remarkable properties of the Kerr geometry, that stem
from these symmetries, are naturally generalized to black holes of higher-dimensional
gravity.

In the Boyer–Lindquist coordinates the Kerr metric takes the following form:

g = −
(

1−2Mr

Σ

)
dt2 − 4Mra sin2 θ

Σ
dt dφ

+ A sin2 θ

Σ
dφ2 + Σ

Δr
dr2 +Σ dθ2,

(3.1)

Σ = r2 + a2 cos2 θ, Δr = r2 − 2Mr + a2,

A = (r2 + a2)2 −Δr a2 sin2 θ.
(3.2)

The metric does not depend on coordinates t and φ, ξ (t) = ∂ t and ξ (φ) = ∂φ are
two (commuting) Killing vectors. The Killing vector ξ (t) is uniquely characterized by
the property that it is timelike at infinity; the metric is stationary. The characteristic
property of ξ (φ) is that its integral lines are closed. In the black hole exterior the fixed
points of ξ (φ), that is the points where ξ (φ) = 0, form a regular two-dimensional
geodesic submanifold, called the axis of symmetry—the metric is axisymmetric. The
induced metric on the axis is

γ = −Fdt2 + F−1dr2, F = Δr

r2 + a2 . (3.3)
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The Kerr metric is characterized by two parameters: M and a . At far distances, for
r → ∞, the metric simplifies to

g ≈ −
(

1 − 2M

r

)
dt2 − 4Ma sin2 θ

r
dt dφ+ dr2 + r2(dθ2 + sin2 θ dφ2). (3.4)

From this asymptotic form one concludes that M is the mass, and J = aM is the
angular momentum of the black hole. The parameter a is called the rotation parameter.
Similar to the mass M , it has a dimensionality of length. The ratio of a and M is a
dimensionless parameter α = a/M , called the rotation rapidity. Similar to the case of
the Schwarzschild black hole, one can use M as a scale parameter and write the Kerr
metric (3.1) in the form

g = M2 g̃, (3.5)

where g̃ is a dimensionless metric that contains only one non-trivial dimensionless
parameter: the rotation rapidity α.

3.2 Carter’s canonical metric

The Boyer–Lindquist coordinates naturally generalize the Schwarzschild coordinates
to the case of a rotating black hole. We now present yet another form of the Kerr
metric in which its hidden symmetry is more evident. Let us perform the following
coordinate transformation:

y = a cos θ, ψ = φ/a, τ = t − aφ. (3.6)

Then the Kerr metric (3.1) takes the form

g = 1

Σ

[
−Δr (dτ + y2dψ)2 +Δy(dτ − r2dψ)2

]
+Σ

[
dr2

Δr
+ dy2

Δy

]
, (3.7)

Σ = r2 + y2, Δr = r2 − 2Mr + a2, Δy = a2 − y2. (3.8)

As we shall see, similar coordinates will be very useful in higher dimensions. To stress
this, we call (τ, r, y, ψ) the canonical coordinates.

3.2.1 Off-shell canonical metric

In the new form of the metric (3.7) the parameters of the solution, mass M and rotation
parameter a, enter only through functions Δr and Δy , both being quadratic polyno-
mials in r and y, respectively. It is often convenient not to specify functionsΔr (r) and
Δy(y) from the very beginning, but consider a metric with arbitrary functions instead:

g = −Δr

Σ
(dτ + y2dψ)2 + Δy

Σ
(dτ − r2dψ)2 + Σ

Δr
dr2 + Σ

Δy
dy2,

Σ = r2 + y2, Δr = Δr (r), Δy = Δy(y).

(3.9)
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We call such an ansatz the off-shell canonical metric. This name emphasizes the fact
that in a general case this metric is not a solution of Einstein’s equations.

It turns out that many calculations and results become more transparent and simpler
when performed without specifying a concrete form of functions Δr (r) and Δy(y),
that is, for the off-shell metric. For example, an important property of the off-shell
metric is that its determinant g does not depend on functions Δr (r) and Δy(y):

√−g = Σ = r2 + y2. (3.10)

The inverse metric to (3.9) reads

g−1 = 1

Σ

[
−Δ−1

r (r2∂τ+∂ψ)
2+Δ−1

y (y2∂τ−∂ψ)
2+Δr (∂r )

2+Δy(∂ y)
2
]
. (3.11)

3.2.2 Going on-shell: Kerr–NUT–(A)dS metric

If one requires that the off-shell metric satisfies the Einstein equations, the functions
Δr (r) and Δy(y) take a special form. We call the metric (3.9) with such functions
Δr (r) and Δy(y) an on-shell metric.

For example, the on-shell metric with functions Δr (r) and Δy(y) given by (3.8)
reproduces the Kerr solution. However, one can easily check that this is not the most
general vacuum on-shell metric. For example, one can add a linear in y term, 2N y,
to the function Δy . Such a generalization of the Kerr metric is known as the Kerr–
NUT solution, and the parameter N is called the NUT (Newmann–Tamburino–Unti)
parameter (Newman et al. 1963).

Remark There are many publications which discuss the physical meaning and inter-
pretation of the NUT parameter. In the presence of NUT parameters the spacetime is
not regular and possesses a bad causal behavior, see, e.g., Griffiths et al. (2006), Grif-
fiths and Podolský (2006a), Griffiths and Podolský (2006b), Griffiths and Podolský
(2007), see also Clément et al. (2015) for more recent developments. ��

As we shall now demonstrate, the form (3.9) of the metric is very convenient for
generalizing the Kerr–NUT geometry to the case of a non-vanishing cosmological
constant: the functions Δr (r) and Δy(y) simply become fourth-order polynomials of
their arguments. To show this, let us impose the vacuum Einstein equations with the
cosmological constant Λ, Rab − 1

2 Rgab +Λgab = 0, implying

Rab = Λgab. (3.12)

We consider first the trace equation

R = 4Λ, (3.13)

which takes a very simple form

∂2
r Δr + ∂2

yΔy = −4Λ(r2 + y2), (3.14)
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and allows a separation of variables

∂2
r Δr + 4Λr2 = C, ∂2

yΔy + 4Λy2 = −C. (3.15)

The solution to each of these two equations contains 2 independent integration con-
stants. Thus, together with the separation constant C one has 5 integration constants.
However, the metric (3.9) remains invariant under the following rescaling:

r → pr, y → py, τ → p−1τ, ψ → p−3ψ, Δr → p4Δr , Δy → p4Δy .

(3.16)
This means that one of the five integration constants can be excluded by means of
this transformations. One more constant is excluded by one of the equations of the
system (3.12). After this all other equations (3.12) are identically satisfied. We write
the answer in the following standard form:

Δr = (r2 + a2)(1 −Λr2/3)− 2Mr,

Δy = (a2 − y2)(1 +Λy2/3)+ 2N y.
(3.17)

The four parameters in these functions are Λ, M , N , and a. For Λ = 0 and
N = 0 this metric coincides with the Kerr metric, M and a being the mass and the
rotation parameter, respectively. In addition to these two parameters, a general solution
(3.17) contains the cosmological constant Λ, and the NUT parameter N . Solutions
with non-trivial N contain singularities on the axis of symmetry in the black hole
exterior. The solution with parameters M , a, and Λ describes a rotating black hole
in the asymptotically de Sitter (for Λ > 0), anti de Sitter (for Λ < 0), or flat (for
Λ = 0) spacetime. A similar solution containing the NUT parameter N is known as
the Kerr–NUT–(A)dS metric.

Remark The general form of the Kerr–NUT–(A)dS metric in four dimensions was
first obtained by Carter (1968b), and independently re-discovered by Frolov (1974)
by using the Boyer–Lindquist-type coordinates. The charged generalization of the
Kerr–NUT–(A)dS metric, which still takes the canonical form (3.9), was studied in
Carter (1968c), Plebański (1975). In 1976 Plebanski and Demianski considered a
metric that is conformal to the Kerr–NUT–(A)dS one and demonstrated that such
a class of metrics includes also the accelerating solutions, known as the C-metrics
(Plebański and Demiański 1976) (see Sect. 3.9). ��

The metric for the Kerr–NUT–(A)dS spacetime can be written in a more symmetric
form by writing x = ir , bx = i M , and by = N . This gives

Δx = (a2 − x2)(1 +Λx2/3)+ 2bx x,

Δy = (a2 − y2)(1 +Λy2/3)+ 2by y,
(3.18)
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and the Kerr–NUT–(A)dS metric takes the following form:

g = Δy

y2 − x2 (dτ + x2dψ)2 + Δx

x2 − y2 (dτ + y2dψ)2 + y2 − x2

Δy
dy2 + x2 − y2

Δx
dx2,

(3.19)
which is symmetric with respect to the formal substitution x ↔ y. It is this form of
the Kerr–NUT–(A)dS metric, which will be generalized to higher dimensions.

3.2.3 Hidden symmetries

The off-shell metric (3.9) possesses the following property:

Theorem The (off-shell) canonical metric (3.9) admits a principal tensor

h = ydy ∧ (dτ − r2dψ)− rdr ∧ (dτ + y2dψ), (3.20)

which can be generated from a potential b, h = db, given by

b = −1

2

[
(r2 − y2) dτ + r2 y2 dψ

]
. (3.21)

The fact that h obeys the closed conformal Killing–Yano equation (2.108) can be
verified by a straightforward (but rather long) calculation, or perhaps more efficiently,
by using the computer programs for analytic manipulations. The condition of non-
degeneracy follows from the discussion of the Darboux frame below, proving that h
is a principal tensor. We may therefore apply the results of Sect. 2.8 and in particular
construct the Killing tower associated with h.

The Hodge dual of h is a Killing–Yano tensor f = ∗h

f = rdy ∧ (dτ − r2dψ)+ ydr ∧ (dτ + y2dψ). (3.22)

Using h and f , we can construct the corresponding conformal Killing tensor Qab =
hachb

c and the Killing tensor kab = fac fb
c. They have the following form:

Q = 1

Σ

[
r2Δr (dτ + y2dψ)2 + y2Δy(dτ − r2dψ)2

]
+Σ

[
y2dy2

Δy
− r2dr2

Δr

]
,

(3.23)

k = 1

Σ

[
y2Δr (dτ + y2dψ)2 + r2Δy(dτ − r2dψ)2

]
+Σ

[
r2dy2

Δy
− y2dr2

Δr

]
,

(3.24)
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or, in coordinates (τ, r, y, ψ):

Qa
b =

⎛

⎜⎜⎝

y2 − r2 0 0 −r2 y2

0 − r2 0 0
0 0 y2 0

−1 0 0 0

⎞

⎟⎟⎠ , (3.25)

ka
b =

⎛

⎜⎜⎝

0 0 0 −r2 y2

0 − y2 0 0
0 0 r2 0

− 1 0 0 r2 − y2

⎞

⎟⎟⎠ . (3.26)

A remarkable property of the off-shell metric (3.9) is that the potential b, the
principal tensor h, the Killing–Yano tensor f , and Q and k in the form (3.25) and
(3.26), do not depend on functionsΔr (r) andΔy(y). In particular this means that they
have the same form as in the flat spacetime. Certainly, this property is valid only for
the special choice of coordinates. However, the very existence of such coordinates is
a non-trivial fact. As we shall see later, this is a generic property which remains valid
also for higher-dimensional black holes.

The principal tensor generates the following primary ξ (τ ) and secondary ξ (ψ)
Killing vectors:

ξa
(τ ) = 1

3
∇bhba = ∂a

τ , ξa
(ψ) = −ka

bξ
b
(τ ) = ∂a

ψ. (3.27)

The primary Killing vector is timelike at infinity, reflecting the fact that the metric is
stationary. Moreover, a linear combination ξ (φ) = a−1ξ (ψ) − aξ (τ ) = ∂φ has fixed
points which form the axis of symmetry—the integral lines of this vector are closed
cycles—making the metric axisymmetric.

The constructed Killing vectors ξ (τ ) and ξ (ψ), together with the Killing tensor k
and the metric g, are all independent and mutually (Nijenhuis–Schouten) commute.
This means that the corresponding four integrals of motion for the geodesics are all
independent and in involution, making the geodesic motion completely integrable.

3.2.4 Darboux basis and canonical coordinates

As discussed in Sect. 2.8, in the presence of the principle tensor there exists a natural
convenient choice of the tetrad, known as the Darboux basis, (2.110). To illustrate its
construction for the Kerr metric, we consider the eigenvalue problem (2.120) for the
conformal Killing tensor Q:

Qa
bzb = λza, (3.28)

where for different eigenvalues λ eigenvectors za are mutually orthogonal. Using
expression (3.25), the characteristic equation

det(Qa
b − λδa

b) = 0 (3.29)
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takes the following explicit form:

(λ+ r2)2(λ− y2)2 = 0, (3.30)

giving the following eigenvalues of Q: −r2 and y2, where (r, y) are the canonical
coordinates.5 The eigenvectors for each eigenvalue form a two-dimensional plane.
Whereas the 2-plane corresponding to y is spacelike, the 2-plane associated with r is
timelike. It is then easy to check, that there exists such an orthonormal basis {n, n̂, e, ê}
which obeys the relations

ha
bn̂b = −rna, ha

bnb = −r n̂a, ha
bêb = yea, ha

beb = −yêa . (3.31)

This basis is defined up to 2-dimensional rotations in each of the 2-planes. We fix
this ambiguity by the following choice of the normalized (in the black hole exterior)
Darboux basis:

n =
√
Δr

Σ
∂r , n̂ = 1

Σ

√
Σ

Δr

(
∂ψ + r2∂τ

)
,

e =
√
Δy

Σ
∂ y, ê = 1

Σ

√
Σ

Δy

(−∂ψ + y2∂τ
)
.

(3.32)

The corresponding dual basis of 1-forms is

ν =
√
Σ

Δr
dr, ν̂ =

√
Δr

Σ

(
dτ + y2dψ

)
,

ε =
√
Σ

Δy
dy, ε̂ =

√
Δy

Σ

(
dτ − r2dψ

)
.

(3.33)

In this basis we have

h = −rν ∧ ν̂ + yε ∧ ε̂, (3.34)

g = −ν̂ν̂ + νν + εε + ε̂ε̂. (3.35)

Moreover, since the conditions (2.122) are satisfied,

n̂ · dr = 0 = n̂ · dy, ê · dr = 0 = ê · dy, (3.36)

5 Note that in the Lorentzian signature, the corresponding first eigenvalue is negative. This results in
a slightly modified Darboux form of the principal tensor and the metric, see equations (3.34) and (3.35)
below. Let us also notice that although the coordinate r is spacelike or timelike in a generic point, it becomes
null at the horizon in the Kerr–NUT–(A)dS spacetime. In a more general case, one of the eigenvalues of the
tensor h might become null not only on a surface but in some domain (Dietz and Rudiger 1981; Taxiarchis
1985). In what follows we do not consider this case.
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we have a special Darboux frame. For completeness, let us also express Q and k in
this frame, giving

Q = −r2(−ν̂ν̂ + νν)+ y2(εε + ε̂ε̂), (3.37)

k = −y2(−ν̂ν̂ + νν)+ r2(εε + ε̂ε̂). (3.38)

The principal tensor also naturally determines the canonical coordinates. This goes
as follows.

– The eigenvalues of the principal tensor, r and y, determined by relations (3.31),
are used as two of the canonical coordinates.

– Since the principal tensor obeys £ξ h = 0 for both, the primary and secondary
Killing vectors ξ (τ ) and ξ (ψ), its eigenvalues (r, y) are invariant under the action
of τ and ψ translations.

– Since the Killing vectors ξ (τ ) and ξ (ψ) commute, they spread two-dimensional
invariant surfaces; the values of r and y are constant on each such surface. One can
hence use the Killing parameters τ and ψ as coordinates on the invariant surfaces.
This completes the construction of the canonical coordinates (τ, r, y, ψ).

3.2.5 Principal tensor: immediate consequences

Let us now summarize the properties of the off-shell metric (3.9) that are immediately
related to the existence of the principal tensor h.

1. The principal tensor h exists for any off-shell metric (3.9). It generates the Killing
‘turret’ of symmetries: Killing–Yano tensor f , conformal Killing tensor Q, Killing
tensor k, and both generators of the isometries ξ (τ ) and ξ (ψ).

2. The integrability condition for h implies, generalizing the result of Collinson
(1974), that the spacetime is necessary of the special algebraic type D. See Mason
and Taghavi-Chabert (2010) for a higher-dimensional version of this statement.

3. The set {g, k, ξ (τ ), ξ (ψ)} forms a complete set of independent mutually (Nijenhuis–
Schouten) commuting symmetries that guarantee complete integrability of
geodesic motion, see Sect. 3.4.

4. The principal tensor also determines the preferred Darboux frame and the canonical
coordinates (τ, r, y, ψ). Such geometrically defined coordinates are convenient for
separating the Hamilton–Jacobi and the wave equation, while the Darboux frame
is the one where the Dirac equation separates, see Sect. 3.5.

5. The canonical metric (3.9) is the most general spacetime admitting the principal
tensor, see also Sect. 3.3.

3.3 Uniqueness of the Kerr metric

The Kerr metric was originally obtained by Kerr (1963) as ‘one of many’ special
algebraic type solutions (see Teukolsky 2015 for a historical account). A few years later
the solution was rediscovered by Carter (1968b) by imposing a special metric ansatz
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(assuming two commuting Killing vectors) and by requiring that both the Hamilton–
Jacobi and wave equations should be solvable by a method of separation of variables
(see also Debever 1971). This not only allowed Carter to rederive the Kerr metric but
to generalize it and to include the cosmological constant and the NUT parameter.

Remark Carter’s derivation actually fits into the context of the theory of separability
structures discussed in Sect. 2.3. Considering the r = 2 separability structure in
coordinates (τ, ψ, r, y), the separability of the Hamilton–Jacobi equation and, in an
Einstein space, also of the Klein–Gordon equation is guaranteed for any 2 × 2 Stäckel
matrix M and any two matrices Nr = Nr (r) and Ny = Ny(y) through relation (2.39).
In particular, the following choice leads to the Carter’s canonical metric (3.9):

M =
(

r2

Δr

y2

Δy

− 1
Δr

1
Δy

)
, Nr = − 1

Δ2
r

(
r4 r2

r2 1

)
, Ny = 1

Δ2
y

(
y4 − y2

−y2 1

)
.

See also Kolář and Krtouš (2016) for a higher-dimensional version of Carter’s original
argument. ��

It is well known that any stationary and asymptotically flat black hole solution of
the Einstein–Maxwell equations (with non-degenerate horizon) is the Kerr–Newman
metric. The extended discussion of this uniqueness theorem and references can be
found, e.g., in Mazur (2000), Hollands and Ishibashi (2012). It is interesting that
another version of the uniqueness theorem can be formulated:

Theorem The most general vacuum with Λ solution of the Einstein equations that
admits a principal tensor is the Kerr–NUT–(A)dS geometry.

It is a special case of the higher-dimensional uniqueness theorem (Houri et al.
2007; Krtouš et al. 2008), which will be discussed in Chap. 5. See Dietz and Rudiger
(1981), Taxiarchis (1985) for earlier studies of this issue in four dimensions, where
also exceptional metrics corresponding to the null forms of the principal tensor are
discussed.

The proof of this statement proceeds in two steps. First, it can be shown that the most
general off-shell metric that admits the principal tensor has to admit two commuting
Killing vectors and takes the form (3.9). Second, by imposing the Einstein equations,
the remaining metric functions are uniquely determined and depend on 5 independent
constants related to the mass, angular momentum, NUT charge, and the cosmological
constant, yielding the Kerr–NUT–(A)dS spacetime. Note that if in addition we require
regularity outside the horizon and in particular the absence of cosmic strings (see
Sect. 3.8), the NUT charge has to vanish, and the Kerr–(A)dS geometry is recovered.

We have yet another observation. Employing solely the principal tensor one can
construct the principal electromagnetic field, given by Frolov et al. (2017)

F = e
(
dξ + 2

3
Λh
)
, ξ = 1

3
∇ · h, (3.39)

which solves the test Maxwell equations for the metric (3.9) obeying (3.12). In four
dimensions, this field can be backreacted on the geometry, provided a suitable choice of
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the metric functionsΔr andΔy is done in (3.9), to yield an electrically charged Kerr–
NUT–(A)dS geometry. Moreover, if instead of (3.39) one considers the sourceless
‘aligned with h’ electromagnetic field studied by Krtouš (2007), we recover the Kerr–
NUT–(A)dS solution which is both electrically and magnetically charged. In this sense,
the four-dimensional charged Kerr–NUT–(A)dS solution is uniquely defined by the
principal tensor.

3.4 Geodesics

3.4.1 Integrals of motion

Since the off-shell metric (3.9) besides two Killing vectors ξ (τ ) and ξ (ψ) possesses
also the irreducible rank 2 Killing tensor k, there exist the following four integrals of
geodesic motion:

gab pa pb = −m2, kab pa pb = K , pτ ≡ ξa
(τ ) pa = −E, (3.40)

pψ ≡ ξa
(ψ) pa = Lψ = aLφ − a2 E . (3.41)

Here pa is the four-momentum of the particle of mass m, and E and Lφ are its energy
and angular momentum, respectively. The last conserved quantity, K , is the analogue of
the Carter constant for the off-shell metric. The existence of 4 independent commuting
integrals of motion makes the geodesic motion completely integrable.

The last two relations of the system (3.40) can be used to express pr and py as
functions of the integrals of motion

pr = ±
√
Xr

Δr
, py = ±

√
Xy

Δy
, (3.42)

where

Xr = (Er2 − Lψ)
2 −Δr (K + m2r2), Xy = −(Ey2 + Lψ)

2 +Δy(K − m2 y2).

(3.43)
The signs ± in (3.42) are independent; the sign change occurs at turning points where
Xr = 0 and Xy = 0, respectively.

3.4.2 First-order form of geodesic equations

As a consequence of complete integrability, the geodesic equations can be written in a
first-order form, that is, as a set of the first-order differential equations. Let us denote
by the “dot” a derivative with respect to the affine parameter σ (see Sect. 2.1). Then
using the relation

pa = gabẋb, (3.44)

we rewrite equations (3.40) in the form

ξ(τ)a ẋa = −E, ξ(ψ)a ẋa = Lψ, gabẋa ẋb = −m2, Kabẋa ẋb = K . (3.45)
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These four equations for ẋa = (τ̇ , ṙ , ẏ, ψ̇) can be solved to obtain the following set
of the first order ordinary differential equations:

Σ ṙ = ±√Xr , (3.46)

Σ ẏ = ±√Xy, (3.47)

Σ τ̇ = r2(Er2 − Lψ)

Δr
− y2(Ey2 + Lψ)

Δy
, (3.48)

Σ ψ̇ = Er2 − Lψ
Δr

+ Ey2 + Lψ
Δy

, (3.49)

with Xr = Xr (r) and Xy = Xy(y) given by (3.43), and Σ = r2 + y2. As earlier,
signs ± in the equations (3.46) and (3.47) are independent. The change of the signs in
these equations occurs at turning points, where Xr = 0 and Xy = 0, respectively. The
convenience of the usage of the parameter σ is that the equations of motion (3.46)–
(3.48) allow for a simple limit m → 0 (in Xr and Xy) and hence can be used for
massless particles as well.6

Instead of the affine parameter σ , one can use another parameter σ̃ , so that

dσ

dσ̃
= Σ. (3.50)

For such a parametrization, the left hand side of the system of equations (3.46)–(3.48)
contains a derivative dxa/dσ̃ . This effectively decouples the first two equations (3.46)
and (3.47), which can now be solved by integration. The result is then plugged to the
last two equations (3.49) and (3.48) which yield integrals for ψ and τ .7

To translate (3.46)–(3.48) to the Boyer–Lindquist coordinates (t, r, θ, φ), one
should use the following relations:

t = τ + a2ψ, φ = aψ, y = a cos θ, Lψ = aLφ − a2 E . (3.51)

Taking into account these remarks, it is easy to check that the equations (3.46)–(3.48)
re-written in the Boyer–Lindquist coordinates take the standard form, which can be
found, e.g. in Carter (1968a), Bardeen (1973), Misner et al. (1973). Detailed discussion
of particle and light motion in the four-dimensional Kerr–NUT–(A)dS spacetime can
be found in Hackmann and Lämmerzahl (2012), Grenzebach et al. (2014).

6 In fact, for massless particles one could instead of the Killing tensor k use the conformal Killing tensor Q,
defining Qablalb = K in (3.40) and similarly in (3.45). As can be expected, in the massless limit m → 0,
the resultant equations (3.46)–(3.48) remain the same.
7 As we shall see, a similar trick does not work in higher dimensions. However, proceeding differently, the
velocity equations can still be decoupled and in principle solved by integration, see Sect. 6.1.
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3.4.3 Action-angle variables

Instead of studying the details of particle’s orbits, one might be interested in such
‘global’ characteristics as, for example, the motion frequencies. A useful tool for this
is provided by an action-angle formalism. This formalism is also useful for studying the
adiabatic invariants and for the development of the perturbation theory when a system
slightly differs from a completely integrable one. For the comprehensive discussion
of this subject, we refer the reader to the remarkable books by Goldstein et al. (2002)
and Arnol’d (1989). Here we just briefly discuss a construction of the action-angle
variables for a free particle moving in the metric (3.9). See Appendix B for a general
introduction to this subject.

For our dynamical system the coordinate φ is cyclic while the value of the coordi-
nate y is bounded and changes in the interval (y−, y+). The system admits different
types of trajectories, depending on the concrete value of the integrals of motion
{m2, K , E, Lφ} so that the range of the coordinate r may be unbounded. Let us here
focus on the case of bounded trajectories for which the radial coordinate changes
in the interval (r−, r+). In such a case the corresponding level set for (r, y, φ)
sector is a compact three-dimensional Lagrangian submanifold which, according
to the general theorem, is a three-dimensional torus. One can choose three inde-
pendent cycles on this torus as follows. Let us fix y and φ and consider a closed
path, which propagates from the minimal radius r− to the maximal radius r+, and
after this returns back to r− with opposite sign of the momentum. Another path is
defined similarly for the y-motion. The third pass r =const, y =const is for the
φ-motion.

This allows us to introduce the following action variables, Ii = (Ir , Iy, Iφ) for
‘spatial directions’

Ir = Ir (m
2, K , E, Lφ) = 1

π

∫ r+

r−
dr

√
Xr

Δr
,

Iy = Iy(m
2, K , E, Lφ) = 1

π

∫ y+

y−
dy

√
Xy

Δy
,

Iφ = Lφ.

(3.52)

Here r± and y± are turning points of r and y, respectively, and we used the fact that
φ is a cyclic coordinate with period 2π .

Since the Hamiltonian is a function of integrals of motion, c.f. (B.20), it can also
be written in terms of the action variables as

H = H(Ii , E). (3.53)

The angle variables Φi are introduced as conjugates to Ii . The Hamilton equations of
motion in these variables take the form

İi = 0, Φ̇i = ωi = ∂H

∂ Ii
(Ii , E). (3.54)
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The (constant) quantities ωi are characteristic frequencies. If their ratios are not ratio-
nal, the trajectories of the particle are not periodic.

We will return to the discussion of the action-angle variables in more details later,
when discussing geodesics in the higher-dimensional Kerr–NUT–(A)dS spacetimes.

3.4.4 Parallel transport

There are many problems with interesting astrophysical applications that require solv-
ing the parallel transport equations in the Kerr metric. One of them is a study of a star
disruption during its close encounter with a massive black hole, see, e.g., Frolov et al.
(1994) and references therein.

Let us consider a timelike geodesic in the Kerr geometry and denote by u its tangent
vector. We have seen in Sect. 2.4 that w = u · f , where f is the Killing–Yano tensor
(3.22), is parallel-transported along the geodesic, ∇uw = 0, c.f. (2.43). This means
that a bi-vector ∗F ≡ u ∧ w = u ∧ (u · f ) is also parallel-propagated, ∇u∗F = 0.
Since the Hodge duality operator ∗ commutes with the covariant derivative one also
has

∇uF = 0. (3.55)

That is, a 2-dimensional plane F = u · (u ∧ h) is orthogonal to ∗F and parallel-
transported along the geodesic. Let e1 and e2 be two orthonormal vectors which spread
this 2-plane, and m be a complex null vector m = 1√

2
(e1 + ie2). It is easy to show

that one can find such a real function ϕ so that m exp (iϕ) is parallel-transported along
the geodesic. Thus one obtained a parallel-transported basis (u,w,m, m̄) (Marck
1983b). Similar procedure also works for constructing a parallel-transported basis
along null geodesics, see Marck (1983a). Interestingly, both these constructions can
be generalized to higher dimensions. We shall discuss this subject in Sect. 7.1.

The principal tensor also allows one to solve an equation for a propagation of
polarization of electromagnetic waves in the spacetime with the metric (3.9). In the
leading order of the geometric optics approximation the Maxwell equations reduce to
the equations for null geodesics. A vector of a linear polarization q is orthogonal to
null geodesics and parallel-propagated along them.

Let us consider first an arbitrary geodesic and denote by u its tangent vector. Let
q be a parallel-propagated vector along this geodesic, ∇uq = 0. Then the quantity
q · f ·u = −q ·w is obviously a constant along any timelike or null geodesic. For null
geodesics there exists an additional conserved quantity defined by the principal tensor
h. Let l be a tangent vector to a null geodesic in an affine parametrization, ∇l l = 0,
and let q be a parallel-propagated vector along it obeying q · l = 0. Then the following
quantity: q · h · l is also conserved. Indeed,

∇l (q · h · l) = q · (∇l h) · l = q · (l ∧ ξ) · l = 0, (3.56)

where we used the closed conformal Killing–Yano condition (2.63), l2 = 0, and
q · l = 0.
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Denoting by z = h + i ∗ h, we just showed that the following complex number:

q · z · l (3.57)

is constant along the null ray (Walker and Penrose 1970). This result allows one to
easily find a polarization of a photon after its scattering by a rotating black hole and
determine the angle of the corresponding Faraday rotation (Connors and Stark 1977;
Connors et al. 1980; Ishihara et al. 1988).

3.5 Separation of variables in the canonical metric

In this section we show that the fundamental physical equations do separate in the (off-
shell) canonical spacetime (3.9). We also discuss the intrinsic characterization of such
separability, linked to the existence of the principal tensor. In particular, we concentrate
on the Hamilton–Jacobi, Klein–Gordon, and Dirac equations, and do not discuss the
electromagnetic and gravitational perturbations. Whereas for the Maxwell equations
the link between separability and the principal tensor still can be found, e.g. Benn
et al. (1997), Araneda (2016), this is not obvious for the gravitational perturbations.

3.5.1 Hamilton–Jacobi equation

Equations (3.46)–(3.48) allow one to find trajectories of massive particles in the Kerr
spacetime. This problem can be alternatively studied by using the Hamilton–Jacobi
equation, following Carter’s original paper (Carter 1968a).

Using the inner time variable σ , related to the particle proper time τ = mσ , see
Sect. 2.1, the Hamiltonian of a free particle with mass m reads

H = 1

2
gab pa pb. (3.58)

Since this is an autonomous system (H does not explicitly depend on σ ), the time-
dependent Hamilton–Jacobi equation

∂ S̄

∂σ
+ H(xa, pa)

∣∣
pa=S̄,a

= 0 (3.59)

can be solved by the ansatz

S̄(xa, σ ) = 1

2
m2σ + S(xa). (3.60)

This results in the following time-independent Hamilton–Jacobi equation:

gab S,a S,b + m2 = 0, (3.61)

for the Hamilton’s principal function S(xa), see Sect. B.3 for more details. A solution
of this equation, which contains 4 independent constants, is a complete integral.
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Let us now study the Hamilton–Jacobi equation (3.61) in the canonical spacetime
(3.9). Since the coordinates τ and ψ are cyclic, the Hamilton’s function S can be
written in the form

S(xa) = −Eτ + Lψψ + Ŝ(r, y). (3.62)

It is a remarkable property of canonical coordinates (τ, r, y, ψ) that a further additive
separation of variables is possible. Namely, by substituting

S(xa) = −Eτ + Lψψ + Sr (r)+ Sy(y) (3.63)

into (3.61) one finds a consistent equation provided that functions Sr and Sy satisfy
the following ordinary differential equations:

Δr (∂r Sr )
2 − Xr

Δr
= 0, Δy(∂y Sy)

2 − Xy

Δy
= 0. (3.64)

Here, Xr and Xy are given by (3.43) and the quantity K in these functions plays a
role of the separation constant. The solution to (3.64) can be calculated in terms of the
elliptic integrals,

Sr (r) = ±
∫ r

r0

dr

√
Xr

Δr
, Sy(y) = ±

∫ y

y0

dy

√
Xy

Δy
. (3.65)

The choice of the initial coordinates r0 and y0 is not important, since their change just
adds a constant to S; in the case when the motion has turning points it is convenient to
choose r0 and y0 to coincide with them. Since the solution S given by (3.63) depends on
coordinates xa and four independent constants Pa = (m2, K , E, Lψ), it is a complete
integral. As discussed in Sect. B.3, its existence implies complete integrability of
geodesic motion in canonical spacetimes.

Remark The separability of the Hamilton–Jacobi equation (3.61) is intrinsically char-
acterized by the existence of the separability structure, see Sect. 2.3. Namely, the
Killing tensors g and k, together with the Killing vectors ξ (τ ) and ξ (ψ) satisfy (2.36).
Moreover, the Killing tensors have in common the following eigenvectors: ∂r and ∂ y

that together with ξ (τ ) and ξ (ψ) obey (2.37). Hence all the requirements of the theo-
rem in Sect. 2.3 are satisfied and the separability of the Hamilton–Jacobi equation is
justified. ��

It turns out that in four dimensions the Hamilton–Jacobi equation separates also in
the standard Boyer–Lindquist coordinates, giving a complete integral in the form

S(xa) = −Et + Lφφ + Sr (r)+ Sθ (θ), (3.66)

where Sr is formally given by the same integral (3.65), with Lψ = a(Lφ − aE).
The parameters Pa can be identified with new momenta in the phase space.

We denote the canonically conjugate coordinates by Qa . The Hamilton’s function
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S(xa, Pa) is a generating function of the canonical transformation (xa, pa) →
(Qa, Pa),

pa = ∂S

∂xa
, Qa = ∂S

∂Pa
. (3.67)

The new coordinates are of the form

Q1 = ∂S

∂m2 = ∂Sr

∂m2 + ∂Sy

∂m2 , Q3 = ∂S

∂E
= −τ + ∂Sr

∂E
+ ∂Sy

∂E
,

Q2 = ∂S

∂K
= ∂Sr

∂K
+ ∂Sy

∂K
, Q4 = ∂S

∂Lψ
= ψ + ∂Sr

∂Lψ
+ ∂Sy

∂Lψ
.

(3.68)

The first two equations allow one to write the ‘old’ coordinates r and y in terms of Pa

and the ‘new’ coordinates Q1 and Q2. After this the last two equation define τ and ψ
as functions of Qa and Pa .

The parameters (m2, K , E, Lψ) denote values of the integrals of motion Pa on
the phase space. A four-dimensional subspace of the phase space, determined by the
fixed values of these parameters, is a Lagrangian submanifold (see Sect. B.2). The
coordinates Qa conjugate to Pa have simple evolution

d Qa

dσ
= ∂H

∂Pa
. (3.69)

Thus the equation of motion in the new coordinates are

Q1 = 1

2
σ + const, Q2 = const, Q3 = const, Q4 = const. (3.70)

Let us notice, that these equations can also be written in the form ∂ S̄/∂Pa = const.

3.5.2 Separability of the Klein–Gordon equation

Let us next concentrate on the massive Klein–Gordon equation in the spacetime (3.9).
Denote by � the scalar wave operator

� = gab∇a∇b. (3.71)

Then the massive Klein–Gordon equation (which is essentially an eigenfunction equa-
tion for the wave operator) reads

(� − m2)Φ = 1√−g
∂a
(√−ggab∂bΦ

)− m2Φ = 0, (3.72)

where the latter expression for � is a well known identity. Using the expression (3.10)
for the determinant of the canonical metric, and the formula (3.11) for the inverse
metric, we write this equation in the following form:
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√−g(� − m2)Φ = ∂r (Δr∂rΦ)+ ∂y(Δy∂yΦ)

− 1

Δr
(r2∂τ + ∂ψ)

2Φ + 1

Δy
(y2∂τ − ∂ψ)

2Φ − m2(r2 + y2)Φ = 0.
(3.73)

This equation allows the multiplicative separation of variables

Φ = e−i Eτ ei Lψψ R(r)Y (y), (3.74)

giving the following ordinary differential equations for functions R(r) and Y (y):

∂r (Δr∂r R)+ Xr

Δr
R = 0, ∂y(Δy∂yY )+ Xy

Δy
Y = 0. (3.75)

Here, functions Xr and Xy are the same as in equations (3.43). They contain all the
parameters (m2, K , E, L), with parameter K playing the role of a separation constant.

Both equations (3.75) have a similar form—they can be written as the second-
order ordinary differential equations with polynomial coefficients. However, there is
an essential difference between them. The coordinate y is restricted to the interval
y ∈ [−a, a] and the endpoints of this interval, y = ±a, are singular points of the
y-equation. Regularity of Y at these points cannot be satisfied for an arbitrary value of
the parameter K , therefore, for regular solutions K has a discrete spectrum. In other
words, one needs to solve the Sturm–Liouville boundary value problem. The solutions
of this problem for the scalar field are called spheroidal wave functions. They were
studied in detail by Flammer (1957). Similar spherical harmonics for fields of higher
spin are called spin-weighted spheroidal harmonics, see, e.g. Fackerell and Crossman
(1977).

The separability of the Klein–Gordon equation (3.72) can be intrinsically character-
ized by the existence of the following complete set of mutually commuting operators:
{�,K,Lτ ,Lψ }, where

� = ∇agab∇b, K = ∇akab∇b, Lτ = iξa
(τ )∇a, Lψ = iξa

(ψ)∇a . (3.76)

The separated solution (3.74) is simply the ‘common eigenfunction’ of these opera-
tors. Let us note that whereas the operators constructed from Killing vectors always
commute with the box operator, those constructed from a Killing tensor result in a
general case in ‘anomalies’ obstructing this commutation. General conditions under
which the anomalies vanish were studied by Carter (1977) (see also Kolář and Krtouš
2015 for a recent study in a general dimension). In particular, it turns out that when the
Killing tensor is constructed as a square of a Killing–Yano tensor (as in our case) the
anomalies vanish and the commutation is guaranteed. We finally mention that since
the canonical metric (3.9) admits a separability structure with common eigenevectors
of the Killing and Ricci tensors, the theorem discussed in Sect. 2.3 applies and the
separability of the Klein–Gordon equation is guaranteed.
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3.5.3 Separability of the Dirac equation

As we already mentioned the equations for massless fields with non-zero spin in the
Kerr metric allow complete separation of variables. This was discovered by Teukolsky
(1972, 1973). Namely, he demonstrated that these equations can be decoupled and
reduced to one scalar (master) equation, which in its turn allows a complete separation
of variables. Later Wald showed that the solution of the master equation allows one
to re-construct a solution of the original many-component equation (Wald 1978).

To separate variables in the massive Dirac equation in the Kerr metric, Chan-
drasekhar (1976, 1983) used another approach. Namely, he used a special ansatz for
the spinor solution, and demonstrated that this allows one to obtain the separated equa-
tions for the functions which enter this ansatz. It turns out that the separability of the
massive Dirac equation in the Kerr spacetime is also connected with its hidden sym-
metry, and, as a result, it also takes place in the canonical metric (3.9) for an arbitrary
choice of the metric functions Δr (r) and Δy(y). Let us now demonstrate this result.

The Dirac equation in curved spacetime writes as

(
γ a∇a + m

)
ψ = 0. (3.77)

Here γ a are gamma matrices, γ a = (γ 0, γ 1, γ 2, γ 3), obeying {γ a, γ b} = 2gab, and
∇a stands for the spinorial covariant derivative, defined as

∇a = ∂a + 1

4
ωabcγ

bγ c. (3.78)

We denoted by ∂a = ea · ∂ a derivative in the direction of ea and ωabc are the standard
spin coeficients with respect to frame ea . The 1-forms of the curvature, ωb

c = eaωa
b

c,
obey the Cartan equations dea + ωa

b ∧ eb = 0.
To study the Dirac equation (3.77) in the canonical spacetime (3.9), let us chose

the basis of 1-forms as ea = (ν̂, ν, ε̂, ε), (3.33), and the dual basis of vectors as
ea = (n̂, n, ê, e), (3.32). The spin connection is then obtained from the Cartan’s
equation and is given as follows:

ων̂ν = −Aν̂ − Bε̂, ων̂ε̂ = −Bν + Cε, ων̂ε = −Dν̂ − C ε̂,

ωνε̂ = Bν̂ − E ε̂, ωνε = Dν − Eε, ωε̂ε = −C ν̂ − F ε̂,
(3.79)

where
A = d

dr

(√
Δr

Σ

)
, B = r

Σ

√
Δy

Σ
, C = − y

Σ

√
Δr

Σ
,

D = y

Σ

√
Δy

Σ
, E = r

Σ

√
Δr

Σ
, F = − d

dy

(√
Δy

Σ

)
.

(3.80)
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Using the connection (3.79) and the inverse basis (3.32), we thus find the following
explicit form of the Dirac equation:

[
γ 0

Σ

√
Σ

Δr

(
∂ψ + r2∂τ

)
+ γ 1

(
A

2
+ E +

√
Δr

Σ
∂r

)
+ γ 2

Σ

√
Σ

Δy

(
−∂ψ + y2∂τ

)

+γ 3

(
D − F

2
+
√
Δy

Σ
∂y

)
+ B

2
γ 0γ 1γ 2 + C

2
γ 0γ 2γ 3 + m

]
ψ = 0.

(3.81)
To proceed further, we use the following representation of gamma matrices:

γ 0 =
(

0 −I
I 0

)
, γ 1 =

(
0 I
I 0

)
, γ 2 =

(
σ 2 0
0 −σ 2

)
, γ 3 =

(
σ 1 0
0 −σ 1

)
,

(3.82)
where σ i are the Pauli matrices. In this representation, the separation of the Dirac
equation can be achieved with the ansatz

ψ =

⎛

⎜⎜⎝

(r − iy)−1/2 R+Y+
(r + iy)−1/2 R+Y−
(r + iy)−1/2 R−Y+
(r − iy)−1/2 R−Y−

⎞

⎟⎟⎠ ei(Lψψ−Eτ), (3.83)

where functions R± = R±(r) and Y± = Y±(y). Inserting this ansatz in (3.81),
we obtain eight equations with four separation constants. The consistency of these
equations requires that only one of the separation constants is independent, we denote
it by K . Hence we recovered the following four coupled first order ordinary differential
equations for R± and Y±:

d R±
dr

+ R±
Δ′

r ± Vr

4Δr
+ R∓

mr ∓ K√
Δr

= 0,

dY±
dy

+ Y±
Δ′

y ± Vy

4Δy
− Y∓

K ± imy√
Δy

= 0,
(3.84)

where
Vr = 4i(Lψ − Er2), Vy = 4(Lψ + Ey2). (3.85)

As we shall see in Sect. 6.4, this approach can be generalized to the case of higher-
dimensional Kerr–NUT–(A)dS spacetimes.

Remark Similar to the Klein–Gordon case, the separability of the Dirac equation can
be intrinsically characterized by the existence of the corresponding set of mutually
commuting operators whose common eigenfunction is the separated solution. The set
consists of {D, K, Lτ , Lψ }, where D = γ a∇a is the Dirac operator,

K = γ abchbc∇a + 2

3
γ a(∇ · h)a (3.86)
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is the symmetry operator corresponding to the principal tensor, and

Lτ = ξa
(τ )∇a + 1

8
γ ab(dξ(τ))ab, Lψ = ξa

(ψ)∇a + 1

8
γ ab(dξ(ψ))ab (3.87)

are the symmetry operators associated with the explicit symmetries. Here, γ a1...ap is
the antisymmetrized product of p gamma matrices, γ a1...ap = γ [a1 . . . γ ap]. We refer
to Sect. 6.4 and references Carter and McLenaghan (1979), Cariglia et al. (2011a),
Cariglia et al. (2011b) for more details. ��

3.6 Special limits of the Kerr metric

3.6.1 Flat spacetime limit: M = 0

Let us discuss now special limiting cases of the Kerr geometry. In the absence of mass,
that is when M = 0, the curvature vanishes and the spacetime is flat. The Kerr metric
(3.1) then takes the following form:

g = −dt2 +
(

r2 + a2 cos2 θ
) [ dr2

r2 + a2 + dθ2
]

+
(

r2 + a2
)

sin2 θ dφ2. (3.88)

By changing the coordinates according to

T = t, Z = r cos θ, X =
√

r2 + a2 sin θ cosφ, Y =
√

r2 + a2 sin θ sin φ,
(3.89)

the metric is transformed into the Minkowski metric

g = −dT 2 + dX2 + dY 2 + dZ2. (3.90)

A surface r = const is an oblate ellipsoid of rotation

X2 + Y 2

r2 + a2 + Z2

r2 = 1. (3.91)

The M → 0 limit of the Kerr metric in canonical coordinates is also quite straight-
forward. The metric maintains the same form (3.9), with Δr = r2 + a2. Since the
expressions (3.20)–(3.22) for h, b, f , and the expressions (3.25), (3.26) for Qa

b, ka
b

do not contain the mass parameter at all, they remain unchanged.
Let us find an expression for the potential b, (3.21) in Cartesian coordinates. For this

purpose we first use the transformation (3.6) from canonical coordinates (τ, r, y, ψ)
to the Boyer–Lindquist coordinates (t, r, θ, φ), to recover

b = −1

2

[
(r2 − a2 cos2 θ)dt − a(r2 sin2 θ − a2 cos2 θ)dφ

]
. (3.92)
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After this we make the coordinate transformation (3.89) and omitting trivial constant
terms, we find

b = −1

2

[
R2dT − a(XdY − Y dX)

]
, (3.93)

where R2 = X2 + Y 2 + Z2. It is easy to check that the potential (3.93) is a special
linear combination of the potentials (2.102) and (2.106). One then finds

h = db = dT ∧ (XdX + Y dY + ZdZ)+ adX ∧ dY. (3.94)

Using the terminology of Sect. 2.7 one can say that h consists of two parts, the
translational part, dX ∧ dY , and a rotational 2-form, dT ∧ (XdX +Y dY + ZdZ). For
a = 0 the potential b is static and spherically symmetric, that is, it has the property
£ξ b = 0 valid for the Killing vectors ξ generating the time-translation and three-
dimensional rotations. The term proportional to a spoils the spherical symmetry. It
singles out a two-plane (X,Y ) and preserves the invariance of b only with respect to
rotations in this two plane. In other words, b is axisymmetric.

Using the following notations for flat space Killing vectors, generators of the
Poincare group:

LX = Y∂ Z − Z∂Y , LY = Z∂ X − X∂ Z , LZ = X∂Y − Y∂ X ,

PT = ∂T , P Z = ∂ Z ,
(3.95)

one finds

kab = f ac f b
c = Lab + a(Pa

T Lb
Z + La

Z Pb
T )+ a2(Pa

T Pb
T − Pa

Z Pb
Z ), (3.96)

where
Lab = La

X Lb
X + La

Y Lb
Y + La

Z Lb
Z . (3.97)

The relation (3.96) implies that the Killing tensor kab in the flat spacetime is reducible,
and the corresponding conserved quantity is

kab pa pb = L2 + 2apT L Z + a2(p2
T − p2

Z ), (3.98)

where L2 is the square of the total angular momentum.
Let us finally note that the primary Killing vector is ξ (τ ) = 1

3∇ · h = PT , while
the secondary Killing vector reads ξ (ψ) = −k · ξ (τ ) = a2PT + aLZ .

3.6.2 Extremal black hole: M = a

In the limit a = M , the event and inner horizons have the same radius r+ = r− = M .
Such a rotating black hole is called extremal. The spatial distance to the horizon in the
limit a → M infinitely grows. It is interesting that some of the hidden symmetries in the
vicinity of the horizon of extremal black holes become explicit. Two connected effects
take place: the eigenvalues of the principal tensor become functionally dependent, and,
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besides ∂ t and ∂φ , two new additional Killing vectors arise. Let us discuss the case of
the extremal black hole in more detail.

We start by noticing that in the extremal limit the function Δr , (3.8), which enters
the Kerr metric (3.1), takes the form Δr = (r − M)2. As a result r becomes a ‘bad
coordinate’ in the vicinity of the horizon. To obtain a regular metric near the extremal
horizon we first make the following coordinate transformation:

r = M(1 + ερ), τ = MT/ε, y = Mz, ψ = (ϕ + T/ε)/M. (3.99)

After writing the Kerr metric (3.1) in new coordinates (T, ρ, z, ϕ), taking the limit
ε → 0, and rescaling by a constant factor, g → M−2g (just to simplify expressions),
one obtains the following metric (Bardeen and Horowitz 1999):

g = (1 + z2)

(
−ρ2dT 2 + dρ2

ρ2 + dz2

1 − z2

)
+ 1 − z2

1 + z2 (2ρdT + dϕ)2. (3.100)

It is again a solution of the vacuum Einstein equations. The limiting metric g has two
obvious Killing vectors

ξ = ∂ϕ, η = ∂T , (3.101)

which can be obtained by taking the limit of the following Killing vectors of the
original Kerr metric: −M∂τ and ε−1(M∂τ + M−1∂ψ).

In the same limit, the potential b, (3.21), after omitting an infinite constant, ignoring
the overall sign, and making rescaling b → M−3b, takes the form

b = ρ(1 + z2)dT + 1

2
z2 dϕ. (3.102)

This yields the following (closed conformal) Killing–Yano quantities for the metric g
(3.100):

h = db = (1 + z2)dρ ∧ dT + 2ρzdz ∧ dT + zdz ∧ dϕ, (3.103)

f = −z(1 + z2)dρ ∧ dT + 2ρdz ∧ dT + dz ∧ dϕ. (3.104)

The primary Killing vector is

ξ = 1

3
∇ · h = ∂ϕ. (3.105)

However, the action of the Killing tensor ka
b = f a

c f c
b on ξ does not produce a new

Killing vector, as one has
ka

bξ
b = −ξa . (3.106)

It is easy to check that besides Killing vectors ξ and η the metric (3.100) allows
two additional Killing vectors

ζ 1 = T ∂T − ρ∂ρ, ζ 2 = (T 2 + ρ−2)∂T − 2Tρ∂ρ − 4ρ−1∂ϕ . (3.107)
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Thus the original group of symmetries of the Kerr spacetime is enhanced in the extremal
near-horizon geometry and becomes U (1)× SL(2, 1) (Bardeen and Horowitz 1999).
This is the origin of the Kerr/CFT correspondence (Guica et al. 2009). Moreover, the
Killing tensor is reducible (Galajinsky 2010; Rasmussen 2011; Al Zahrani et al. 2011)
and can be presented in the form

kab = η(aζ
b)
2 − ζ a

1 ζ
b
1 + 4ξaξb + gab. (3.108)

3.6.3 Non-rotating black hole: a = 0

The last limiting case of the Kerr metric which we are going to consider here is that
of a non-rotating black hole. The limit a → 0 can be easily taken in the Kerr metric
in the Boyer–Lindquist coordinates (3.1). It gives the Schwarzschild metric

ds2 = −Fdt2 + dr2

F
+ r2(dθ2 + sin2 θdφ2), F = 1 − 2M

r
. (3.109)

The same limit in the canonical coordinates is slightly more involved. The reason is
that the range of coordinate y is chosen such that the function Δy = a2 − y2 is non-
negative. In the limit a → 0 it implies that this range would become degenerate. In
order to escape this problem one should rescale y, for example, by setting y = a cos θ .
Range of θ remains regular under the limit.

The best way to study the fate of hidden symmetries in the limit a → 0 is to return
from canonical to the Boyer–Lindquist coordinates first, using (3.6), and then take the
limit a → 0. The leading in a terms give

b = −1

2
r2dt (3.110)

for the potential b. One also has

h = rdt ∧ dr, f = r3 sin θdφ ∧ dθ. (3.111)

The resultant closed conformal Killing–Yano tensor is degenerate,

h ∧ h = 0, (3.112)

and so are tensors Q and k. Moreover, the Killing tensor k is reducible. Denoting by
(LX , LY , LZ ) the three Killing vectors that generate the spherical symmetry of the
Schwarzschild metric:

LX = − cosφ∂θ + cot θ sin φ∂φ, LY = sin φ∂θ + cot θ cosφ∂φ, LZ = ∂φ,

(3.113)
one has

kab = La
X Lb

X + La
Y Lb

Y + La
Z Lb

Z . (3.114)
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The primary Killing vector is ξ = ∂ t , while the secondary Killing vector vanishes,
ka

bξ
b = 0.

3.7 Kerr–Schild form of the Kerr metric

It is a remarkable property of the Kerr metric that it can be written in the Kerr–Schild
form, that is, as a linear in M deformation of flat spacetime (Kerr and Schild 1965;
Debney et al. 1969). This property is intrinsically related to the special algebraic type
of the Weyl tensor and the existence of hidden symmetries.

Starting from the canonical form of the metric (3.7) we may write

g = −Δr

Σ

(
(dτ + y2dψ)2 − Σ2

Δ2
r
dr2

)
+ Δy

Σ
(dτ − r2dψ)2 + Σ

Δy
dy2

= −Δr

Σ
l l + dr l + l dr + Δy

Σ
(dτ − r2dψ)2 + Σ

Δy
dy2,

(3.115)

where we introduced a null vector

l ≡ dτ + y2dψ + Σ

Δr
dr =

√
Σ

Δr
(ν + ν̂). (3.116)

Defining new coordinates

dτ̂ = dτ + r2

Δr
dr − y2

Δy
dy, dψ̂ = dψ + dr

Δr
+ dy

Δy
, (3.117)

we find that
l = dτ̂ + y2dψ̂, (3.118)

and the term (dτ − r2dψ) in the metric (3.115) reads (dτ̂ − r2dψ̂ + Σ
Δy

dy). Upon
recalling the form (3.2) of the metric functionΔr , the Kerr metric then rewrites in the
Kerr–Schild form

g = g̊ + 2Mr

Σ
l l, (3.119)

where

g̊ = − Δ̊r

Σ
l2 + dr l + l dr + Δ̊y

Σ

(
dτ̂ − r2dψ̂ + Σ

Δ̊y
dy
)2 + Σ

Δ̊y
dy2,

Δ̊r = r2 + a2, Δ̊y = Δy = a2 − y2, Σ = r2 + y2

(3.120)

is the flat metric. Indeed, introducing ‘flat’ canonical coordinates (τ̊ , r, y, ψ̊) as

dτ̂ = dτ̊ + r2

Δ̊r
dr − y2

Δ̊y
dy, dψ̂ = dψ̊ + dr

Δ̊r
+ dy

Δ̊y
, (3.121)
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brings the metric g̊ into the ‘canonical form’ of the Kerr metric

g̊ = 1

Σ

[
−Δ̊r (dτ̊ + y2dψ̊)2 + Δ̊y(dτ̊ − r2dψ̊)2

]
+Σ

[
dr2

Δ̊r
+ dy2

Δ̊y

]
, (3.122)

with M = 0. We can also check that l = dτ̊ + y2dψ̊ + Σ

Δ̊r
dr is a null vector with

respect to the flat metric g̊.
The principal tensor can be written as

h = −rdr ∧ l + yε ∧ ε̂. (3.123)

The vector l is an eigenvector of the principal tensor. At the same time it is a principal
null direction of the metric, and a vector that plays a special role for the Kerr–Schild
structure (3.119). This nicely illustrates how all such properties: hidden symmetries,
special algebraic type of the Weyl tensor, and the Kerr–Schild form, are interconnected.
As we shall see, this remains true also for higher-dimensional Kerr–NUT–(A)dS space-
times.

3.8 Remarks on the choice of angle variable

In the next chapter, we shall discuss higher-dimensional metrics that generalize the
four-dimensional Kerr metric (3.1). We shall see that there exists a natural canonical
form for such metrics, where the coordinates are determined by the principal tensor.
Part of these coordinates are Killing parameters associated with the corresponding
primary and secondary Killing vectors. These angle coordinates are similar to the
angle ψ , used in (3.9). A natural question is how these angles are related to the other
set of angle variables, similar to φ in (3.1). In order to clarify this point, let us make
here a few remarks, which will be useful later.

3.8.1 Axis of rotational symmetry

In a general case, one says that a D-dimensional manifold is cyclicly symmetric (or
just cyclic) if it is invariant under an action of the one-parametric cyclic group SO(2).
It requires that the Killing vector generating this symmetry has closed orbits.

Fixed points of a Killing vector field are points where the Killing vector vanishes.
These points intuitively correspond to an axis of symmetry. In general, the manifold
does not have to be smooth at these points or the metric does not have to be regular
(a well known example is a conical singularity). In such cases we speak about a
generalized axis of symmetry.

As an example, consider a flat four-dimensional spacetime equipped with cylindri-
cal coordinates (T, Z , ρ, φ). In order to have a regular metric at ρ = 0, the coordinate
ϕ must be periodic, with period 2π . The point ρ = 0 is a fixed point of the Killing
vector ξ (ϕ) in the plane T, Z = const. In a general case, however, a Killing vector field
may not have fixed points. For example, consider a Killing vector η = ξ (ϕ) + αξ (Z).
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One finds η2 = ρ2 +α2 > 0 for a non-vanishing value of α. Thus, the Killing vector η

neither has fixed points nor it is cyclic. However, fixed points exist for ξ (ϕ). These two
cases are illustrated in Fig. 1. The left figure shows a symmetry in a three-dimensional
flat space generated by the Killing vector η. The orbits are not closed and this vector
field does not vanish anywhere. The case when the symmetry is cyclic group, orbits are
closed, and there is an axis of symmetry, is shown in the right figure. The symmetry is
generated by the Killing vector ξ (ϕ), which vanishes at the axis of symmetry, ρ = 0.

3.8.2 Twisting construction

In principle, one could modify the flat spacetime by making the orbits of the Killing
vector η cyclic. This can be achieved by cutting the spacetime along the half-plane
ϕ = 0 and re-gluing it shifted byα in the Z -direction. In other words, we identify points
with coordinates (T, ρ, ϕ, Z) given by values (T, ρ, 0, Z) and (T, ρ, 2π, Z + 2πα).
This can be reformulated in coordinates adapted to the Killing vector η. If we define

ζ = Z − αϕ, ψ = ϕ, (3.124)

we have η = ∂ψ , and the identifications of the spacetime can be formulated as a
periodicity of the coordinate ψ , i.e., the identification of ψ = 0 and ψ = 2π with the
same values of T, ρ, ζ . In such a way we obtain what we call a twisted flat spacetime.

In this spacetime the Killing vector η is cyclic but (as in the previous case) it does
not have fixed points. On other hand, the Killing vector ξ (ϕ) has still fixed points but it
is not cyclic anymore. Its orbits are not closed and the corresponding symmetry group
is not SO(2) but R. The twisted spacetime thus has only a generalized axis of the
symmetry at ρ = 0. This axis does not form a regular submanifold of the full twisted
spacetime.

Fig. 1 Killing vectors with closed and open orbits. Left figure shows the action of the symmetry with
non-closed orbits. The corresponding Killing vector does not have fixed points. The right figure illustrates
the action of the cyclic group with closed orbits. The corresponding Killing vector has fixed points which
form the axis of symmetry ρ = 0
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3.8.3 Rotating string and conical singularity

Similar ‘twisting’ construction can be done with time-like Killing vector ξ (T ) instead
of ξ (Z). The Killing vector η = ξ (ϕ)+αξ (T ) generates a cyclic symmetry in a spacetime
which is obtained by cutting the flat spacetime along half-plane ϕ = 0 and re-gluing
it so that the coordinates

τ = T − αϕ, ψ = ϕ, (3.125)

are identified as (τ, ρ, ψ = 0, Z) ↔ (τ, ρ, ψ = 2π, Z). This spacetime corresponds
to a thin straight spinning cosmic string, cf., e.g., section 3.4.1 in Griffiths and Podolský
(2009). In this spacetime η is cyclic but does not have fixed points and ξ (ϕ) has fixed
points but it is not cyclic. The cosmic string is located on the irregular generalized
axis of symmetry at ρ = 0.

Because of the time-like nature of the Killing vector ξ (T ), a new phenomenon
occurs in this case. The Killing vector η is spacelike far from the axis, for ρ > |α|,
and timelike near the axis, for ρ < |α|. The surface ρ = |α|, where η2 = 0, is an
ergosurface of the Killing vector η. Let us emphasize that, although η2 = 0, these are
not fixed points of the Killing vector η since η is not vanishing here. The ergosurface
contains orbits of the symmetry which are null closed curves, they correspond to light
rays orbiting the axis in closed trajectories. Inside the ergosurface, where the Killing
vector is timelike, the orbits of the symmetry are closed time-like curves. Clearly, such
a behavior is not very physical. However, it seems that in a generic case it may not be
escaped.

There is yet another aspect related to the identification of the axis of the symmetry
and its regularity. Let us consider an axisymmetric spacetime with coordinate ϕ ∈
(0, 2π)which parameterizes orbits of the cyclic symmetry. In general, the metric may
not be regular on the axis—it can contain a conical singularity. Such a singularity
can be eliminated choosing a different range of periodicity for coordinate ϕ. It can be
achieved by introducing a rescaled coordinate φ = βϕ which is required to be periodic
on the interval (0, 2π). Physically, the conical singularity corresponds to a static thin
string on the axis (Vilenkin and Shellard 2000; Griffiths and Podolský 2009).

3.8.4 Kerr geometry

For the canonical metric (3.9) of the rotating black hole spacetime, the coordinates
τ and ψ are directly connected with the principal tensor of this spacetime. Namely,
they are the proper Killing coordinates for the primary ξ (τ ) and secondary ξ (ψ) Killing
vectors. If one makes the coordinateψ to be cyclic by identifyingψ = 0 andψ = 2π ,
the corresponding spacetime is not axisymmetric, since the Killing vector ξ (ψ) does
not have fixed points.

We can then ask if one can find the correct axisymmetric coordinate. For that
we need to find a Killing vector which has fixed points. Let us consider a vector
η = ξ (ψ) + αξ (τ ) and require that it vanishes at some points. It can be shown that this
happens only if the following two conditions are met: Δy = 0 and α = −a2. The
vector η = ξ (ψ)−a2ξ (τ ) thus has fixed points at roots ofΔy . The coordinates adapted
to this Killing vector are t = τ + a2ψ , ϕ = ψ . However, if one makes ϕ periodic on
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the interval (0, 2π), there would be a conical singularity on the axis. One has to make
an additional rescaling φ = aϕ leading to the Boyer–Lindquist coordinates (t, r, θ, φ)
given by (3.6). If the coordinate φ is made periodic on interval (0, 2π), the axis is
regular: the spacetime contains a cyclic Killing vector ξ (φ) = 1

a ξ (ψ)−aξ (τ ) with fixed
points identifying the axis and there is no conical singularity on this axis.

3.8.5 Effect of NUT charges

Let us briefly comment on a more complicated metric with non-trivial NUT parame-
ters for which the metric functions Δr and Δy are given by (3.18) with Λ = 0. The
polynomial Δy has now two nontrivially different roots ±y and the coordinate y runs
between these roots, y ∈ (−y,+y). In this case one can find two candidates for the
Killing vector with fixed points: η+ and η−, with fixed points at y = +y and y = −y,
respectively. One can choose one of the properly rescaled corresponding coordinates,
say φ+, to be periodic with period 2π . With such a choice, the submanifold y = +y
becomes the regular axis. Physically, it corresponds only to a semi-axis of the space-
time. The other semi-axis y = −y is not regular, the cyclic Killing vector η+ does
not have fixed points here. Of course, one can assume periodicity of the other coordi-
nate φ−, making thus the semi-axis y = −y regular. However, the semi-axis y = +y
becomes now non-regular. So, it is not a priori guaranteed that one can chose a unique
Killing vector which makes the spacetime globally axisymmetric.

3.9 Hidden symmetries of the Plebański–Demiański metric

The Plebański–Demiański metric (Plebański and Demiański 1976) is the most gen-
eral four-dimensional electrovacuum solution of Einstein’s equations that is stationary,
axisymmetric, and whose Weyl tensor is of the special algebraic type D. It describes
a wide family of spacetimes that generalize the Kerr–NUT–(A)dS family described in
previous sections. Besides the cosmological constant, mass, rotation, and NUT param-
eter it also admits electric and magnetic charges and the acceleration parameter. As
we shall discuss now, the Plebański–Demiański metric admits a ‘weaker’ (conformal)
form of hidden symmetries of the Kerr geometry.

3.9.1 Solution

Generalizing the canonical form of the Kerr–NUT–(A)dS spacetime (3.9), the
Plebański–Demiański solution reads

g = Ω2
[
−Δr

Σ
(dτ + y2dψ)2 + Δy

Σ
(dτ − r2dψ)2 + Σ

Δr
dr2 + Σ

Δy
dy2

]
,

F = d A, A = −er

Σ

(
dτ + y2 dψ

)− gy

Σ

(
dτ − r2 dψ

)
,

(3.126)
where Σ = r2 + y2. It obeys the Einstein–Maxwell equations with the electric and
magnetic charges e and g and the cosmological constant Λ provided the functions
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Δy = Δy(y) and Δr = Δr (r) take the following form:

Δr = k + e2 + g2 − 2mr + εr2 − 2nr3 − (k +Λ/3)r4,

Δy = k + 2ny − εy2 + 2my3 − (k + e2 + g2 +Λ/3)y4,
(3.127)

while the conformal factor Ω reads

Ω−1 = 1 − yr. (3.128)

Constants k,m, ε, n are free parameters that are related to mass, rotation, NUT param-
eter, and acceleration. The Kerr–NUT–(A)dS geometry belongs to this class, but it can
be identified only after a proper redefinition of coordinates and parameters. We refer to
Griffiths and Podolský (2006b) for details and for a discussion and the interpretation
of special cases of the Plebański–Demiański metric. For a recent progress on under-
standing the thermodynamics of accelerating black holes see Appels et al. (2017);
Astorino (2017).

3.9.2 Hidden symmetries

The Plebański–Demiański metric admits a hidden symmetry of a non-degenerate rank-
2 conformal Killing–Yano 2-form:8

h = Ω3
[

ydy ∧ (dτ − r2dψ)− rdr ∧ (dτ + y2dψ)
]
, (3.129)

obeying

∇ahbc = ∇[ahbc] + 2 ga[bξc], ξa = 1

3
∇chc

a . (3.130)

This property remains true also for the off-shell metric (3.126), characterized by arbi-
trary functionsΔr (r),Δy(y) and an arbitrary conformal factorΩ(r, y) (Kubizňák and
Krtouš 2007).

The corresponding Hodge dual, f = ∗h, is yet another non-degenerate conformal
Killing–Yano 2-form, given by

f = Ω3
[
rdy ∧ (dτ − r2dψ)+ ydr ∧ (dτ + y2dψ)

]
. (3.131)

These 2-forms generate both isometries of the metric according to

ξ ≡ 1

3
∇ · h = ∂τ , η ≡ 1

3
∇ · f = ∂ψ, (3.132)

8 This 2-form is no longer closed. In consequence the structure of hidden symmetries is weaker than that
of the Kerr–NUT–(A)dS spacetime. For example, only null but not timelike geodesics are integrable in the
Plebański–Demiański background.
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as well as give rise to the corresponding conformal Killing tensors. Namely, Q(h)
ab =

hachb
c reads

Q(h) = Ω4
[r2Δr

Σ
(dτ + y2dψ)2 + y2Δy

Σ
(dτ − r2dψ)2 + Σ

Δy
y2dy2 − Σ

Δr
r2dr2

]
,

(3.133)
while for Q( f )

ab = fac fb
c we have

Q( f ) = Q(h) +Ω2(r2 − y2) g. (3.134)

The existence of either of these conformal Killing tensors guarantees complete
integrability of null geodesic motion. Namely, we have the following constants of null
geodesic equations:

ξa ẋa = −E, ηa ẋa = L , Q(h)
ab ẋa ẋb = K , gabẋa ẋb = 0. (3.135)

These four equations can be solved for ẋa = (τ̇ , ṙ , ẏ, ψ̇), giving:

Ω2Σ ṙ = ±√Xr , (3.136)

Ω2Σ ẏ = ±√Xy, (3.137)

Ω2Σ ψ̇ = Er2 − L

Δr
+ Ey2 + L

Δy
, (3.138)

Ω2Σ τ̇ = r2(Er2 − L)

Δr
− y2(Ey2 + L)

Δy
, (3.139)

where

Xr = (Er2 − L)2 − KΔr , Xy = −(Ey2 + L)2 + KΔy . (3.140)

cf. the expressions for null geodesics (m2 = 0) in Kerr–NUT–(A)dS spacetimes,
(3.46)–(3.48). Similar to the discussion therein, the equations for ṙ and ẏ can be
decoupled by introducing the convenient geodesic parameter.

For a discussion of the integrability of a charged particle motion in the Plebański–
Demiański metric see Duval and Valent (2005). As a consequence of the existence
of the conformal Killing–Yano 2-form h, also the massless Hamilton–Jacobi, Klein–
Gordon, and Dirac equations separate in the Plebański–Demiański backgrounds. We
do not review here the corresponding calculations. The first two are easy to perform
and we refer to the original papers (Kamran and McLenaghan 1983, 1984a) for the
separability of massless Dirac equation; see also Torres del Castillo (1988), Silva-
Ortigoza (1995) for a discussion of electromagnetic and Rarita–Swinger perturbations.
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3.9.3 Higher-dimensional generalizations

As we shall see in the next chapter, the four-dimensional Kerr–NUT–(A)dS metrics
can be generalized to higher dimensions. However, similar attempts for the Plebański–
Demiański metric have failed so far. In particular, people have tried to obtain a higher-
dimensional generalization of an accelerated black hole described by the so called
C-metric, which is a special case of the Plebański–Demiański class.

Remark The C-metric typically describes a pair of black holes moving in the opposite
direction with constant acceleration caused either by a cosmic string of negative energy
density between them or by two positive-energy strings pulling the black holes from
infinity. As the string is present, the corresponding solution does not represent, strictly
speaking, a regular isolated black hole. ��

A straightforward method of multiplying the higher-dimensional Kerr–NUT–(A)dS
spacetime (4.1) with a properly chosen conformal factorΩ , accompanied by a proper
adjustment of metric functions Xμ, turned out to be very naive and does not work,
e.g., Kubizňák and Krtouš (2007). However, a partial success has been achieved in
five dimensions, where two different factors, rescaling various parts of the Kerr–NUT–
(A)dS spacetime, have been used to construct a new metric whose limits lead to the
black holes of spherical horizon topology on one side and to the black rings with
toroidal horizon topology on the other side (Lü et al. 2009, 2010; Lü and Vázquez-
Poritz 2014).
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4 Higher-dimensional Kerr–NUT–(A)dS metrics

Higher-dimensional Kerr–NUT–(A)dS metrics (Chen et al. 2006a) describe a large
family of geometries of various types and signatures that solve the vacuum Einstein
equations with and without the cosmological constant. Parameterized by a set of free
parameters that can be related to mass, rotations, and NUT parameters, they directly
generalize the four-dimensional Carter’s canonical metric (3.9) studied in the previous
chapter. The general rotating black holes of Myers and Perry (E.7) (Myers and Perry
1986), their cosmological constant generalizations due to Gibbons et al. (2004, 2005),
the higher-dimensional Taub-NUT spaces (Mann and Stelea 2004, 2006; Clarkson
and Mann 2006; Chen et al. 2007), or the recently constructed deformed and twisted
black holes (Krtouš et al. 2016a), all emerge as certain limits or subcases of the
Kerr–NUT–(A)dS spacetimes. All such geometries inherit hidden symmetries of the
Kerr–NUT–(A)dS metrics.

In this chapter, we perform a basic analysis of the Kerr–NUT–(A)dS metrics, dis-
cussing their signature, coordinate ranges, scaling properties, and meaning of free
metric parameters. We also identify their several special subcases, namely, the sphere,
the Euclidean instanton, and various black hole solutions. The discussion of hidden
symmetries is postponed to the next chapter.

4.1 Canonical form of the metric

4.1.1 Metric

The canonical metric describing the Kerr–NUT–(A)dS geometry in D = 2n + ε num-
ber of dimensions (with ε = 0 in even and ε = 1 in odd dimensions) reads

g =
n∑

μ=1

⎡

⎢⎣
Uμ

Xμ
dx2

μ + Xμ
Uμ

⎛

⎝
n−1∑

j=0

A( j)
μ dψ j

⎞

⎠
2
⎤

⎥⎦+ ε
c

A(n)

(
n∑

k=0

A(k)dψk

)2

. (4.1)

The employed coordinates naturally split into two sets: Killing coordinates ψk (k =
0, . . . , n−1+ε) associated with the explicit symmetries, and radial and longitudinal
coordinates xμ (μ = 1, . . . , n) labeling the orbits of Killing symmetries.

Remark As we shall see in the next chapter, both types of canonical coordinates are
uniquely determined by the principal tensor h. Namely, xμ’s are the eigenvalues of
the principal tensor and ψ j ’s are the Killing coordinates associated with the primary
( j = 0) and secondary ( j > 0) Killing vectors generated by this tensor. Such a choice
of coordinates, internally connected with the principal tensor, makes the canonical
form of the metric (4.1) quite simple. It is also directly ‘linked to’ the separability
properties of the geometry. ��
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The functions A(k), A( j)
μ , and Uμ are ‘symmetric polynomials’ of coordinates xμ:

A(k) =
n∑

ν1,...,νk=1
ν1<···<νk

x2
ν1
. . . x2

νk
, A( j)

μ =
n∑

ν1,...,ν j =1
ν1<···<ν j
νi �=μ

x2
ν1
. . . x2

ν j
, Uμ =

n∏

ν=1
ν �=μ

(x2
ν − x2

μ),

(4.2)
and each metric function Xμ is a function of a single coordinate xμ:

Xμ = Xμ(xμ). (4.3)

If these functions are unspecified, we speak about the off-shell metric. The vacuum
Einstein equations with a cosmological constant restrict these functions into a poly-
nomial form (see (4.16) below). With this choice we call (4.1) the on-shell metric. We
see that the metric components of the on-shell Kerr–NUT–(A)dS metric are rational
functions of the coordinates xμ. Constant c that appears in odd dimensions is a free
parameter.

The metric (4.1) is written in the most symmetric form adjusted to the Euclidean
signature and is very convenient for the analysis of explicit and hidden symmetries.
This most symmetric form is naturally broken when one describes the black hole case:
in order to guarantee the Lorentzian signature, one needs to assume that some of the
coordinates and parameters take imaginary values. In what follows we shall call this
procedure a ‘Wick rotation’. We should also mention that coordinates ψ j are different
from the ‘standard azimuthal’ angles φμ, used in the Boyer–Lindquist form of the
Myers–Perry metric (see next section).

The inverse metric takes the following form:

g−1 =
n∑

μ=1

⎡

⎣ Xμ
Uμ

∂2
xμ + Uμ

Xμ

(
n−1+ε∑

k=0

(−x2
μ)

n−1−k

Uμ

∂ψk

)2 ⎤

⎦+ ε
1

cA(n)
∂2
ψn
.

(4.4)
The determinant of the metric reads

det[gab] = (
cA(n)

)ε
V 2, V ≡

n∏

μ,ν=1
μ<ν

(x2
μ − x2

ν ) = det
[

A( j)
μ

]
. (4.5)

As in four dimensions, it is independent of the choice of arbitrary functions Xμ(xμ).
Correspondingly, the Levi-Civita tensor is given by

ε = (
cA(n)

) ε
2 V dx1 ∧ · · · ∧ dxn ∧ dψ0 ∧ · · · ∧ dψn−1+ε. (4.6)

4.1.2 Special Darboux frame

The metric and its inverse can be obtained by employing the natural orthonormal frame
of 1-forms eμ, êμ (μ = 1, . . . , n), and ê0 (in odd dimensions):
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eμ =
(Uμ

Xμ

)1
2
dxμ, êμ =

( Xμ
Uμ

)1
2

n−1∑

j=0

A( j)
μ dψ j , ê0 =

( c

A(n)

) 1
2

n∑

k=0

A(k)dψk,

(4.7)
and the dual frame of vectors eμ, êμ, ê0,

eμ =
(

Xμ
Uμ

)1
2

∂xμ, êμ =
(

Uμ

Xμ

)1
2

n−1+ε∑

k=0

(−x2
μ)

n−1−k

Uμ

∂ψk , ê0 = (
cA(n)

)− 1
2 ∂ψn .

(4.8)
The duality follows from important properties of the metric functions A( j)

μ and Uμ

listed in Appendix D.1 (see (D.13)–(D.15)). In this frame the metric and its inverse
take the trivial diagonal forms:

g =
n∑

μ=1

(
eμeμ + êμ êμ

) + ε ê0 ê0
, g−1 =

n∑

μ=1

(
eμeμ + êμ êμ

) + ε ê0 ê0.

(4.9)
It is explicitly seen here that we use a Euclidean normalization of the frame and we
do so even in the Lorentzian case, in which case some of the frame vectors become
imaginary. We shall provide a detailed discussion of the signature and suitable choices
of coordinates and signs of the metric functions in the next section.

In this frame the principal tensor takes the following simple form:

h =
n∑

μ=1

xμ eμ ∧ êμ, (4.10)

which is exactly the form (2.110) discussed in Sect. 2.8. Moreover, one can easily
check that the additional condition (2.122) is satisfied. For this reason, the frame
{eμ, êμ, ê0} is nothing but the special Darboux frame introduced in Sect. 2.8.

4.1.3 Curvature

The curvature of the metric (4.1) has been calculated in Houri et al. (2007). The
important property of the Ricci tensor is that it is diagonal in the frame (4.7), a property
that complements a rich symmetry structure of the geometry. It reads

Ric = −
n∑

μ=1

rμ
(
eμeμ + êμ êμ

) − r0 ê0 ê0
. (4.11)

In even dimensions the components rμ are

rμ = 1

2

X ′′
μ

Uμ

+
n∑

ν=1
ν �=μ

xνX ′
ν−xμX ′

μ

Uν(x2
ν−x2

μ)
−

n∑

ν=1
ν �=μ

Xν − Xμ
Uν(x2

ν−x2
μ)

= ∂

∂x2
μ

[
n∑

ν=1

x2
ν

(
x−1
ν Xν

)
,ν

Uν

]
,

(4.12)
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while in odd dimensions we have

rμ = 1

2

X̄ ′′
μ

Uμ

+ 1

2xμ

X̄ ′
μ

Uμ

+
n∑

ν=1
ν �=μ

xν X̄ ′
ν−xμ X̄ ′

μ

Uν(x2
ν−x2

μ)
= ∂

∂x2
μ

[
n∑

ν=1

xν X̄ ′
ν

Uν

]
, r0 =

n∑

ν=1

X̄ ′
ν

xνUν

.

(4.13)
In the latter relations we used the shifted metric functions

X̄μ = Xμ + εc

x2
μ

. (4.14)

The scalar curvature simplifies to

R = −
n∑

ν=1

X̄ ′′
ν

Uν

− 2 ε
n∑

ν=1

1

xν

X̄ ′
ν

Uν

. (4.15)

In the above expressions, the prime denotes a differentiation with respect to the (single)
argument of the metric function, e.g., X ′

μ = Xμ,μ.

4.1.4 On-shell metric

Imposing the vacuum Einstein equations, Rab − 1
2 Rgab + Λgab = 0, results in the

following form of the metric functions (Chen et al. 2006a; Houri et al. 2007):

Xμ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2bμ xμ +
n∑

k=0

ck x2k
μ for D even,

− c

x2
μ

− 2bμ +
n∑

k=1

ck x2k
μ for D odd.

(4.16)

The parameter cn is related to the cosmological constant as

Ric = (−1)n(D − 1)cn g ⇔ Λ = 1

2
(−1)n(D − 1)(D − 2)cn . (4.17)

Remark It is interesting to note that, similar to four dimensions, a single equation cor-
responding to the trace of the Einstein equations, R = 2D

D−2Λ, almost fully determines
relations (4.16). Once this equation is valid, all other Einstein’s equations require just
equality of the absolute terms in all polynomials Xμ and otherwise they are identically
satisfied (Houri et al. 2007). ��

4.2 Parameters and alternative form of the metric

Before we proceed to discussing various special cases of the on-shell Kerr–NUT–(A)dS
spacetimes, let us comment on a different, more convenient for its interpretation, form
of the metric, and the parameters of the solution. For simplicity, in the rest of this
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section we restrict our discussion to even dimensions D = 2n, that is ε = 0, analysis
in odd dimensions would proceed analogously.

4.2.1 Parametrization of metric functions

In even dimensions, the metric (4.1) simplifies to9

g =
∑

μ

[
Uμ

Xμ
dx2

μ + Xμ
Uμ

(∑

k

A(k)μ dψk

)2 ]
. (4.18)

Inspecting the on-shell metric functions Xμ, (4.16), we see that they are given by
a common even polynomial J modified by μ-dependent linear terms:

Xμ = λJ (x2
μ)− 2bμxμ. (4.19)

The parameter λ is trivially related to cn in (4.16) according to λ = (−1)ncn . Instead
of other coefficients ck , it will be useful to characterize the common polynomial J
using its roots. Assuming they are all real the polynomial can be written as

J (x2) =
∏

ν

(a2
ν − x2) =

n∑

k=0

A(k)(−x2)n−k, (4.20)

where the constants A(k) can be expressed in term of new parameters a2
μ in a similar

way as the functions A(k) in terms of x2
μ in (4.2), cf. (D.4) in Appendix D.1. We shall

give the interpretation of all the parameters below. However before that, let us start
with a remark on two types of angular variables.

4.2.2 Two types of angular variables

As we already mentioned, the canonical ‘angles’ψk in the metric (4.18) are the Killing
parameters for the primary and secondary Killing vectors constructed from the prin-
cipal tensor. In a general case, such Killing vectors do not have fixed points and
the angles do not correspond to azimuthal angles in independent rotation 2-planes.
However, there may exist other angular variables such that the corresponding Killing
vectors have fixed points and, hence, they define axes of symmetry and planes of
rotation.

Remark The same thing happens with the Kerr metric written in the canonical form
(3.9). As explained in Sect. 3.8, the axisymmetry of the Kerr metric implies that, aside
the Killing coordinate ψ , there exists another angular variable φ, such that the Killing
vector ∂φ has fixed points and corresponds to the azimuthal angle in the 2-plane of
rotation. ��

9 The Greek indices always take values μ, ν, . . . = 1, . . . , n and, in even dimensions, the Latin indices
from the middle of alphabet take values j, k, l, . . . = 0, . . . , n − 1. We do not use the Einstein summation
convention for them but also we do not indicate limits in sums and products explicitly, i.e.,

∑
μ ≡ ∑n

μ=1,
∑

k ≡ ∑n−1
k=0.
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We can indeed introduce new higher-dimensional angular variables φα , that have
a desired property (at least for the special case, when bμ = 0 for μ < n, see below).
These new angular coordinates φα are linear combinations of ψk :

φα = λaα
∑

k

A(k)α ψk ⇔ ψk =
∑

α

(−a2
α)

n−1−k

Uα
φα

λaα
. (4.21)

Since they are just linear combinations of ψ’s with constant coefficients, they are also
Killing coordinates. Using these angles, the metric can be written in the form10

g =
∑

μ

[
Uμ

Xμ
dx2

μ + Xμ
Uμ

(∑

α

Jμ(a2
α)

Uα
1

λaα
dφα

)2 ]
, (4.22)

where Jμ, A(k)μ , Jμ, A(k)μ , Uμ, and Uμ are defined and related as

Jμ(a
2) =

∏

ν
ν �=μ

(x2
ν − a2) =

∑

k

A(k)μ (−a2)n−1−k,

Jμ(x2) =
∏

ν
ν �=μ

(a2
ν − x2) =

∑

k

A(k)μ (−x2)n−1−k,
(4.23)

and
Uμ = Jμ(x

2
μ), Uμ = Jμ(a2

μ), (4.24)

cf. Appendix D.1.

4.2.3 Parameters of the solution

The on-shell geometries (4.18) and (4.22) are labeled by parameters aμ, bμ, and λ. As
we have already said, the clearest interpretation has the parameter λ. After plugging
the metric into the Einstein equations, Rab − 1

2 Rgab +Λgab = 0, one finds that λ is
related to the cosmological constant Λ according to

Λ = (2n − 1)(n − 1)λ, (4.25)

cf. (4.17). A general wisdom tells us that a’s should be related to rotations (at least
in the weak field limit), and b’s to the mass and NUT charges. However, the exact
interpretation depends on various other choices that have to be made before interpreting
the meaning of the parameters.

First we realize that the parameters aμ and bμ are not independent. There exists
a one-parametric freedom in rescaling coordinates, metric functions, and parameters

10 Note that in this form of the metric, one cannot straightforwardly set λ, related to the ‘radius of the
deformed sphere’, to zero. The ‘vacuum limit’ λ → 0 is discussed in the Lorentzian signature in Sect. 4.4.
Lorentzian version of (4.21) is given by (4.45) below.
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which leaves the metric in the same form:

xμ → sxμ, φα → φα, ψk → s−(2k+1)ψk,

aμ → saμ, bμ → s2n−1bμ, λ → λ,

Xμ → s2n Xμ, Uμ → s2(n−1)Uμ, A(k)μ → s2k A(k).

(4.26)

This transformation simply rescales dimensional coordinates xμ and parameters aμ,
properly rescales NUT parameters bμ, and leaves untouched dimensionless angles
φα . Using this transformation, one of the parameters aμ can be set to a suitable value.
Later we shall fix this freedom by imposing the condition (4.41).

Taking into account this freedom, we find that for a fixed cosmological constant the
on-shell Kerr–NUT–(A)dS metric in D = 2n dimensions contains 2n −1 independent
parameters. In the black hole case they are connected with mass, (n − 1) rotations
parameters, and (n − 1) NUT charges.

Similar counting would proceed in odd dimensions, where the analogous scaling
freedom reduces the number of independent free parameters in D = 2n+1 dimensions
to 2n − 1, giving mass, n rotations parameters, and (n − 2) NUT parameters for the
black hole case, see Chen et al. (2006a).

4.3 Euclidean signature: instantons

The Kerr–NUT–(A)dS metric can describe various geometries. Depending on a
choice of coordinate ranges and values of parameters it can have both Euclidean
and Lorentzian signatures. We will see in the next chapter that common feature of
the solution independent of a particular interpretation of the geometry is the pres-
ence of a rich symmetry structure. If one is interested mainly in the symmetries of
the Kerr–NUT–(A)dS geometry and its integrability and separability properties, the
general form of the metric presented above is sufficient to proceed directly to Chaps. 5
and 6.

In the rest of this chapter we make a short overview of several important special
cases of the Kerr–NUT–(A)dS metric. In this section we explain appropriate coordinate
ranges for Euclidean version of the geometry, in the next section we discuss the Wick
rotations of coordinates appropriate for the Lorentzian signature.

4.3.1 Sphere

Let us begin with a ‘trivial’ example of a D dimensional sphere. This homogeneous
and isotropic metric is a very special case of Kerr–NUT–(A)dS geometry. The corre-
sponding metric is obtained by setting the NUT and mass parameters equal to zero,
bμ = 0, while keeping the parameters aμ arbitrary, and λ > 0. The on-shell metric
functions Xμ then simplify and take the form of a common polynomial λJ (x2) in the
corresponding variable:

Xμ = λJ (x2
μ). (4.27)
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The roots of this polynomial are exactly the parameters a2
μ whose interpretation is

discussed below. With this choice we can employ the orthogonality relations (D.24)
in the angular part of the metric (4.22) and transform it to the following form:

g =
∑

μ

[
Uμ

λJ (x2
μ)

dx2
μ − J (a2

μ)

Uμ
1

λa2
μ

dφ2
μ

]
. (4.28)

Here J (a2) = ∏
ν(x

2
ν − a2) is given by definition (D.1) analogous to (4.20) above.

Let us introduce n + 1 new coordinates ρμ, μ = 0, 1, . . . , n, instead of n coordi-
nates xμ, and apply the Jacobi transformation

λρ2
μ = J (a2

μ)

−a2
μ Uμ

=
∏
ν(x

2
ν − a2

μ)

−a2
μ

∏
ν �=μ(a2

ν − a2
μ)
, λρ2

0 = A(n)

A(n) =
∏
ν x2

ν∏
ν a2

ν

. (4.29)

Then one can show that the new coordinates ρμ are restricted by the constraint

n∑

μ=0

ρ2
μ = 1

λ
, (4.30)

and the x-part of the metric can be written as

∑

μ

Uμ

λJ (x2
μ)

dx2
μ = dρ2

0 +
∑

μ

dρ2
μ. (4.31)

Using these relations we obtain the following simple form of the metric g

g = dρ2
0 +

∑

μ

[
dρ2

μ + ρ2
μ dφ2

μ

]
, (4.32)

with coordinates ρμ constrained by (4.30). Clearly, (ρ0, ρμ, φμ) are multi-cylindrical
coordinates on a 2n-dimensional sphere embedded in a (2n+1)-dimensional flat space.
The sphere is given by the constrain equation (4.30).

It is interesting to observe that this metric describes the maximally symmetric
geometry of the sphere of the same radius 1/

√
λ for any choice of parameters aμ.

Going in the opposite direction, from the spherical geometry (4.32), expressed in
coordinates (ρ0, ρμ, φα), to the Kerr–NUT–(A)dS metric (4.28), and then to (4.22),
expressed in the coordinates (xμ, φα), it turns out that the parameters aμ characterize
a freedom in implicit definitions (4.29) of variables xμ obeying the constrain (4.30).
Jacobi coordinates xμ are sort-of elliptic coordinates (the surfaces of given xμ being
elliptical or hyperbolic surfaces) with an exact shape governed by parameters aμ.

To specify the ranges of coordinates in details, let us start with λ > 0, ρ0 ∈ R,
ρμ ∈ R

+ and φα ∈ (−π, π) for which the metric (4.32) is the homogeneous geometry
on the sphere. Assuming further

0 < a1 < · · · < an, (4.33)
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the ranges of the coordinates xμ should be chosen as

− a1 < x1 < a1, aμ−1 < xμ < aμ, μ = 2, . . . , n, (4.34)

which guarantees that Uμ are nonsingular and Xμ/Uμ > 0. The boundaries of xμ-
ranges coincide with the roots of the metric functions Xμ and correspond to symmetry
axes. Inspecting (4.32), we see that the axes are given by ρν = 0. In terms of coor-
dinates xμ, Jacobi transformation (4.29) gives that xμ = aμ identifies with ρμ = 0,
and, for μ > 1, xμ = aμ−1 corresponds to ρμ−1 = 0. Each of the axes ρμ = 0 (for
μ < n) thus splits into two regions described by xμ = aμ and xμ+1 = aμ, respectively.
Finally, a sign of x1 is the same as the sign of ρ0.

For non-vanishing parameters bμ one cannot use the orthogonality relation (D.24)
and transform the Kerr–NUT–(A)dS metric (4.22) to the form (4.28). However, we
have at least learned that coordinates xμ take values between the roots of metric func-
tions Xμ, and these roots represents the axes of the Killing symmetry. This property
survives in the generic case.

Let us finally note that the metric (4.32) or the corresponding Kerr–NUT–(A)dS
form (4.22) can also describe a pseudo-sphere of various signatures, obtainable by a
suitable Wick rotation of coordinates. We will discuss this below after we introduce
the black hole solutions.

4.3.2 Euclidean instantons

Let us now describe the choice of coordinate ranges and parameters for which the
Kerr–NUT–(A)dS metric describes a non-trivial geometry of the Euclidean signature.

Remark For briefness we call such metrics Euclidean instantons or simply instantons.
In fact, in order to be a ‘proper instanton’, the space must be regular and the correspond-
ing gravitational action finite. These properties can impose additional restrictions on
the parameters of the solution, which we do not study here and refer the interested
reader to a vast literature on the subject of gravitational instantons, e.g. Hawking
(1977), Page (1978a), Page (1978b), Gibbons and Hawking (1979), Eguchi et al.
(1980), Hunter (1998), Mann (1999), Chamblin et al. (1999), Mann and Stelea (2004),
Mann and Stelea (2006), Clarkson and Mann (2006), Chen et al. (2007), Yasui and
Houri (2011). ��

Let us assume that λ > 0 and all coordinates xμ,ψk and parameters aμ, bμ are real.
We further order parameters aμ as in (4.33) and xμ so that

x1 < x2 < · · · < xn . (4.35)

This guarantees that Uμ are nonsingular and their signs are sgn Uμ = −(−1)μ. As we
have seen above, when all bμ vanish, the ranges of xμ coordinates are given by (4.34).
If some parameters bμ do not vanish, the ranges of xμ must be modified. Since the
signature of the metric (4.18) is determined by the signs of metric functions Xμ/Uμ,
to obtain a Euclidean metric we thus need sgn Xμ = −(−1)μ. Therefore, the ranges
of coordinates xμ,
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Fig. 2 Euclidean instanton. The graph of the common polynomial λJ (x2) combined with various linear
contributions 2bμxμ. Intersections of the polynomial with these linear lines correspond to roots of the metric
functions Xμ, cf. (4.19). The shaded areas indicate regions where sgn Xμ = −(−1)μ. These regions can
be chosen as ranges of coordinates xμ, cf. (4.36)

−xμ < xμ <
+xμ, (4.36)

should be chosen between the roots ±xμ of metric functions Xμ such that the suitable
sign of Xμ is guaranteed.

For small values of the NUT parameters bμ these roots will be ‘close’ to the roots
aμ of the common polynomial λJ (x2). As one can see in Fig. 2, if

sgn bμ = −(−1)μ, (4.37)

the relevant roots ±xμ of Xμ are

Xμ(
±xμ) = 0, aμ−1 <

−xμ <
+xμ < aμ, (4.38)

with the only exception of −x1 which is the largest root of X1 smaller than −a1.
For such a choice the metric (4.18) represents the Euclidean instanton of signa-

ture (+ + · · · +). Parameters bμ encode deformations of the geometry, namely how
it deviates from the geometry of the sphere. For non-vanishing bμ, parameters aμ
become essential. That is they do not just label a choice of coordinates, as in the max-
imally symmetric case, but their change results in the change of the geometry (e.g. its
curvature).

The global definition and regularity of the geometry described by metrics (4.18) or
(4.22) has to be established by specifying which Killing angles should be cyclic and
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what are the periods of these cyclic angles. In the maximally symmetric case, which we
discussed above, there was a natural choice of cyclic coordinates φα ∈ (−π, π) with
their natural identification at φα = ±π . However, in general, any linear combination
of Killing coordinates (with constant coefficients) forms again a Killing coordinate and
it is not a priory clear which of the Killing coordinates should be periodic. Learning a
lesson from the maximally symmetric case, the anglesψk are typically not those which
should be periodic. Since Killing coordinates are non-trivially coupled in the metric
(the metric is not diagonal in these directions), a particular choice of the periodicity
of Killing coordinates can introduce a non-trivial twisting of the geometry, as well as
possible irregularities on the axes. We will not discuss these characteristics in more
detail as this is still an open problem awaiting its complete solution. For our purposes it
is sufficient to simply remember that the Euclidean instanton describes a deformed and
twisted spherical-like geometry. Other examples of compact Riemannian manifolds
that can be obtained as special limits of the Kerr–NUT–(A)dS metrics include the most
general explicitly known Einstein–Kähler and Einstein–Sasaki metrics, see e.g. Yasui
and Houri (2011) and references therein.

4.4 Lorentzian signature: black holes

Let us now discuss the Kerr–NUT–(A)dS metrics with the Lorentzian signature.
For vanishing NUT parameters such metrics describe an isolated rotating higher-
dimensional black hole in either asymptotically flat or asymptotically (anti-)de Sitter
spacetime. We start our discussion with the case of non-vanishing NUT parameters
and proceed to the Kerr-(A)dS and Myers–Perry black holes in the the next step.

4.4.1 General multiply-spinning black holes with NUTs

The Lorentzian signature can be achieved by a suitable Wick rotation of coordinates
and parameters. Different choices can lead to physically different spacetimes. We
concentrate on the case where the coordinate xn is Wick-rotated to a radial coordinate
r and the angular coordinate φn to a time coordinate t :

xn = ir, φn = λant, (4.39)

with r and t real, while the remaining x’s and φ’s retain their original character. We
also define the (real) mass parameter M by

bn = i M. (4.40)

To obtain the correct signature we also need to correlate the sign of the cosmological
constant with the sign of a2

n . By employing the scaling transformations (4.26) we can
use this freedom to impose the following condition:

a2
n = −1

λ
. (4.41)
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Thank to this choice, the temporal coordinate φn is Wick-rotated by an imaginary
factor only for λ > 0. Namely, introducing the cosmological scale �, we get

λ = 1

�2 > 0 : an = i�, φn = i
t

�
,

λ = − 1

�2 < 0 : an = �, φn = − t

�
.

(4.42)

Let us now introduce a notation which will allow us to separate the angular sec-
tor from the temporal and radial ones. For the angular sector we employ the barred
indices. Using n̄ = n − 1 we can thus write the ranges for barred Greek indices:
μ̄, ν̄ = 1, . . . , n̄ and barred Latin indices k̄, l̄ = 0, . . . , n̄ − 1. We also use quantities

Ā(k̄)μ̄ , Ūμ̄, J̄ (x2), Ā(k̄), etc. to denote the same expressions as A(k)μ , Uμ, J (x2), A(k),
only with appropriately modified ranges of coordinates.

Using this notation and after the Wick rotation the Kerr–NUT–(A)dS metric (4.22)
takes the following form:

g = −Δr

Σ

(∏

ν̄

1 + λx2
ν̄

1 + λa2
ν̄

dt −
∑

ν̄

J̄ (a2
ν̄ )

aν̄ (1 + λa2
ν̄ )Ūν̄

dφν̄

)2

+ Σ

Δr
dr2 +

∑

μ̄

(r2+x2
μ̄)

Δμ̄/Ūμ̄

dx2
μ̄

+
∑

μ̄

Δμ̄/Ūμ̄

(r2+x2
μ̄)

(
1−λr2

1+λx2
μ̄

∏

ν̄

1+λx2
ν̄

1+λa2
ν̄

dt +
∑

ν̄

(r2+a2
ν̄ ) J̄μ̄(a

2
ν̄ )

aν̄ (1+λa2
ν̄ ) Ūν̄

dφν̄

)2

, (4.43)

where the metric functions read

Δr = −Xn = (
1−λr2)∏

ν̄

(
r2+a2

ν̄

)− 2Mr, Un = Σ =
∏

ν̄

(r2 + x2
ν̄ ),

Δμ̄ = −Xμ̄ = (
1+λx2

μ̄

)
J̄ (x2

μ̄)+ 2bμ̄xμ̄, Ūμ̄ =
∏

ν̄
ν̄ �=μ̄

(x2
ν̄ − x2

μ̄). (4.44)

We call the coordinates (t, r, xμ̄, φμ̄) the generalized Boyer–Lindquist coordinates
and the form (4.43) with (4.44) the generalized Boyer–Lindquist form of the Kerr–
NUT–(A)dS black hole geometry.11

Alternatively, it is useful to write the Lorentzian metric in the Carter-like form. To
do this, we split the set of Killing coordinates ψk into temporal coordinate τ ≡ ψ0

11 As opposed to the Myers–Perry coordinates (t, r, μk , φk ), the coordinates (t, r, xμ̄, φμ̄) are already all
independent, c.f. constraint (E.9). For this reason the metric (4.43) is ‘closer’ to the Boyer–Lindquist form
of the Kerr geometry in four dimensions than the Myers–Perry form (E.7).
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and angular coordinates ψ̄k̄ ≡ ψk̄+1. After Wick rotation, relations (4.21) become

τ ≡ ψ0 = 1
∏
μ̄(1 + λa2

μ̄)
t −

∑

μ̄

(−a2
μ̄)

n̄

(1 + λa2
μ̄)Ūμ̄

φμ̄

aμ̄
,

ψ̄k̄ ≡ ψk̄+1 = λk̄+1

∏
μ̄(1 + λa2

μ̄)
t −

∑

μ̄

(−a2
μ̄)

n̄−1−k̄

(1 + λa2
μ̄)Ūμ̄

φμ̄

aμ̄
,

(4.45)

giving

t = τ +
∑

k̄

Ā(k̄+1)ψ̄k̄,
φμ̄

aμ̄
= λτ −

∑

k̄

(
Ā(k̄)μ̄ − λĀ(k̄+1)

μ̄

)
ψ̄k̄ (4.46)

for the inverse expressions. With these definitions, the metric (4.18) takes the following
Carter-like form:

g = −Δr

Σ

⎛

⎝dτ +
∑

k̄

Ā(k̄+1)dψ̄k̄

⎞

⎠
2

+ Σ

Δr
dr2

+
∑

μ̄

(r2+x2
μ̄)

Δμ̄/Ūμ̄

dx2
μ̄ +

∑

μ̄

Δμ̄/Ūμ̄

(r2+x2
μ̄)

⎛

⎝dτ +
∑

k̄

(
Ā(k̄+1)
μ̄ − r2 Ā(k̄)μ̄

)
dψ̄k̄

⎞

⎠
2

,

(4.47)
generalizing (3.7) in four dimensions.

Let us now discuss the suitable ranges of coordinates. We assume ordering of the
parameters aμ̄ as

0 < a1 < · · · < an̄ . (4.48)

When all the NUT parameters vanish, each xμ̄ takes its values in the interval bounded
by two neighbours of the corresponding aμ̄. One can also identify the proper ranges of
coordinates when NUT parameters bμ̄ do not vanish, provided they satisfy additional
requirements. Namely, they should have signs

sgn bμ̄ = (−1)μ̄, (4.49)

and the metric functions Xμ̄ should have roots close to a’s,

Xμ̄(
±xμ̄) = 0, aμ̄−1 <

−xμ̄ <
+xμ̄ < aμ̄ (4.50)

(with the exception of −x1 which is the largest root of X1 smaller than −a1). The
coordinates xμ̄ then take the following values:

−xμ̄ < xμ̄ <
+xμ̄, (4.51)
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Fig. 3 Black hole geometries. The graph of the common polynomial λJ (x2) = −(1 + λx2)J̄ (x2) is
combined with various linear contributions 2bμ̄xμ̄. Intersections of the polynomial with these linear lines
correspond to roots of the metric functionsΔμ̄ = −Xμ̄, cf. (4.44). The shaded areas indicate regions where

sgnΔμ̄ = −(−1)μ̄. These regions can be chosen as ranges of coordinates xμ̄, cf. (4.51)

and satisfy
x1 < x2 < · · · < xn̄, (4.52)

see Fig. 3 describing this situation. The ranges and periodicity of coordinates φμ̄ and
ψ̄k̄ have to be specified to meet some kind of regularity on the axes. These conditions
highly depend on the values of parameters aμ and NUT parameters bμ̄; a complete
discussion of this problem has not yet been performed in the literature. The temporal
coordinates τ and t are real, and so is the radial coordinate r . The metric function Δr

determines the horizon structure. Depending on the sign of the cosmological constant
it has typically two or three roots ri, ro, and rc that identify the inner horizon, the outer
horizon, and (for λ > 0) the cosmological horizon. The form of the metric function is
illustrated in Fig. 4.

4.4.2 Vacuum rotating black holes with NUTs

For the vanishing cosmological constant, λ = 0, the black hole metric (4.43) signifi-
cantly simplifies and reads12

12 Note that the fact that the vacuum limit, λ → 0, can be taken in (4.43) has its origin in the gauge choice
(4.41).
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−λJ (−r2)

−λJ (−r2)

2Mr 2Mr

r rri riro ro

λ > 0λ ≤ 0

rc

Fig. 4 Black hole horizons. The roots of the metric functionΔr = −λJ (−r2)−2Mr , cf. (4.44), determine
horizons of the black hole. The diagrams show graphs of the even order polynomial −λJ (−r2) and of the
linear term 2Mr . Their intersections define the horizons. For λ ≤ 0 there can be two intersections (outer
and inner horizons), one touching intersection (extremal horizon) or no intersections (naked singularity).
For λ > 0 there is one additional intersection corresponding to the cosmological horizon

g = −Δr

Σ

(
dt −

∑

ν̄

J̄ (a2
ν̄ )

aν̄ Ūν̄
dφν̄

)2

+ Σ

Δr
dr2

+
∑

μ̄

(r2+x2
μ̄)

Δμ̄/Ūμ̄

dx2
μ̄ +

∑

μ̄

Δμ̄/Ūμ̄

(r2+x2
μ̄)

(
dt +

∑

ν̄

(r2+a2
ν̄ )

J̄μ̄(a2
ν̄ )

aν̄ Ūν̄
dφν̄

)2

, (4.53)

with the metric functions

Δr = −Xn =
∏

ν̄

(
r2+a2

ν̄

)− 2Mr,

Δμ̄ = −Xμ̄ = J̄ (x2
μ̄)+ 2bμ̄xμ̄,

(4.54)

and other metric functions unchanged.
The metric (4.47) does not change its form for the vanishing cosmological constant,

apart from the simplification of the metric functions (4.54). Note also that the relations
(4.45) and (4.46) between temporal coordinates and angles partially decouple:

τ = t −
∑

μ̄

(−a2
μ̄)

n̄

Ūμ̄
φμ̄

aμ̄
, ψ̄k̄ = −

∑

μ̄

(−a2
μ̄)

n̄−1−k̄

Ūμ̄
φμ̄

aμ̄
, (4.55)

t = τ +
∑

k̄

Ā(k̄+1)ψ̄k̄,
φμ̄

aμ̄
= −

∑

k̄

Ā(k̄)μ̄ ψ̄k̄ . (4.56)
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4.4.3 Kerr–(A)dS, Myers–Perry, and Tangherlini metrics

Let us now focus on the physically interesting case of black hole geometries for which
all the NUT parameters bμ, apart from the mass parameter bn , vanish. In this case
only the metric function Δr = −Xn differs from the simple form (4.27). One can
thus employ the orthogonality transformation (D.24) of the angular part of the metric
(4.22), as we did in the case of a sphere, obtaining so the terms (4.28) augmented with
an extra piece proportional to mass M :

g =
∑

μ̄

Uμ̄

λJ (x2
μ̄)

dx2
μ̄ + Σ

Δr
dr2 −

∑

μ̄

J (a2
μ̄)

Uμ̄
1

λa2
μ̄

dφ2
μ̄ − λ

J (a2
n)

Un
dt2

+2Mr

Σ

⎛

⎝
∑

μ̄

Jn(a2
μ̄)

Uμ̄
1

λaμ̄
dφμ̄ + Jn(a2

n)

Un
dt

⎞

⎠
2

. (4.57)

Here, we have split the sums to angular terms μ̄ = 1, . . . , n̄ and temporal/radial terms
μ = n, employed the Wick rotation and the gauge fixing (4.39)–(4.42), and introduced
metric functions (4.44).

To write down the metric in Myers–Perry coordinates, we next employ the Jacobi
transformation, to transform n̄ variables xμ̄ to n̄ + 1 variables μν̄ :

μ2
ν̄ = J̄ (a2

ν̄ )

−a2
ν̄ Ūν̄

=
∏
ᾱ(x

2
ᾱ − a2

ν̄ )

−a2
ν̄

∏
ᾱ �=ν̄ (a2

ᾱ − a2
ν̄ )
, μ2

0 = Ā(n̄)

Ā(n̄)
=
∏
ᾱ x2

ᾱ∏
ᾱ a2

ᾱ

, (4.58)

subject to a constrain
n̄∑

ν̄=0

μ2
ν̄ = 1. (4.59)

The new coordinates μν̄ are related to the coordinates ρν̄ introduced in (4.29) by

λρ2
ν̄ = a2

ν̄ + r2

a2
ν̄ − a2

n

μ2
ν̄ , (4.60)

and

1 − λR2 ≡ λρ2
n = (1 − λr2)

(
μ2

0 +
∑

ν̄

μ2
ν̄

1 + λa2
ν̄

)
. (4.61)

Employing these relations and other non-trivial identities for the Jacobi transformation,
the metric (4.57) can be written in the following form:
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g = −(1 − λR2)dt2 + 2Mr

Σ

(
dt +

∑

ν̄

aν̄μ2
ν̄

1 + λa2
ν̄

d(φν̄ − λaν̄ t)
)2

+ Σ

Δr
dr2 + r2dμ2

0 +
∑

ν̄

r2 + a2
ν̄

1 + λa2
ν̄

(
dμ2

ν̄ + μ2
ν̄dφ

2
ν̄

)

+ λ

1 − λR2

(
r2μ0dμ0 +

∑

ν̄

r2 + a2
ν̄

1 + λa2
ν̄

μν̄dμν̄
)2
, (4.62)

with the metric functions given by

Δr = (1 − λr2)
∏

ν̄

(r2 + a2
ν̄ )− 2Mr,

Σ =
(
μ2

0 +
∑

ν̄

r2μ2
ν̄

r2 + a2
ν̄

)∏

μ̄

(r2 + a2
μ̄).

(4.63)

This is the Kerr–(A)dS metric derived by Gibbons et al. (2004, 2005). We remind that
in these expressions the coordinates μν̄ are constrained by (4.59). For vanishing bμ̄,
the parameters aμ̄ are directly related to rotations of the black hole.

If also the parameters aμ̄ vanish, we obtain the Schwarzschild–Tangherlini–(A)dS
black hole (Tangherlini 1963)

g = − f dt2 + dr2

f
+ r2dΩ2

n̄, f = 1 − λr2 − 2Mr3−2n, (4.64)

where one can use, for example, the following parametrization of the homogeneous
spherical metric in n̄ dimensions:

dΩ2
n̄ = dμ2

0 +
∑

ν̄

(
dμ2

ν̄ + μ2
ν̄dφ

2
ν̄

)
, (4.65)

using the coordinates μν̄ and φν̄ . Other parameterizations of dΩ2
n̄ , suitable for a given

problem, are of course possible.
If on the other hand the cosmological constant vanishes, λ = 0, the Kerr–(A)dS

metric (4.62) yields the (even-dimensional) Myers–Perry solution (Myers and Perry
1986)

g = −dt2 + 2Mr

Σ

(
dt +

∑

ν̄

aν̄μ
2
ν̄dφν̄

)2 + Σ

Δr
dr2

+r2dμ2
0 +

∑

ν̄

(r2 + a2
ν̄ )
(
dμ2

ν̄ + μ2
ν̄dφ

2
ν̄

)
, (4.66)

Δr =
∏

ν̄

(r2 + a2
ν̄ )− 2Mr, Σ =

(
μ2

0 +
∑

ν̄

r2μ2
ν̄

r2 + a2
ν̄

)
∏

μ̄

(r2 + a2
μ̄),
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discussed in more details in Appendix E. Indeed, if we identify indices ν̄ = 1, . . . , n̄
with indices i = 1, . . . ,m of Appendix E for coordinates μν̄, φν̄ and parameters aν̄ ,
and if we relate metric functions as Σ = rU , Δr = r(V − 2M), we recover metric
(E.7) with (E.8) in even dimensions (ε = 0).

4.5 Multi-Kerr–Schild form

In Sect. 4.5, we have seen that the Myers–Perry metric can be cast as a linear in
mass deformation of the flat space, that is in the Kerr–Schild form (E.29). The same
remains true for the higher-dimensional Kerr-(A)dS solutions (4.62) of Gibbons et al.
(2004, 2005), replacing the flat space with the corresponding maximally symmetric
geometry. Remarkably, in the presence of NUT charges, the on-shell metric (4.1) can
be written in the multi-Kerr–Schild form (Chen and Lu 2008), that is as a multi-linear
deformation of the maximally symmetric space, with deformation terms proportional
to generalized masses, see (4.82) below. The modified construction goes as follows.

Introducing the following complex null 1-forms μν and μ̄ν :

μν =
n−1∑

j=0

A( j)
ν dψ j + i

Uν

Xν
dxν, (4.67)

μ̄ν =
n−1∑

j=0

A( j)
ν dψ j − i

Uν

Xν
dxν, (4.68)

complemented with

ε̂
0 =

n∑

j=0

A( j)dψ j (4.69)

in odd dimensions, the canonical metric (4.1) reads

g =
∑

ν

1

2

Xν
Uν

(
μνμ̄ν + μ̄νμν

)+ ε
c

A(n)
ε̂

0
ε̂

0
. (4.70)

When all coordinates xν and ψ j are real, the null 1-forms μν and μ̄ν are complex
conjugate. If some x’s are imaginary, say xn = ir , the corresponding 1-forms are real
and independent.

Now we break the symmetry between μν and μ̄ν and eliminate μ̄ν using the fol-
lowing relation:

μ̄ν = μν − 2i
Uν

Xν
dxν . (4.71)

The metric (4.70) can be rewritten as

g =
∑

ν

Xν
Uν

μνμν − i
∑

ν

Xν
Uν

(
μνdxν + dxνμ

ν
)+ ε

c

A(n)
ε̂

0
ε̂

0
. (4.72)
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Expressing the on-shell metric functions Xν , (4.16), as a deformation of the back-
ground functions X̊ν :

Xν = X̊ν − 2bνx1−ε
ν , X̊ν = Xν |bκ=0, (4.73)

allows one to re-write the Kerr–NUT–(A)dS metric as

g = g̊ − 2
∑

ν

bνx1−ε
ν

Uν

μνμν, (4.74)

where the ‘background’ metric g̊ is given by the same expression (4.72), just with the
metric functions X̊ν ,

g̊ =
∑

ν

Xν
Uν

μνμν − i
∑

ν

X̊ν
Uν

(
μνdxν + dxνμ

ν
)+ ε

c

A(n)
ε̂

0
ε̂

0
. (4.75)

In order to be able to interpret the metric g̊ as the (A)dS metric written in the Kerr–
NUT–(A)dS form with metric functions X̊ν , one has to be able to write 1-forms μν

and ε̂
0 in terms of the background coordinates in a way analogous to (4.67) and (4.69),

μν =
n−1∑

j=0

A( j)
ν dψ̊ j + i

Uν

X̊ν
dxν, ε̂

0 =
n∑

j=0

A( j)dψ̊ j . (4.76)

These conditions can be formally solved for ψ̊ j

dψ̊ j = dψ j + i
∑

ν

(−x2
ν )

n−1− j 2bνx1−ε
ν

Xν X̊ν
dxν . (4.77)

One can even introduce the Kerr–Schild coordinates

dψ̂ j =
∑

ν

(−x2
ν )

n−1− j

Uν

μν, (4.78)

in terms of which

dψ̂ j = dψ j + i
∑

ν

(−x2
ν )

n−1− j

Xν
dxν = dψ̊ j + i

∑

ν

(−x2
ν )

n−1− j

X̊ν
dxν . (4.79)

Unfortunately, this construction is spoiled by complex character of various quanti-
ties. We have shown that the ‘background’ metric g̊ has the same form as the original
metric with metric functions X̊ν . However, this metric is, in general, complex. Indeed,
in (4.74) g is real, but null 1-forms μν are complex and thus g̊ is complex. It corre-
sponds to the fact that coordinates ψ̊ν are, in general complex, as can be seen from
(4.77), e.g., with xμ, ψ j , and bν real.
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Interestingly, there exists an important subcase when this construction gives a real
result. Let us assume that some of the coordinates xμ are Wick-rotated into imaginary
values. We have seen, that such a Wick rotation is needed for the Lorentzian signature,
when xn = ir . More generally, let us assume the Wick rotation for the last D − n̄
coordinates xν , for some n̄,

xν = irν for ν > n̄. (4.80)

Let us also assume that the corresponding NUT charges are also Wick-rotated and the
remaining NUT charges vanish,

bν = 0 for ν = 1, . . . , n̄,

bν = i Mν for ν = n̄ + 1, . . . n and D even,

bν = −Mν for ν = n̄ + 1, . . . n and D odd.

(4.81)

In this case the metric (4.74) takes the real multi-Kerr–Schild form

g = g̊ + 2
n∑

ν=n̄+1

Mνr1−ε
ν

Uν

μνμν, (4.82)

where the background metric g̊ and 1-forms μν and ε̂
0 are given by (4.75) and (4.76)

in terms of real background coordinates

dψ̊ j = dψ j +
∑

ν

(r2
ν )

n−1− j 2Mνr1−ε
ν

Xν X̊ν
drν. (4.83)

Clearly, for ν > n̄, 1-forms μν are real, and therefore also the background metric g̊ is
real.

The coordinates ψ̂ j need more attention. One has to modify their definition in such
a way that in (4.79) the sum runs only over Wick rotated coordinates.

The case when only one coordinate, xn = ir , is Wick rotated covers the Lorentzian
signature. It demonstrates, that the black hole solution (with vanishing NUT charges)
can be written in the standard Kerr–Schild form. The four-dimensional case discussed
in Sect. 3.7 is an example of this case, as well as the Kerr–Schild form of the Myers–
Perry solution discussed in Appendix E (after some additional effort of identifying
Myers–Perry and canonical coordinates).

The opposite case of the multi-Kerr–Schild form of the metric, when all xν coor-
dinates are Wick-rotated, can be related to an analogous discussion in Chen and Lu
(2008), where all coordinates ψ j have been Wick-rotated and the multi-Kerr–Schild
form has been obtained.

Finally, let us note that the principal tensor h is the same for the full metric g as
for the background metric g̊ and reads

h =
∑

ν

xν dxν ∧ μν. (4.84)

123



6 Page 94 of 221 V. P. Frolov et al.

In other words, the vector variants of 1-forms μν and ε̂
0 are the eigenvectors of

the principal tensor with eigenvalues −i xν and 0, respectively. They differ from the
eigenvectors mμ and ê0 discussed in Sect. 2.8 just by normalization,

mν = 1√
2

√
Xν
Uν

μν, ê0 =
√

c

A(n)
ε̂

0
. (4.85)

They correspond to principal null directions of the Weyl tensor (WANDs) (Hamamoto
et al. 2007; Krtouš et al. 2008; Mason and Taghavi-Chabert 2010; Kubizňák 2008). The
expressions (4.82) and (4.84) nicely demonstrate the connection between the existence
of the principal tensor and the form of the corresponding Kerr–Schild structure. See
also Ortaggio et al. (2009) for a more general discussion on higher-dimensional Kerr–
Schild spacetimes, and Monteiro et al. (2014), Luna et al. (2015) for a recent new twist
on applications of the Kerr–Schild form.
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5 Hidden symmetries of Kerr–NUT–(A)dS spacetimes

In the previous chapter the Kerr–NUT–(A)dS metric and its interpretation were dis-
cussed. Let us consider now the symmetries of this geometry in more detail. Namely,
we shall show that, similar to its four-dimensional counterpart, this metric admits the
principal tensor. The latter generates the whole tower of explicit and hidden symme-
tries. In fact, the geometry itself is uniquely determined by the principal tensor. Let us
begin exploring this remarkable geometric construction.

5.1 Principal tensor

It was shown in Frolov and Kubizňák (2007), Kubizňák and Frolov (2007) that the
Kerr–NUT–(A)dS geometry (4.1) in any number of dimensions admits the principal
tensor. According to the definition given in Chap. 2, this is a non-degenerate closed
conformal Killing–Yano 2-form h obeying

∇Xh = X ∧ ξ , ⇔ ∇ahbc = gab ξc − gac ξb, (5.1)

where ξ is given by

ξ = 1

D − 1
∇ · h ⇔ ξa = 1

D − 1
∇bhba . (5.2)

The non-degeneracy means that in D = 2n + ε dimensions, h has a maximal possi-
ble matrix rank 2n with n pairs of conjugate eigenvectors and associated imaginary
eigenvalues ±i xμ that are all functionally independent (and hence also non-constant).

The principal tensor reads

h =
n∑

μ=1

xμ dxμ ∧
(

n−1∑

k=0

A(k)μ dψk

)
=
∑

μ

xμ eμ ∧ êμ. (5.3)

The latter expression means that the frame (eμ, êμ) (and ê0 in odd dimensions) intro-
duced in the previous chapter, (4.7), is the special Darboux frame; the eigenvalues xμ
supplemented with the Killing coordinates ψk , are the canonical coordinates.

Since the principal tensor h is closed, there exists a local potential b,

b = 1

2

n−1∑

k=0

A(k+1)dψk, (5.4)

such that h = db.
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It turns out that ξ , given by (5.2), is a Killing vector,13

ξ = ∂ψ0 =
∑

μ

( Xμ
Uμ

)1
2
êμ + ε

( c

A(n)

)1
2
ê0. (5.5)

Since it will be used as a ‘seed’ for the constructions of other Killing vectors in the
Kerr–NUT–(A)dS spacetime, we call it a primary Killing vector. Thanks to (5.2), the
principal tensor h plays a role of a co-potential for the primary Killing vector ξ .

5.2 Killing tower

As we have already revealed in Chap. 2, from the principal tensor h one can generate the
whole tower of explicit and hidden symmetries of the Kerr–NUT–(A)dS geometry. We
call this set a Killing tower. In what follows we shall review two methods for generating
such a tower: a direct method of construction (based on theorems of Chap. 2) and the
method of a generating function.

5.2.1 Direct method of construction

The construction of the Killing tower goes as follows (Krtouš et al. 2007a; Frolov
2008; Frolov and Kubizňák 2008):

(i) By employing the theorem (2.86) of Chap. 2, one can construct a tower of closed
conformal Killing–Yano tensors by taking various wedge products of the principal
tensor h with itself (Krtouš et al. 2007a). Since h is a non-degenerate 2-form, this
gives the following n + 1 closed conformal Killing–Yano forms h( j) of increasing
rank 2 j ( j = 0, . . . , n):

h( j) = 1

j ! h
∧ j . (5.6)

Note that for j = 0 we have a trivial 0-form h(0) = 1. We also have h(n) = √
A(n) ε

and h(n) = √
A(n) ε · ê0 for even and odd dimensions, respectively. Here, as ear-

lier, ε is the Levi-Civita tensor.

13 Using the integrability relation (C.27), it is easy to show that

2(D − 2)∇(aξb) = hac Rc
b − Rac hc

b.

Thus for the on-shell metric, when Rac = 2
D−2Λgac , the vector ξ obeys the Killing equation. The same

conclusion remains also true for any off-shell Kerr–NUT–(A)dS metric. One way to demonstrate this is to
use the explicit form of the off-shell metric. However, it is also possible to prove this result without referring
to the metric, using only the properties of the principal tensor. This proof is involved and we present it later,
at the end of this chapter.

123



Black holes, hidden symmetries, and complete integrability Page 97 of 221 6

(ii) As discussed after (2.65), the Hodge dual of a closed conformal Killing–Yano
2 j-form h( j) is a Killing–Yano (D−2 j)-form, which we call f ( j):

f ( j) = ∗h( j). (5.7)

In particular, this gives the Levi-Civita tensor f (0) = ε for j = 0. In even dimen-
sions one has f (n) = √

A(n). In odd dimensions, f (n) = √
A(n) ê0. The vector

version of f (n) has to be a Killing vector. Namely, we get

f (n) = 1√
c
∂ψn . (5.8)

(iii) Partial contractions of squares of Killing–Yano forms f ( j) define the following
rank-2 Killing tensors k( j), cf. (2.76),

kab
( j) = 1

(D−2 j−1)! f ( j)a
c1...cD−2 j−1 f ( j)bc1...cD−2 j−1 . (5.9)

For j = 0, the Killing tensor reduces to the metric

kab
(0) = gab. (5.10)

For odd dimensions the top Killing tensor is reducible, k(n) = A(n) ê0 ê0 =
c−1∂ψn ∂ψn , whereas in even dimensions we define k(n) = 0.

(iv) Similarly, partial contractions of closed conformal Killing–Yano forms h( j) give
rank-2 conformal Killing tensors Q( j):

Qab
( j) = 1

(2 j−1)! h( j)a
c1...c2 j−1 h( j)bc1...c2 j−1 . (5.11)

We define Q(0) = 0, and introduce a simpler notation Q for the first conformal
Killing tensor:

Qab ≡ Qab
(1) = ha

c hbc. (5.12)

The conformal Killing tensors Q( j) contain essentially the same information as
the Killing tensors k( j). Namely, for all j = 1, . . . , n it holds

k( j) + Q( j) = A( j) g. (5.13)

where the scalar function A( j) can be expressed as

A( j) = h( j) • h( j) = f ( j) • f ( j) = 1

2 j
Q( j)

n
n = 1

D−2 j
k( j)

n
n . (5.14)
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Here we used the scalar product (A.5). It turns out that functions A( j) are exactly
the symmetric polynomials (4.2) introduced earlier. The conformal Killing ten-
sors and the Killing tensors are also related by

Qac
( j) = ha

b hc
d kbd

( j−1) = Qa
b kbc

( j−1). (5.15)

(v) We conclude our construction by defining the following vectors:

l( j) = k( j) · ξ . (5.16)

They turn out to be Killing vectors related to coordinates ψ j , namely l( j) =
∂ψ j . Since l( j) are constructed using the primary Killing vector ξ , we call them
secondary Killing vectors. For j = 0 we have l(0) = ξ . Since in even dimensions
the top Killing tensor k(n) vanishes by definition, we have l(n) = 0. On the other
hand in odd dimensions the top Killing vector is non-trivial and reads

l(n) =
√

cA(n) ê0 = ∂ψn . (5.17)

These Killing vectors can be generated from the Killing co-potentials ω( j), e.g.,
Kastor et al. (2009), Cvetic et al. (2011),

l( j) = ∇ · ω( j), (5.18)

where

ω
( j)
ab = 1

D−2 j−1
k( j)a

n hnb (5.19)

for j = 0, . . . , n − 1, and ω(n) = − 1
n!

√
c ∗(b ∧ h∧(n−1)) in odd dimensions.

Note that, apart from ω(0), the Killing co-potentials are not closed, dω( j) �= 0.
Let us also mention the following useful relation:

h · l( j) = 1

2
dA( j+1), (5.20)

which implies—through the Cartan identity and closeness of h—that the principal
tensor h is conserved along the vector fields l( j),

£l( j)h = 0. (5.21)

All the ‘Killing objects’ in the tower are generated from a single object, the principal
tensor. As a result they form an abundant structure, with many special algebraic and
differential relations among them. In particular, the Killing tensors k( j) and the Killing
vectors l( j) commute in the sense of the Nijenhuis–Schouten brackets:

[k(i), k( j)]NS = 0, [k(i), l( j)]NS = 0, [l(i), l( j)] = 0. (5.22)
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It means that the corresponding observables on the phase space

K j = kab
( j) pa pb, L j = la

( j) pa, (5.23)

are in involution, which is the key observation behind the complete integrability of
geodesic motion in Kerr–NUT–(A)dS spacetimes discussed in the next section. Note
also that since k(0) = g, the relations (5.22) directly imply that k( j) and l( j) are Killing
tensors and Killing vectors, respectively.

Remark For propagation of light, one can instead of the set {k(i), l( j)} use a different
set of Killing symmetries {Q(i), l( j)}, where each Killing tensor k(i) is replaced by the
corresponding conformal Killing tensors Q(i). By relation (5.13), Q(i) differs from
k(i) only by a term proportional to the metric. Consequently, the two tensors give the
same value of conserved quantities for null rays. Note also that (5.13) can be used
together with (5.22) to extract the commutation relations of the objects in the new set.
Namely, we find

[Q(i), Q( j)]abc
NS = α

(a
(i j)g

bc), [Q(i), l( j)]NS = 0, [l(i), l( j)] = 0. (5.24)

Here
α(i j) = [A(i), gA( j) − k( j)]NS + [gA(i) − k(i), A( j)]NS, (5.25)

and we used that [A(i), l( j)]NS = −£l( j) A(i) = 0. To obtain observables in the phase
space one needs to multiply the objects, which enter (5.24), by null vectors tangent
to the null ray. As a result the Poisson bracket algebra of the conserved quantities
corresponding to (5.24) becomes trivial. This justifies the complete integrability of
null geodesic motion. ��

Some properties of the above constructed Killing tower are simpler to prove than
others. Namely, by theorems of Chap. 2 we know that h( j), f ( j), k( j) and Q( j) are
closed conformal Killing–Yano forms, Killing–Yano forms, Killing tensors, and con-
formal Killing tensors, respectively. However, to show that l( j) are Killing vectors
(and in particular that ξ given by (5.2) is indeed a primary Killing vector) and to
demonstrate the commutation relations (5.22) poses a more difficult task. Of course,
one way to show these is a ‘brute force’ calculation, employing the explicit form of the
Kerr–NUT–(A)dS metric and the induced covariant derivative. However, it turns out
that it is possible to prove all these relations directly from the integrability conditions
of the principal tensor h, without referring to a particular form of the metric (Krtouš
2017). We will sketch the corresponding line of reasoning in Sect. 5.4.

5.2.2 Method of generating functions

There exists another (more compact) way for constructing the Killing tower (Krtouš
2017). Namely, it is possible to define a β-dependent Killing tensor k(β) and a β-
dependent Killing vector l(β), both functions of a real parameter β, such that the
Killing tensors k( j) and the Killing vectors l( j) in the Killing tower above emerge
as coefficients of the β-expansion of k(β) and l(β), respectively. This procedure is
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related to Krtouš et al. (2007a), Houri et al. (2008a), where generating function for
conserved observables is studied.

Starting with the conformal Killing tensor Q introduced in (5.12), we define a
β-dependent conformal Killing tensor

q(β) = g + β2 Q, (5.26)

and a scalar function

A(β) =
√

Det q(β)
Det g

. (5.27)

Using these definitions we introduce two more objects14

k(β) = A(β) q−1(β), (5.28)

and
l(β) = k(β) · ξ . (5.29)

One can show that these functions generate the objects from the Killing tower

k(β) =
∑

j

β2 j k( j), (5.30)

l(β) =
∑

j

β2 j l( j). (5.31)

One also has
A(β) =

∑

j

β2 j A( j). (5.32)

Since for a fixed β, k(β) is a linear combination of Killing tensors, it is itself a Killing
tensor, and similarly l(β) is a Killing vector. The commutativity relations (5.22) can
be reformulated as a requirement that the Killing tensors k(β) and the Killing vectors
l(β) commute for different β:

[ k(β1), k(β2) ]NS = 0, [ k(β1), l(β2) ]NS = 0, [ l(β1), l(β2) ]NS = 0. (5.33)

Similar generating functions can also be constructed for the tower of closed confor-
mal Killing–Yano and Killing–Yano forms, respectively. However, since such objects
are of increasing rank, the corresponding generating functions are inhomogeneous
forms, i.e. a mixture of forms of various ranks. Concretely, one can define h(β) as a
wedge exponential of the principal tensor h,

h(β) = ˆexp(βh) ≡
∑

j

1

j !β
jh∧ j , (5.34)

14 The inverse q−1 of a non-degenerate symmetric rank-2 tensor q is defined in a standard way: q ·q−1 = 1,
or in components, qac(q−1)bc = δb

a .
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and f (β) as its Hodge dual,
f (β) = ∗h(β). (5.35)

Since the definition (5.34) contains just a sum of wedge-powers of the principal
tensor, h(β) is a closed conformal Killing–Yano form, cf. (2.86). Its Hodge dual f (β)
then must be a Killing–Yano form. They satisfy the (closed conformal) Killing–Yano
conditions (2.63) and (2.62) adapted to inhomogeneous forms, namely

∇Xh(β) = X ∧ ξ(β), ∇X f (β) = X · κ(β), (5.36)

where ξ(β) and κ(β) are β-dependent inhomogeneous forms satisfying

(D − π) ξ(β) = ∇ · h(β), π κ(β) = ∇ ∧ f (β), (5.37)

with π being the rank operator (A.16). Surprisingly, in this case they can be written
as

ξ(β) = β ξ ∧ h(β), κ(β) = −β ξ · f (β). (5.38)

The right-hand sides of (5.36) are thus algebraic expressions in ξ , h(β), and f (β),
which shows that all the non-trivial information about the covariant derivative of h(β)
and f (β) is hidden in the primary Killing vector ξ . Inspecting the expansion of the
wedge exponential in (5.34) (which is finite due to fact that the rank of a form is
bounded by the spacetime dimension) and taking into account the linearity of the
Hodge dual in (5.35), we easily realize that h(β) and f (β) are generating functions
for h( j) and f ( j), respectively. It means that they satisfy relations similar to (5.30) and
(5.31),

h(β) =
∑

j

β j h( j), f (β) =
∑

j

β j f ( j). (5.39)

One could also establish relations analogous to (5.9) and (5.32). However, one would
have to properly define partial and total contractions for inhomogeneous forms, which
is possible, but will not be needed here.

5.2.3 Killing tower in a Darboux frame

The link between definitions (5.26)–(5.29) and expansions (5.30)–(5.32) can be estab-
lished by writing down all the quantities in the Darboux frame determined by the
principal tensor h. For that, it is sufficient to specify the Darboux frame just in terms
of the principal tensor, without refereing to its explicit coordinate form (4.7). How-
ever, if one seeks the expressions in terms of canonical coordinates, one can easily
substitute relations (4.7) and (4.8).
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As discussed in Sect. 2.8, the canonical Darboux frame is determined by the fol-
lowing two equations:

g =
∑

μ

(
eμeμ + êμ êμ

)+ ε ê0 ê0
, (5.40)

h =
∑

μ

xμ eμ ∧ êμ. (5.41)

We also know that in terms of the dual frame of vectors (eμ, êμ, ê0), the principal
tensor has eigenvalues ±i xμ, corresponding to the eigenvectors mμ = êμ + ieμ, and
m̄μ = êμ − ieμ, namely15

h · (êμ ∓ ieμ) = ±i xμ (êμ ∓ ieμ), (5.42)

in odd dimensions accompanied by an additional trivial eigenvalue:

h · ê0 = 0. (5.43)

The principal tensor thus splits the tangent space into n 2-planes spanned on pairs of
vectors eμ, êμ and, in odd dimensions, one degenerate direction ê0.

Using the equations (5.40) and (5.41) we can now establish the following results.
First, the definition (5.6) yields the explicit form for the closed conformal Killing–Yano
tower:

h( j) =
∑

ν1,...,ν j
ν1<···<ν j

xν1 . . . xν j e
ν1 ∧ êν1 ∧ · · · ∧ eν j ∧ êν j . (5.44)

In particular, this gives

h( j) • h( j) =
∑

ν1,...,ν j
ν1<···<ν j

x2
ν1
. . . x2

ν j
= A( j), (5.45)

establishing the first equality in (5.14). Next, calculating the partial traces (5.11), we
obtain

Q( j) =
∑

μ

x2
μ A( j−1)

μ

(
eμeμ + êμ êμ

)
, (5.46)

and in particular
Q =

∑

μ

x2
μ

(
eμeμ + êμ êμ

)
. (5.47)

To write down the tower of Killing–Yano forms f ( j) we need to distinguish the cases
of even and odd dimensions. In even dimensions the Levi–Civita tensor reads

ε = e1 ∧ ê1 ∧ · · · ∧ en ∧ ên
, (5.48)

15 When speaking about eigenvectors of a rank-2 tensor h, we always assume a proper adjustment of its
indices (by using the metric) to form a linear operator ha

b .
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giving the following expression for the Hodge duals (5.7):

f ( j) =
∑

xν1 . . . xν j e
μ j+1 ∧ êμ j+1 ∧ · · · ∧ eμn ∧ êμn , (5.49)

where the sum is over all splittings of indices 1, . . . , n into two disjoint ordered sets
ν1, . . . , ν j and μ j+1, . . . , μn . In odd dimensions the Levi–Civita tensor contains also
the degenerate direction

ε = ê0 ∧ e1 ∧ ê1 ∧ · · · ∧ en ∧ ên
, (5.50)

giving

f ( j) =
∑

xν1 . . . xν j eμ j+1 ∧ êμ j+1 ∧ · · · ∧ eμn ∧ êμn ∧ ê0 (5.51)

for the Killing–Yano tensors, where the sum has the same meaning as in even dimen-
sions. In both cases we immediately see that square-norms of f ( j) are

f ( j) • f ( j) =
∑

ν1,...,ν j
ν1<···<ν j

x2
ν1
. . . x2

ν j
= A( j), (5.52)

which proves the second equality in (5.14). The partial trace (5.9) gives the following
expressions for the Killing tensors k( j):

k( j) =
∑

μ

A( j)
μ

(
eμeμ + êμ êμ

)+ εA( j) ê0 ê0. (5.53)

Using a simple identity A( j) = A( j)
μ + x2

μA( j−1)
μ , we obtain relation (5.13). Finally,

taking into account the extra information (5.5) and orthogonality (5.41), we infer the
following form of the Killing vectors (5.16):

l( j) =
∑

μ

A( j)
μ

( Xμ
Uμ

)1
2
êμ + εA( j)

( c

A(n)

)1
2
ê0. (5.54)

The corresponding Killing co-potentials (5.19) take a very simple form (Cariglia et al.
2011a)

ω( j) = 1

D − 2 j − 1

∑

μ

xμA( j)
μ eμ ∧ êμ. (5.55)

Note that the relationship between ω( j) and the principal tensor h, (5.41), is ‘formally
analogous’ to the relationship between the Killing tensor k( j), (5.53), and the metric
g, (5.40).

Using the explicit form of the Darboux frame of the Kerr–NUT–(A)dS spacetime
(4.8), we can write the expressions for the Killing objects in terms of canonical coor-
dinates (xμ,ψk). It turns out that the expressions for the (conformal) Killing tensors
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do not take a particularly nice form, they are of the same order of complexity as
expression (4.4) for the inverse metric. For example,

k( j) =
n∑

μ=1

A( j)
μ

[
Xμ
Uμ

∂2
xμ + Uμ

Xμ

( n−1+ε∑

k=0

(−x2
μ)

n−1−k

Uμ

∂ψk

)2 ]+ ε
A( j)

A(n)
∂2
ψn
.

(5.56)
However, the expressions for Killing vectors simplify significantly,

l( j) = ∂ψ j . (5.57)

Killing coordinatesψ j are thus associated directly with the Killing vectors l( j) defined
through the contraction (5.16) of the Killing tensors with the primary Killing vector.

Let us conclude this section by writing explicitly down the β-dependent quantities.
Definitions (5.26) and (5.27) give

q(β) =
∑

μ

(1 + β2x2
μ)
(
eμeμ + êμ êμ

)+ ε ê0 ê0
, (5.58)

A(β) =
∏

ν

(1 + β2x2
ν ) =

n∑

j=0

A( j) β2 j , (5.59)

which justifies the expansion (5.32). Since the conformal Killing tensor q(β) is
expressed in the diagonal form (5.58), we can easily substitute its inversion into the
definition (5.28) of k(β) to obtain

k(β) =
(∏

ν

(1 + β2x2
ν )

)(∑

μ

1

1 + β2x2
μ

(
eμeμ + êμ êμ

)+ ε ê0 ê0

)
. (5.60)

Employing expansion (5.59), and similar expression for A( j)
μ , we arrive at

k(β) =
n∑

j=0

(
∑

μ

A( j)
μ

(
eμeμ + êμ êμ

)+ εA( j) ê0 ê0

)
β2 j , (5.61)

which is the expansion (5.30), cf. (5.53). With the help of (5.16), we also immediately
get the expansion (5.31) for the Killing vectors, which thanks to (5.57) reads

l(β) =
n∑

j

β2 j∂ψ j . (5.62)

5.3 Uniqueness theorem

It is obvious from the above construction of the Killing tower that the principal tensor
h determines uniquely a set of canonical coordinates. Namely, the set of n functionally
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independent eigenvalues xμ is supplemented by a set of n + ε Killing coordinates ψ j

associated with the Killing vectors l( j). It is then no such a wonder that the principal
tensor uniquely defines the corresponding geometry.16 This geometry has a local form
of the off-shell Kerr–NUT–(A)dS metric and is determined up to n arbitrary metric
functions of a single variable, Xμ = Xμ(xμ). It also possess a number of remarkable
geometric properties. Namely the following central theorem has been formulated in
Krtouš et al. (2008), culminating the previous results from Houri et al. (2007):

Uniqueness theorem The most general geometry which admits a principal tensor
can be locally written in the off-shell Kerr–NUT–(A)dS form (4.1). When the Einstein
equations are imposed, the geometry is given by the on-shell Kerr–NUT–(A)dS metric
described by the metric functions (4.16).

Moreover, this metric possesses the following properties:

Theorem The off-shell Kerr–NUT–(A)dS metric is of the special type D of higher-
dimensional algebraic classification. The geodesic motion in this spacetime is
completely integrable, and the Hamilton–Jacobi, Klein–Gordon, and Dirac equations
allow a separation of variables.

We refer to the literature (Houri et al. 2008a, 2007; Krtouš et al. 2008; Yasui 2008;
Houri et al. 2009; Yasui and Houri 2011; Krtouš 2017) for various versions of the proof
of the uniqueness theorem. The fact that the metric is of the type D (Hamamoto et al.
2007) of higher-dimensional algebraic classification (Coley et al. 2004; Ortaggio et al.
2013; Pravda et al. 2007) follows directly from studying the integrability conditions of
a non-degenerate conformal Killing–Yano 2-form (Mason and Taghavi-Chabert 2010).
The separability and integrability properties of the Kerr–NUT–(A)dS geometry will
be demonstrated in the next chapter.

Remark Perhaps the ‘shortest route’ to the uniqueness theorem and the Kerr–NUT–
(A)dS metric is through the separability structure theory for the Hamilton–Jacobi
and Klein–Gordon equations, see Sect. 2.3. Namely, the existence of the principal
tensor implies the existence of a Killing tower of symmetries, which in its turn implies
the separability of the Hamilton–Jacobi and Klein–Gordon equations. It then follows
that one can use the canonical metric constructed in Benenti and Francaviglia (1979)
admitting such separability structure. In the spirit of Carter’s derivation of the four-
dimensional Kerr–NUT–(A)dS metric (Carter 1968b), this then directly leads to the
higher-dimensional Kerr–NUT–(A)dS geometry (Houri et al. 2008a, 2007; Yasui and
Houri 2011), see also Kolář and Krtouš (2016). ��

Since the existence of a principal tensor h uniquely determines the off-shell Kerr–
NUT–(A)dS geometry, when discussing the Killing tower one does not need to strictly
distinguish among the properties that follow from general considerations with Killing–
Yano tensors, the properties that follow from the existence of a (general) Darboux
basis, and the properties that use the explicit form of the Darboux basis of the Kerr–
NUT–(A)dS geometry. However, all the properties of the Killing tower can be derived

16 As we mentioned in Sect. 2.8, we do not consider the exceptional null form of the principal tensor which
is possible for the Lorentzian signature. Such a case would lead, in general, to its own special geometry.

123



6 Page 106 of 221 V. P. Frolov et al.

directly from the properties of the principal tensor, without referring to the explicit
form of the metric.

Let us finally note that when the non-degeneracy condition on the principal tensor is
relaxed, one obtains a broader class of geometries that has been named the generalized
Kerr–NUT–(A)dS geometry (Houri et al. 2008b, 2009; Oota and Yasui 2010). This
class will be briefly reviewed in Sect. 7.4.

5.4 Proof of commutation relations

By now we have established most of the properties of objects in the Killing tower.
However, we have not yet proved the commutation relations (5.22) or (5.33). Since
k(0) = g, these relations in particular imply that k( j) and l( j) are Killing tensors and
Killing vectors, respectively. The fact that k( j) are Killing tensors follows directly
from their construction. However, that l( j) are Killing vectors we observed only using
the identity (5.5) and its consequences (5.57). In other words, we have used the explicit
form (4.1) of the Kerr–NUT–(A)dS metric. However, as mentioned above, it is possible
to demonstrate the commutativity (5.33) directly from the existence of the principal
tensor and without any reference to canonical coordinates, proving in particular that
l( j) are Killing vectors. We give here a brief overview of such a procedure, for details
see Krtouš (2017).

5.4.1 Commutation relations

Using the fundamental property (5.1) of the principal tensor and definitions (5.26),
(5.27), and (5.28), one can express covariant derivatives of the conformal Killing
tensor q(β), the function A(β), and the Killing tensor k(β) as follows:

∇c qab = 2β2 (gc(a hb)n + hc(a gb)n
)
ξn, (5.63)

∇a A = 2β2 ham kmn ξn, (5.64)

∇ckab = 2β2

A

(
kab kcn hn

m + hm
n kn(a kb)c + km(a kb)n hn

c) ξm . (5.65)

To shorten the expressions, here and in the rest of this section we omit the argument
β; to distinguish two different values of β we write k1 = k(β1), k2 = k(β2), and
similarly for l1 and l2 (do not confuse with k( j) and l(k)). In the following we shall
also sometimes work with rank 2 tensors as with matrices: denoting by A · B the
matrix multiplication and by the following square bracket the commutator:

[A, B] ≡ A · B − B · A. (5.66)

The explicit form (2.4) of the Nijenhuis–Schouten brackets (5.33) in terms of the
covariant derivative reads

[
k1, k2

]abc
NS

= 3
(
ke(a

1 ∇ekbc)
2 − ke(a

2 ∇ekbc)
1

)
, (5.67)
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[
k1, l2

]ab
NS

= 2 ke(a
1 ∇elb)

2 − le
2∇ekab

1 , (5.68)
[

l1, l2
]a

NS
= le

1∇ela
2 − le

2∇ela
1 . (5.69)

Upon substituting the definition (5.29) and the expression (5.65) to these equations,
the straightforward long calculation yields

[
k1, k2

]abc
NS

= 0, (5.70)
[
k1, l2

]ab
NS

= kam
1 (∇mξn) knb

2 + kam
2 (∇nξm) knb

1 , (5.71)
[

l1, l2
]a

NS
= (

kam
1 (∇mξn) knb

2 − kam
2 (∇mξn) knb

1

)
ξb. (5.72)

The Killing tensors k1 and k2 are diagonal in the same basis, cf. (5.53), so they
commute as linear operators, [k1, k2] = k1 · k2 − k2 · k1 = 0. If they also commute
with ∇ξ

[k,∇ξ ]a
b = ka

e (∇eξb)− (∇aξe) ke
b = 0, (5.73)

the last Nijenhuis–Schouten bracket (5.72) vanishes. The same is true for the second
bracket (5.71), if, additionally, ∇ξ is antisymmetric,

∇(aξb) = 0, (5.74)

which is clearly the Killing vector condition for ξ .
To summarize, the proof of the Nijenhuis–Schouten commutativity (5.22) reduces

to proving the properties (5.73) and (5.74) for the primary Killing vector ξ . It turns
out, that both these conditions follow in a complicated way from the integrability
conditions for the principal tensor. We discus this in more details in the next section.

5.4.2 Structure of the curvature

To complete the proof of the commutativity (5.22) we need first to discuss the inte-
grability conditions for the principal tensor and establish their implications for the
structure of the curvature tensor.

Applying the integrability relation (C.27) to the principal tensor h, we obtain the
following expression for the covariant derivative of ξ :

(D − 2)∇aξb = −Rac hc
b + 1

2
hcd Rcd

ab, (5.75)

which upon symmetrization gives

2(D − 2)∇(aξb) = hac Rc
b − Rac hc

b. (5.76)

The aim is to show that the right hand side vanishes, that is the principal tensor always
commutes with the Ricci tensor, and hence ξ is a primary Killing vector. This is trivial
if the spacetime satisfies the vacuum Einstein equations with a cosmological constant,
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since the Ricci tensor is then proportional to the metric. More generally we have the
following construction.

Writing down the integrability condition (C.29) for the principal tensor h, one
obtains

(D−2)Rab
e[c he

d] − hef Ref [a [c δb]
d] − 2R[a

e δ
b]
[c he

d] = 0. (5.77)

This condition puts rather strong restrictions on the curvature. In order to express
them in a compact way, let as introduce shortcuts for tensors obtained by various
combinations of the principal tensor h, the Riemann tensor R and the Ricci tensor
Ric.

First, let us denote by hp the p-th matrix power of h,

h p a
b = ha

c1 hc1
c2 · · · hcp−1

b. (5.78)

Let us emphasize obvious, it is a different operation than the wedge power used in the
definition of h( j), (5.6). Next we define the tensor Rh(p) as the contraction of hp with
the Riemann tensor in the first two indices

Rh(p)
ab = h p

cd Rcd
ab. (5.79)

Similarly, we define the tensor Rich(p) as the contraction of hp with the Riemann
tensor in other pair of indices

Rich(p)
ab = h p

cd Rc
a

d
b. (5.80)

The notation is motivated by the fact that for p = 0 we get just the Ricci tensor,
Rich(0) = Ric.

Rather non-trivial calculations (Krtouš 2017) show that the integrability condition
(5.77) implies that all contractions of the Riemann tensor with an arbitrary power of
h commute, in the sense of (5.66), with h itself,

[
Rh(p), h

] = 0,
[
Rich(p), h

] = 0. (5.81)

Moreover, for odd p the tensors Rich(p) trivially vanish.
In particular, the commutativity (5.81) tells us that [ Ric, h ] = 0, which guarantees

that the right hand side of (5.76) vanishes, proving thus that ξ is a Killing vector.
Moreover, (5.81) also implies that all the tensors Rh(p) and Rich(p) are diagonal in
the Darboux frame. Indeed, the vectors of the Darboux frame are eigenvectors of hp,
which guarantees that the Ricci tensor has to have the structure (4.11).

Taking a commutator of (5.75) with h, one obtains

(D−2)
[∇ξ , h

] = [
h,Ric

] · h + 1

2

[
Rh(1), h

]
. (5.82)
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Employing the commutativity (5.81), we find that the covariant derivative ∇ξ of the
primary Killing vector commutes with h,

[∇ξ , h
]= 0. (5.83)

However, the Killing tensor k(β) is defined as a function of Q, see definitions (5.26)
and (5.28), which is just Q = −h · h, cf. (5.12). Therefore, we also have

[∇ξ , k(β)
] = 0, (5.84)

which proves the condition (5.73).
Both conditions (5.73) and (5.74) thus follow from the integrability condition (5.77)

for the principal tensor. That concludes the proof of the Nijenhuis–Schouten commu-
tativity (5.33), respectively (5.22).

In Sect. 6.6 we will see that ξ can be used as a vector potential for a special
electromagnetic field which leads to an integrable motion of charged particles. The
result (5.83) thus shows, that its Maxwell tensor F = dξ = 2∇ξ commutes with the
principal tensor h and can also be skew-diagonalized in the Darboux basis.

5.5 Principal tensor as a symplectic structure

5.5.1 Motivation

In the construction of the Killing tower from the principal tensor we have defined
the Killing vectors l( j) by (5.16), or in terms of a generating function by (5.29). We
then claimed that we can associate Killing coordinates with these Killing vectors
and it turns out that those are exactly coordinates ψ j in the canonical metric (4.1),
namely l( j) = ∂ψ j . However, we also mentioned that this last equality is not obvious
and appears only after one reconstructs the full form of the metric, employing the
uniqueness theorem in Sect. 5.3.

Indeed, immediately after the definition (5.16), it is not clear that one can introduce
the common Killing coordinates (ψ0, . . . , ψn−1), concentrating on even dimensions,
where each ψ j would be constant along l(k) for k �= j and l( j) · dψ j = 1. For that, it
is sufficient to show that the Killing vectors Lie commute,

[
l(i), l( j)

] = 0, (5.85)

and that the Killing vectors leave coordinates xμ constant, l( j) · dxμ = 0.
The Lie commutativity (5.85) has been shown (in the terms of Nijenhuis–Schouten

brackets) in the previous section. However, this result can also be established by a
slightly different argument which possesses a beauty on its own and to this argument
we devote this section.
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5.5.2 Symplectic structure on the spacetime

The principal tensor h is a closed non-degenerate 2-form on the configuration space
M . As such it defines a symplectic structure on this space for M even-dimensional, and
a contact structure on M in the case of odd dimensions. To explore this idea, and since
we have not introduced contact manifolds, let us restrict to the case of even number
of dimensions. (The discussion in odd dimensions would proceed analogously.)

In even dimensions the principal tensor h thus plays a role of the symplectic structure
on the space M in the sense of the theory described in Sect. B.1. We can define its
inverse h−1, which in the Darboux basis reads

h−1 =
∑

μ

x−1
μ (eμ êμ − êμeμ). (5.86)

For any function f on M , we can define the associated Hamiltonian vector field
Ξ f as, cf. (B.3),

Ξ f = h−1 · d f. (5.87)

Note that we denoted this vector field in the D-dimensional spacetime M by Ξ in
order to distinguish it from a similar Hamiltonian vector field X on a 2D phase space.
We introduce the Poisson bracket of two functions f and g as follows

{ f, g}PT = d f · h−1 · dg, (5.88)

where “PT” stands for the principal tensor generated Poisson bracket.

Remark Let us stress that these operations are not related to analogous operations on
the relativistic particle phase space, which is realized as the cotangent space T∗M , see
Sect. B.4. The Hamiltonian vector Ξ f is an ordinary vector field on M . The bracket
(5.88) expects as arguments ordinary functions depending just on the position in M .
The dynamics of a relativistic particle is governed by the Hamiltonian on the phase
space T∗M and cannot be translated in a straightforward way to the language of the
symplectic geometry generated by the principal tensor h. ��

Let us state a couple of observations. First, from the discussion of the special
Darboux frame (2.122) in Sect. 2.8 it follows that êμ · dxν = 0, and therefore

{xμ, xν}PT = 0. (5.89)

As a consequence we see that the principal tensor Poisson bracket of any two functions,
which depend just on xμ coordinates, vanishes.

123



Black holes, hidden symmetries, and complete integrability Page 111 of 221 6

Next, the relations17 (5.20) actually mean that l( j) = −Ξ 1
2 A( j+1) . It motivates us to

introduce functions α j

α j = 1

2
A( j+1), j = 0, 1, . . . , n − 1, (5.90)

which can serve as coordinates instead of functions xμ. We thus have

{αi , α j }PT = 0, (5.91)

and
l( j) = −Ξα j . (5.92)

As an immediate consequence we obtain

l(i) · dα j = {αi , α j }PT = 0, (5.93)

cf. (B.6). Hence, the Killing vectors leave coordinates α j , as well as xμ, constant.
Similarly, using (B.8) we get

[
l(αi ), l(α j )

] = −Ξ {αi ,α j }PT
= 0, (5.94)

which proves that the Killing vectors Lie commute.
One can thus expect that it is possible to introduce associated coordinates ψ j .

This is actually provided by the Liouville’s procedure described in Sect. B.2. The
coordinates α j commute with each other, (5.91), and the Liouville’s procedure
teaches us that they can thus be complemented into a canonical set of coordinates
(α0, . . . , αn−1, ψ0, . . . , ψn−1) in which the symplectic form h reads

h =
∑

j

dα j ∧ dψ j . (5.95)

With the help of (B.12), it implies

l( j) = −Ξα j = ∂ψ j , Ξψ j = ∂α j . (5.96)

Killing vectors l( j) thus indeed define Killing coordinates ψ j . As we already dis-
cussed in Sect. 5.3, this observation is an important piece of the uniqueness theorem.
We established that the principal tensor defines canonical coordinates. The uniqueness
theorem additionally provides the explicit form of the metric in these coordinates.

17 Let us mention that relations (5.20) follow from the relation (5.64), together with the definition
(5.29) and expansions (5.32) and (5.31). They can thus be deduced directly from the properties of the
principal tensor, without referring to canonical coordinates. Also, here and below we use the relation

dA( j+1) = 2
∑
μ xμA( j)

μ dxμ, which follows from (D.12), for example.
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Let us conclude this section with some related observations. The symplectic poten-
tial (5.4) for the principal tensor can be written as

b =
∑

j

α j dψ j . (5.97)

Using the coordinates xμ instead of α j , see (5.90), one can rewrite the principal tensor
in the following form (5.3):

h =
∑

μ

xμdxμ ∧
⎛

⎝
∑

j

A( j)
μ dψ j

⎞

⎠ . (5.98)

We see that xμ andψ j are not canonically conjugate in the sense of the principal tensor
symplectic geometry. However, since α’s are functions of only x’s, the coordinate
vectors ∂ψ j introduced in (5.96) coincide with coordinate vectors ∂ψ j of the coordinate
set (xμ,ψ j ).

We could ask what are the coordinates canonically conjugate to xμ ≡ xμ. It is easy
to check that in terms of coordinates

πμ = xμ
∑

j

A( j)
μ ψ j , (5.99)

a 1-form b̃ defined as

b̃ = −
∑

μ

πμdxμ = −
∑

j

ψ j dα j , (5.100)

is also the symplectic potential for the principal tensor, h = db̃. It implies that

h =
∑

μ

dxμ ∧ dπμ, (5.101)

and (x1, . . . , xn, π1, . . . , πn) are canonical coordinates in the sense of the principal
tensor symplectic geometry.
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6 Particles and fields: Integrability and separability

In this chapter, we study particles and fields in the vicinity of higher-dimensional
rotating black holes. As can be expected their behavior reflects the rich structure of
hidden symmetries discussed in the previous chapter: the motion of particles and light
is completely integrable and the fundamental physical equations allow separation of
variables. Let us start our discussion with a brief overview of the discovery of these
unexpected properties.

The Kerr–NUT–(A)dS metric in four spacetime dimensions possesses a number of
remarkable properties related to hidden symmetries. In particular, those discovered
by Carter (1968a), Carter (1968b), Carter (1968c) include the complete integrability
of geodesic equations and the separability of the Hamilton–Jacobi and Klein–Gordon
equations. A natural question is whether and if so how far these results can be extended
to higher dimensions.

A first successful attempt on such a generalization, employing non-trivial hidden
symmetries, was made by Frolov and Stojković (2003b, a). In these papers the authors
generalized Carter’s approach to five-dimensional Myers–Perry metrics with two rota-
tion parameters, and demonstrated that the corresponding Hamilton–Jacobi equation
in the Myers–Perry coordinates allows a complete separation of variables. This enabled
to obtain an explicit expression for the second-rank irreducible Killing tensor present
in these spacetimes.18

These results were later generalized by Kunduri and Lucietti (2005) to the case
of a five-dimensional Kerr–(A)dS metric. Fields and quasinormal modes in five-
dimensional black holes are studied in Frolov and Stojković (2003b), Cho et al.
(2012b), Cho et al. (2011). Page and collaborators (Vasudevan et al. 2005a, b; Vasude-
van and Stevens 2005) discovered that particle equations are completely integrable
and the Hamilton–Jacobi and Klein–Gordon equation are separable in the higher-
dimensional Kerr–(A)dS spacetime, provided it has a special property: its spin is
restricted to two sets of equal rotation parameters. A similar result was obtained
slightly later for the higher-dimensional Kerr–NUT–(A)dS spacetimes subject to the
same restriction on rotation parameters (Davis 2006; Chen et al. 2006b). With this
restriction the Kerr–NUT–(A)dS metric becomes of cohomogeneity-two and possesses
an enhanced symmetry which ensures the corresponding integrability and separability
properties.

Attempts to apply Carter’s method for general rotating black holes in six and higher
dimensions have met two obstacles. First, the explicit symmetries of the Kerr–NUT–
(A)dS metrics are, roughly speaking, sufficient to provide only half of the required
integrals of motion. This means, that already in six dimensions one needs not one,
but two independent Killing tensors, and the number of required independent Killing
tensors grows with the increasing of number of spacetime dimensions. Second, more

18 Let us note here that Carter’s method had been used to study higher-dimensional black hole spacetimes
prior to the works (Frolov and Stojković 2003b, a). For example, in Gibbons and Herdeiro (1999), Herdeiro
(2000) the authors demonstrated the separability of the Hamilton–Jacobi and Klein–Gordon equations
for the five-dimensional so called BMPV black hole (Breckenridge et al. 1997). In this case, however,
the corresponding Killing tensor is reducible and the explicit symmetries of the spacetime are enough to
guarantee the obtained results.
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serious problem is that the separation of variables in the Hamilton–Jacobi equation
may exist only in a very special coordinate system. However, how to choose the
convenient coordinates was of course unknown. In particular, the widely used Myers–
Perry coordinates have an unpleasant property of having a constraint (E.9), which
makes them inconvenient for separation of variables in more than five dimensions.

The discovery of the principal tensor for the most general higher-dimensional Kerr–
NUT–(A)dS (Frolov and Kubizňák 2007; Kubizňák and Frolov 2007) spacetimes made
it possible to solve both these problems. Namely, the associated Killing tower contains
a sufficient number of hidden symmetries complementing the isometries to make the
geodesic motion integrable. Moreover, the eigenvalues of the principal tensor together
with the additional Killing coordinates, give the geometrically preferred canonical
coordinates in the Kerr–NUT–(A)dS spacetime. It turns out that exactly in these coor-
dinates the Hamilton–Jacobi as well as the Klein–Gordon equations separate. The
following sections are devoted to a detailed discussion of these results.

6.1 Complete integrability of geodesic motion

The geodesic motion describing the dynamics of particles and the propagation of
light in the Kerr–NUT–(A)dS spacetimes is completely integrable. In this section we
prove this result, discuss how to obtain particles’ trajectories, and how to introduce
the action–angle variables for the corresponding dynamical system.

6.1.1 Complete set of integrals of motion

We have learned in Sect. 2.1 that the motion of a free relativistic particle can be
described as a dynamical system with the quadratic in momenta Hamiltonian (2.10).
Turning to the Kerr–NUT–(A)dS spacetime, the towers of Killing tensors (5.9) and
Killing vectors (5.16) guarantee the existence of the following D = 2n + ε integrals
of geodesic motion, n of which are quadratic in momenta and n +ε of which are linear
in momenta:

K j = kab
( j) pa pb, j = 0, . . . n − 1,

L j = la
( j) pa, j = 0, . . . n − 1 + ε.

(6.1)

The observable K0 is, up to a trivial multiplicative constant, equivalent to the Hamil-
tonian of the system

H = 1

2
gab pa pb = 1

2
K0. (6.2)

Thanks to the commutation relations (5.22) all these observables are in involution
(Page et al. 2007; Krtouš et al. 2007a, b; Houri et al. 2008a):

{
Ki , K j

} = 0,
{

Ki , L j
} = 0,

{
Li , L j

} = 0, (6.3)

and in particular commute with the Hamiltonian. The motion of free particles in the
curved Kerr–NUT–(A)dS spacetime is thus complete integrable in the Liouville sense,
cf. Sect. B.2.
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For a particle with mass m the value of the constant K0 is −m2. As we already
explained, in the σ -parametrization, which we use, the above relations remain valid
in the limit m → 0, that is for massless particles. As mentioned in the remark after
equation (5.23) in Sect. 5.2, for a propagation of massless particles one can use a
different set of observables {K̃ j , L j }, where K̃ j are generated from the conformal
Killing tensors Q( j),

K̃ j = Qab
( j) pa pb, j = 0, . . . n − 1. (6.4)

The new observables are conserved and in involution, provided that the momenta
satisfy the zero-mass condition p2 = 0. Indeed, thanks to this constraint, the right-
hand sides of commutation relations (5.24) vanish, which implies the Poisson-bracket
commutation of the observables in the new set.

Remark It is interesting to note that the relations among the quadratic conserved
quantities K j are highly symmetric. One could actually study a space with the (inverse)
metric given by the Killing tensor k(i), and all the tensors k( j) would remain Killing
tensors with respect to this new metric, e.g., Rietdijk and van Holten (1996). This
fact is precisely expressed by the first condition (6.3), giving [k(i), k( j)]NS = 0 for
the Nijenhuis–Schouten brackets among these tensors. Similarly, all the vectors l( j)

remain to be Killing vectors with respect to the new metric. The geodesic motion
in any of the spaces with the metric given by k(i) is thus also complete integrable.
However, in this context one should emphasize that only the space with g = k(0) is
the Kerr–NUT–(A)dS spacetime. Spaces with the metric given by k(i), i > 0, neither
possess the principal tensor and the associated towers of Killing–Yano tensors, nor are
solutions of the vacuum Einstein equations. Moreover, although the geodesic motion
is integrable in these spaces, this is no longer true for the corresponding fields; the
symmetry among Killing tensors does not elevate to the symmetry of the corresponding
symmetry operators for the test fields in these spaces, see Sect. 6.3. ��

6.1.2 Particle trajectories

Substituting the coordinate expressions (5.56) and (5.57) into (6.1) gives the following
expressions for the integrals of motion in terms of momenta components pxμ = p ·∂xμ
and pψ j = p · ∂ψ j :

K j =
∑

μ

A( j)
μ

⎛

⎝ Xμ
Uμ

p2
xμ + Uμ

Xμ

(
n−1+ε∑

k=0

(−x2
μ)

n−1−k

Uμ

pψk

)2⎞

⎠+ ε
A( j)

cA(n)
p2
ψn
, (6.5)

L j = pψ j . (6.6)

These expressions can be ‘inverted’ and solved for the particle momenta. Namely,
summing equations (6.5) multiplied by (−x2

μ)
n−1− j over values j = 0, . . . , n−1+ε,

using the orthogonality relation (D.14), and some additional manipulations, gives
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pxμ = ±
√

Xμ K̃μ − L̃2
μ

Xμ
= ±

√
Xμ

Xμ
, (6.7)

pψ j = L j . (6.8)

Here we have introduced auxiliary functions

K̃μ =
n−1+ε∑

j=0

K j (−x2
μ)

n−1− j , (6.9)

L̃μ =
n−1+ε∑

j=0

L j (−x2
μ)

n−1− j , (6.10)

as well as their combination
Xμ = Xμ K̃μ − L̃2

μ. (6.11)

In odd dimensions we set Kn = L2
n/c. Functions K̃μ and L̃μ for different μ are given

by the same polynomial dependence and differ just by their argument, K̃μ = K̃ (xμ),
L̃μ = L̃(xμ). The coefficients K j and L j in these polynomials can be understood
either as conserved observables on the phase space or as numeric values of these
observables, i.e., constants characterizing the motion.

It is remarkable that the expression (6.7) for pxμ depends only on one variable
xμ. This property stands behind the separability of the Hamilton–Jacobi equation
discussed in the next section. Signs ± in equations (6.7) are independent for different
μ and indicate that for a given value of xμ there exist two possible values of momentum
pxμ . We will return to this point below when discussing a global structure of the level
set L(K ,L).

The trajectory of a particle can be found by solving the velocity equation,

ẋa = ∂H

∂pa
= gab pb. (6.12)

Employing the inverse metric (4.4), we obtain the expressions for the derivative of xμ
and ψ j with respect to the inner time σ

ẋμ = ±
√
Xμ

Uμ

, (6.13)

ψ̇ j =
∑

μ

(−x2
μ)

n−1− j

Uμ

L̃μ
Xμ

, for j = 0, . . . , n − 1,

ψ̇n = Ψn

cA(n)
−
∑

μ

1

x2
μUμ

L̃μ
Xμ

, for D odd.

(6.14)

Since the expressions for velocities ẋμ are independent of the Killing coordinates ψ j ,
one can integrate the equations for xμ andψ j in two steps. Namely after solving equa-
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tions (6.13), finding xμ(σ ), one substitutes these into equations (6.14) and integrates
the Killing coordinates ψ j .

However, Eqs. (6.13) for ẋμ are not decoupled since the factor Uμ mixes the
equations. In four dimensions, n = 2, these factors are, up to a sign, the same,
U1 = −U2 = Σ , cf. (3.8), and they can be eliminated by the time reparamatriza-
tion, cf. (3.50). For general n such a trick is not possible. However, the system can
still be solved by an integration and algebraic operations. In four dimensions such a
procedure was demonstrated by Carter (1968a), in the following we generalize it to
an arbitrary dimension.

First, we rewrite (6.13) as19

± (−x2
μ)

n−1− j

2
√
Xμ

ẋμ = (−x2
μ)

n−1− j

2Uμ

, (6.15)

where the factor in front of ẋμ on the l.h.s. is a function of xμ only. Such a function
can be, in principle, integrated

∫ xμ

x−
μ

(−x2
μ)

n−1− j

2
√
Xμ

dxμ. (6.16)

The integral must be over an interval which belongs to the allowed range of the
coordinate xμ and where Xμ > 0. This condition is satisfied between turning points
x−
μ and x+

μ , which are defined by Xμ = 0. It is natural to chose the lower integration
limit to be the smaller turning point x−

μ . With this choice we have also chosen the plus
sign in (6.15).

Next, we introduce a set of functions X j (x1, . . . , xn), j = 0, . . . , n − 1, given by
the sum of integrals (6.16):

X j =
∑

μ

∫ xμ

x−
μ

(−x2
μ)

n−1− j

2
√
Xμ

dxμ. (6.17)

In terms of these functions, the sum of equations (6.15) over μ gives

Ẋ j = 1

2

∑

μ

(−x2
μ)

n−1− j

Uμ

= 1

2
δ

j
0 , (6.18)

where the last equality follows from (D.15). We can now integrate over the time
parameter σ , to get

19 The factor 1/2 in these expressions is chosen for convenience, in order the final formulae can be directly
translated to the action–angle expressions below. In the following we also assume the existence of turning
points for the trajectories. This is automatically satisfied for xμ describing the angle variables, and restricts
the discussion to the bounded trajectories regarding the radial coordinate.
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X0 = 1

2
σ + X0

o = 1

2
σ + const., j = 0,

X j = X j
o = const., j = 1, . . . , n − 1.

(6.19)

Inverting ‘known’ relations (6.17) between X0, . . . , Xn−1 and x1, . . . , xn , one obtains
the time evolution of coordinates xμ(σ ) parametrized by constants K j , L j , and X j

o .
Substituting into equations (6.14) and integrating, one gets the time evolution ψ j (σ )

of the Killing coordinates parametrized by the same constants together with additional
integration constants ψ j

o .
The procedure (6.15)–(6.19) may seem as an ad hoc manipulation. However, as

we shall see below it is closely related to the Liouville construction for complete
integrable systems.

We demonstrated that as a result of the complete integrability of geodesic equations
in the higher-dimensional Kerr–NUT–(A)dS spacetimes, finding solutions of these
equations reduces to the calculation of special integrals. This integral representation
of the solution is useful for the study of general properties of particle and light motion in
these metrics. However, it should be emphasized that only in some special cases these
integrals can be expressed in terms of known elementary and special functions. Let
us remind that in four dimensions a similar problem can be solved in terms of elliptic
integrals, the properties of which are well known. The integrals describing particle
and light motion in higher dimensions contain square roots of the polynomials of the
order higher than four, and this power grows with the increasing number of spacetime
dimensions. Another complication is that the higher-dimensional problem depends
on a larger number of parameters. At present, the problem of classification of higher-
dimensional geodesics in Kerr–NUT–(A)dS metrics is far from its complete solution.
Here we give some references on the publications connected with this subject. The
particle motion in five-dimensional Kerr–(A)dS metrics was considered in Frolov and
Stojković (2003a), Kagramanova and Reimers (2012), Diemer et al. (2014), Delsate
et al. (2015). The papers Gooding and Frolov (2008), Papnoi et al. (2014) discuss the
shadow effect for five-dimensional rotating black holes. Different aspects of geodesic
motion in the higher-dimensional black hole spacetimes were discussed in Hackmann
et al. (2009), Enolski et al. (2011).

6.1.3 Conjugate coordinates on the level set

Having proved that the geodesic motion is completely integrable, let us now discuss
the corresponding level sets (here) and the construction of the action–angle variables
(below). For simplicity, in this exposition (till end of Sect. 6.1) we restrict ourselves
to the case of even dimensions, D = 2n.

Following the Liouville constructions, described in Sect. B.2, let us obtain a
generating function W (x, ψ; K , L), which allows us to change the original phase
space coordinates (xμ,ψ j ; pxμ, pψ j ) to new canonically conjugate coordinates
(X j , Ψ j ; K j , L j ), where K j and L j are the integrals of motion (6.1). It is given
by the integral (B.29), which now reads:
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W (x, ψ; K , L) =
∫

c

(∑

μ

pxμ(xμ; K , L) dxμ +
∑

j

pψ j (L j ) dψ j

)
. (6.20)

Here, the momenta pxμ and pψ j are given by (6.7) and (6.8) as functions of old
positions and new momenta and we have used the fact that pxμ depends only on xμ
and pψ j is given by L j . If we substitute (6.7) and (6.8) explicitly and use a curve c
that starts at ψ j = 0 and at turning values x−

μ of variables xμ, we obtain

W (x, ψ; K , L) =
∑

μ

∫ xμ

x−
μ

√
Xμ

Xμ
dxμ +

∑

j

L jψ j . (6.21)

As we shall see, this is precisely the separated Hamilton’s function (6.36) and (6.38),
for the Hamilton–Jacobi equation studied in the next section, recovering the general
relation W = S, (B.39).

The generating function W defines new coordinates X j and Ψ j , that are conjugate
to observables K j and L j , as follows:

X j = ∂W

∂K j
=
∑

μ

∫ xμ

x−
μ

(−x2
μ)

n−1− j

2
√
Xμ

dxμ,

Ψ j = ∂W

∂L j
= ψ j +

∑

μ

∫ xμ

x−
μ

L̃μ
Xμ

(−x2
μ)

n−1− j

√
Xμ

dxμ.

(6.22)

Since the integrand in (6.21) vanishes at turning point x−
μ , we could ignore the deriva-

tive of the lower integral limit, despite the fact that x−
μ depends on K j .

Clearly, X j are exactly the integrals introduced in (6.17). However, Ψ j are not the
same as the original ψ j . Canonical Poisson brackets read

{Xi , K j } = δi
j , {Ψ i , L j } = δi

j , (6.23)

all other being zero. Since the Hamiltonian is H = 1
2 K0, the Hamilton equations for

X j and Ψ j are just Ẋ j = 1
2δ

j
0 , cf. (6.18), and Ψ̇ j = 0. All X j and Ψ j are thus

constants except X0 = 1
2σ + const. Inverting the relations (6.22) to xμ(X, Ψ ) and

ψ j (X, Ψ ) gives the trajectory of the particle.

6.1.4 Action–angle variables

Let us remind that for a completely integrable system with D degrees of freedom
there exists D independent integrals of motion in involution Pi . We called a level set a
D-dimensional submanifold of the phase space LP , where these integrals have fixed
values. According to general theory (Arnol’d 1989; Goldstein et al. 2002) if this level
set is compact, it has a structure of multi-dimensional torus with an affine structure,
and one can introduce the so called action–angle variables.
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Remark The affine structure of the level set LP refers to the fact that coordinates
Q, on the level set, which are conjugate to P , are given uniquely up to a linear
transformation. In other words, if one uses a different combination of integrals of
motions P̄ , the corresponding conjugate coordinates Q̄ are related to Q on the given
level set by a linear transformation. Action of the Hamilton flow associated with any
of the conserved quantities is linear in the sense of affine structure—all conserved
quantities generate Abelian group of translations on the level set. The torus structure
of the level set must be compatible with the affine structure. However, its existence can
be understood only after taking into account interpretation of the involved variables.

��

In the Kerr–NUT–(A)dS spacetime the conserved quantities are P = (K , L) and
the corresponding level set is L(K ,L). As in the general case, this set is a Lagrangian
submanifold, where the momenta pa can be found as functions of the coordinates
(xμ,ψ j ) and conserved quantities, cf. equations (6.7) and (6.8). We see that relations
(6.7) are independent for each plane xμ–pxμ . In each of these planes the condition
(6.7) defines a closed curve which spans the range (x−

μ , x+
μ ) between turning points x±

μ

for which Xμ = 0. The curve has two branches over this interval, one with pxμ > 0,
another with pxμ < 0.

The turning points x±
μ should exist for angular coordinates xμ since the ranges of

these coordinates are bound. Situation can be different for the radial coordinate r (Wick
rotated xn). Depending on the values of conserved quantities, one can have two turning
points (bounded orbits), one turning point (scattering trajectories), or no turning points
(fall into a black hole). For simplicity, here we discuss only the case where there are
two turning points for r . Thus, one has a full torus structure in the x-sector of the
level set. The torus structure in Killing coordinates ψ j is also present. Condition (6.8)
just fixes the momenta to be constant, but leaves the angles unrestricted. However,
some linear combination of Killing angles ψ j defines angular coordinates ϕμ, which
are periodic. In the maximally symmetric case or for the Myers–Perry solution these
coordinates are simply φμ discussed previously. In the periodic coordinates we get the
explicit torus structure. The only exception is the time direction, for which one has an
infinite range with a translation symmetry.

When the toroidal structure of the level set is identified, the angle variables are
those linear coordinates adjusted to the torus which have period 2π . The canonically
conjugate coordinates can be calculated as integrals

1

2π

∫

c
padxa (6.24)

over a closed loop c circling the torus exactly once in the direction of the angle variable.
Similarly to discussion in Sect. B.2, the integral does not depend on a continuous
deformation of the curve. One can thus deform these curves either in such a way
that they belong only to one of xμ–pxμ planes, which defines the action variable Iμ
conjugate to angle αμ, or, one can use such a curve that only ϕμ changes, which defines
the action variable Aμ conjugate to the angle variable ϕμ. Thus we have
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Iμ = 1

π

∫ x+
μ

x−
μ

√
Xμ

Xμ
dxμ,

Aμ = 1

2π

∫ 2π

0

∑

k

Lk
∂ψk

∂ϕμ
dϕμ =

∑

k

Lk
∂ψk

∂ϕμ
.

(6.25)

Here we have used that the integral over a loop in the xμ–pxμ plane is twice the integral
between the turning points, and that ∂ψk/∂ϕ

μ are constants.
These relations should be understood as relations between conserved quantities

(I, A) and (K , L). Indeed, the action variables just give a different labeling of the
level sets L(K ,L). These expressions can be, in principle, inverted, and substituted into
the generating function (6.21), defining thus a generating function from original to the
action-angle coordinates,

W (x, ψ; I, A) = W
(
x, ψ; K (I, A), L(I, A)

)
. (6.26)

The angle variables can now be obtained by taking derivatives of W with respect to
Iμ and Aμ,

αμ = ∂W

∂ Iμ
=
∑

j

X j ∂K j

∂ Iμ
,

Φμ = ∂W

∂Aμ
=
∑

j

X j ∂K j

∂Aμ
+
∑

j

Ψ j ∂L j

∂Aμ
,

(6.27)

where we used (6.22). As expected, the angle variables (α,Φ) are just a linear combi-
nation of (X, Ψ ). The constant coefficients ∂K j/∂ Iμ and ∂L j/∂Aμ can be calculated
as inverse matrices to ∂ Iμ/∂K j and ∂Aμ/∂L j , and

∂K j

∂Aμ
= −

∑

ν,k

∂K j

∂ Iν

∂ Iν
∂Lk

∂Lk

∂Aμ
. (6.28)

The form of the inverse coefficients follows from (6.25),

∂ Iμ
∂K j

= 1

π

∫ x+
μ

x−
μ

(−x2
μ)

n−1− j

2
√
Xμ

dxμ,

∂ Iμ
∂L j

= 1

π

∫ x+
μ

x−
μ

L̃μ
Xμ

(−x2
μ)

n−1− j

√
Xμ

dxμ,

∂Aμ
∂L j

= ∂ψ j

∂ϕμ
,

(6.29)

where, again, it is safe to ignore derivatives of integral limits x±
μ .

To summarize, the action variables (I, A) are defined by (6.25). The conjugate
angle variables (α,Φ) are related to (X, Ψ ) by linear relations (6.27), and (X, Ψ ) are
defined in (6.22). It should be mentioned that although in the definition of the action
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variable Iμ we used the loop circling the torus just in xμ–pxμ plane, the conjugate angle
variable αμ is not a function of just one coordinate xμ, it depends on all coordinates
(x1, . . . , xn). Similarly, in the inverse relations, xμ depends on all angles αν . However,
the coordinates xμ are multiply-periodic functions of angle variables. When any angle
αν changes by period 2π , all xμ return to their original values, cf. general discussion
in Chapter 10 of Goldstein et al. (2002).

6.2 Separation of variables in the Hamilton–Jacobi equation

As discussed in Sect. B.3, the particle motion can also be described in terms of the
Hamilton–Jacobi equation. For an autonomous completely integrable system one can
write down not only the Hamilton–Jacobi equation (B.40)

H(x, dS) = const., (6.30)

but also the Hamilton–Jacobi equations (B.42) for all conserved quantities.
The relativistic particle is an autonomous system (physical observables do not

depend explicitly on time parameter σ ) and, as we have just seen, in the Kerr–
NUT–(A)dS spacetime it is complete integrable. The Hamilton–Jacobi equations
corresponding to the conserved quantities (6.1) read

dS · k( j) · dS ≡ kab
( j)S,a S,b = K j . (6.31)

l( j) · dS ≡ la
( j)S,a = L j , (6.32)

The spacetime gradient dS of the Hamilton–Jacobi function S(x; K , L) contains infor-
mation about partial derivatives with respect to spacetime coordinates xμ, ψ j of a
spacetime point x

dS =
∑

μ

∂S

∂xμ
(x; K , L) dxμ +

∑

j

∂S

∂ψ j
(x; K , L) dψ j . (6.33)

Here K = (K0, . . . , Kn−1) and L = (L0, . . . , Ln−1+ε) are constants labeling values
of conserved quantities K j and L j for the induced particle motion. Explicit forms of
the Hamilton–Jacobi equations are obtained by using coordinate expressions (5.56)
and (5.57), giving

K j =
∑

μ

A( j)
μ

⎛

⎜⎝
Xμ
Uμ

( ∂S

∂xμ

)2+Uμ
Xμ

⎛

⎝
n−1+ε∑

k=0

(−x2
μ)

n−1−k

Uμ

∂S

∂ψ j

⎞

⎠
2
⎞

⎟⎠+ε A( j)

cA(n)

( ∂S

∂ψn

)2
,

(6.34)

L j = ∂S

∂ψ j
. (6.35)
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Since H = 1
2 K0, cf. (6.2), we do not have to consider the Hamilton–Jacobi equation

(6.30) separately, it is part of the system (6.31)–(6.32). It also implies that constant
K0 is given by the mass of the particle, K0 = −m2.

The symmetry structure of the Kerr–NUT–(A)dS spacetime has a remarkable con-
sequence. All the Hamilton–Jacobi equations (6.31) and (6.32) can be solved using
an additive separable ansatz

S =
∑

μ

Sμ +
n−1+ε∑

j=0

L j ψ j , (6.36)

where each Sμ ≡ Sμ(xμ) is a function of just one variable xμ (of course, Sμ depends
also on constants K j and L j ).

Indeed, the linear dependence on the Killing coordinates ψ j directly solves equa-
tions (6.35). Separability in the xμ coordinate guarantees that ∂S

∂xμ
= S′

μ. Upon

multiplying the equations (6.34) by (−x2
μ)

n−1− j , and summing together, using rela-
tions (D.14), gives the following equation for Sμ:

(S′
μ)

2 = K̃μ

Xμ
− L̃2

μ

X2
μ

= Xμ
X2
μ

, (6.37)

where the functions K̃μ, L̃μ, and Xμ are defined by (6.9)–(6.11). Each of these func-
tions, as well as the metric function Xμ, depend just on one variable xμ. The equation
(6.37) is thus an ordinary differential equation in a single variable, which justifies
the consistency of the ansatz (6.36). Finding the Hamilton–Jacobi function S is thus
equivalent to integrating the ordinary differential equations (6.37), giving

Sμ =
∫ xμ

x−
μ

√
Xμ

Xμ
dxμ, (6.38)

where, similar to (6.16), we start the integration at the (smaller) turning point x−
μ ,

where Xμ = 0.

Remark In Sect. 2.3 we have mentioned that the separability of the Hamilton–Jacobi
equation can be characterized by the corresponding separability structure (Benenti and
Francaviglia 1979, 1980; Demianski and Francaviglia 1980; Kalnins and Miller 1981).
The off-shell Kerr–NUT–(A)dS geometry possesses (n + ε)-separability structure.
Indeed, we can identify the ingredients of the first theorem of Sect. 2.3 as follows: in
D = 2n + ε dimensions, the Kerr–NUT–(A)dS geometry has n + ε Killing vectors
l( j), j = 0, . . . , n − 1 + ε, and n Killing tensors k( j), j = 0, . . . , n − 1. (i) All
these objects commute in the sense of Nijenhuis–Schouten bracket, (5.22), and (ii) the
Killing tensors have common eigenvectors ∂xμ which obviously Lie-bracket commute
with the Killing vectors l( j) = ∂ψ j and which are orthogonal to the Killing vectors.
All the requirements of the theorem are thus satisfied and the result follows. ��
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6.3 Separation of variables in the wave equation

The symmetry of the Kerr–NUT–(A)dS metric not only allows one to solve the particle
motion, but also provides separability of various test field equations. In this section
we demonstrate that the massive scalar field equation

(� − m2)φ = 0 (6.39)

allows a complete separation of variables in the Kerr–NUT–(A)dS spacetime (Frolov
et al. 2007). Here, as earlier, we defined the scalar wave operator as

� = gab∇a∇b. (6.40)

Remark The box-operator in (6.40) is, in a sense, a first quantized version of the
Hamiltonian (6.2). Similarly, one could define a second-order operatorK = −∇akab∇b

for any symmetric second-rank tensor k. This can be understood as a ‘heuristic first
quantization’ of a classical observable K = kab pa pb, using the rule p → −i∇. Of
course, when applying this rule one has to chose a particular operator ordering. In
our example we have chosen the symmetric ordering. In principle, one could also use
a different (from the Levi-Civita) covariant derivative. However, all these alternative
choices would lead to operators that differ in lower order of derivatives, which could
be studied separately. ��

In the Kerr–NUT–(A)dS spacetime the tower of Killing tensors (5.9) and Killing
vectors (5.16) defines a tower of the following associated second-order and first-order
operators:

K j = −∇akab
( j)∇b, (6.41)

L j = −i la
( j)∇a, (6.42)

with the wave operator (6.40) equivalent to K0. It is then natural to ask about the
commutation properties of these operators, as an operator analogy to (6.3). In general,
it can be shown (Carter 1977; Kolář and Krtouš 2015) that two second-order operators
constructed from the corresponding tensors k1 and k2 commute in the highest-order
in derivatives provided the Nijenhuis–Schouten bracket of the two tensors vanishes,
[k1, k2]NS = 0. However, to guarantee the commutativity to all orders, some additional
‘anomalous conditions’ must be satisfied, see Carter (1977), Kolář and Krtouš (2015).

Since in the Kerr–NUT–(A)dS spacetimes all the operators (6.41) and (6.42) are
generated by a single object, the principal tensor, it is not so surprising that the anoma-
lous conditions hold and all these operators mutually commute (Sergyeyev and Krtouš
2008; Kolář and Krtouš 2015):[

Kk,Kl
] = 0,

[
Kk,Ll

] = 0,
[
Lk,Ll

] = 0. (6.43)

Commutativity can be also proved directly, by using the coordinate expressions for
these operators (Sergyeyev and Krtouš 2008):

L j = −i
∂

∂ψ j
, (6.44)
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K j =
∑

μ

A( j)
μ

Uμ

K̃μ, (6.45)

where each K̃μ involves only one coordinate xμ and Killing coordinates ψ j :

K̃μ = − ∂

∂xμ

[
Xμ

∂

∂xμ

]
− ε

Xμ
xμ

∂

∂xμ

− 1

Xμ

[n−1+ε∑

k=0

(−x2
μ)

n−1−k ∂

∂ψk

]2

− ε
1

cx2
μ

[
∂

∂ψn

]2

. (6.46)

The commutativity (6.43) implies that the operators K j and L j have common
eigenfunctions φ,

K jφ = K jφ, L jφ = L jφ, (6.47)

which can be labeled by the eigenvalues K j and L j . These eigenfunctions can be
found by a separation of variables (Frolov et al. 2007; Sergyeyev and Krtouš 2008).
Namely, starting with the multiplicative separation ansatz

φ =
∏

μ

Rμ

n−1+ε∏

k=0

exp
(
i Lkψk

)
, (6.48)

where each function Rμ depends only on one coordinate xμ, Rμ = Rμ(xμ), one can
show that equations (6.47) are equivalent to conditions

(XμR′
μ)

′ + ε
Xμ
xμ

R′
μ + Xμ

X2
μ

Rμ = 0. (6.49)

These are ordinary differential equations for functions Rμ, which can be solved, at
least in principle. Here, functions Xμ are the same as before, defined by (6.9)–(6.11).

Remark The separability of the wave equation is again in an agreement with the theory
of separability structures mentioned in Sect. 2.3. In the previous section we have
already shown that the Kerr–NUT–(A)dS geometry possesses (n + ε)-separability
structure. To fulfill the second theorem of Sect. 2.3, which guarantees the separability
of the wave equation, one has to show that the eigenvectors ∂xμ are eigenvectors of the
Ricci tensor. However, the Ricci tensor is diagonal in the special Darboux frame, (4.11),
and vectors ∂xμ are just rescaled vectors eμ, cf. (4.8). This justifies the separability of
the Klein–Gordon equation in off-shell Kerr–NUT–(A)dS spacetimes. ��

Let us finally note that the Hamilton–Jacobi equations discussed in the previous
section can be actually understood as a semiclassical approximation to the wave-like
equations (6.47). In such an approximation one looks for a solution in the form

φ = A exp
( i

h̄
S
)
, (6.50)
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which when plugged into equations (6.47) with each derivative weighted by h̄, and
looking for the highest order in the limit h̄ → 0, gives the Hamilton–Jacobi equations
(6.31)–(6.32) for S, cf. Frolov et al. (2007), Sergyeyev and Krtouš (2008).

Remark When discussing the complete integrability of geodesic motion in the previ-
ous section, we mentioned that the geodesic motion in spaces with the metric given by
any of the Killing tensors k(i) is also complete integrable. This property, however, does
not elevate to the corresponding wave equations. Namely, the operators (6.41) given
by the covariant derivative associated with the metric k(i), i �= 0, no longer mutually
commute; the anomalous conditions needed for the operator commutativity are satis-
fied only for the Levi-Civita derivative associated with the Kerr–NUT–(A)dS metric.
In particular, the Ricci tensors associated with the metric given by higher (i > 0)
Killing tensors are not diagonal in the common frame of eigenvectors of all Killing
tensors and the separability structure does not obey the extra condition needed for the
separation of the Klein–Gordon field equation, see Kolář (2014), Kolář and Krtouš
(2015) for more details. ��

6.4 Dirac equation

The solution of the massive Dirac equation in the Kerr–NUT–(A)dS spacetimes can be
found in a special (pre-factor) separated form and the problem is transformed to a set
of ordinary differential equations. Similar to the massive scalar equation, this solution
is obtained as a common eigenfunction of a set of mutually commuting operators, one
of which is the Dirac operator.

6.4.1 Overview of results

The study of Dirac fields in a curved spacetime has a long history. In 1973 Teukolsky
rephrased the Dirac massless equation in Kerr spacetime in terms of a scalar ‘funda-
mental equation’ which could be solved by a separation of variables. However, such
an approach does not work for the massive Dirac equation and it is difficult to gener-
alize it to higher dimensions. There is yet another method which goes along the lines
we used for the scalar wave equation: one can postulate the multiplicative ansatz for
the solution of the Dirac equation and obtain independent (but coupled) differential
equations for each component in this ansatz.

This approach dates back to the seminal paper of Chandrasekhar who in 1976
separated and decoupled the Dirac equation in the Kerr background (Chandrasekhar
1976), see Sect. 3.5. A few years later, Carter and McLenaghan (1979) demonstrated
that behind such a separability stands a first-order operator commuting with the Dirac
operator which is constructed from the Killing–Yano 2-form of Penrose (1973). This
discovery stimulated subsequent developments in the study of symmetry operators of
the Dirac equation in curved spacetime.

In particular, the most general first-order operator commuting with the Dirac oper-
ator in four dimension was constructed by McLenaghan and Spindel (1979). This work
was later extended by Kamran and McLenaghan (1984b) to R-commuting symmetry
operators. Such operators map solutions of the massless Dirac equation to other solu-
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tions and correspond to symmetries which are conformal generalizations of Killing
vectors and Killing–Yano tensors.

With recent developments in higher-dimensional gravity, the symmetry operators
of the Dirac operator started to be studied in spacetimes of an arbitrary dimension
and signature. The first-order symmetry operators of the Dirac operator in a general
curved spacetime has been identified by Benn and Charlton (1997) and Benn and
Kress (2004). The restriction to the operators commuting with the Dirac operator has
been studied in Cariglia et al. (2011a).

The higher-dimensional Dirac equation has been also studied in specific spacetimes.
In the remarkable paper Oota and Yasui (2008) separated the Dirac equation in the
general off-shell Kerr–NUT–(A)dS spacetime, generalizing the results (Chandrasekhar
1976; Carter and McLenaghan 1979) in four dimensions. The result of Oota and Yasui
(2008) has been reformulated in the language of a tensorial separability and related to
the existence of the commuting set of operators in Wu (2008, 2009c), Cariglia et al.
(2011b), and generalized to the presence of a weak electromagnetic field in Cariglia
et al. (2013a). Even more generally, separability of the torsion modified Dirac equation
was demonstrated in the presence of U (1) and torsion fluxes of the Kerr–Sen geometry
and its higher-dimensional generalizations (Houri et al. 2010b) as well as in the most
general spherical black hole spacetime of minimal gauged supergravity (Wu 2009a, b),
see also Kubizňák et al. (2009), Houri et al. (2010a). The Dirac symmetry operators
in the presence of arbitrary fluxes were studied in Acik et al. (2009), Kubizňák et al.
(2011).

Before we review the results for Kerr–NUT–(A)dS spacetimes, let us make one
more remark. Although the first-order symmetry operators are sufficient to justify
separability of the massless Dirac equation in the whole Plebanski–Demianski class of
metrics in four dimensions or separability of the massive Dirac equation in Kerr–NUT–
(A)dS spacetimes in all dimensions, they are not enough to completely characterize
all Dirac separable systems and one has to consider higher-order symmetry operators,
e.g., McLenaghan et al. (2000). In particular, there are known examples (Fels and
Kamran 1990) where the Dirac equation separates but the separability is related to
an operator of the second-order. It means that the theory of separability of the Dirac
equation must reach outside the realms of the so called factorizable systems (Miller
1988), as such systems are fully characterized by first-order symmetry operators.

In the following we review the separability results for the Dirac equation in the
Kerr–NUT–(A)dS spacetime (Oota and Yasui 2008; Cariglia et al. 2011a, b). A short
overview of Dirac spinors in a curved spacetime of an arbitrary dimension can be found
in Sect. F.1. In the same appendix, in Sect. F.2, one can also find a characterization
of the first order operators that commute with the Dirac operator. Using these general
results, we show below that the general off-shell Kerr–NUT–(A)dS spacetime admits
a set of mutually commuting first-order operators including the Dirac operator, whose
common eigenfunctions can be found in a tensorial R-separable form.

6.4.2 Representation of Dirac spinors in Kerr–NUT–(A)dS spacetimes

We want to study the Dirac operator and its symmetries in the Kerr–NUT–(A)dS
spacetime. For that we have to specify the representation of the gamma matrices. As
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discussed in Sect. F.1, the choice of representation is equivalent to the choice of a
frame ϑ E in the Dirac bundle associated with the orthonormal Darboux frame (4.8) in
the tangent space T M in such a way that components γ a A

B of the gamma matrices
are constant and satisfy

γ a γ b + γ b γ a = 2 gab I. (6.51)

Following Oota and Yasui (2008), 2n-dimensional Dirac bundle can be chosen as the
tensor product of n two-dimensional bundles S M , i.e., D M = Sn M . We use Greek
letters ε, ς, . . . for tensor indices in these 2-dimensional spaces and values ε = ±1
(or just ±) to distinguish their components. In the Dirac bundle, we choose a frame
ϑ E in a tensor product form:

ϑ E = ϑε1...εn = ϑε1 ⊗ · · · ⊗ ϑεn , (6.52)

where ϑ+ and ϑ− form a frame in the 2-dimensional spinor space S. With such a choice
we have a natural identification of Dirac indices E with the multi-index {ε1, . . . , εn}.

A generic 2-dimensional spinor can thus be written as χ = χεϑε = χ+ϑ+ +
χ−ϑ−, with components being two complex numbers

(
χ+
χ−
)

. Similarly, the Dirac

spinors ψ ∈ DM can be written as ψ = ψε1...εn ϑε1...εn with 2n components ψε1...εn .
Before we specify the components of the gamma matrices in this frame, let us

introduce some auxiliary notations. Let I , ι, σ , and σ̂ be the unit and respectively
Pauli operators on S M with components

I ες =
(

1 0
0 1

)
, ιες =

(
1 0
0 −1

)
, σ ες =

(
0 1
1 0

)
, σ̂ ες =

(
0 −i
i 0

)
. (6.53)

Next, for any linear operator α ∈ S1
1 M we denote by α〈μ〉 ∈ D1

1 M a linear operator on
the Dirac bundle

α〈μ〉 = I ⊗ · · · ⊗ I ⊗ α ⊗ I ⊗ · · · ⊗ I, (6.54)

with α on theμ-th place in the tensor product. Similarly, for mutually different indices
μ1, . . . , μ j we define

α〈μ1...μ j 〉 = α〈μ1〉 · · ·α〈μ j 〉, (6.55)

that means that α’s are on the positions μ1, . . . , μ j in the product.
Equipped with this notation, we are now ready to write down the abstract gamma

matrices with respect to the frame (eμ, êμ, ê0
) given by (4.8) in the tangent space and

ϑ E given by (6.52) in the Dirac bundle:

γ μ = ι〈1...μ−1〉 σ〈μ〉, γ μ̂ = ι〈1...μ−1〉 σ̂〈μ〉, γ 0 = ι〈1...n〉. (6.56)

The odd gamma matrix γ 0 is defined only in an odd dimension. It is straightforward
to check that the matrices (6.56) satisfy the property (6.51).
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In components, the action of these matrices on a spinor ψ = ψε1...εn ϑε1...εN is given
as

(γ μ ψ)ε1...εn =
(μ−1∏

ν=1

εν

)
ψε1...(−εμ)...εn ,

(γ μ̂ ψ)ε1...εn = −iεμ
(μ−1∏

ν=1

εν

)
ψε1...(−εμ)...εn ,

(γ 0 ψ)ε1...εn =
( n∏

ν=1

εν

)
ψε1...εn .

(6.57)

Finally, we also use a shorthand

γ a1...ap = γ [a1 . . . γ ap]. (6.58)

6.4.3 Dirac symmetry operators in Kerr–NUT–(A)dS spacetimes

The Kerr–NUT–(A)dS spacetime is equipped with the full tower of Killing–Yano
symmetry objects. As discussed in Sect. F.2, such objects allow one to define first-
order operators that commute with the Dirac operator. In fact, as we now demonstrate,
it is possible to choose such a subset of Killing–Yano symmetries that yields a full
set of D first-order operators, one of which is the Dirac operator D, that all mutually
commute.

Namely, we can use n + ε explicit symmetries described by Killing vectors. Using
(F.29), for each Killing vector l( j) we thus have the corresponding operator L j ,

L j = Kl( j) = la
( j)∇a + 1

4

(∇[alb]
( j)

)
γab, j = 0, 1, . . . , n + ε. (6.59)

These operators can be complemented with n operators (F.30) constructed from the
even closed conformal Killing–Yano forms h(k),

Mk = Mh(k)

= 1

(2k)! γ
aa1...a2k h(k)a1...a2k

∇a + 1

2(2k−1)!
D − 2k

D−2k+1

(∇ch(k)ca2...a2k

)
γ a2...a2k ,

(6.60)
k = 0, 1, . . . , n. In particular, for k = 0 we get, as a special case, the Dirac operator

itself, D = M0. (See Appendix F for a more compact notation for these operators.)
It turns out that the strong symmetry structure of the off-shell Kerr–NUT–(A)dS

spacetime is sufficient to guarantee that these operators mutually commute (Cariglia
et al. 2011b):

[Li , L j ] = 0, [Mk, Ml ] = 0, [L j ,Mk] = 0. (6.61)

They thus have common spinorial eigenfunctions and one can hope that these can be
found in a separable form.
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To demonstrate that, we first write down the operators in an explicit coordinate
form. The operators L j are related to the explicit symmetry along the Killing vectors
l( j) = ∂ψ j . They thus have the following simple coordinate form:

L j = ∂

∂ψ j
. (6.62)

The coordinate form of Mk is much more complicated, and in particular one needs
to know the explicit form of the spin connection. This is listed in Appendix D.2.
To illustrate the structure of Mk , we just write it down in an even dimension, see
Cariglia et al. (2011b) for the results in odd dimensions and their derivation. The
even-dimensional Mk reads

M j = i j
∑

μ

√
Xμ
Uμ

B( j)
μ

(
∂

∂xμ
+ X ′

μ

4Xμ
+ 1

2

∑

ν
ν �=μ

1

xμ−ι〈μν〉xν

−i
ι〈μ〉
Xμ

∑

k

(−x2
μ)

N−1−k ∂

∂ψk

)
γ μ, (6.63)

where the matrices B(k)μ are ‘spinorial analogues’ of functions A( j)
μ , cf. (4.2),

B(k)μ =
∑

ν1,...,νk
ν1<···<νk , νi �=μ

ι〈ν1〉xν1 · · · ι〈νk 〉xνk . (6.64)

6.4.4 Tensorial R-separability of common eigenfunctions

Now we can formulate the desired result: the commuting symmetry operators L j and
Mk have common spinorial eigenfunctions ψ

L jψ = i L jψ, (6.65)

Mkψ = Mkψ, (6.66)

which can be found in the tensorial R-separated form

ψ = R exp
(
i
∑

j L jψ j
) ⊗

ν

χν . (6.67)

Here,
{
χν
}

is an n-tuple of 2-dimensional spinors and R is the Clifford-valued pref-
actor

R =
∏

κ,λ
κ<λ

(
xκ + ι〈κλ〉xλ

)− 1
2
. (6.68)

As a part of the separation ansatz we ask that χν depends only on the variable xν ,
χν = χν(xν).
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In terms of components, this reduces to the ansatz made in Oota and Yasui (2008):

ψε1...εn = φε1...εn exp
(
i
∑

j L jψ j
)∏

ν

χενν . (6.69)

Here, φε1...εn is a diagonal element of the prefactor R,

φε1...εn =
∏

κ,λ
κ<λ

(
xκ + εκελxλ

)− 1
2
. (6.70)

Plugging the multiplicative ansatz (6.67) into equations (6.65) and (6.66), one finds
that they are satisfied if each of the two-dimensional spinors χμ satisfies the ordinary
differential equation in xμ which, in an even dimension, reads

[( d

dxν
+ X ′

ν

4Xν
+ L̃ν

Xν
ι〈ν〉
)

σ 〈ν〉 − 1√|Xν |
(−ι〈ν〉

)n−ν M̃ν

]
χν = 0. (6.71)

Here, the function L̃ν of a single variable xμ is again given by (6.10),

L̃μ =
∑

j

L j (−x2
μ)

n−1− j , (6.72)

and, similarly, we introduced the spinorial function M̃μ

M̃ν =
∑

k

(−i)k Mk (−ι〈ν〉xν)n−1−k . (6.73)

Taking the component ς = ± of the spinorial equation (6.71) we get

( d

dxν
+ X ′

ν

4Xν
− ς

L̃ν
Xν

)
χ−ς
ν −

(−ς)n−ν
√|Xν | M̃ς

ν χ
ς
ν = 0, (6.74)

with
M̃ς
ν =

∑

k

(−i)k Mk (−ςxν)
n−1−k . (6.75)

For each ν, these are two coupled ordinary differential equations for components
χ+
ν and χ−

ν , which can be easily decoupled by substituting one into another. In other
words, the problem of solving the massive Dirac equation in general Kerr–NUT–(a)dS
spacetimes can be recast as a problem of solving a number of decoupled ordinary
differential equations for components of the corresponding multi-dimensional spinor.
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6.5 Tensor perturbations

The demonstrated separability of the Hamilton–Jacobi, Klein–Gordon, and Dirac
equations in the general higher-dimensional Kerr–NUT–(A)dS spacetime created
hopes that higher spin equations might also possess this property. In particular, there
were hopes that the electromagnetic and gravitational perturbations can be solved by
either a direct separation of the corresponding field equations, or by their reduction
to a master equation, which, in its turn, is separable. In spite of many attempts, only
partial results were obtained. In this section we briefly discuss the tensor perturbations
and return to the electromagnetic fields in the next section.

The study of gravitational perturbations of black holes is key for understanding
their stability, and is especially important in higher dimensions where many black
holes are expected to be unstable and may (as indicated in recent numerical studies)
branch to other black hole families, e.g., Choptuik et al. (2003), Lehner and Pretorius
(2010), Dias et al. (2009), Dias et al. (2010a), Dias et al. (2010b), Dias et al. (2014),
Figueras et al. (2016), or even result in a formation of naked singularities (Figueras
et al. 2017). The separability and decoupling of gravitational perturbations would also
significantly simplify the study of quasi-normal modes of these black holes or the
study of Hawking radiation.

The gravitational perturbations have been analytically studied for higher-dimensi-
onal black holes with no rotation, e.g., Gibbons and Hartnoll (2002), Kodama and
Ishibashi (2003), Ishibashi and Kodama (2003), or for black holes subject to restric-
tions on their rotation parameters, e.g., Kunduri et al. (2006), Kodama (2009), Murata
and Soda (2008a), Murata and Soda (2008b), Kodama et al. (2009), Kodama et al.
(2010), Oota and Yasui (2010), Murata (2011), Murata (2013). Such black holes
possess enhanced symmetries and are of a smaller co-homogeneity than the general
Kerr–NUT–(A)dS spacetime. This allows one to decompose the corresponding per-
turbations into ‘tensor, vector and scalar’ parts that can be treated separately, yielding
the corresponding master equations, e.g., Kunduri et al. (2006).

By the time this review is written it is unknown whether there exists a method
which would allow one to separate and decouple gravitational perturbations of the
general Kerr—NUT–(A)dS spacetimes. For example, as shown in papers by Durkee
and Reall (2011a), Durkee and Reall (2011b) this goal cannot be achieved by following
the ‘Teukolsky path’, employing the higher-dimensional generalization of Newman–
Penrose or Geroch’s formalisms (Pravdová and Pravda 2008; Durkee et al. 2010)
building on Coley et al. (2004), Pravda et al. (2004), Ortaggio et al. (2007).

To conclude this section, let us briefly comment on a partial success by Oota and
Yasui (2010), who demonstrated the separability of certain type of tensor perturbations
in generalized Kerr–NUT–(A)dS spacetimes. In our discussion of the Kerr–NUT–
(A)dS spacetimes we assumed that the principal tensor is non-degenerate, that is, it
has n functionally independent eigenvalues, that were used as canonical coordinates.
One obtains a more general class of metrics once this assumption is violated. The cor-
responding metrics, called the generalized Kerr–NUT–(A)dS solutions, were obtained
in Houri et al. (2009, 2008b), and we will discuss them in more detail in Chap. 7.
Here we just describe some of their properties that are required for the formulation
of the results of Oota and Yasui (2010). The generalized metric has N essential coor-
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dinates which are non-constant eigenvalues of the principal tensor, |m| parameters
which are non-zero constant eigenvalues, and the degeneracy of a subspace respon-
sible for the vanishing eigenvalue is m0. The total number of spacetime dimensions
is thus D = 2N + 2|m| + m0. This space has a bundle structure. Its fiber is a 2n-
dimensional Kerr–NUT–(A)dS metric. All other dimensions form the base space. The
tensor perturbations, analyzed in Oota and Yasui (2010), are those, that do not per-
turb the fiber metric and keep the bundle structure. These tensor perturbations admit
the separation of variables and the corresponding field equations reduce to a set of
ordinary second-order differential equations.

6.6 Maxwell equations

The study of electromagnetic fields in general Kerr–NUT–(A)dS spacetimes is a com-
plicated task. In particular, the procedure leading to the Teukolsky equation in four
dimension (Teukolsky 1972, 1973) does not work in higher dimensions (Durkee and
Reall 2011a, b). However, recently there was an important breakthrough in the study
of possible separability of higher-dimensional Maxwell equations in the Kerr–NUT–
(A)dS spacetimes. Namely, Lunin (2017) succeeded to separate variables for some
specially chosen polarization states of the electromagnetic field in the Myers–Perry
metrics with a cosmological constant. In a general D-dimensional case, the number
of polarizations of such a field is D − 2. Lunin proposed a special ansatz for the field
describing two special polarizations and demonstrated that it admits separation of vari-
ables. He also demonstrated how such a solution relates to the solution obtained in the
Teukolsky formalism in four dimension. However, if one can obtain other components
by a similar ansatz is still under investigation.

In the rest of this section we discuss yet other interesting test electromagnetic fields,
namely fields aligned with the principal tensor. They include, for example, the field
of weakly charged and magnetized black holes. It turns out, that they constitute the
most general test electromagnetic field that preserves the integrability properties of
the Kerr–NUT–(A)dS geometry.

6.6.1 Wald’s trick: electromagnetic fields from isometries

The study of electromagnetic fields in the vicinity of (rotating) black holes in four
dimensions has interesting astrophysical applications and has been investigated by
many authors, see e.g., Wald (1974), King et al. (1975), Bičák and Dvořák (1977),
Bičák and Dvořák (1976), Bičák and Dvořák (1980), Bičák and Janiš (1985), Aliev
and Galtsov (1989), Penna (2014). There is also a number of exact solutions of the
Einstein–Maxwell system, ranging from the Kerr–Newman solution for the charged
black hole (Newman and Janis 1965; Newman et al. 1965) to magnetized black holes
of Ernst (Ernst 1968, 1976). However, it is often possible to restrict the description to
a test field approximation assuming that the electromagnetic field obeys the Maxwell
equations but does not backreact on the geometry.

A particularly elegant way for describing the behavior of certain test electromag-
netic fields near a rotating black hole is due to Wald (1974). The Wald approach is
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based on the well known fact (Papapetrou 1966) that any Killing vector field ξ obeys
the following two equations:

∇aξ
a = 0, �ξa + Ra

bξ
b = 0. (6.76)

The first equation is an immediate consequence of the Killing equation (2.20), whereas
the latter follows from its integrability condition, cf. (C.16) for p = 1. These two
equations are to be compared with the wave equation supplemented by the Lorenz
gauge condition:

∇a Aa = 0, �Aa − Ra
b Ab = 0, (6.77)

for the electromagnetic vector potential A. This means that in a vacuum spacetime
any Killing vector can serve as a vector potential for a test Maxwell field,

A = e ξ , F = e dξ , (6.78)

where the constant e governs the field strength. Therefore a special set of test elec-
tromagnetic fields in the background of vacuum spacetimes can be genarated simply
by using the isometries of these spacetimes. In such a way one can generate a weakly
charged Kerr black hole, or immerse this black hole in a ‘uniform magnetic field’
(Wald 1974).

Of course, the same trick also works in higher dimensions. This fact was used in
Aliev and Frolov (2004) for a study of the gyromagnetic ratio of a weakly charged
five-dimensional rotating black hole in an external magnetic field. This was later
generalized to the Myers–Perry spacetimes (Aliev 2006).

In the presence of a cosmological constant Λ the Ricci tensor

Rab = 2

D − 2
Λgab (6.79)

does not vanish and the Killing vector ξ can no longer be used as a vector potential for
the test electromagnetic field. The situation improves when the spacetime possesses
a closed conformal Killing–Yano 2-form h (Frolov et al. 2017). Namely, let ξ be a
primary Killing vector,20 then the following ‘improved’ electromagnetic field:

F = e
(
dξ + 4Λ

(D − 1)(D − 2)
h
)

(6.80)

satisfies the source-free Maxwell equations ∇ · F = 0.
As we mentioned earlier, in the Kerr–NUT–(A)dS spacetime in the canonical coor-

dinates, the components of the principal tensor hab do not depend on the metric
parameters. Thus, the operation (6.80) can be interpreted as a subtraction from dξ a

20 A similar construction does not work for the secondary Killing vectors. One could try to use the Killing
vector co-potentials (5.19) instead of the principal tensor as a correction term. However, they are not closed,
dω( j) �= 0 for j > 0, and cannot thus play a role of the correction to the electromagnetic field based on
dl( j).
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similar quantity, calculated for the corresponding (anti-)de Sitter background metric.
This prescription was used by Aliev (2007b, a) for obtaining a weakly charged version
of the Kerr–(A)dS black holes in all dimensions. The weakly charged and magnetized
black rings were studied in Ortaggio and Pravda (2006); Ortaggio (2005).

6.6.2 Aligned electromagnetic fields

A wide class of test electromagnetic fields in the Kerr–NUT–(A)dS spacetimes has
been constructed in Krtouš (2007). These fields are aligned with the geometry of the
Kerr–NUT–(A)dS background: they are constant along the explicit symmetries of the
spacetime and their Maxwell tensor commutes with the principal tensor. Concentrating
again on even dimensions (see Krtouš 2007; Cariglia et al. 2013a for the detailed
discussion) such a field can thus be written as

F =
∑

μ

fμ eμ ∧ êμ, (6.81)

where the components fμ = fμ(x1, . . . , xn) are independent of Killing directionsψ j .
Since the Maxwell tensor must be closed, dF = 0, it is locally generated by the vector
potential A. The most general field with the structure (6.81) then corresponds to the
vector potential given by21

A =
∑

μ

gμxμ
Uμ

√
Uμ

Xμ
êμ, (6.82)

where each function gμ = gμ(xμ) depends only on one variable xμ. In terms of these
function, the components fμ are

fμ = gμ
Uμ

+ xμ g′
μ

Uμ

+ 2 xμ
∑

ν
ν �=μ

1

Uν

xν gν − xμ gμ
x2
ν − x2

μ

. (6.83)

This electromagnetic field represents the off-shell complement of the off-shell Kerr–
NUT–(A)dS geometry. Its structure is sufficient to generalize most of the symmetry
properties of the geometry to the situation with a background test electromagnetic
field. However, the field (6.81) with components fμ given by (6.83) does not necessary
satisfy the source free Maxwell equations. The corresponding current J a = ∇b Fab

21 Various expressions below contain rescaled 1-forms

√
Xμ
Uμ

eμ = dxμ and

√
Uμ
Xμ

êμ = ∑
k A(k)μ dψk .

They have even simpler form than 1-forms eμ and êμ themselves and they could be used as a natural frame.
However, such a frame is not normalized and we do not introduce it here explicitly, although, in some
expressions we keep these terms together.
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is22

J = −2
∑

μ

∂

∂x2
μ

[∑

ν

x2
ν g′

ν

Uν

] √
Xμ
Uμ

êμ. (6.84)

Imposing the vacuum Maxwell equations, J = 0, we find the on-shell field for
which the functions gμ integrate to

gμ = eμ + 1

xμ

n−1∑

k=0

c̃k x2k
μ , (6.85)

with eμ and c̃k being constants. Moreover, it turns out that the second term is a pure
gauge and can be ignored. The on-shell aligned test electromagnetic field can thus be
written as

A =
∑

μ

eμxμ
Uμ

∑

k

A(k)μ dψk . (6.86)

It is parameterized by n constants eμ, μ = 1, . . . , n, which correspond to an electric
charge and magnetic charges associated with rotations along different directions. If
we set all charges except one, say eν , to zero, the Maxwell tensor F corresponds to
the harmonic form G(ν)(2) found in Chen and Lu (2008), see also Chow (2010).

Another special choice is obtained upon setting gμ = e Xμ/xμ, with a constant e
characterizing the strength of the field. In this case the vector potential (6.82) reduces
to the primary Killing vector (5.2),

A = e ξ . (6.87)

The corresponding current reads J = 2(2n − 1)eλ ξ , where λ is the cosmological
constant parameter (4.19). Thus, for the vanishing cosmological constant we recover
the source-free electromagnetic field given by the Wald construction (6.78).

One can also recover the ‘improved’ electromagnetic field (6.80) which is source-
free for the on-shell Kerr–NUT–(A)dS background with a non-vanishing cosmological
constant, i.e., when Xμ is given by (4.19). The second term in (6.80) can be induced
by adding the correction −eλ(−x2

μ)
n to xμgμ = eXμ. This cancels exactly the term

with the highest power of xμ in Xμ. In fact, all other even-power terms in Xμ give
only a gauge trivial contribution to the potential and do not contribute to the Maxwell
tensor. The ‘improved’ field (6.80) is thus solely given by the linear terms in functions
Xμ, determining the charges of the source-free aligned field as

eμ = −2ebμ. (6.88)

22 Notice that in Krtouš (2007), the relations (2.20) and (2.21) for the source in even dimensions have a
wrong sign.
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The vector potential of the ‘improved’ field reads

A = −2
∑

μ

bμxμ
Uμ

√
Uμ

Xμ
êμ. (6.89)

6.6.3 Motion of charged particles

Let us now investigate the motion of charged particles in the ‘weakly charged’ Kerr–
NUT–(A)dS spacetimes penetrated by the aligned electromagnetic field (6.82). A
special case of the field (6.87) has been investigated in Frolov and Krtouš (2011) and
Cariglia et al. (2013a).

The following results have been shown in Kolář and Krtouš (2016). The off-shell
aligned electromagnetic field (6.82) is the most general electromagnetic field in the
Kerr–NUT–(A)dS background for which the motion of charged particles is integrable
and the corresponding Hamilton–Jacobi equations for all conserved quantities are
separable. The charged generalization of the conserved quantities (6.1) for the particle
with a charge q are

K j = kab
( j) (pa − q Aa) (pb − q Ab),

L j = la
( j) pa .

(6.90)

The solution S of the Hamilton–Jacobi equations can be found again using the sep-
arability ansatz (6.36), to obtain the following modified differential equations (6.37)
for the functions Sμ:

(S′
μ)

2 = K̃μ

Xμ
− (L̃μ − qgμxμ)2

X2
μ

. (6.91)

6.6.4 Weakly charged operators

Similarly, one can also study test scalar and Dirac fields in the weakly charged Kerr–
NUT–(A)dS spacetimes.

Let us start by considering a charged scalar field, characterized by the charge q.
Then the requirement of commutativity of the following charged scalar operators:

K j = −[∇a − iq Aa] kab
( j) [∇b − iq Ab],

L j = −i la
( j)∇a,

(6.92)

constructed from the Killing tensors and Killing vectors of the Kerr–NUT–(A)dS
spacetimes imposes severe conditions on the electromagnetic field (Kolář and Krtouš
2016). These conditions are satisfied for the off-shell aligned electromagnetic field
(6.82). The corresponding charged operators thus have common eigenfunctions which
can be written in a separated form (6.48). The differential equation for the functions
Rμ in the charged modify to

(XμR′
μ)

′ +
(

K̃μ − 1

Xμ
((L̃μ − qgμxμ)

2)
)

R′
μ = 0. (6.93)
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Similarly, the symmetry operators of the Dirac operator can be generalized to the
charged case (Cariglia et al. 2013a) and the common eigenfunctions can be found in
a tensorial separable form (6.67). The equations (6.71) for the two-component spinor
functions χμ again only modify by changing L̃μ → L̃μ − qgμxμ.

6.6.5 On a backreaction of the aligned fields

As demonstrated above, the aligned electromagnetic field (6.82) extends naturally
most of the properties of Kerr–NUT–(A)dS spacetimes based on their high symmetry
to the charged case, albeit this electromagnetic field is only a test field and does not
modify the geometry itself. A natural question arises: is it possible to backreact this
electromagnetic field to obtain the full solution of the Einstein–Maxwell system?

To answer this question, it is interesting to note that the expressions (6.81) for
the Maxwell tensor, (6.82) for the vector potential, and (6.84) for the current do not
contain a reference to the metric functions Xμ. Indeed, the square roots of Xμ exactly
compensate normalization factors included in the frame elements. It gives a hope that
the metric functions could be chosen such that the geometry represents the gravitational
back reaction of the aligned electromagnetic field. Even the stress-energy tensor of the
electromagnetic field is diagonal in the Darboux frame (Krtouš 2007), and corresponds
thus to the structure of the Ricci tensor (4.11). Unfortunately, except for the case of
four dimensions, the diagonal elements of the Einstein equations do not match and,
therefore, the Einstein equations with the electromagnetic field as a source cannot be
satisfied (Krtouš 2007) (see also Aliev and Frolov 2004 for similar attempts).

Only in four dimensions the metric functions can be chosen so that the Einstein
equations are fulfilled. The geometry then describes the charged Kerr–NUT–(A)dS
spacetime (Carter 1968c; Plebański 1975). In higher dimensions, though, this is no
longer possible within the realms of pure Einstein–Maxwell theory, see, however,
Chong et al. (2005), and additional fields have to be introduced, e.g., Chow (2010).
In other words, the exact higher-dimensional analogue of the Kerr–Newman solution
(without additional fields) remains elusive.
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7 Further developments

In this chapter, we review several scattered results in the literature that are related to
the existence of the principal tensor and its generalizations. Namely, we discuss the
construction of parallel–transported frames along timelike and null geodesics, motion
of classical spinning particles, and stationary configurations of strings and branes
in the Kerr–NUT–(A)dS spacetimes. We then move beyond the Kerr–NUT–(A)dS
spacetimes. Namely, we discuss what happens when some of the eigenvalues of the
principal tensor become degenerate, which leads us to the generalized Kerr–NUT–AdS
spacetimes. Some of these new spacetimes can be obtained by taking certain singular
limits of the Kerr–NUT–(A)dS metric. The limiting procedure may preserve or even
enhance the symmetries of the original metric. Hidden symmetries of warped spaces
and the corresponding ‘lifting theorems’ are discussed next. We conclude this chapter
by studying the generalizations of Killing–Yano objects to spacetimes with torsion
and their applications to various supergravity backgrounds where the torsion can be
naturally identified with the 3-form flux present in the theory.

7.1 Parallel transport

In the previous chapters we have learned that the geodesic motion in general Kerr–
NUT–(A)dS spacetimes is completely integrable. In this section we show that the
existence of the principle tensor h even allows one to construct a whole parallel-
transported frame along these geodesics.

Such a frame provides a useful tool for studying the behavior of extended objects
in this geometry. For example, in the four-dimensional case it was employed for the
study of tidal forces acting on a moving body, for example a star, in the background of
a massive black hole, e.g., Luminet and Marck (1985), Laguna et al. (1993), Diener
et al. (1997), Ishii et al. (2005). In quantum physics the parallel transport of frames
is an important technical element of the point splitting method which is used for
calculating the renormalized values of local observables (such as vacuum expectation
values of currents, stress-energy tensor etc.) in a curved spacetime. Solving the parallel
transport equations is also useful when particles and fields with spin are considered,
e.g., Christensen (1978).

7.1.1 Parallel-transported frame along timelike geodesics

Consider a timelike geodesic γ in the Kerr–NUT–(A)dS spacetime and denote by
u its normalized velocity.23 Starting from the principal tensor h, we may define the
following 2-form:

Fab = Pc
a Pd

b hcd , (7.1)

23 In this section we assume a Lorentzian signature of the metric. Moreover, to simplify the formulas in
this section we simply put the mass m of a particle equal one. With this choice, m = 1, the inner time
σ coincides with the proper time τ , and the momentum of the particle pa is related to its velocity ua as
follows pa = gabub . We denote by dot the covariant derivative ∇u .
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where Pa
b = δa

b +uaub is the projector along the geodesic. Referring to the discussion
in Sect. 2.5, we infer that the 2-form F is parallel-transported along γ , cf. (2.84). This
property was originally used in Page et al. (2007) to demonstrate the complete integra-
bility of geodesic motion. Since F is parallel-transported, so is any object constructed
from F and the metric g. In particular, this is true for the invariants constructed from
F, such as its eigenvalues. As we shall see below, for a generic geodesic it is possible
to extract from F at least n − 1 nontrivial independent eigenvalues, which together
with the normalization of velocity, and other n + ε constants of motion due to Killing
vectors, imply complete integrability.

Remark This idea was later formalized in Cariglia et al. (2013b), where it was shown
that the 2-form Fa

b can be identified with the covariant Lax tensor (Rosquist 1994;
Rosquist and Goliath 1998; Karlovini and Rosquist 1999; Baleanu and Karasu 1999;
Baleanu and Baskal 2000; Cariglia et al. 2013b), whose covariant conservation, Ḟa

b =
0, can be rewritten as the standard Lax pair equation (Lax 1968)

L̇ = [L, M], (7.2)

where L = [Fa
b], M =

[
∂H
∂pc
Γ a

cb

]
, and H = 1

2 p2. Constants of motion are conse-

quently generated from the traces of matrix powers of L, Tr(L j ). If interested, see
Cariglia et al. (2013b) for the construction of the corresponding Clifford Lax tensor
and generalizations to a charged particle motion. ��

One can do even more. Namely, it is possible to use the 2-form F to explicitly
construct a frame which is parallel-transported along the timelike geodesic. To con-
struct such a frame we use a method similar to the one developed by Marck for the
four-dimensional Kerr metric (Marck 1983b). For more details concerning the solu-
tion of the parallel transport equations in the higher-dimensional Kerr–NUT–(A)dS
spacetime see Connell et al. (2008).

Let us denote F2 = F · F, or, in components, (F2) b
a = F c

a F b
c , and consider the

following eigenvalue problem:

F2 · v = −λ2 v. (7.3)

It is easy to check that the following properties are valid:

– F2 · u = 0.
– If v obeys (7.3) then the vector v̄ = F · v obeys the same equation.
– One also has F · v̄ = −λ2 v.
– Eigenvectors vμ and vν of the operator F2 with different eigenvalues λμ and λν

are orthogonal.
– Denote v̇ = ∇uv. Then since F is parallel-transported, one has

F2 · v̇ = ∇u(F2 · v) = ∇u(−λ2 v) = −λ2 v̇. (7.4)

Let us denote by Vμ a subspace spanned by the vectors with the eigenvalueλμ. Since
the parallel-transported eigenvector remains to be an eigenvector corresponding to the
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same eigenvalue, c.f. (7.4), each subspace Vμ is independently parallel-transported
along the geodesic. These subspaces are enumerated by index μ which takes values
μ = 0, 1, . . . , p; we assume that V0 corresponds to zero eigenvalue: λ0 = 0. We
call Vμ a Darboux subspace of F (or eigenspace of F2). The tangent vector space T
can thus be presented as a direct sum of independently parallel-transported Darboux
subspaces Vμ:

T = V0 ⊕ V1 ⊕ · · · ⊕ Vp. (7.5)

It can be shown that for a generic geodesic γ , the Darboux subspaces Vμ for μ �= 0
are two-dimensional (Connell et al. 2008). This fact is directly linked to the non-
degeneracy of the principal tensor h. The 2-form F is simply a projection of h along
a given geodesic. Since eigenspaces of h are non-degenerate and 2-dimensional, so
will be the eigenspaces of F, unless the direction determined by the geodesic is
‘special’, see Connell et al. (2008) for more details. Moreover, one can show that in
odd dimensions V0 is one-dimensional, spanned by u, whereas V0 is two-dimensional
in even dimensions, spanned by u and z, where

z = u · (∗h∧(n−1)) = ∗(F∧(n−1) ∧ u). (7.6)

The vector z is orthogonal to u and, after it is normalized, completes the orthonor-
mal parallel-transported frame in V0. It is easy to check that the number of Darboux
subspaces p in the odd-dimensional spacetime is p = n, while in even dimensions
p = n − 1.

To construct a parallel-transported frame in a given two-dimensional Darboux sub-
space Vμ>0 we proceed as follows. We choose a (not-necessarily parallel-transported)
orthonormal basis spanning Vμ: {nμ, n̄μ}, and obtain a parallel-transported frame in
Vμ, {vμ, v̄μ}, by a τ -dependent rotation of this orthonormal basis,

vμ = cosβμnμ − sin βμn̄μ, v̄μ = sin βμnμ + cosβμn̄μ, (7.7)

where the rotation angle βμ obeys

β̇μ = −nμ · ˙̄nμ = ṅμ · n̄μ. (7.8)

The dot, as earlier, denote a derivative with respect to the proper time τ . If at the initial
point τ = 0 bases {v, v̄} and {n, n̄} coincide, we have the following condition for the
above equations: βμ|τ=0 = 0.

The whole construction of the parallel-transported frame in Kerr–NUT–(A)dS
spacetimes is schematically illustrated in Fig. 5. The procedure is algorithmic and
the actual calculation can be technically simplified by using the so called velocity
adapted basis. We refer the interested reader to Connell et al. (2008) for more details.

7.1.2 Parallel transport along null geodesics

The described construction of parallel-transported frame does not straightforwardly
apply to null geodesics. In this section we show how to modify this construction and to
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Fig. 5 Parallel transport. The figure schematically displays the construction of a parallel-transported frame
along generic timelike geodesics in (left) odd dimensional and (right) even-dimensional Kerr–NUT–(A)dS
spacetimes. The colored 2-planes correspond to orthogonal independently parallel-transported Darboux
2-planes Vμ

obtain a parallel-transported frame along null geodesics in Kerr–NUT–(A)dS space-
times, generalizing the results obtained by Marck (1983a) for the four-dimensional
Kerr metric. The section is based on Kubizňák et al. (2009) to where we refer the
reader for more details.

The parallel-transported frame along null geodesics has applications in many phys-
ical situations. For example, it can be used for studying the polarized radiation of
photons and gravitons in the geometric optics approximation, see, e.g., Stark and Con-
nors (1977), Connors and Stark (1977), Connors et al. (1980) and references therein. It
provides a technical tool for the derivation of the equations for optical scalars (Pirani
1965; Frolov 1977) and plays the role in the proof of the ‘peeling-off property’ of the
gravitational radiation (Sachs 1961, 1962; Newman and Penrose 1962; Penrose 1965;
Krtouš and Podolský 2004).

We start with the following observation. Let us consider an affine parameterized
null geodesic γ , with a tangent vector l . We denote by dot the covariant derivative ∇l .
Then one has l̇ = 0. Let v be a parallel-transported vector along γ , v̇ = 0, and h be
the principal tensor. Then, defining

wa = vchca + βla, (7.9)

we find

ẇ = v · ḣ + β̇ l = v · (l ∧ ξ)+ β̇ l = ξ (v · l)+ l (β̇ − v · ξ). (7.10)

Here we used the equation (2.108) for the principal tensor, with ξ being the primary
Killing vector associated with h. Hence, the vector w is parallel-transported provided
the following conditions are satisfied:
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v · l = 0, β̇ = v · ξ . (7.11)

This observation allows one to immediately construct two parallel-transported vec-
tors, which we call m and n. Namely, m is obtained by taking v = l in (7.9); the
first condition in (7.11) is automatically satisfied and the second condition gives
β(l) = τ (l · ξ), since ξ is a Killing vector. Using next v = m as a ‘seed’ in (7.9), we
obtain the second vector n. The two vectors can be normalized so that

n · l = −1, n · m = 0, n · n = 0. (7.12)

The vector n does not belong to a null plane of vectors orthogonal to l , and, in this
sense, it is ‘external’ to it, see Fig. 6. For this reason one cannot use it as a new ‘seed’
in (7.9).

To generate additional parallel-transported vectors one proceeds as follows. We
denote

F̃ab = Pc
a Pd

b hcd , Pab = gab + 2l(anb). (7.13)

Here, Pa
b is a projector on a space orthogonal to both l and n directions (see Fig. 6).

The 2-form F̃ is parallel-transported along l . In particular, its eigenvalues are constant
along the null rays and give the integrals of null geodesic motion.

Similar to the timelike case we may now consider the Darboux subspaces of F̃. They
are again independently parallel-transported. We denote by V0 the Darboux subspace
corresponding to the zero eigenvalue. Its dimension depends on the dimension D of
the spacetime. Namely,

for D odd : V0 is 3-dimensional and spanned by {l,m, n},
for D even : V0 is 4-dimensional and spanned by {l,m, n, z}, (7.14)

where as earlier z = l · (∗h∧(n−1)). These base vectors are parallel propagated by
construction.

The other Darboux subspaces (with non-zero eigenvalues) are generically 2-
dimensional. To construct the parallel-transported vectors that span them one can
proceed as in the timelike case. Explicit expressions for the parallel transported frame
along a null geodesic in the Kerr–NUT–(A)dS spacetimes can be found in Kubizňák
et al. (2009).

external direction

n

m

null plane

l
ln

V

Projection operator:

given by

Fig. 6 Geometry of null geodesics. Left figure displays the geometry of the three parallel-transported
vectors l, n and m. Right figure demonstrates the action of the projection operator Pa

b which now projects
to a space V that is orthogonal to both l and n
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Let us finally mention that the above construction does not work for the special null
geodesics that are the eigenvectors of the principal tensor. It turns out that such direc-
tions describe the principal null directions, or WANDs (Weyl aligned null directions).
Such directions play an important role in many physical situations, e.g., Coley et al.
(2004), Milson et al. (2005), Coley (2008), Ortaggio et al. (2013). In Kerr–NUT–(A)dS
spacetimes, these directions can be explicitly written down and the parallel-transported
frame can be obtained by a set of local Lorentz transformations of the principal Dar-
boux basis (Kubizňák et al. 2009).

Remark It was shown in Mason and Taghavi-Chabert (2010) that the eigenvectors of a
non-degenerate (not necessarily closed) conformal Killing–Yano 2-form are principal
null directions and the corresponding spacetime is of the special algebraic type D.
As we discussed in Sect. 4.5, these special directions may also play a role in the
Kerr–Schild construction of solutions of the Einstein equations. ��

7.2 Classical spinning particle

So far we have discussed the geodesic motion of point-like test particles as well as the
propagation of test fields (possibly with spin) in the curved Kerr–NUT–(A)dS back-
ground. An interesting problem is to consider the motion of particles with spin. There
exist several proposals for describing spinning particles in general relativity, ranging
from the traditional approach due to Papapetrou (1951), Corinaldesi and Papapetrou
(1951), accompanied by a variety of supplementary conditions, e.g., Semerák and
Šrámek (2015); Semerák (2015), to some more recent proposals e.g., Rempel and
Freidel (2016).

In this section we concentrate on the spinning particle described by the worldline
supersymmetric extension of the ordinary relativistic point-particle (Berezin and Mari-
nov 1977; Casalbuoni 1976; Barrducci et al. 1976; Brink et al. 1976, 1977; Rietdijk and
Holten 1990; Gibbons et al. 1993; Tanimoto 1995; Ahmedov and Aliev 2009b; Ngome
et al. 2010), where the spin degrees of freedom are described by Grassmann (anticom-
muting) variables. Such a model is physically very interesting as it provides a bridge
between the semi-classical Dirac’s theory of spin 1

2 fermions and the classical Papa-
petrou’s theory. Our aim is to show that the existence of the principal tensor provides
enough symmetry to upgrade the integrals of geodesic motion to new bosonic integrals
of spinning particle motion that are functionally independent and in involution. This
opens a question of integrability of spinning particle motion in the Kerr–NUT–(A)dS
spacetimes.

7.2.1 Theory of classical spinning particles

Let us start by briefly describing our model of a classical spinning particle. To describe
a motion of the particle in D dimensions, we specify its worldline by giving the coor-
dinates dependence on the proper time τ : xa(τ ) (a = 1, . . . , D). The particle’s spin
is given by the Lorentz vector of Grassmann-odd coordinates θ A(τ ) (A = 1, . . . , D).
We denote by A the vielbein index labeling an orthonormal vielbein {eA} with com-
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ponents ea
A. These components are used to change coordinate indices to vielbain ones

and vice-versa, va = vAea
A.

The motion of the spinning particle is governed by the following equations of
motion:

∇2xa

dτ 2 = ẍa + Γ a
bc ẋb ẋc = i

2
Ra

bABθ
Aθ B ẋb, (7.15)

∇θ A

dτ
= θ̇ A + ωb

A
B ẋbθ B = 0. (7.16)

HereΓ a
bc andωb

A
B are the Levi-Civita and spin connections, respectively, and Rabcd is

the Riemann tensor. The first equation is an analogue of the classical general-relativistic
Papapetrou’s equation. It generalizes the geodesic equation for a point-like object to
an extended object with spin. The latter equation expresses the simple requirement
that, in the absence of interactions other than gravity, the spin vector is constant along
the worldline of the particle.

The theory admits a Hamiltonian formulation, with the Hamiltonian H given by

H = 1

2
ΠaΠb gab, Πa = pa − i

2
ωa AB θ

Aθ B, (7.17)

where pa is the momentum canonically conjugate to xa . Velocity is related to the
momentum as

ẋa = ∂H

∂pa
= gabΠb = pa − i

2
ωa

AB θ
Aθ B . (7.18)

The theory possesses a generic supercharge Q,

Q = θaΠa, (7.19)

obeying
{H, Q} = 0, {Q, Q} = −2i H. (7.20)

Here the super-Poisson brackets are defined as

{F,G} = ∂F

∂xa

∂G

∂pa
− ∂F

∂pa

∂G

∂xa
+ i(−1)aF

∂F

∂θ A

∂G

∂θA
, (7.21)

and aF is the Grassmann parity of F . Equations of motion are accompanied by two
physical (gauge fixing) constraints

2H = −1, Q = 0, (7.22)

which state that τ is the proper time and the particle’s spin is spacelike.
An important role for the spinning particle in curved spacetime is played by non-

generic superinvariants which are quantities that super-Poisson commute with the
generic supercharge. More specifically, a superinvariant S is defined by the equation
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{Q, S} = 0. (7.23)

The existence of solutions of this equation imposes nontrivial conditions on the prop-
erties of the geometry. The geometry has to possess special symmetries such as Killing
vectors or Killing–Yano tensors, for example. It follows from the Jacobi identity that
any superinvariant is automatically a constant of motion, {H, S} = 0. At the same
time quantity {S, S} is a ‘new’ superinvariant and a constant of motion (which may, or
may not be equal to H ). Hence, superinvariants correspond to an enhanced worldline
supersymmetry.

Linear in momentum superinvariants were studied in Gibbons et al. (1993); Tan-
imoto (1995), they are in one-to-one correspondence with Killing–Yano tensors and
take the following form:

Q = θ A1 . . . θ Ap−1 f a
A1...Ap−1Πa − i

(p + 1)2
θ A1 . . . θ Ap+1(d f )A1...Ap+1 , (7.24)

for a Killing–Yano p-form f . The Kerr–NUT–(A)dS spacetimes admit n such super-
invariants, associated with the tower of Killing–Yano tensors (5.7). However, such
superinvariants are (i) not ‘invertible’ for velocities (Kubizňák and Cariglia 2012)
and (ii) not in involution. In fact one can show that in even dimensions, where such
superinvariants are fermionic, their Poisson brackets are not closed and generate an
extended superalgebra (Ahmedov and Aliev 2009b).

7.2.2 Bosonic integrals of motion

It turns out that for the Kerr–NUT–(A)dS spacetimes one can construct D function-
ally independent and mutually commuting bosonic integrals of motion (Kubizňák and
Cariglia 2012). Namely, in addition to (n + ε) bosonic linear in momenta superinvari-
ants (7.24) corresponding to the isometries l( j), (5.16):

Q( j) = la
( j)Πa − i

4
θ Aθ B(dl( j)

)
AB, (7.25)

one can also construct the following n quadratic in momenta bosonic superinvariants
K( j), whose leading term contains no θ ’s and is completely determined by the Killing
tensors k( j), (5.9):

K( j) = kab
( j)ΠaΠb + La

( j)Πa + M( j), (7.26)

where

La
( j) = θ Aθ B L( j)AB

a, M( j) = θ Aθ BθCθD M( j)ABC D,

kab
( j) = 1

(p − 1)! f ( j)ak2...kp f ( j)b
k2...kp ,

L( j)ab
c = − 2i p

(p + 1)!
(

f ( j)[ak2...kp
(
d f ( j))

b]c
k2...kp + (

d f ( j))
abk2...kp f ( j)ck2...kp

)
,

M( j)abcd = − i

4
∇[a L( j)bcd].

(7.27)
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Here, f ( j) is the Killing–Yano p-form (5.7) with p = D − 2 j . In the absence of spin,
such quantities reduce to the quadratic integrals of geodesic motion, responsible for
its complete integrability.

In other words, the following quantities:

H,K(1), . . . ,K(n−1),Q(0), . . . ,Q(n−1+ε), (7.28)

form a complete set of bosonic integrals of motion for the spinning particle in
Kerr–NUT–(A)dS spacetimes (Kubizňák and Cariglia 2012), which are functionally
independent and in involution,

{Q(i),Q( j)} = 0, {Q(i),K( j)} = 0, {K(i),K( j)} = 0, (7.29)

making the ‘bosonic part’ of the spinning particle motion integrable.

7.2.3 Concluding remarks

Let us stress that the above results regard the bosonic sector and have not dealt with the
fermionic part of the motion, whose integrability would require a separate analysis. For
this reason, the question of complete integrability of the whole (bosonic and fermionic)
system of equations of motion of the spinning particle remains open. However, there
are reasons to expect that this system might be fully integrable. Perhaps the most
suggestive one is the observation that the Dirac equation, that corresponds to the
quantized system and can be formally recovered by replacing θ ’s with γ matrices and
Π ’s with the spinorial derivative, admits a separation of variables in these spacetimes,
see Sect. 6.4. To achieve such separation it is enough to use a set of D mutually-
commuting operators, as many as the Poisson commuting functions that have been
found for the motion of spinning particle.

Let us finally discuss some important differences between the supersymmetric
description presented in this section and the Papapetrou’s theory. Formally, the Papa-
petrou’s equations can be obtained by replacing −iθ Aθ B with the spin tensor Sab. (It
can be shown that the object −iθ Aθ B satisfies the correct Lie algebra of the Lorentz
group under Poisson brackets.) After this identification Eqs. (7.15) and (7.16) become
Papapetrou’s equations with the particular choice of supplementary condition:

∇2xa

dτ 2 = −1

2
Ra

bcd Scd ẋb,
∇Sab

dτ
= 0. (7.30)

Under such a transition, linear superinvariants (7.25) translate into the full integrals
of motion for Papapetrou’s equations (7.30). However, the quadratic superinvariants
(7.26) become only approximate integrals—valid to a linear order in the spin tensor
Sab. An interesting open question is whether such broken integrals of motion originate
the chaotic behavior of the spinning particle motion described by Papapetrou’s theory
in black hole spacetimes, e.g., Suzuki and Ki (1997), Semerák (1999), Semerák and
Suková (2010), Semerák and Suková (2012), Suková and Semerák (2013), Witzany
et al. (2015).
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7.3 Stationary strings and branes

7.3.1 Dirac–Nambu–Goto action for extended objects

There are interesting cases when the principal tensor allows one to integrate equa-
tions for some extended test objects, such as strings and branes. Such objects play
a fundamental role in string theory. At the same time cosmic strings and domain
walls are topological defects, which can be naturally created during phase transitions
in the early Universe, e.g., Vilenkin and Shellard (2000), Polchinski (2004), Davis
and Kibble (2005), and their interaction with astrophysical black holes may result in
interesting observational effects, e.g., Gregory et al. (2013). Another motivation for
studying these objects is connected with the brane-world models. For example, the
interaction of a bulk black hole with a brane representing our world (Emparan et al.
2000; Frolov et al. 2003, 2004b, a; Majumdar and Mukherjee 2005) can be used as a
toy model for the study of (Euclidean) topology change transitions (Frolov 2006), see
also Kobayashi et al. (2007), Albash et al. (2008), Hoyos-Badajoz et al. (2007) for the
holographic interpretation of this phenomenon. This model demonstrates interesting
scaling and self-similarity properties during the phase transition that are similar to
what happens in the Choptuik critical collapse (Choptuik 1993).

In this section we study strings and branes in the higher-dimensional Kerr–NUT–
(A)dS spacetimes. A worldsheet of a p-brane is a (p+1)-dimensional submanifold of
the D-dimensional spacetime with metric gab. We assume that ζ A, (A = 0, 1, . . . , p)
are coordinates on the brane submanifold, and equations xa = xa(ζ A) define the
embedding of the brane in the bulk spacetime. This embedding induces the metric
γAB on the brane

γAB = ∂xa

∂ζ A

∂xa

∂ζ B
gab. (7.31)

In the ‘test field approximation’, that is when one neglects the effects connected with
the thickness and tension, the evolution of the p-brane is described by the Dirac–
Nambu–Goto action

I = −μ
∫

d p+1ζ
√

det(γAB), (7.32)

where μ is the brane tension. The equations obtained by variation of this action with
respect to xa(ζ ), which describe the brane motion, are non-linear and in general it is
very difficult to solve them (Stepanchuk and Tseytlin 2013). However, there exists a
remarkable exception, that of the stationary strings and ξ -branes. In what follows we
concentrate on the equations for these objects in the the Kerr–NUT–(A)dS spacetimes.
See Kozaki et al. (2010, 2015) for a detailed discussion of the motion of these objects
restricted to the Minkowski space.

7.3.2 Killing reduction of action for a stationary string

Following Kubizňák and Frolov (2008), we will first discuss stationary strings. Con-
sider a stationary spacetime and denote by ξ its Killing vector. A stationary string is
a string whose worldsheet Σξ is aligned with this vector. In other words, the surface
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Σξ is generated by a 1-parameter family of the Killing trajectories (the integral lines
of ξ ).

A general formalism for studying a stationary spacetime, based on its foliation by
Killing trajectories, was developed by Geroch (1971). In this approach, one considers
a congruence S of all Killing orbits as a quotient space and introduces the structure of
the differential Riemannian manifold on it. A tensor

qab = gab − ξaξb/ξ
2. (7.33)

plays the role of the metric on S.
Let us introduce coordinates xa = (t, yi ), so that the Killing vector ξ = ∂ t , and yi

are coordinates that are constant along the Killing trajectories (coordinates in S). In
these coordinates qibξ

b = 0, and so

q = qi j dyi dy j . (7.34)

Thus one has
g = −F(dt + Ai dyi )2 + q, (7.35)

where F = gtt = −ξaξ
a and Ai = gti/gtt .

In this formalism, a stationary string is uniquely determined by a curve in S. Choos-
ing coordinates on the string worldsheet ζ 0 = t and ζ 1 = σ , the string configuration
is determined by yi = yi (σ ), and the induced metric (7.31) reads

γ = γABdζ Adζ B = −F(dt + Adσ)2 + dl2, (7.36)

where

dl2 = qdσ 2, A = Ai
dyi

dσ
, q = qi j

dyi

dσ

dy j

dσ
. (7.37)

The metric γ has the following determinant: det(γAB) = −Fq. The Dirac–Nambu–
Goto action (7.32) then reads

I = −Δt E, E = μ

∫ √
Fdl = μ

∫
dσ

√

Fqi j
dyi

dσ

dy j

dσ
. (7.38)

Note that, in a stationary spacetime, the energy density of a string is proportional to
its proper length dl multiplied by the red-shift factor

√
F . The problem of finding a

stationary string configuration therefore reduces to solving a geodesic equation in the
(D − 1)-dimensional background with the metric

q̃ = q̃i j dyi dy j = F qi j dyi dy j . (7.39)

7.3.3 Solving stationary string equations in Kerr–NUT–(A)dS spacetimes

Stationary strings in the four-dimensional Kerr spacetime were studied in Frolov et al.
(1989); Carter and Frolov (1989). It was demonstrated that the effective metric q̃
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inherits symmetry properties of the Kerr metric and the stationary string equations are
completely integrable. The same was found true in Frolov and Stevens (2004) for the
five-dimensional Myers–Perry spacetime. It was shown in Kubizňák and Frolov (2008)
that these results can be extended to all higher dimensions. Namely, the equations for
a stationary string in the Kerr–NUT–(A)dS spacetime, that is a string aligned along
the primary Killing vector ξ = l(0), are completely integrable in all dimensions.

The integrability follows from the existence of a sufficient number of explicit and
hidden symmetries of the (D−1)-dimensional effective metric q̃, (7.39). By construc-
tion this metric possesses (n−1+ε)Killing vectors, l( j) ( j = 1, . . . , n−1+ε). Let us
denote by c(k) natural projections of the Killing tensors k(k) of the Kerr–NUT–(A)dS
spacetime along the primary Killing vector trajectories:

c(k) =
n∑

μ=1

A(k)μ

[
Xμ
Uμ

∂2
xμ + Uμ

Xμ

( n−1+ε∑

j=1

(−x2
μ)

n−1− j

Uμ

∂ψ j

)2 ]+ ε
A(k)

A(n)
∂2
ψn
.

(7.40)
Note that when compared to (5.56), the j = 0 direction ∂ψ0 is omitted. One can check
that these objects are Killing tensors for the induced (D − 1)-dimensional metric q.
Let us denote

k̃(k) = c(k) − F(k)q̃
−1, (7.41)

where

F(k) =
n∑

μ=1

XμA(k)μ
Uμ

+ ε
cA(k)

A(n)
. (7.42)

Then it is possible to check that these (n − 1) objects k̃(k) (k = 1, . . . , n − 1) are
irreducible Killing tensors for the the metric q̃.

The Killing tensors k̃(k), together with the metric q̃ and the Killing vectors l( j) all
mutually Nijenhuis–Schouten commute. Their existence therefore implies a complete
set of mutually commuting constants of geodesic trajectories in the geometry q̃. Hence,
the stationary string configurations in the Kerr–NUT–(A)dS spacetimes are completely
integrable.

Let us conclude with the following remarks: (i) Although stationary string config-
urations in Kerr–NUT–(A)dS spacetimes are completely integrable, this is not true for
strings aligned along other (rotational) Killing directions; the primary Killing vector
is very special in this respect; (ii) A stationary string near a five-dimensional charged
Kerr-(A)dS black hole was discussed in Ahmedov and Aliev (2008); (iii) The presented
formalism of Killing reduction of the Dirac–Nambu–Goto action has been generalized
to the case of spinning strings in Ahmedov and Aliev (2009a); (iv) More recently, the
notion of a stationary string has been generalized to the so called self-similar strings
in Igata et al. (2016).

7.3.4 ξ -branes

The notion of a stationary string readily generalizes to that of ξ -branes (Kubizňák and
Frolov 2008) which are p-branes formed by a 1-parametric family of Killing surfaces.
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Suppose a D-dimensional spacetime admits p mutually commuting Killing vectors
ξ (M) (M = 1, . . . , p). According to the Frobenius theorem the set of p commuting
vectors defines a p-dimensional submanifold, which has the property that vectors ξ (M)
are tangent to it. We call such a submanifold a Killing surface.

Similarly to Geroch formalism for one Killing vector, one can define a quotient
space S, determined by the action of the isometry group generated by the Killing
vectors ξ (N ) on M . In other words, S is the space of Killing surfaces. The spacetime
metric g then splits into a part Ξ tangent to Killing surfaces and a part q orthogonal
to them

gab = qab +Ξab. (7.43)

The tangent part Ξ can be written as (Mansouri and Witten 1984)

Ξab =
p∑

M,N=1

Ξ−1M N ξ(M)a ξ(N )b, (7.44)

where ΞM N = ξa
(M)ξ

b
(N )gab is a (p × p) matrix and Ξ−1M N is its inverse,

Ξ−1M NΞN K = δK
M .

Let us introduce adjusted coordinates xa = (yi , ψM ) such that yi (i = 1, . . . , D −
p) are constant along the Killing surfaces, and Killing coordinatesψM (M = 1, . . . , p)
are defined as ξ (M) = ∂ψM . Since qaψN = qabξ

b
(N ) = 0, one has q = qi j dyi dyi .

On other hand, vectors ∂ yi are not, in general, orthogonal to the Killing surfaces. It

means that ξ(M)a ≡ gabξ
b
(M) and Ξab have both tangent and orthogonal components.

In other words we have

g = qi j dyi dy j +Ξabdxadxb. (7.45)

The configuration of a ξ -brane is defined by giving functions yi = yi (σ ). Denoting
by

q = qi j
dyi

dσ

dy j

dσ
, (7.46)

the Dirac–Nambu–Goto action (7.32) then reduces to the following expression:

I = −V E, E = μ

∫ √
q Fdσ, (7.47)

where V = ∫
d pψ and F = det(ΞM N ).

Thus after the dimensional reduction the problem of finding a configuration of a
ξ -brane reduces to a problem of solving a geodesic equation in the reduced (D − p)-
dimensional space with the effective metric

q̃ = F qi j dyi dy j . (7.48)

In general, the integrability of ξ -branes is not obvious; see Kubizňák and Frolov
(2008) for a discussion of special integrable cases.
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7.4 Generalized Kerr–NUT–(A)dS spacetimes

So far our discussion was mostly concentrated on Kerr–NUT–(A)dS spacetimes. Such
spacetimes represent a unique geometry admitting the principal tensor which is a
closed conformal Killing–Yano 2-form whose characteristic feature is that it is non-
degenerate. However, it is very constructive to relax the last requirement and consider
more general geometries that admit a possibly degenerate closed conformal Killing–
Yano 2-form. Such geometries are now well understood and are referred to as the
generalized Kerr–NUT–(A)dS spacetimes (Houri et al. 2008b, 2009; Oota and Yasui
2010; Yasui and Houri 2011). These metrics describe a wide family of geometries,
ranging from the Kähler metrics, Sasaki–Einstein geometries, generalized Taub-NUT
metrics, or rotating black holes with some equal and/or some vanishing rotation param-
eters.

7.4.1 General form of the metric

The generalized Kerr–NUT–(A)dS spacetime possesses a bundle structure. The fiber
is the 2N -dimensional Kerr–NUT–(A)dS metric. The base B takes a form of the
product space B = M1 × M2 × . . . M I × M0, where the manifolds Mi are 2mi -
dimensional Kähler manifolds with metrics gi and Kähler 2-forms ωi = dBi , and
M0 is an ‘arbitrary’ manifold of dimension m0 and a metric g0. This means that the
total number of dimensions D decomposes as

D = 2N + 2|m| + m0, |m| =
I∑

i=1

mi . (7.49)

The generalized Kerr–NUT–(A)dS metric takes the following form:

g =
N∑

μ=1

dx2
μ

Pμ(x)
+

N∑

μ=1

Pμ(x)

(
N−1∑

k=0

A(k)μ θk

)2

+
I∑

i=1

N∏

μ=1

(x2
μ − ξ2

i )g
i + A(N )g0,

(7.50)
where

θk = dψk − 2
I∑

i=1

(−1)n−kξ
2(N−k)−1
i Bi ,

Pμ = Xμ(xμ)
[
xm0
μ

I∏

i=1

(x2
μ − ξ2

i )
mi (−1)N Uμ

]−1
.

(7.51)

The corresponding closed conformal Killing–Yano 2-form is degenerate and reads

h =
N∑

μ=1

xμdxμ ∧
(

N−1∑

k=1

A(k)μ θk

)
+

I∑

i=1

ξi

N∏

μ=1

(x2
μ − ξ2

i )ω
i . (7.52)

123



Black holes, hidden symmetries, and complete integrability Page 153 of 221 6

Here, the quantities A(k)μ , A(k) and Uμ are defined in terms of coordinates xμ exactly
in the same way as in the Kerr–NUT–(A)dS case, with n replaced by N in the
sums/products. Note also that besides the familiar coordinates xμ andψk , the general-
ized Kerr–NUT–(A)dS spacetimes also possess a number of coordinates that implicitly
characterize the base manifolds.

Coordinates xμ are the non-constant functionally independent eigenvalues of h,
whereas parameters ξi stand for the non-zero constant eigenvalues of h, each having
multiplicity mi that determines the dimension of Kähler manifolds Mi . The dimension
m0 of the manifold M0 equals the multiplicity of the zero value eigenvalue of h. For
m0 = 1, the metric g0 can take a special form

A(N )g0 = c

A(N )

(
N∑

k=0

A(k)θk

)2

. (7.53)

Let us stress that the generalized Kerr–NUT–(A)dS metrics do not necessarily
admit the Killing tower of symmetries. The presence of a degenerate closed confor-
mal Killing–Yano tensor is not enough to generate this full tower and much smaller
subset of symmetries exists in these spacetimes. In particular, metrics gi are in general
‘arbitrary’ Kähler metrics without any additional symmetries.

With a proper choice of the metric functions Xμ(xμ) and the base metrics, the gen-
eralized Kerr–NUT–(A)dS spacetimes become solutions of the Einstein equations.
Namely, assuming that the base metrics g0 and gi are Einstein spaces with cosmo-
logical constants λ0 and λi , respectively, the generalized Kerr–NUT–(A)dS metric
solves the vacuum Einstein equations with the cosmological constant, Ricab = λgab,
provided the metric functions Xμ take the following form:

Xμ = xμ
(

bμ +
∫
χ(xμ)x

m0−2
μ

I∏

i=1

(x2
μ − ξ2

i )
mi dxμ

)
, (7.54)

where

χ(x) =
N∑

i=−η
αi x2i , αn = −λ. (7.55)

Here bμ and αi are constant parameters. For convenience, we also introduced a param-
eter η which takes a value η = 0 for a general g0 and η = 1 for the special choice
of g0 given by (7.53). The constants αi are constrained by the requirement that λi are
given by λi = (−1)N−1χ(ξi ). Moreover, for η = 0 we have α0 = (−1)N−1λ0, while
for η = 1 one has

α0 = (−1)n−12c
I∑

i=1

mi

ξ2
i

, α−1 = (−1)N−12c. (7.56)
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7.4.2 Concrete examples

The on-shell generalized Kerr–NUT–(A)dS metrics (7.50) describe a large family
of vacuum (with cosmological constant) geometries of mathematical and physical
interest. To obtain concrete examples one may simply specify the base metrics and
the parameters of the solution.

To illustrate, a subfamily of solutions with vanishing NUT charges, describing the
Kerr-(A)dS black holes (Gibbons et al. 2004, 2005) with partially equal and some
vanishing angular momenta, has been identified in Oota and Yasui (2010). Namely,
in odd dimensions the general-rotating Kerr-(A)dS spacetime (Gibbons et al. 2004,
2005) has an isometry R× U (1)n and corresponds to identifying the base space with
a product of the 2-dimensional Fubini–Study metrics, B = CP

1 × · · · × CP
1. When

some of the rotation parameters become equal, the symmetry is enhanced and the
dimension of the corresponding Fubini–Study metric enlarges. In particular, equal
spinning Kerr-(A)dS black hole has B = CP

n−1 and its symmetry is R × U (n), see
Oota and Yasui (2010), Yasui and Houri (2011) for more details.

Another example is that of ‘NUTty spacetimes’ describing twisted and/or deformed
black holes has been studied more recently in Krtouš et al. (2016a). Such black holes
correspond to the even-dimensional ‘warped structure’ where all the Kähler metrics gi

identically vanish and the metric g0 becomes again the Kerr–NUT–(A)dS spacetime.
As discussed in Krtouš et al. (2016a), these solutions have a full Killing tower of
symmetries.

7.4.3 Special Riemannian manifolds

There is yet another, very effective, method for obtaining concrete examples of gen-
eralized Kerr–NUT–(A)dS metrics: the method of taking special limits of the original
(possibly off-shell) Kerr–NUT–(A)dS spacetimes (4.1). Especially interesting are the
‘singular limits’ where some of the originally functionally independent eigenvalues of
the principal tensor become equal, constant, or vanish, or some of the original param-
eters of the Kerr–NUT–(A)dS metrics take special values/coincide. In what follows
we shall give several examples of such limits that lead to interesting geometries.

As shown by Geroch (1969), limiting procedures of this kind are generally non-
unique. This is related to a well known ambiguity in constructing the limiting spaces
when some of the parameters limit to zero: there is always a possibility to make
a coordinate transformation depending on the chosen parameters, before taking the
limit. As we shall see on concrete examples below, to escape the pathology and to
achieve a well defined limit, one should properly rescale both the metric parameters
and the coordinates.

An important class of metrics that can be obtained by a certain scaling (supersym-
metric) limit (Martelli and Sparks 2005; Chen et al. 2006a; Hamamoto et al. 2007;
Kubizňák 2009b) of the Kerr–NUT–(A)dS metrics (4.1) and belongs to the generalized
spacetimes discussed in this section is that of special Riemannian manifolds. In even
dimensions, the corresponding limit is achieved by setting

xμ → 1 + εxμ, (7.57)
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followed by taking ε → 0, which effectively amounts to setting all the functionally
independent eigenvalues of the principal tensor equal to one. When accompanied by
an appropriate singular rescaling of Killing coordinates, see Kubizňák (2009b), the
principal tensor becomes completely degenerate and yields the Kähler 2-form.

In this way one can obtain the (most general explicitly known) Kähler metric gK,
together with the associated Kähler potential B, and Kähler 2-form ω = dB,

gK =
n∑

μ=1

⎡

⎢⎣
Δμ

Xμ(xμ)
dx2

μ + Xμ(xμ)

Δμ

⎛

⎝
n−1∑

j=0

σ ( j)
μ dψ j

⎞

⎠
2
⎤

⎥⎦ ,

B =
n−1∑

k=0

σ (k+1)dψk,

(7.58)

where

Δμ =
∏

ν �=μ
(xν − xμ), σ (k)μ =

∑

ν1<···<νk
νi �=μ

xν1 . . . xνk , σ (k) =
∑

ν1<···<νk

xν1 . . . xνk .

(7.59)
With the following choice of metric functions Xμ:

Xμ = −4
n+1∏

i=1

(αi − xμ)− 2bμ, (7.60)

where αi and bμ are free parameters, we recover the Einstein–Kähler manifold, obey-
ing

RicK = (2n + 2)gK. (7.61)

The metric is identical to the Einstein–Kähler metric admitting the non-degenerate
Hamiltonian 2-form constructed in Apostolov et al. (2006), or to the metric constructed
by the requirements of separability in Kolář and Krtouš (2016). The Kähler manifold
(7.58) is Ricci flat provided instead of (7.60) we set Xμ = −4

∏n
i=1(αi − xμ)− 2bμ;

see Chen et al. (2006a) where such a metric is derived by taking the BPS limit of the
even-dimensional Kerr–NUT–(A)dS spacetime.

Having obtained the Einstein–Kähler manifold (7.58), (7.60), one can apply the
procedure (Gibbons et al. 2003) to construct the most general known Einstein–Sasaki
space (Chen et al. 2006a), constructed as a U (1) bundle over the Einstein–Kähler base:

gES = gK + ηη, (7.62)

where η = 2B + dψn is the Sasakian 1-form, and the new (2n + 1)-dimensional
Einstein–Sasaki space obeys

RicES = 2ngES. (7.63)

By restricting the parameters in (7.60), one can obtain a complete and non-singular
manifold, see e.g., Yasui and Houri (2011) for an example.
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7.4.4 Partially rotating deformed black holes

Another class of generalized Kerr–NUT–(A)dS metrics is obtained when one tries
to ‘switch off’ some of the rotation parameters of the canonical metric (4.1). In the
Lorentzian signature this yields partially rotating black holes that are deformed by
the presence of NUT charges. Similar to the special Riemannian manifolds above,
these metrics possess enough explicit and hidden symmetries, inherited from the orig-
inal Kerr–NUT–(A)dS spacetime, to guarantee the complete integrability of geodesic
equations. In the following we sketch the idea of the corresponding limit, generalizing
the procedure performed in Oota and Yasui (2010) for the case of vanishing NUT
parameters. The details of the construction can be found in Krtouš et al. (2016a).

For simplicity let us concentrate on the even-dimensional case, D = 2n. We start
with the Kerr–NUT–(A)dS spacetime, (4.1), where n coordinates xμ are eigenvalues
of the principal tensor h, while other n coordinates, φk , are Killing parameters. For
the black hole case one of the coordinates, xn is identified with the radial coordinate
r , while the other n − 1 coordinates x1, . . . , xn−1 are ‘angle coordinates’. Besides the
cosmological constant, the metric contains 2n −1 arbitrary parameters, describing the
mass, n − 1 rotation parameters aμ, and n − 1 NUT parameters. As we described in
Sect. 4.4, we assume the following ordering of coordinates xμ and rotational param-
eters aμ:

−x1 < x1 < a1 < x2 < a2 < · · · < xn−1 < an−1, (7.64)

cf. also Fig. 3. Lower bound −x1 has property that when a1 → 0 its value also tends
to 0.

It is obvious from this ordering that in the limit when the first p rotation parameters
{a1, . . . , ap} tend to zero, the first p angle coordinates, grasped between them, must
tend to zero as well. In other words, to preserve the regularity of the metric one needs
to, besides rescaling the rotation parameters, also properly rescale the first p angle
coordinates. As shown in Krtouš et al. (2016a) this can be consistently done.

As a result, the principal tensor h becomes degenerate and its matrix rank becomes
2(n − p). The number of the rank-2 Killing tensors, generated from h is reduced
to n − p. At the same time, the limiting procedure generates new additional hidden
symmetries, which provide one with additional p quadratic in momenta integrals
of geodesic motion. The number of the first order in momenta integrals of motion,
associated with Killing vectors, remains the same: n. Thus the total number of the
integrals of motion, 2n, is sufficient to guarantee complete integrability of geodesics
in the limiting spacetime.

The resulting metric has one less parameter and is a special case of the generalized
Kerr–NUT–(A)dS metric with N = n − p, |m| = 0, and m0 = 2p. It has a warped
structure: both components in the warped product are lower-dimensional Kerr–NUT–
(A)dS metrics. We refer to Krtouš et al. (2016a) for more details and explicit formulas.
A symmetry structure of warp product metrics has been studied in Krtouš et al. (2016b)
and we will return to it in the next section.
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7.4.5 NUTty spacetimes and near horizon geometries

Final interesting limiting cases of the Kerr–NUT–(A)dS metric that we are going to
discuss in this section are those of NUTty spacetimes and near horizon geometries.
They can be obtained as follows. Consider a coordinate xμ. It belongs to an interval
given by the roots of the metric function, see Sects. 4.3 and 4.4. Now, we want to study a
‘double-root’ limit of this metric function. In such a limit, the end points of the interval
tend one to the other and the value of the coordinate xμ, which is grasped between
them, becomes in general a non-vanishing constant. This implies the degeneracy of the
principal tensor. Such double-root limits generalize two interesting cases known from
four dimensions: the Taub–NUT limit and the near-horizon limit of the extremal Kerr
black hole. As earlier, the corresponding limiting procedure has to be accompanied
by a proper rescaling of coordinates.

It was shown in Kolář and Krtouš (2017), that when the double-root limit is taken
for all angular coordinates xμ, it leads to the ‘multiply-NUTty spacetime’, obtained
by Mann and Stelea (2006, 2004).

If the double-root limit is taken for the metric function governing the position of
the horizons, it leads to the near-horizon limit of the extremal black hole metrics,
which is similar to the extreme Kerr throat geometry in four dimensions (Bardeen and
Horowitz 1999). This higher-dimensional limiting spacetime geometry has enhanced
symmetry, while some of the hidden symmetries of the original spacetime encoded
by Killing tensors become reducible.

Remark In the near horizon limit of an extremal Myers–Perry black hole in an arbitrary
dimension the isometry group of the metric is enhanced to include the conformal factor
SO(2, 1). In particular, when all n parameters of the rotation are equal this group
is SO(2, 1) × U (n) (Galajinsky 2013). For the near horizon extremal Myers–Perry
metric one of the rank 2 Killing tensors decomposes into a quadratic combination
of the Killing vectors corresponding to the conformal group, while the remaining
ones are functionally independent (Chernyavsky 2014). Similar result is valid for the
Kerr–NUT–(A)dS metric. Namely, for the near horizon extremal Kerr–NUT–(A)dS
geometry only one rank-2 Killing tensor decomposes into a quadratic combination
of the Killing vectors, which are generators of conformal group, while the others are
functionally independent (Xu and Yue 2015). ��

Additional details and the discussion of various limiting geometries corresponding
to double root limits can be found in Kolář and Krtouš (2017).

7.5 Lifting theorems: hidden symmetries on a warped space

As we have seen in the previous chapters, the existence of hidden symmetries imposes
strong restrictions on the background geometry.

Consequently, not every geometry admits such symmetries. Even if the symmetries
are present, finding their explicit form, by solving the corresponding differential equa-
tions, is a formidable task. For this reason, it is of extreme value to seek alternative
ways for finding such symmetries. In this section we proceed in this direction. Namely,
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we study hidden symmetries on a warped space, formulating various criteria under
which the Killing–Yano and Killing tensors on the base space can be lifted to symme-
tries of the full warped geometry. This decomposes a task of finding such symmetries
to a simpler problem (that of finding hidden symmetries for a smaller seed metric)
and opens a way towards extending the applicability of hidden symmetries to more
complicated spacetimes.

To illustrate this on a simple example, let us consider the rotating black string in
five dimensions whose metric can be written in the form g = ḡ + dz2, where ḡ is the
Kerr metric:

ḡ = − Δ

ρ2

[
dt − a sin2 θdφ

]2 + ρ2

Δ
dr2 + ρ2dθ2 + sin2 θ

ρ2

[
adt − (r2 + a2)dφ

]2
,

Δ = r2 + a2 − 2mr, ρ2 = r2 + a2 cos2 θ. (7.65)

As shown in Chap. 3, the Kerr metric (7.65) admits a non-trivial Killing–Yano 2-form
(Penrose 1973)

f̄ = a cos θdr ∧ (dt − a sin2θdφ
)− r sin θdθ ∧ (adt − (r2 + a2)dφ

)
. (7.66)

One can show that f̄ immediately lifts to the Killing–Yano 2-form f = f̄ of the black
string in five dimensions.

More generally, following Krtouš et al. (2016b), let us consider a warped space M ,
realized as a direct product M = M̃ × M̄ of two manifolds of arbitrary dimensions D̃
and D̄, with the metric

g = g̃ + w̃2 ḡ, (7.67)

where g̃ is called the base metric, ḡ is the seed metric, and w̃ is the warp factor. The
corresponding Levi-Civita tensor splits as ε = w̃ D̄ ε̃ ∧ ε̄. Here we assume that tilded
objects Ã are non-trivial only in ‘tilded directions’ and depend only on a position
in M̃ , and similarly, barred objects Ā are non-trivial only in ‘barred directions’ and
depend on positions in M̄ . Then one can prove the following lifting theorems for
various hidden symmetries (Benn 2006; Kubizňák 2009a; Krtouš et al. 2016b).

Theorem Let the seed metric ḡ of the warped geometry (7.67) admits a Killing–Yano
p-form f̄ and/or a closed conformal Killing–Yano q-form h̄. Then the following forms:

f = w̃ p+1 f̄ , h = w̃q+1ε̃ ∧ h̄, (7.68)

are the Killing–Yano p-form and/or the closed conformal Killing–Yano (D̃+q)-form
of the full warped geometry (7.67).

Theorem If k̄ is a rank r Killing tensor of the metric ḡ, then

ka1...ar = k̄a1...ar (7.69)

is a Killing tensor of the full warped geometry g.
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Theorem Let f̃ be a Killing–Yano p-form of the seed metric g̃ and let the warped
factor w̃ satisfies d̃

(
w̃−(p+1) f̃

) = 0. Then

f = w̃ D̄ f̃ ∧ ε̄ (7.70)

is a Killing–Yano (D̄ + p)-form of the full metric (7.67). Similarly, let h̃ be a
closed conformal Killing–Yano q-form of g̃ and the the warp factor satisfies ∇̃ ·(
w̃−(D̃+q+1) h̃

) = 0. Then

h = h̃ (7.71)

is a closed conformal Killing–Yano q-form of the metric (7.67).

Theorem Let q̃ be a rank 2 conformal Killing tensor of the metric g̃ with its symmetric
derivative given by vector σ̃ , ∇̃(aq̃bc) = g̃(abσ̃ c), and the logarithmic gradient λ̃ =
w̃−1 d̃w̃ of the warp factor satisfies σ̃ = 2 q̃ · λ̃. Then

qab = q̃ab (7.72)

is a conformal Killing tensor of the warped metric g and its symmetric derivative is
given by vector σ a = σ̃ a.

There exist a number of examples, e.g., Krtouš et al. (2016b), where these theorems
can be applied and exploited for finding hidden symmetries of complicated metrics.
For example, a very non-trivial application happens for the NUTty spacetimes (Krtouš
et al. 2016a, b) which inherit the full tower of hidden symmetries lifted from their two
off-shell Kerr–NUT–(A)dS bases g̃ and ḡ.

Let us finally mention that the lifting theorems presented in this section are not the
only possibility for lifting hidden symmetries to higher-dimensional geometries. For
example, a completely different approach, the so called Eisenhart lift, (Eisenhart 1928)
was recently used to construct spacetimes with higher-rank Killing tensors (Gibbons
et al. 2011) and subsequently applied to more complicated situations, e.g., Cariglia
(2012), Galajinsky (2012), Cariglia (2012), Cariglia and Gibbons (2014), Cariglia
et al. (2014a), Cariglia et al. (2014b), Cariglia (2014), Cariglia and Galajinsky (2015),
Galajinsky and Masterov (2016).

7.6 Generalized Killing–Yano tensors

7.6.1 Motivation

Till now we have discussed mainly vacuum solutions of the higher-dimensional Ein-
stein equations with or without the cosmological constant. However, we already
mentioned that, for example, in the four-dimensional case there exist the charged
versions of the Kerr–NUT–(A)dS metric which are solutions of the Einstein–Maxwell
equations and which also admit the Killing–Yano tensor (see e.g., Keeler and Larsen
2012). A natural question is how far can one generalize the presented in this review
theory of hidden symmetries to non-vacuum solutions of the Einstein equations. For
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example, there are known solutions, describing black holes with non-trivial gauge
fields, such as those of various supergravity theories which arise in low energy limits
of string theory compactifications. It is also well known that some of these solutions,
that can be thought of as generalizations of Kerr–NUT–(A)dS metrics, possess Killing
tensors (see, e.g., Emparan and Reall 2008 and references therein) and allow sepa-
rability of the Hamilton–Jacobi and Klein–Gordon equations (Chow 2010, 2016). In
fact this is how some of these solutions were ‘constructed’.

In this section we demonstrate that the properties of such non-vacuum black holes
can be explained by the existence of a deeper structure associated with the generalized
Killing–Yano tensors.

7.6.2 Systematic derivation

The generalized Killing–Yano tensors can be systematically derived by studying sym-
metry operators of the Dirac operator with fluxes (Houri et al. 2010a; Kubizňák et al.
2011). The idea of the construction is as follows. In the backgrounds of superstring or
supergravity theories, the metric is often supplemented by other fields or fluxes which
couple to the spinor field and modify the Dirac equation, which now reads

Dψ = 0, D = γ a∇a +
∑

p

1

p! Ba1...apγ
a1 . . . γ ap . (7.73)

This includes the case of a massive Dirac operator, the Dirac operator minimally
coupled to a Maxwell field, the Dirac operator in the presence of torsion, as well as
more general operators.

The generalized Killing–Yano tensors are then in one-to-one correspondence with
the first-order symmetry operators of this modified Dirac operator D. In the notations
reviewed in Appendix F, in analogy with Sect. F.2 such operators can be written as
(Benn and Charlton 1997; Benn and Kress 2004; Acik et al. 2009; Houri et al. 2010a;
Kubizňák et al. 2011)

L = ω · ∇ + Ω, (7.74)

where ω and Ω are inhomogeneous forms to be determined. The requirement that this
operator is a symmetry operator of D results in a B-dependent system of differential
equations for ω, called the generalized Killing–Yano system. Once ω is known, Ω can
also be determined, cf. (F.29).

In general, the generalized Killing–Yano system couples various homogeneous
parts of inhomogeneous form ω, and these only decouple for a special form of the
flux B. In particular, this happens for B = i A − 1

4T , with a 1-form A and a 3-form
T , in which case the Killing–Yano system reduces to the torsion generalization of the
conformal Killing–Yano equation (7.79) below. We refer to Kubizňák et al. (2011) for
more details.
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7.6.3 Killing–Yano tensors in a spacetime with torsion

In what follows, let us focus on a specific ‘torsion generalization’ of Killing–Yano
tensors which finds its applications for a variety of supergravity black hole solutions.
We assume that the torsion is completely antisymmetric and described by a 3-form T .
It is related to the standard torsion tensor as T d

ab = Tabcgcd . Let us define a torsion
connection ∇T acting on a vector field X as

∇T
a Xb = ∇a Xb + 1

2
T b

ac Xc, (7.75)

where ∇ is the Levi-Civita (torsion-free) connection. Connection ∇T satisfies the
metricity condition, ∇T g = 0, and has the same geodesics as ∇.

The connection (7.75) induces a connection acting on forms. Namely, let Ψ be a
p-form, then

∇T
XΨ = ∇XΨ − 1

2

(
X · T) ∧

1
Ψ , (7.76)

using the contracted wedge product introduced in (F.8). One can then define the fol-
lowing two operations:

dT Ψ ≡ ∇T ∧ Ψ = dΨ − T ∧
1

Ψ , (7.77)

δT Ψ ≡ −∇T · Ψ = δΨ − 1

2
T ∧

2
Ψ . (7.78)

A generalized conformal Killing–Yano (GCKY) tensor k is a p-form satisfying for
any vector field X (Kubizňák et al. 2009)

∇T
X k − 1

p + 1
X · dT k + 1

D − p + 1
X ∧ δT k = 0. (7.79)

In analogy with the Killing–Yano tensors defined with respect to the Levi-Civita
connection, a GCKY tensor f obeying δT f = 0 is called a generalized Killing–Yano
(GKY) tensor, and a GCKY h obeying dT h = 0 is a generalized closed conformal
Killing–Yano (GCCKY) tensor.

Remark Interestingly, the GKY tensors were first discussed from a mathematical point
of view in Yano and Bochner (1953) many years ago, and rediscovered more recently
in Rietdijk and van Holten (1996), Kubizňák et al. (2009) in the framework of black
hole physics. The GCKY generalization (7.79) has been first discussed in Kubizňák
et al. (2009). ��

The following properties, generalizing the properties of conformal Killing–Yano
tensors, have been shown in Kubizňák et al. (2009); Houri et al. (2010b) for the GCKY
tensors:

1. A GCKY 1-form is identical to a conformal Killing 1-form.

123



6 Page 162 of 221 V. P. Frolov et al.

2. The Hodge star ∗ maps GCKY p-forms to GCKY (D − p)-forms. In particular,
the Hodge star of a GCCKY p-form is a GKY (D − p)-form and vice versa.

3. GCCKY tensors form a (graded) algebra with respect to a wedge product, i.e.,
when h1 and h2 is a GCCKY p-form and q-form, respectively, then h3 = h1 ∧ h2
is a GCCKY (p + q)-form.

4. Let k be a GCKY p-form for a metric g and a torsion 3-form T . Then, k̃ = Ω p+1k
is a GCKY p-form for the metric g̃ = Ω2g and the torsion T̃ = Ω2T .

5. Let ξ be a conformal Killing vector, £ξ g = 2 f g, for some function f , and k a

GCKY p-form with torsion T , obeying £ξT = 2 f T . Then k̃ = £ξ k− (p + 1) f k
is a GCKY p-form with T .

6. Let h and k be two generalized (conformal) Killing–Yano tensors of rank p. Then

Kab = h(a|c1...cp−1|kb)
c1...cp−1 (7.80)

is a (conformal) Killing tensor of rank 2.

The generalized Killing–Yano tensors naturally appear in black hole spacetimes in
supergravity theories, where the torsion may be identified with a 3-form field strength.
For example, a non-degenerate GCCKY 2-form exists (Kubizňák et al. 2009) in the
black hole spacetime of Chong et al. (2005), which is a doubly spinning black hole
solution of 5-dimensional minimal supergarvity, described by the Lagrangian density

L = ∗(R +Λ)− 1

2
F ∧ ∗F+ 1

3
√

3
F ∧ F ∧ A. (7.81)

In this case the torsion can be identified with the Maxwell field strength

T = 1√
3
∗F, (7.82)

and is, due to the Maxwell equations ‘harmonic’, δT T = 0, dT T = 0. The GCCKY
tensor guarantees separability of the Hamilton–Jacobi and Klein–Gordon equations
(Davis et al. 2005), as well as the ‘torsion modified’ Dirac equation (Wu 2009a, b) in
this spacetime.

Another example (Houri et al. 2010b) is provided by the Kerr–Sen black hole
(Sen 1992) and its higher-dimensional generalizations (Cvetic and Youm 1996; Chow
2010), which are solutions to the following action:

S =
∫

M D
eφ

√
D/2−1

(
∗R + D − 2

2
∗dφ ∧ dφ − ∗F ∧ F − 1

2
∗H ∧ H

)
, (7.83)

where F = d A and H = dB − A ∧ d A. The general multiply-spinning black hole
solution admits a non-degenerate GCCKY 2-form which, upon identifying the torsion
with the 3-form field strength

T = H, (7.84)
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is responsible for complete integrability of geodesic motion and separability of the
scalar and Dirac equations.

The metrics admitting a non-degenerate GCCKY 2-form have been locally classi-
fied in Houri et al. (2012). In general such metrics admit a tower of Killing tensors
but no additional explicit symmetries. A subfamily of these metrics provided a new
class of Calabi–Yau with torsion metrics (Houri et al. 2012), see also Houri et al.
(2013) for the generalized Sasaki–Einstein metrics, and Hinoue et al. (2014) for a
generalization of the Wahlquist metric. Further developments on the GKY tensors can
be found in Chow (2015, 2016). We also refer to the wonderful review on applications
of Killing–Yano tensors to string theory by Chervonyi and Lunin (2015).

7.7 Final remarks

This Living Review was mainly devoted to two subjects: hidden symmetries and
higher-dimensional black holes. Black holes in higher dimensions find applications in
many physical situations. They naturally appear in low energy approximations of string
theory, play an important role in brane-world scenarios, as well as provide a window
to the nature of gravitational theory in four and higher-dimensions. As we explained
in this review, all higher-dimensional Kerr–NUT–(A)dS black holes possess a set of
explicit and hidden symmetries, which is sufficient to guarantee complete integrability
of geodesic equations and separation of variables in physical field equations. The origin
and seed of all these symmetries is a single very special object, called the principal
tensor. This is a non-degenerate closed conformal Killing–Yano 2-form. The existence
of this object makes properties of higher-dimensional black holes very similar to the
properties of the four-dimensional Kerr metric.

During ten years that have passed since the discovery of the principal tensor, there
have been published many papers devoted to hidden symmetries of higher-dimensional
black holes. In the present review, we collected the obtained results and provided the
references to the main publications on this subject. It should be mentioned that during
the work on the review we also obtained a number of new, yet unpublished, results that
fill some loopholes in the literature. For example, we discussed in detail the solution
of geodesic equations in terms of the action–angle variables, provided a direct proof
of the commutation relations of the objects in the Killing tower without using the
explicit form of the metric, studied a possibility of understanding the principal tensor
as a symplectic form on the spacetime, or systematically discussed the meaning of
coordinates and special cases of the Kerr–NUT–(A)dS metrics.

Let us mention several open problems that are immediately connected to the results
presented in this review. For example, we showed that the geodesic equations in rotat-
ing black hole spacetimes are completely integrable in all dimensions. This provides a
highly non-trivial infinite set of completely integrable dynamical systems. This might
be of interest to researchers who study (finite-dimensional) dynamical systems. In
particular, we demonstrated how the action-angle variables approach can be devel-
oped for studying the particle and light motion. This opens an interesting possibility
of applying the fundamental theorem of Kolmogorov–Arnold–Moses (Arnol’d 1989)
to develop a perturbation theory for slightly distorted geodesics in such spacetimes.
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Another interesting mathematical problem, waiting for its solution, is the study of
properties of the solutions of the ordinary differential equations which arise in the
separation of variables of the Klein–Gordon and other field equations in the back-
ground of higher-dimensional black holes. In particular, it is important to describe
properties of higher-dimensional spin-weighted spheroidal harmonics (Berti et al.
2006; Kanti and Pappas 2010; Cho et al. 2012a; Brito et al. 2012; Kanti and Pap-
pas 2012; Kanti and Winstanley 2015). These functions are defined as solutions of
the Sturm–Liouville eigenvalue problem for the second-order ordinary differential
equation with polynomial coefficients, see Sect. 6.3.

There is a number of interesting possible extensions of the presented in this review
subjects, which are still waiting for their study. These problems include, for example,
the classification and complete study of metrics obtained from the Kerr–NUT–(A)dS
metrics by different limiting procedures and, more generally, a thorough study of
the generalized Kerr–NUT–(A)dS solutions. It would also be interesting to extend
the applicability of hidden symmetries to non-empty and supersymmetric general-
izations of the higher-dimensional Einstein equations. More generally, the subject of
hidden symmetries has many interesting applications that go well beyond the realms
of black hole physics. It casts a new light on (integrable) dynamical systems, advances
mathematical techniques, provides new tools for constructing solutions of Einstein’s
equations, is related to special Riemannian manifolds, symmetry operators, and the
Dirac theory. We refer to a beautiful review on hidden symmetries in classical and
quantum physics (Cariglia 2014).

We would like to conclude this review by the following remark. The principal tensor,
which exists in higher-dimensional black holes, provides us with powerful tools that
allow us to study these spacetimes. Why at all the Nature ‘decided’ to give us such a
gift?
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A Notation and conventions

A.1 Tensor notation

We denote tensors, vectors and forms in bold, e.g., metric g, vector X , or antisymmetric
p-form ω. Their components are then gab, Xa , or ωa1...ap , respectively. By dot · we
denote a contraction of two tensors in adjacent indices. For example, h · X denotes
1-form with components hac Xc while X · h has components Xchca .

We use the spacetime metric for implicit raising and lowering indices, Xa are thus
components of a vector and Xa = gac Xc are components of a corresponding 1-form.
In the ‘index-free’ notation the difference is not so clear. In the mathematical literature,
it is custom to use special symbols � and & to distinguish related objects: X& is the
1-form associated with a vector X and ω� is the vector associated with a 1-form ω.
To simplify our notations we do not use these symbols since the meaning is usually
obvious from the context.

We use the signature (−++ · · · +) for Lorentzian metrics and the sign conventions
of Misner et al. (1973) for the curvature tensors. We use the Einstein summation
convention for generic coordinate and tensor indices on any space. However, we do
not employ this convention for indices connected with special coordinate charts or
vector frames (typically such indices do not run over the whole dimension of space;
see, for example, the Greek indices in Kerr–NUT–(A)dS spacetime).

A.2 Exterior calculus

In the following we overview various operations with differential forms mainly to fix
sign and normalization conventions.

A p-form α is a completely antisymmetric tensor of rank (0, p). The exterior
product of a p-form α with a q-form β is denoted by ∧. Up to a normalization, it is
given by the antisymetrization of the tensor product

(α ∧ β)a1...apb1...bq = (p + q)!
p! q! α[a1...ap βb1...bq ]. (A.1)

An insertion of a vector X into the first slot of a form α (the operation which is in the
literature often written as iXω) is denoted by X · ω, and given by

(X · α)a2...ap = Xaαaa2...ap . (A.2)

The two operations obey the following properties:

α ∧ β = (−1)pqβ ∧ α, (A.3)

X · (α ∧ β) = (X · α) ∧ β + (−1)pα ∧ (X · β). (A.4)
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Using the metric, we can also introduce the scalar product ω • σ of two p-forms:

ω • σ = 1

p! ωc1...cp σ
c1...cp . (A.5)

A Hodge dual of a p-form α is a (D − p)-form ∗α, defined as

(∗α)ap+1...aD = 1

p! α
a1...ap εa1...apap+1...aD , (A.6)

where ε is the totally antisymmetric tensor. For an arbitrary p-form α and a vector X ,
we have

∗ ∗α = εp α, εp = (−1)p(D−p) det g

|det g| , (A.7)

∗(α ∧ X) = X · (∗α), ∗(α · X) = X ∧ (∗α), (A.8)

where α · X = (−1)p−1X · α.
The exterior derivative d maps p-forms to (p + 1)-forms. It is defined by the

following properties:

(i) d(α + β) = dα + dβ,

(ii) d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ),

(iii) ddα = 0,

(iv) it maps a function f to its differential d f .

(A.9)

The co-derivative δα of a p-form α is the dual operation to the exterior derivative,

δα = (−1)pεp−1 ∗ d ∗ α, (A.10)

with εp given by (A.7). The exterior derivative can be also expressed in terms of the
antisymmetric part of the metric covariant derivative

(dα)a0...ap = (p + 1)∇[a0αa1...ap]. (A.11)

Similarly, the co-derivative can be expressed using the covariant divergence,

(δα)a2...ap = −∇aαaa2...ap . (A.12)

These relations can also be written using the wedge and the dot operations

dα = ∇ ∧ α, δα = −∇ · α. (A.13)

The duality relations (A.8) then read

∇ ∧ (∗α) = (−1)p−1 ∗ (∇ · α), ∇ · (∗α) = (−1)p ∗ (∇ ∧ α). (A.14)
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We also use the inhomogeneous forms. In terms of its homogenous p-form parts
pα, an inhomogeneous form α is given by

α =
D∑

p=0

pα. (A.15)

The operations d and δ act naturally on such forms. In addition, we can introduce rank
(π) and parity (η) operators by:

π α =
D∑

p=0

p pα, η α =
D∑

p=0

(−1)p pα. (A.16)
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B Phase space formalism and complete integrability

In this appendix, we briefly describe some general properties of Hamiltonian systems,
introduce integrals of motion, and discuss the notion of complete integrability and its
relation to separability of the Hamilton–Jacobi equation. We refer the reader to stan-
dard books on Hamiltonian dynamics and symplectic geometry, for example Arnol’d
(1989); Goldstein et al. (2002), for further exposure.

B.1 Symplectic geometry

In Hamiltonian mechanics, a dynamical system is described in terms of the phase space
whose geometric representation can be given in terms of the symplectic geometry,
which we now briefly review.

B.1.1 Symplectic structure

Let Γ be a 2N -dimensional manifold. A symplectic structure on Γ is a 2-form Ω

which is:

i) closed: dΩ = 0,

i i) non-degenerate: for any X, there existsY such that Ω(X,Y) �= 0.
(B.1)

The pair (Γ,Ω) is called a symplectic manifold. It describes a dynamical system with
N degrees of freedom.

Let z A, A = 1, . . . , 2N , be coordinates on Γ . Then, the components ΩAB of the
symplectic structure form an antisymmetric non-degenerate matrix. We can define an
inverse symplectic form Ω−1, with components Ω AB , by relations

ΩACΩ
BC = δB

A . (B.2)

The last relation can be briefly written as Ω · Ω−1 = −I , where I is a unit tensor
with components δB

A and the dot · indicates the contraction in adjacent indices.
Note also that the very existence of a non-degenerate 2-form implies that Γ has to

be even-dimensional. At the same time the closeness of Ω means that (at least locally)
there exists a 1-form symplectic potential θ , such that Ω = dθ .

B.1.2 Hamiltonian vector flow

A scalar function on Γ is called an observable. We focus on autonomous systems
whose observables do not explicitly depend on time. Given an observable F , the
symplectic structure defines the corresponding Hamiltonian vector field XF , given by

XF = Ω−1 · dF ⇔ XF · Ω = dF, (B.3)

or, in components, X A
F = Ω AB F,B .
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The Hamiltonian vector fields preserve the symplectic structure, £XF Ω = 0, where
£XF stands for the Lie derivative with respect a vector field XF . We also have
£XF Ω−1 = 0. Employing the Leibnitz property for the Lie derivative, one can easily
derive the Liouville’s theorem: The Hamiltonian vector field XF preserves the phase
space volume element Ω∧N induced by the symplectic structure, £XF Ω∧N = 0.

The integral curves of XF determine a map of the phase space into itself, called
a Hamiltonian flow. Parameterizing by parameter τ , the integral curves γ (τ) with
coordinates z A(τ ) are given by

XF = dγ
dτ

= dz A

dτ
∂ z A . (B.4)

Since the Hamiltonian flow preserves the symplectic structure, any observable F
induces a symplectomorphism of the phase space.

B.1.3. Poisson brackets

Given two observables F and G, the symplectic structure defines another observable,
called the Poisson bracket {F,G}, given by

{F,G} = dF · Ω−1 · dG = F,A Ω
AB G,B, (B.5)

or equivalently, using (B.3),

{F,G} = XG · dF = −XF · dG = XF · Ω · XG . (B.6)

The closeness of Ω implies that for any three functions F , G, and H on the symplectic
manifold, we get the Jacobi identity:

{{F,G}, H} + {{G, H}, F} + {{H, F},G} = 0. (B.7)

Observables thus form a Lie algebra with respect to the Poisson bracket. This algebra
is related to the Lie algebra of Hamiltonian vector fields by the relation

[XF , XG ] = −X{F,G}. (B.8)

Here [X,Y ] stands for the Lie bracket (commutator) of two vector fields X and Y . We
note that the relation (B.8) can be used to prove the Jacobi identity for Poisson brackets
(B.7) by rewriting it into the Jacobi identity for the corresponding Lie brackets.

B.1.4 Canonical coordinates

Until now we have not made any particular choice of coordinates. However, it turns
out that the symplectic structure allows one to identify a special class of coordinates,
in which most of the equations simplify significantly and take a form familiar from
the basic courses on theoretical mechanics. The existence of such coordinates follows
from the following:
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Darboux theorem Let Ω be a symplectic structure. Then in a vicinity of a phase
space point it is possible to choose coordinates (q1, . . . , q N , p1, . . . , pN ), called the
canonical coordinates, in which Ω and Ω−1 take the following canonical forms:

Ω =
N∑

i=1

dqi ∧ d pi , Ω−1 =
N∑

i=1

(
∂qi ∂ pi − ∂ pi ∂qi

)
, (B.9)

and the corresponding symplectic potential reads

θ = −
N∑

i=1

pi dqi . (B.10)

The components of the symplectic structure and of its inverse thus are

z A =
(

qi

pi

)
, ΩAB =

(
0 δ

j
i−δi

j 0

)
, Ω AB =

(
0 δi

j

−δ j
i 0

)
. (B.11)

Using the canonical coordinates, the Hamiltonian vector field and the Poisson
bracket take the familiar forms

XF =
N∑

i=1

(
∂F

∂pi
∂qi − ∂F

∂qi
∂ pi

)
, (B.12)

{F,G} =
N∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (B.13)

In particular, one has
{qi , p j } = δi

j . (B.14)

A choice of the canonical coordinates is not unique. There exist transformations
to different canonical coordinates that preserve the canonical form of the symplectic
structure Ω . Such transformations are called canonical transformations. In general,
more than one canonical coordinate chart is required to cover a complete symplectic
manifold. A transition between such two charts covering a vicinity of some point is
given by a canonical transformation. The complete set of canonical charts covering
the symplectic manifold is called a symplectic atlas. The Darboux theorem guarantees
the existence of this atlas.

B.1.5 Time evolution

The dynamics is specified by the Hamiltonian H , a given scalar function on the phase
space. Since we concentrate on autonomous systems, we assume that H is time inde-
pendent. The time evolution in the phase space is then determined by the Hamiltonian
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flow corresponding to the Hamiltonian H . In other words, the dynamical (phase-space)
trajectories are integral curves of the Hamiltonian vector field XH ,

XH =
N∑

i=1

(
q̇i∂qi + ṗi∂ pi

)
. (B.15)

Comparing with (B.12), we arrive at the Hamilton canonical equations:

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
. (B.16)

Here, for any observable F , Ḟ represents its time derivative, i.e., a derivative along
the dynamical trajectories:

Ḟ = d F

dτ
= XH · dF = {F, H}. (B.17)

B.1.6 Integrals of motion

An observable F , which remains constant along the dynamical trajectories, is called
a conserved quantity or an integral/constant of motion. Clearly, it commutes with the
Hamiltonian H ,

{F, H} = 0. (B.18)

It follows from the Jacobi identity (B.7) that given two integrals of motion F and G,
their Poisson bracket, K = {F,G}, is also a (not necessarily non-trivial) constant of
motion. Two observables F and G are said to Poisson commute provided their Poisson
bracket vanishes, {F,G} = 0. Observables that mutually Poisson commute are called
in involution.

We have already seen that an observable induces a transformation of the phase
space, see (B.4). If observable F is a conserved quantity, this transformation commutes
with the time evolution, [XF , XH ] = 0, as follows from the identity (B.8). Any
trajectory in the phase space satisfying the equation of motion can thus be shifted
using the transformation generated by F into another trajectory satisfying the equation
of motion. This means that the conserved quantities generate symmetries of the time
evolution of a dynamical system. This relation is one-to-one: any symmetry of the
time evolution is generated by an integral of motion. We can formulate the following:

Theorem Let Y preserves both the symplectic 2-form, £YΩ = 0, and the Hamilto-
nian, £Y H = 0. Then there exists an integral of motion I , such that Y = XI .

Remark This theorem can be viewed as a phase space version of the famous Noether’s
theorem about the correspondence of continuous symmetries and conserved quantities.
The Noether’s theorem is usually formulated on a configuration space and refers
to the symmetries of the action. In the present version, we have rather stated the
correspondence between conserved quantities of a dynamical system and symmetries
of the time evolution on the phase space. ��
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B.2 Complete integrability

Dynamical systems may admit more than one symmetry. An important situation occurs
when these symmetries commute among each other. A system with the maximal
possible number of independent mutually commuting symmetries is called completely
integrable. The evolution of such systems is highly ‘ordered’ in the phase space: the
trajectories remain in well-defined submanifolds and can be found by a well-defined
procedure. Global integrability and chaotic motion are thus in some sense two opposite
properties of dynamical systems. In this comparison, the global complete integrability
is rare and exceptional, while the chaotic nature is generic. Although exceptionally
rare, integrable systems are solvable by analytic methods and play thus a very important
role in the study of dynamical systems.

B.2.1 Liouville’s integrability

In our application we are interested mainly in a regular ordered evolution contingent on
the complete integrability of the system. We focus on the local aspects of integrability
and will not discuss its global issues. Namely, we concentrate on the local notion of
complete Liouville integrability.

In its original sense, integrability means that a system of differential equations can
be solved by ‘quadratures’, that is, its solution can be found in a finite number of
well-defined steps involving algebraic operations and integrations of given functions.
Thanks to this ‘prescription’, integrable systems are often solvable by analytic methods
and thus play a very important role in the study of dynamical systems.

Nowadays, integrability of finite-dimensional dynamical systems is usually char-
acterized by the existence of conserved quantities:

Complete Liouville integrability The dynamical system with N degrees of freedom
is completely (Liouville) integrable if it admits N functionally independent integrals
of motion Pi that are in involution:

{Pi , H} = 0, {Pi , Pj } = 0, i, j = 1, . . . , N . (B.19)

Since the total number of independent integrals of motion in involution cannot be
larger than N , the Poisson-commutation of H with all Pi implies that the Hamiltonian
is function of P = (P1, . . . , PN ),

H = H(P). (B.20)

Note also that for autonomous systems, the Hamiltonian H as well as the conserved
quantities Pi should not explicitly depend on the time parameter, they are just functions
on the phase space.

The relation between the existence of conserved quantities and the original notion of
integrability was established by Liouville (1855) who proved the following theorem:
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Liouville’s theorem A solution of equations of motion of a completely integrable sys-
tem can be obtained by quadratures, that is, by a finite number of algebraic operations
and integrations.

B.2.2 Level sets

Before we hint on how the solution by quadratures proceeds, we make a couple of
related geometrical comments. First, we introduce the level set LΦ as a subspace of the
phase space Γ given by fixing the conserved quantities P = (P1, . . . , PN ) to values
Φ = (Φ1, . . . , ΦN ),

Pi = Φi , i = 1, . . . , N . (B.21)

The functional independence of observables Pi means that the gradients dPi are lin-
early independent at each point of LΦ , which implies that each level set LΦ is an
N -dimensional submanifold of Γ .

The involution conditions {Pi , Pj } = 0 imply

XPj · dPi = 0, (B.22)

which means that the Hamiltonian vectors XPj are tangent to the level set LΦ and
thus the level set is invariant under the Hamiltonian flows generated by Pi . Since the
Hamiltonian depends just on P , the dynamical trajectories (orbits of XH ) remain also
in the level set LΦ .

Finally, the components of the symplectic structure Ω restricted to the N -
dimensional level set LΦ can be evaluated as Ωi j = XPi · Ω · XPj . However, using
(B.6) we find that they identically vanish on LΦ , i.e., Ω|LΦ = 0. The N -dimensional
submanifold of the 2N -dimensional symplectic space Γ on which the restriction of
the symplectic form vanishes is called a Lagrangian submanifold. We have thus found
that conserved quantities Pi define the foliation of the phase space into Lagrangian
submanifolds LΦ .

B.2.3 Liouville’s procedure

Let us now return back to the Liouville’s integrability theorem. The main idea behind
it is that one can use the N independent integrals of motion P = (P1, . . . , PN ) as
new momentum coordinates and supplement them with N new canonically conjugate
position coordinates Q = (Q1, . . . , QN ). Since H = H(P), the dynamical equations
(B.16) become trivial

Q̇i = ∂H

∂Pi
(P), Ṗi = − ∂H

∂Qi
(P) = 0. (B.23)

A solution to these equations is

Pi = const, Qi = ωiτ + const, (B.24)
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where ‘frequencies’

ωi = ∂H

∂Pi
(P) (B.25)

are constant along dynamical trajectories. To obtain the solution in original coordinates
(q, p), one has to substitute these trivial solutions back into relations between (q, p)
and new coordinates (Q, P).

The key problem of the Liouville procedure is thus finding new coordinates Q which
are canonically conjugate to the integrals of motion P . To define these coordinates, we
start by inverting the original expressions for integrals of motion in terms of original
canonical coordinates,

Pi = Pi (q, p), (B.26)

with respect to the momenta,
pi = pi (q, P). (B.27)

A canonical transformation between the original coordinates (q, p) and new coor-
dinates (Q, P) can be defined by using a generating function W (q, P) obeying the
following conditions:

pi (q, P) = ∂W

∂qi
(q, P), Qi (q, P) = ∂W

∂Pi
(q, P). (B.28)

The first condition is automatically satisfied by the following generating function:

W (q, P) =
∫ q

q0

∑

i

pi (q̄, P) dq̄i , (B.29)

where the integration is performed for fixed values of P and starts at an arbitrary
chosen origin q0 of coordinates q. The key observation is that this integral does not
depend on a path of integration, as follows from the fact that P’s are in involution.

The second equation in (B.28), with P given by (B.26), provides a desired definition
of coordinates Q. Indeed, relations (B.28) imply

dW =
∑

i

(
pi dqi + Qi dPi

)
. (B.30)

Employing d2W = 0 and expression (B.9) for the symplectic structure in canonical
coordinates, one gets

Ω =
∑

i

dqi ∧ d pi =
∑

i

dQi ∧ dPi . (B.31)

This proves that (Q, P) defined in this way are canonical coordinates, and concludes
the construction.

Summarizing, the Liouville’s construction consists of: (i) inverting the relations
(B.26) for the conserved quantities to obtain (B.27) (algebraic operations) (ii) inte-
grating the generating function (B.29) (a quadrature) (iii) defining the new canonical
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variables (Q, P) by (B.28) and (B.26) (derivatives and algebraic operations). A solu-
tion of the equations of motion is then concluded by (iv) writing down the (in new
coordinates trivial) solution (B.24) and by (v) inverting the relations (B.28) and (B.26),
which gives the solution in terms of the original coordinates (possibly highly nontrivial
algebraic operations).

B.2.4 Action-angle variables

It can be demonstrated that for a given foliation of the phase space into its level sets,
the coordinates Q on the level set are given uniquely up to an affine transformation.
The level sets thus possess an affine structure.

When the level set is compact and connected, the affine structure implies that it
is isomorfic to an N -dimensional torus (Arnol’d 1989). In such a case, coordinates
Q can be linearly mixed to form cyclic coordinates α = (α1, . . . , αN ) on the torus,
i.e., angle variables (with a period 2π ) along main circles of the torus. In order to
complement these angles by canonically conjugate coordinates, one needs to perform
a transformation of momenta P into new conserved quantities I = I (P), which label
the toroidal level sets in a slightly different way. The so called action variables can
be defined as integrals analogous to (B.29), integrated along the main circles �i of the
torus,

Ii (P) = 1

2π

∫

�i

pi (q̄, P)dq̄i . (B.32)

Similarly to (B.29), the integrals are independent of continuous deformations of the
path of integration. They thus measure ‘invariant’ sizes of the toroidal level set LP .
Together, (α, I ) form the canonical coordinates called the action–angle variables
(Arnol’d 1989).

B.3 Hamilton–Jacobi equation

B.3.1 Time-dependent case

An alternative method for solving the dynamical system is via the Hamilton–Jacobi
equation. This is a partial differential equation for the Hamilton’s principal function
S̄(q; τ), given by

∂ S̄

∂τ
(q; τ)+ H

(
q, p; τ)

∣∣∣
p= ∂ S̄

∂q (q;τ) = 0, (B.33)

where, for a moment, we allowed the Hamiltonian H(q, p; τ) to depend explicitly on
time τ . It turns out that solving this equation allows one to find a family of trajectories
(q(τ ), p(τ )) in the phase space Γ which satisfy the Hamilton canonical equations
(B.16). Such trajectories are given by identifying the momenta with the derivatives of
Hamilton’s principal function

p j (τ ) = ∂ S̄

∂q j

(
q(τ ); τ). (B.34)
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Plugging these to equations (B.16) for the velocities:

q̇i (τ ) = ∂H

∂pi

(
q(τ ), p; τ)

∣∣∣
p= ∂ S̄

∂q

(
q(τ );τ

), (B.35)

one gets N coupled first-order differential equations for positions q(τ ). Solutions
q(τ ) of these equations together with the momenta p(τ ) defined by (B.34) give the
trajectories which satisfy all the Hamilton canonical equations (B.16).

B.3.2 Autonomous systems

As in the previous discussion, let us now restrict our attention to the autonomous
systems for which the Hamiltonian does not depend explicitly on time. In such a
case, the time dependence of the Hamilton’s principal function can be solved by the
following ansatz:

S̄(q; τ) = S(q)− Eτ, (B.36)

where the function S is called the Hamilton’s characteristic function (Goldstein et al.
2002) and the constant E is an energy. Substituting this ansatz into the Hamilton–
Jacobi equation (B.33), it turns out that E coincides with the value of the Hamiltonian,
and clearly remains conserved along the trajectory. We thus obtained the following
time-independent Hamilton–Jacobi equation:

H(q, p)
∣∣

p= ∂S
∂q (q)

= E . (B.37)

Similarly to the time-dependent case, the function S(q) generates a family of trajec-
tories by

q̇i (τ ) = ∂H

∂pi

(
q(τ ), p

)∣∣∣
p= ∂S

∂q

(
q(τ )
). (B.38)

As discussed below, different solutions S of (B.37) generate different families of
trajectories.

B.3.3 Connections to Liouville’s integrability

A solution S(q, Φ) of the time-independent Hamilton–Jacobi equation (B.37) that
depends on N independent constantsΦ is called a complete integral. In this definition,
the notion of independence of the constants means that when these constants are varied,
they generate dynamical trajectories which fill up the whole phase space.

For completely integrable systems one can show that the generating function
W (q, P) defined in (B.29) solves the Hamilton–Jacobi equation in variables q, pro-
vided that the new momenta P are kept constant, equal to Φ. That is, we have the
following complete integral:

S(q, Φ) = W (q, Φ) (B.39)
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which satisfies the time-independent Hamilton–Jacobi equation

H
(

q,
∂S

∂q
(q, Φ)

)
= E, (B.40)

where E is the value of the Hamiltonian given by the values of conserved quanti-
ties P = Φ,

E = H(Φ). (B.41)

The same complete integral S(q, Φ) also satisfies the analogous Hamilton–Jacobi
equations corresponding to other conserved quantities P:

Pi

(
q,
∂S

∂q
(q, Φ)

)
= Φi . (B.42)

In other words, the complete integral S(q, Φ) is a common solution of all the
Hamilton–Jacobi equations (B.40) and (B.42).

We have thus demonstrated that complete integrable systems always have the com-
plete integral of the time-independent Hamilton–Jacobi equation. In fact, the opposite
statement is also true: the existence of the complete integral of the Hamilton–Jacobi
equation is a sufficient condition for the system to be completely integrable.

To prove the latter statement let us assume that the complete integral S(q, Φ) exists.
If so, it can be used as a generating function W (q, P) = S(q, P) for a canonical trans-
formation (q, p) → (Q, P), i.e., for the transformation given implicitly by (B.28).
One has to solve the left set of equations with respect to new momenta P . Clearly,
these are conserved quantities since they corresponds to the constants that appear in
the complete integral. Therefore, observables P commute with the Hamiltonian and,
since they have been generated by the canonical transformation as new momenta, they
are in involution. The system is hence completely integrable.

Finally, let us note that for every choice of constantsΦ the Hamilton’s characteristic
function S(q, Φ) generates a different family of trajectories in the space of coordinates
q solving (B.38). When lifted to the phase space through (B.34), the trajectories in
such a family belong to the level set LΦ . Varying values Φ, the trajectories fill up the
whole phase space.

B.3.4 Additive separability of the Hamilton–Jacobi equation

There exists a powerful method that turns out to be very useful for finding integrable
systems. It is the method of separation of variables in the Hamilton–Jacobi equation,
see e.g., Carter (1968a, b) for an application of this method in the context of black hole
physics.

Specifically, let us consider the time-independent Hamilton–Jacobi equation (B.37)
and seek, in a given coordinate system, its solution in the form of the following additive
separation ansatz:

S(q) =
N∑

i=1

Si (q
i ), (B.43)
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where each function Si depends only on the corresponding coordinate qi . The ansatz is
consistent if its substitution into the Hamilton–Jacobi equation leads to N independent
ordinary differential equations for functions Si . If these functions are labeled by N
independent constants (which also determine E), we have found a complete integral
and the system is completely integrable.

Let us stress, however, that whether or not the separation ansatz works depends
on the choice of coordinates and for a given dynamical system there is no general
prescription for how to seek the convenient coordinates. For this reason, the route
from separability of the Hamilton–Jacobi equation to complete integrability, although
often fruitful, is more or less a route of trial and error.

Let us assume that the complete integral S(q, Φ) can be written in the separated form
(B.43). Taking into account that components of the momentum are given by derivatives
of Hamilton’s characteristic function with respect to q’s (B.34), the additive separation
ansatz requires that

pi = S′
i (q

i , Φ).

In other words, the i-th component of the momentum has to depend only on one
coordinate qi and not on the remaining coordinates q j , j �= i . Since the constants Φ
can be understood as values of the integrals of motions P , we actually require that

pi = pi (q
i , P), (B.44)

that is, each relation (B.27) for momentum pi depends only on one variable qi . This
is a sufficient and necessary condition for the additive separation of variables in the
Hamilton–Jacobi equation (B.40) using the ansatz (B.43).

Solving (B.44) with respect to P , the Hamilton’s characteristic function S in the
form (B.43) also satisfies all the Hamilton–Jacobi equations (B.42).

As we demonstrate in Sect. 2.3, very explicit conditions for separability of the
Hamilton–Jacobi equation can be formulated for geodesic motion in a curved space-
time. This is described by a theory of separability structures, and will be exploited
in Chap. 6 for the study of geodesics in higher-dimensional black hole spacetimes,
generalizing the classic works of Carter (1968a, b) on geodesic motion around four-
dimensional black holes.

B.4 Covariant formalism on a cotangent bundle

Dynamical systems are most commonly formulated in terms of the motion on a config-
uration space M . As described in Sect. 2.1, the phase space Γ is the cotangent bundle
over the configuration space. It has natural symplectic structure (2.1) and each coor-
dinates xa on the configuration space generate canonical coordinates (xa, pa) on the
phase space. We can thus apply all the formalism discussed in the previous sections,
simply replacing (qi , pi ) → (xa, pa).

The Poisson brackets and other quantities on the cotangent space can be written in
a more covariant way by using the covariant derivative induced from the configuration
space. Given a torsion-free covariant derivative ∇ on M , one can define the following
tensorial quantities: (i) covariant partial derivative ∇F

∂x with respect to position x and
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(ii) momentum partial derivative ∂F
∂ p with respect to momentum of the observable

F(x, p). It corresponds to splitting a phase-space tangent vector X into its position
and momentum parts,

X = u · ∇
∂x

+ f · ∂

∂ p
, (B.45)

see appendix of Cariglia et al. (2013a) for more details. The covariant partial derivative
essentially ‘covariantly ignores’ the momentum variable. In particular, the partial
derivatives of a monomial observable (2.2) read

∇a F

∂x
= (∇a f c1...cr ) pc1 . . . pcr ,

∂F

∂pa
= r f ac2...cr pc2 . . . pcr . (B.46)

With such a machinery, the Poisson bracket can be written as

{F,G} = ∇a F

∂x

∂G

∂pa
− ∂F

∂pa

∇aG

∂x
. (B.47)

Employing this, one can easily derive the expression (2.4) for the Nijenhuis–Schouten
bracket. In particular, on readily gets the expression (2.26):

{K , H} = ∇a K

∂x

∂H

∂pa
− ∂K

∂pa

∇a H

∂x
= (∇a0 ka1...as ) pa0 pa1 . . . pas , (B.48)

where we employed rules (B.46) and that for the Hamiltonian (2.10) one has ∇H
∂x = 0

and ∂H
∂pa

= gab pb.
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C Integrability conditions for conformal Killing–Yano forms

C.1 Laplace operator and conformal Killing–Yano forms

A particular consequence of the integrability conditions for the conformal Killing–
Yano forms is that the action of the Laplace operator on such objects takes a special
form. Since this can be shown in a rather elegant way, we start with the discussion of
the Laplace operators.

C.1.1 Laplace operators and Weitzenböck identity

Let us first list some well-known definitions and identities. For antisymmetric forms
one can introduce two Laplace-like operators. The de Rham–Laplace operator Δω is
defined using the exterior derivative and the divergence:

Δω = −∇ ∧ (∇ · ω)− ∇ · (∇ ∧ ω), (C.1)

while the Bochner–Laplace operator is just a contraction with the second covariant
derivative:

∇2ω = ∇ · ∇ω. (C.2)

The two operators differ by terms that are linear in curvature. The so called Weitzenböck
identity reads

Δω = −∇2ω + Wω, (C.3)

where the Weitzenböck operator W acts on a p-form as

(Wω)a1a2...ap = p Rc[a1 ω
c

a2...ap] − p(p − 1)

2
Rcd[a1a2 ω

cd
...ap]. (C.4)

C.1.2 Action of Laplace operators on conformal Killing–Yano forms

Let us start with a general conformal Killing–Yano form ω obeying the conformal
Killing–Yano condition (2.61). Tearing off the vector X , it can be written in a form,
which respects the duality between the dot and wedge operations,

∇ω = 1

p + 1
g · (∇ ∧ ω)+ 1

D − p + 1
g ∧ (∇ · ω). (C.5)

Here we have slightly abused the notation in the second term by understanding that
only the second index of the metric participates in the wedge operation (since g is
symmetric, it could not be otherwise, anyway). By applying ∇· to (C.5), we obtain
the Bochner–Laplace operator,

∇2ω = 1

p + 1
∇ · (∇ ∧ ω)+ 1

D − p + 1
∇ ∧ (∇ · ω). (C.6)
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Comparing (C.6) with the definition of the de Rham–Laplace operator (C.1),

−Δω = ∇ · (∇ ∧ ω)+ ∇ ∧ (∇ · ω) (C.7)

and employing the Weitzenböck identity (C.3) we obtain the relation for the Weitzen-
böck operator

− Wω = p

p + 1
∇ · (∇ ∧ ω)+ D − p

D − p + 1
∇ ∧ (∇ · ω). (C.8)

The above relations simplify for Killing–Yano and closed conformal Killing–Yano
forms since in these cases only one of the terms on the right-hand side survives. Indeed,
for a Killing–Yano p-form f we have ∇ · f = 0. When we use this in (C.6), (C.7),
and (C.8), we obtain

Δ f = −(p + 1)∇2 f = −∇ · (∇ ∧ f ) = p + 1

p
W f . (C.9)

Similarly, for a closed conformal Killing–Yano p-form h we have ∇ ∧ h = 0, and

Δh = −(D − p + 1)∇2h = −∇ ∧ (∇ · h) = D − p + 1

D − p
Wh. (C.10)

In both cases we see that the action of Laplace operators is given by the algebraic
Weitzenböck operator which involves only the curvature. The same restrictions can
be obtained directly from the integrability conditions as we will see below, cf. (C.16)
and (C.25).

C.2 Integrability conditions

As we already mentioned, the conformal Killing–Yano equation (2.61) is over-
determined (Dunajski 2008). The existence of the conformal Killing–Yano forms
imposes severe restrictions on the geometry. These are called in general the integra-
bility conditions. They have been studied from the very beginnings of the study of
Killing–Yano objects (Yano 1952; Yano and Bochner 1953; Tachibana and Kashi-
wada 1969) till recent works (Houri and Yasui 2015; Batista 2015). (See also Houri
et al. 2017 for a recent progress on integrability conditions for the Killing tensors.)
We give here the review of the integrability conditions for Killing–Yano equation and
closed conformal Killing–Yano equation.

The basic common restriction is that the second covariant derivative of such a form
can be expressed in terms of the curvature and the form itself. It allows one to derive
an algebraic condition for solutions of the given equation expressed in terms of the
curvature. From these conditions one can derive particular consequences which play
a role of necessary integrability conditions. Examples of these are the expressions for
the Laplace operator and the Weitzenböck operator encountered above.
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C.2.1 Preliminaries

The Ricci identity for an antisymmetric p-form ω reads

∇a∇b ωc1c2...cp − ∇b∇a ωc1c2...cp = −p Rab
e[c1ω|e|c2...cp]. (C.11)

For the purpose of the proofs below, let us write explicitly the consequences of the
Leibniz rule (A.4) for a p-form ω and a form σ of rank 1 and 2,

(p + 1) σ[aωc1c2...cp] = σaωc1c2...cp − p σ[c1ω|a|c2...cp], (C.12)

(p + 2) σ[ac0ωc1c2...cp] = 2 σa[c0ωc1c2...cp] + p σ[c0c1ω|a|c2...cp]. (C.13)

C.2.2 Killing–Yano forms

The Killing–Yano condition

∇a fa1...ap = ∇[a fa1...ap] (C.14)

is rather restrictive. It implies that the second derivatives of Killing–Yano forms are
algebraically related to the form itself. Namely, any Killing–Yano p-form f satisfies

∇a∇b fc1c2...cp = −(p + 1)Ra[be
c1 f|e|c2...cp] = p + 1

2
Rea[bc1 f e

c2...cp]. (C.15)

Contracting in indices a and b, one obtains the Bochner–Laplace operator acting on
the Killing–Yano form f ,

− ∇2 fc1c2...cp = Re[c1 f e
c2...cp] − p−1

2
Rde[c1c2 f de

...cp]. (C.16)

On the right-hand side we can recognize the action of the Weitzenböck operator. We
thus showed −∇2 f = 1

p W f , cf. (C.9). We will return to this fact at the end of this
section.

Let us prove now the relations (C.15). The second equality follows from the cyclic
property of the Riemann tensor (the first Bianchi identity). The proof of the first
equality starts with a trivial property of the exterior derivative dd f = 0. Rewriting it
using the covariant derivative and the identity (C.12), we obtain

(p + 2)∇[a∇b fc1c2...cp] = ∇a∇b fc1...cp − (p + 1)∇[b∇|a| fc1...cp] = 0, (C.17)

where we used that ∇a fc1...cp is antisymmetric in all indices, cf. (C.14). Employing
the Ricci identities (C.11) to the second term we find

− p∇a∇b fc1c2...cp − (p + 1)p Ra[be
c1 f|e|c2...cp] = 0, (C.18)

which proves (C.15).
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The existence of a Killing–Yano form is a non-trivial property of the geometry.
It requires a consistency of the curvature with the Killing–Yano form, which can be
written as

Re[a [c1
b] f|e|c2c3...cp] + Re[c1

[a
c2 f|e|b]

c3...cp] = 0. (C.19)

Using the cyclic property of the Riemann tensor in both terms it can also be written as

Rabe[c1 f|e|c2c3...cp] + Re[a [c1c2 f|e|b]
c3...cp] = 0. (C.20)

The integrability condition (C.19) can be obtained by applying the expansion (C.13)
to the right-hand side of (C.15), taking antisymmetrization of both sides in indices a
and b, and using the Ricci identity (C.11) to the left-hand side. The cyclic property of
the Riemann tensor is needed to reshuffle appropriately the indices.

Taking the contraction of these identities in indices b and c1 one can get another
necessary condition between the curvature and the Killing–Yano form,

Re
a f e

c2c3...cp − Re[c2 f ae
c3...cp] = p − 2

2

(
Rde

a [c2 f de
c3...cp] − Rde[c2c3 f ade

...cp]
)
.

(C.21)
With the help of (C.13) this can be also re-arranged to the form

p Rec1 f e
c2...cp − p(p−1)

2
Rdec1[c2 f de

...cp]

= p Re[c1 f e
c2...cp] − p(p−1)

2
Rde[c1c2 f de

...cp].
(C.22)

The right-hand side is actually the action W f of the Weitzenböck operator (C.4) on
the Killing–Yano form.

C.2.3 Closed conformal Killing–Yano forms

Let us now turn to the closed conformal Killing–Yano forms. Similar to the Killing–
Yano equation, the associated condition

∇aha1...ap = pga[a1 ξa2...ap], ξa2...ap = 1

D − p + 1
∇chc

a2...ap , (C.23)

is also restrictive. The second covariant derivative of the closed conformal Killing–
Yano form can be expressed using the curvature and the form itself:

∇a∇bhc1c2...cp = − p

D − p

(
Ra

e δ
b[c1

he
c2...cp] + p − 1

2
Rde

a [c1 δ
b
c2

hde
...cp]

)
. (C.24)

Taking the contraction in indices a and b, one gets the expression for the Bochner–
Laplace operator of the closed conformal Killing–Yano form

− ∇2hc1c2...cp = 1

D − p

(
p Re[c1 he

c2...cp] − p(p−1)

2
Rde[c1c2 hde

...cp]
)
. (C.25)
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Here, we can again identify the action of the Weitzenböck operator, thus −∇2h =
1

D−p Wh.
The proof of (C.24) starts by applying the Ricci identity (C.11) to h upon which

the use of the closed conformal Killing–Yano condition gives

Rabe[c1 he
c2...cp] + gb[c1∇|a|ξc2...cp] − ga[c1∇|b|ξc2...cp] = 0. (C.26)

Contracting in indices b and c1, and using repeatedly (C.12) and the cyclic property
of the Riemann tensor, one can express the covariant derivative of ξ :

∇aξc2...cp = 1

D − p

(
−Rea he

c2...cp + p − 1

2
Rdea[c2 hde

...cp]
)
. (C.27)

Substituting (C.27) into the covariant derivative of the closed conformal Killing–Yano
condition (C.23)

∇a∇bhc1...cp = p δb[c1
∇aξc2...cp], (C.28)

we obtain the desired expression (C.24) for the second derivative of the closed con-
formal Killing–Yano form.

Substituting (C.27) into (C.26), a bit of work leads to another necessary consistency
condition between the curvature and the closed conformal Killing–Yano form

2R[a
e δ

b]
[c1

he
c2...cp] − (D − p)Rab

e[c1 he
c2...cp] + (p − 1)Rde

[a [c1 δ
b]
c2

hde
...cp = 0.

(C.29)
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D Kerr–NUT–(A)dS metric related quantities

D.1 Properties of metric functions

In Chap. 4 we have introduced the auxiliary functions A(k) of variables x2
μ, and the

analogous polynomialsA(k) of parameters a2
μ. They can be defined using the generating

functions J (a2) and J (x2) as follows24

J (a2) =
∏

ν

(x2
ν − a2) =

n∑

k=0

A(k)(−a2)n−k, (D.1)

J (x2) =
∏

ν

(a2
ν − x2) =

n∑

k=0

A(k)(−x2)n−k . (D.2)

These definitions imply

A(k) =
∑

μ1,...,μk
μ1<···<μk

x2
μ1
. . . x2

μk
, (D.3)

A(k) =
∑

μ1,...,μk
μ1<···<μk

a2
μ1
. . . a2

μk
. (D.4)

Similarly, we define the functions Jμ(a2), A( j)
μ , Jμ(x2), and A( j)

μ , which skip the μ-th
variables xμ and aμ as follows

Jμ(a
2) =

∏

ν
ν �=μ

(x2
ν − a2) =

∑

k

A(k)μ (−a2)n−1−k, (D.5)

Jμ(x2) =
∏

ν
ν �=μ

(a2
ν − x2) =

∑

k

A(k)μ (−x2)n−1−k, (D.6)

with

A(k)μ =
∑

ν1,...,νk
ν1<···<νk
νi �=μ

x2
ν1
. . . x2

νk
, (D.7)

A(k)μ =
∑

ν1,...,νk
ν1<···<νk
νi �=μ

a2
ν1
. . . a2

νk
. (D.8)

24 Let us remind that, if not indicated otherwise, the sums (and products) run over ‘standard’ ranges of
indices:

∑

μ

≡
n∑

μ=1

,
∑

k

≡
n−1∑

k=0

.
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These functions satisfy

J (x2
μ) = 0, J (a2

μ) = 0,

Jμ(x
2
ν ) = 0, Jμ(a2

ν ) = 0, for ν �= μ.
(D.9)

Finally, we define

Uμ = Jμ(x
2
μ) =

∏

ν
ν �=μ

(x2
ν − x2

μ), (D.10)

Uμ = Jμ(a2
μ) =

∏

ν
ν �=μ

(a2
ν − a2

μ). (D.11)

The polynomials A(k) and A(k)μ satisfy the following identities:

A(k) = A(k)μ + x2
μA(k−1)

μ , (D.12)

∑

k

A(k)μ
(−x2

ν )
n−1−k

Uν

= δνμ, (D.13)

∑

μ

A(k)μ
(−x2

μ)
n−1−l

Uμ

= δk
l , (D.14)

∑

μ

A(k)μ
(−x2

μ)
n

Uμ

= −A(k+1), (D.15)

∑

μ

A(k)μ
x2
μUμ

= A(k)

A(n)
, (D.16)

∑

μ

A(k)μ = (n − k)A(k), (D.17)

∑

k

(n − k)A(k)
(−x2

ν )
n−1−k

Uν

= 1, (D.18)

∑

k=0,...,n

A(k)(−x2
ν )

n−k = 0, (D.19)

∑

l=0,...,k

A(l)(−x2
ν )

k−l = A(k)μ . (D.20)

Analogous identities hold also for the complementary polynomials A(k) and A(k)μ .
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For the functions J (a2) and J (x2) we can write

∏

μ

J (a2
ν ) = (−1)n

∏

ν

J (x2
μ),

∏

μ
μ�=κ

Jκ(a
2
ν ) = (−1)n−1

∏

ν
ν �=κ

Jκ(x2
μ).

(D.21)

These functions satisfy important orthogonality relations

∑

α

Jν(a2
α)

Uα
Jα(x2

μ)

Uμ

= δμν , (D.22)

∑

α

Jμ(a2
α)Jν(a

2
α)

J (a2
α)Uα

= − Uμ

J (x2
μ)
δμν, (D.23)

∑

μ

Jμ(a
2
α)Jμ(a

2
β)

J (x2
μ)

Uμ

= −J (a2
α)Uαδαβ. (D.24)

D.2 Spin connection

In this section we present the spin connection for the Kerr–NUT–(A)dS spacetimes
written in the frame (4.7). In even dimension the only non-zero connection coefficients
with respect to the frame (eμ, êμ) are:

ωμμν = −ωμνμ =
√

Xν
Uν

xν
x2
ν − x2

μ

, ωμμ̂ν̂ = −ωμν̂μ̂ =
√

Xν
Uν

xμ
x2
ν − x2

μ

,

ωμ̂μ̂ν = −ωμ̂νμ̂ =
√

Xν
Uν

xν
x2
ν − x2

μ

, ωμ̂ν̂μ = −ωμ̂μν̂ =
√

Xν
Uν

xμ
x2
ν − x2

μ

,

ωμ̂νν̂ = −ωμ̂ν̂ν =
√

Xμ
Uμ

xν
x2
ν − x2

μ

,

ωμ̂μ̂μ = −ωμ̂μμ̂ = 1

2

√
Xμ
Uμ

X ′
μ

Xμ
+
√

Xμ
Uμ

∑

ν
ν �=μ

xμ
x2
ν − x2

μ

.

Here, indicesμ and ν are different. In odd dimension the same spin coefficients apply,
plus the following extra terms:

ω
μμ̂0̂ = −ω

μ0̂μ̂ = −
√

c

A(n)
1

xμ
, ω

μ̂μ0̂ = −ω
μ̂0̂μ =

√
c

A(n)
1

xμ
,

ω0̂μ0̂ = −ω0̂0̂μ = −
√

Xμ
Uμ

1

xμ
, ω0̂μ̂μ = −ω0̂μμ̂ = −

√
c

A(n)
1

xμ
.

(D.25)
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E Myers–Perry metric

In Sect. 4.4 we have recovered the higher-dimensional rotating black hole metric of
(Myers and Perry 1986) as a subcase of the Kerr–NUT–(A)dS metric of (Chen et al.
2006a). In this appendix we give a short overview of the Myers–Perry metric in its
original coordinates and its related Kerr–Schild form.

E.1 Tangherlini solution

The simplest higher-dimensional solution of the Einstein equations describing a static
spherically symmetric black hole in a D-dimensional asymptotically flat spacetime is
the Tangherlini metric (Tangherlini 1963)

g = −Fdt2 + 1

F
dr2 + r2dω2

D−2, (E.1)

where dω2
D−2 is a metric on a unit (D − 2)-dimensional sphere, and

F = 1 −
(

2M

r

)D−3

. (E.2)

The constant M is related to the physical mass of the spacetime. The corresponding
relation can be found by either calculating the asymptotic integrals or by comparing
the metric at far distance to the gravitational field of a static source in the Newtonian
theory. Either procedure yields the following physical mass M:

M = (D − 2)ωD−2

8π
M, (E.3)

where ωd is the area of a unit d-dimensional sphere

ωd = 2πd+ 1
2

Γ (d + 1
2 )
. (E.4)

E.2 Myers–Perry solution

E.2.1 Angular momentum in higher dimensions

If a stationary higher-dimensional black hole rotates, its metric becomes more compli-
cated. A higher-dimensional generalization of the Kerr metric was obtained by Myers
and Perry (1986). To get a feeling for the properties of the Myers–Perry solution, let
us first consider a flat spacetime in

D = 2m + 2 − ε (E.5)

123



Black holes, hidden symmetries, and complete integrability Page 189 of 221 6

Fig. 7 2-planes of rotation. A
schematic illustration of m
mutually orthogonal 2-planes in
a spatial section of the flat
D-dimensional spacetime,
D = 2m + 2 − ε

number of spacetime dimensions, with ε = 0 for even and ε = 1 for odd dimensions.
Obviously, the number of spatial dimensions is 2m + 1 − ε and the space contains m
mutually orthogonal spatial 2-planes, see Fig. 7.

The global angular momentum of matter is characterized by an antisymmetric
matrix Ji j , where i and j are spatial indices. It is well known that such a tensor can
be transformed to a special canonical form, by performing rigid spatial rotations. The
corresponding matrix contains m 2-dimensional block matrices at its diagonal, while
other components vanish. These 2-dimensional block matrices have the form

(
0 Ji

−Ji 0

)
, (E.6)

where Ji are the ‘components’ of the angular momentum.

E.2.2 Myers–Perry form of the metric

The Myers–Perry spacetime describes a stationary vacuum isolated rotating black hole
in a D-dimensional asymptotically flat spacetime (Myers and Perry 1986). Since the
metric is stationary and asymptotically flat, one can expect it to be described by m +1
parameters: the mass M and m independent components of the angular momentum
Ji , related to the rotation parameters ai in each of the rotation 2-planes.

The Myers–Perry metric reads

g = − dt2 + U dr2

V −2M
+ 2M

U

(
dt +

m∑

i=1

aiμ
2
i dφi

)2

+
m∑

i=1

(r2 + a2
i )(dμ

2
i + μ2

i dφ
2
i )+ (1 − ε)r2dμ2

0,

(E.7)
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where

V = 1

r1+ε
m∏

i=1

(r2 + a2
i ), U = V

(
1 −

m∑

i=1

a2
i μ

2
i

r2 + a2
i

)
. (E.8)

We call coordinates (t, r, μi , φ j ), i = ε, . . . ,m, j = 1, . . . ,m the Myers–Perry
coordinates. They are not all independent, namely coordinates μi obey a constraint

m∑

i=ε
μ2

i = 1. (E.9)

The metric admits m + 1 Killing vectors. The vector ξ (t) = ∂ t is a generator of
time translations, while ξ ( j) = ∂φ j generate rotations in m independent 2-planes. The
coordinates μi (including μ0 in even dimensions) are direction cosines with respect
to these planes and have the range 0 ≤ μi ≤ 1. The angle coordinates φ j take values
−π ≤ φ j ≤ π (Myers 2011). In D = 4 dimensions, the metric reduces to the Kerr
spacetime, (3.1).

E.2.3 Basic properties

As expected, the metric contains m + 1 parameters: M and ai . These parameters
are related to the physical mass M and the angular momentum components Ji , i =
1, . . . ,m as follows

M = (D − 2)ωD−2

8π
M, Ji = 2

D − 2
Mai , (E.10)

where ωd is again the area of a unit d-dimensional sphere (E.4).
A surface where ξ2

(t) = 0 is called a surface of infinite redshift or an ergosurface.
The equation of this surface is

U − 2M = 0. (E.11)

We denote

η = ξ (t) +
m∑

i=1

Ωi ξ (i), Ωi = ai

r2+ + a2
i

. (E.12)

Then the surface
V − 2M = 0, (E.13)

located at r = r+ where the Killing vector η becomes null, is a Killing horizon, and
coincides with the position of the event horizon. The domain between the event horizon
and the ergosurface is an ergosphere. The parametersΩ j are components of the angular
velocity of the black hole. Similar to the angular momentum, the angular velocity has
m independent components, corresponding to the same number of 2-planes of rotation.
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We also get the following expressions for the surface gravity κ and the horizon area
A

κ =
m∑

i=1

r+
a2

i + r2+
− 2ε−1

r+
, (E.14)

A = ωD−2

rε+

m∏

i=1

(a2
i + r2+). (E.15)

This yields the following higher-dimensional first law of black hole mechanics:

δM = κ

2π

δA
4

+
m∑

i=1

Ωiδ Ji (E.16)

for the Myers–Perry black hole (Myers and Perry 1986). See Altamirano et al. (2014)
for interesting thermodynamic phase transitions these black holes can demonstrate.

It turns out that 5D rotating black holes are quite similar to the Kerr metric, see, e.g.,
Bernardi de Freitas et al. (2015). However, in dimensions D ≥ 6 there are important
differences. For D ≥ 6 and fixed black hole mass there exist solutions with arbitrary
large angular momentum. Such black holes are called ultra-spinning. However such
ultra-spinning black holes are dynamically unstable (Emparan and Myers 2003; Dias
et al. 2010a, b; Figueras et al. 2017). Further discussion of the properties of the Myers–
Perry metric can be found in reviews by Emparan and Reall (2008) and Myers (2011).
Metrics obtained by an analytical continuation of the Myers–Perry and their properties
are discussed in Dowker et al. (1995).

It was shown in Frolov and Kubizňák (2007) that the Myers–Perry metric admits a
principal tensor. It can be generated from a 1-form potential b,

b = 1

2

[(
r2 +

m∑

i=1

a2
i μ

2
i

)
dt +

m∑

i=1

aiμ
2
i (r

2 + a2
i ) dφi

]
, (E.17)

and reads

h =
m∑

i=1

aiμi dμi ∧
[
ai dt + (r2 + a2

i )dφi

]
+ rdr ∧

(
dt +

m∑

i=1

aiμ
2
i dφi

)
. (E.18)

This tensor generates the Killing tower of symmetries, discussed in a more general
case in Chap. 5.

E.2.4 The flat space limit: M = 0

When the mass parameter in the Myers–Perry metric vanishes, M = 0, the metric
simplifies to
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g = − dt2 + dr2 +
m∑

i=1

[
(r2+a2

i )(dμ
2
i + μ2

i dφ
2
i )− a2

i μ
2
i

r2+a2
i

dr2
]

+ (1−ε)r2dμ2
0.

(E.19)
Although not obvious from this expression, the metric is flat. An explicit transformation
to the Cartesian coordinates (xi , yi ) (and z in even dimensions) reads25

xi = μi

√
r2 + a2

i cosφi , yi = μi

√
r2 + a2

i sin φi , z = μ0r, (E.20)

upon which one recovers the standard Minkowski metric in D dimensions, c.f. also
(E.29)–(E.31) in the next section. The constraint (E.9) now relates r to the Cartesian
coordinates.

The spacetime (E.19) is invariant under the action of a cyclic group of m-
dimensional torus. The Killing vector ξ (i) vanishes when μi = 0, that is at the
center xi = yi = 0 of the (xi , yi ) plane. Relations (E.20) show that this is a reg-
ular (D − 2)-dimensional geodesic submanifold, called i-th axis of rotation. This
conclusion remains valid for the Myers–Perry metric (E.7). Taking φi ’s to be periodic
coordinates with period 2π makes this metric axisymmetric. The integral lines for
each of the Killing vectors ξ (i) are closed cycles.

E.3 Kerr–Schild form

Similar to the Kerr metric, the Myers–Perry metric can be written in the Kerr–Schild
form (Myers and Perry 1986) that is intrinsically related to the special algebraic type
of the Weyl tensor (Ortaggio et al. 2009) and the existence of hidden symmetries. It
will also allow us to easily understand the flat space limit of the principal tensor h.

To obtain the Kerr–Schild form of the metric, let us start with the transformation

dt = dτ − 2M

V − 2M
dr, dφ j = dϕ j + V

V − 2M

a j

r2 + a2
j

dr, (E.21)

which transforms the metric element (E.7) into the ‘Eddington-like’ form. We further
introduce the Kerr–Schild coordinates in analogy with (E.20) above25

xi = μi

√
r2+a2

i cos
(
ϕi− arctan

ai

r

)
,

yi = μi

√
r2+a2

i sin
(
ϕi− arctan

ai

r

)
, z = μ0r,

(E.22)

where i runs from 1 to m and the last coordinate z is introduced only in an even number
of spacetime dimensions. The inverse transformation reads

μ2
i = x2

i + y2
i

r2 + a2
i

, ϕi = arctan
ai

r
+ arctan

yi

xi
, μ0 = z

r
. (E.23)

25 Coordinates xi introduced here are not directly related to coordinates xν used in the main text. For
relation of μ’s to xν ’s see (4.58) in Chap. 4.
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These relations imply

μi dμi = xi dxi + yi dyi

r2 + a2
i

− (x2
i + y2

i )rdr

(r2 + a2
i )

2
,

dϕi = xi dyi − yi dxi

x2
i + y2

i

− ai dr

r2 + a2
i

.

(E.24)

The constraint (E.9) defines coordinate r in terms of (xi , yi , z)26

m∑

i=1

x2
i + y2

i

r2 + a2
i

+ (1−ε) z2

r2 = 1. (E.25)

Differentiating this expression we find

∂xi r = r xi

F(r2 + a2
i )
, ∂yi r = r yi

F(r2 + a2
i )
, ∂zr = (1−ε) z

Fr
, (E.26)

F = U

V
= 1 −

m∑

i=1

a2
i (x

2
i + y2

i )

(r2 + a2
i )

2
= r2

m∑

i=1

x2
i + y2

i

(r2 + a2
i )

2
+ (1−ε) z2

r2 , (E.27)

and therefore

dr = r

F

m∑

i=1

xi dxi + yi dyi

r2 + a2
i

+ (1−ε) zdz

Fr
. (E.28)

Using these relations we find that the metric (E.7) takes the Kerr–Schild form

g = η + H l l, (E.29)

where η is the flat metric, H is a scalar function linear in M , and l is a null vector
(with respect to both g and η), given by:

η = −dτ 2 +
m∑

i=1

(dx2
i + dy2

i )+ (1−ε)dz2, H = 2M

U
, (E.30)

l = dτ +
m∑

i=1

r(xi dxi + yi dyi )+ ai (xi dyi − yi dxi )

r2 + a2
i

+ (1−ε) zdz

r
. (E.31)

The principal tensor (E.18) reads

h =
m∑

i=1

[
(xi dxi + yi dyi ) ∧ dτ + ai dxi ∧ dyi

]
+ (1−ε)zdz ∧ dτ. (E.32)

26 In the original paper Myers and Perry (1986) the authors derive the Myers–Perry form (E.7) of the metric
from the Kerr–Schild ansatz (E.29). We are now going backwards.
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Written in the form (E.29), it is now straightforward to take the flat space limit,
M → 0. We recover the standard Minkowski metric η, while the principal tensor is
still given by (E.32). Note that it has exactly the same structure as for the Kerr metric,
(3.94), only now it ‘spreads through’ m rotation 2-planes.

E.4 Special spinning black holes

The group of isometries of a general multiply-spinning Myers–Perry solution is R ×
U (1)m . If p rotation parameters are equal and non-vanishing, the subgroup U (1)p

for the corresponding rotation planes is enhanced to a non-Abelian group U (p). If
p rotation parameters vanish the corresponding subgroup U (1)p is enhanced and
becomes SO(2p + 1 − ε) (Emparan and Reall 2008).

An interesting special case happens for the odd-dimensional Myers–Perry metric
with all equal angular momenta, ai = a for all i . The enhanced symmetry group
of such a spacetime is R × U (n), where R denotes time translations. In this case
the metric depends only on one essential coordinates, r . The constant r surface is a
homogeneous space. One says, that such a spacetime is of cohomogeneity-1.27

Another interesting case is a black hole with a single rotation parameter. These
black holes are sometimes called simply rotating. The symmetry of the solution is
R × U (1)× SO(D − 3), where R denotes time translations and U (1) corresponds to
the 2-plane with a single rotation. The spacetime is of cohomogeneity-2. The (D −2)-
dimensional sections where r and θ are constant are homogeneous.

27 The cohomogeneity of a D-dimensional spacetime is p if there exist a group of symmetry acting on the
spacetime with orbits having dimensionality D − p.

123



Black holes, hidden symmetries, and complete integrability Page 195 of 221 6

F Spinors in curved space

In this appendix we give a short overview of the Dirac theory in a curved space.
After discussing the general properties of Dirac spinors, we describe the most general
linear symmetry operators that commute with the Dirac operator. We conclude by
introducing the special Killing–Yano forms and discuss their relationship to twistor
and Killing spinors. For a more thorough exposure to the subject, we refer the interested
reader to the books by Benn and Tucker (1987), Cartan (1981), Cnops (2002), Lawson
and Michelsohn (1990) or the discussion in papers Benn and Charlton (1997), Benn
and Kress (2004), Cariglia et al. (2011a), Cariglia et al. (2011b), Trautman (2008),
Semmelmann (2003), Houri et al. (2012).

F.1 Dirac spinors

F.1.1 Clifford objects

The Dirac spinors can be understood as a vector bundle DM over the spacetime
manifold M . The fibers of it serve as representation spaces of the Clifford algebra.
The irreducible representation of the Clifford algebra in D = 2n + ε dimensions is
realized on a 2n-dimensional space, the fibers Dx M thus have the dimension 2n . If
necessary, we shall use capital Latin indices A, B, . . . to indicate components of the
Dirac spinors, but usually we omit the spinorial indices.28

The Clifford algebra is realized as operators on the Dirac bundle. It is generated by
the abstract gamma matrices, i.e., by tensors γ with components γ a A

B which satisfy

γ a γ b + γ b γ a = 2 gab I. (F.1)

Here, I is the identity matrix and the implicit matrix multiplication is assumed. A
general element of the Clifford algebra is a linear combination of products of gamma
matrices with all spacetime indices contracted. Using the property (F.1), one can
always eliminate symmetric products of gamma matrices and a general element of the
Clifford algebra can be represented as

/ω =
∑

p

1

p!
pωa1...apγ

a1...ap , (F.2)

where
γ a1...ap = γ [a1 . . . γ ap] (F.3)

28 We follow a common practice of omitting spinor indices even when writing components. A spinor ψ has
components ψ A which we collect to the ‘column’ ψ . Similarly, a Clifford object /ω has components /ωA

B ,
which we collect to the matrix /ω, (F.2). In other words, /ω ∈ D1

1 M is a tensorial object, and /ω is a shorthand

for its components. The gamma matrices γ a are shorthands for γ a A
B , components of the abstract generators

of the Clifford algebra γ ∈ T1
0 ⊗ D1

1 M . We also assume the implicit matrix multiplication denoted by
juxtaposition of spinor matrices.
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and pωa1...ap are components of antisymmetric p-forms pω. In other words, the Clif-
ford objects are in one-to-one correspondence with inhomogeneous antisymmetric
forms

ω =
∑

p

pω, (F.4)

through an isomorphisms γ∗,

γ∗ : ω ∈ � M ↔ /ω ∈ D1
1 M. (F.5)

This isomorphism induces also a new multiplication “◦” on the exterior algebra
� M , the so called Clifford multiplication, which corresponds to the matrix multipli-
cation in D1

1 M ,
γ∗ : α ◦ β ↔ /α /β. (F.6)

It can be shown (Benn and Tucker 1987) that for homogeneous forms α ∈ �p M and
β ∈ �q M , p ≤ q, the Clifford product reads

α ◦ β =
p∑

m=0

(−1)m(p−m+1)+ [m/2]
m! α ∧

m
β, (F.7)

where α ∧
m

β is m-times contracted wedge product introduced in Houri et al. (2010a),

(α ∧
m
β)a1...ap−m b1...bq−m = (p + q − 2m)!

(p − m)!(q − m)! αc1...cm [a1...ap−mβ
c1...cm

b1...bq−m ].
(F.8)

In particular, for a 1-form α and a general p-form ω one obtains

α ◦ ω = α ∧ ω + α · ω,

ω ◦ α = (−1)p (α ∧ ω − α · ω).
(F.9)

These relations in terms of gamma matrices (cf. (F.3)) read

γ a γ a1...ap = γ aa1...ap + p ga[a1γ a2...ap],
γ a1...ap γ a = (−1)p (γ aa1...ap − p ga[a1γ a2...ap]).

(F.10)

We shall also work with inhomogeneous forms (F.4) and employ the operators π
and η introduced in Sect. A.2 by (A.16). We say that an inhomogeneous form ω is
even if ηω = ω and it is odd if ηω = −ω.

F.1.2 Invariant products on the spinor space

The universality of the Clifford algebra and the irreducibility of its spinor representa-
tion generated by abstract gamma matrices (F.1) imply that the spinor space possesses
two natural products (Trautman 2008; Lawson and Michelsohn 1990; Benn and Tucker
1987): the Dirac scalar product 〈ψ,ϕ〉 (antilinear in the first and linear in the second
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argument) and the real product (ψ,ϕ) (linear in both arguments). The first is related to
the (antilinear) Dirac conjugation˜: DM → D∗M and the second to the (antilinear)
charge conjugation c : DM → DM as

〈ψ,ϕ〉 = ψ̃A ϕ
A, (F.11)

(ψ c,ϕ) = 〈ψ,ϕ〉. (F.12)

The symmetry properties, positivity and relations to the abstract gamma matrices of
these products depend on dimensionality and signature. In general one has

〈γψ,ϕ〉 = εA〈ψ, γϕ〉, γ̃ = εA γ , (F.13)

(γψ,ϕ) = εB(ψ, γϕ), γ c = εC γ , (F.14)

and
〈ψ,ϕ〉 = 〈ϕ,ψ〉∗, (ψ,ϕ) = σB (ϕ,ψ), ψ cc = σC ψ, (F.15)

where all ε’s and σ ’s are just signs.

Remark These products are related to the intertwiners between different representa-
tions of the Clifford algebra on the spinor spaces. Following the notation of Trautman
(2008) (where one can understand Trautman’s representation ρ as our map γ ∗ gener-
ated by abstract gamma matrices γ ), one can introduce three intertwiners AK̄ L , BK L ,

and C K̄
L . BK L relates the representation on DM and D∗M , while C K̄

L relates the
representation on DM and D̄M , and

AK̄ L = B̄K̄ N̄ C N̄
L . (F.16)

Here ¯ : DM ↔ D̄M is the conjugation between the spinor space and its conjugate.
The products and conjugations (F.11) and (F.12) are then defined as follows:

〈ψ,ϕ〉 = ψ̄ K̄ AK̄ L ϕ
L , ψ̃K = ψ̄ N̄ AN̄ K , (F.17)

(ψ,ϕ) = ψK BL K ϕ
L , ψ cK = C̄ K

N̄ ψ̄
N̄ . (F.18)

These imply relations

γ̃ = Aγ̄ A−1, γ c = C̄γ̄ C̄
−1
, ψ cc = C̄Cψ . (F.19)

Using these definitions and relations one can read out ε’s and σ ’s signs from the
properties (6)–(11) of Trautman (2008).

The products and the conjugations are fixed by the spinor representation up to a
freedom of one complex number at each spacetime point, see discussion in Trautman
(2008). We assume that this freedom is fixed and the products are chosen as a part of
the definition of the spinor bundle. ��
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F.1.2 Covariant derivative

The metric covariant derivative on the tangent space can be extended to spinors. It
satisfies

∇γ = 0, (F.20)

and the invariant products are covariantly constant, i.e.,

∇〈ψ,ϕ〉 = 〈∇ψ,ϕ〉 + 〈ψ,∇ϕ〉,
∇(ψ,ϕ) = (∇ψ,ϕ)+ (ψ,∇ϕ).

(F.21)

These conditions fix the extension of the covariant derivative on spinors uniquely, see
Trautman (2008).

Choosing a frame ea in the tangent space and a frame ϑ A in the spinor space,
such that the components γ a A

B are constant,29 the covariant derivative on spinors and
Clifford objects writes as

∇aψ = ∂aψ + 1

4
ωabc γ

b γ c ψ, (F.22)

∇a /ω = ∂a/ω +
[ 1

4
ωabc γ

b γ c, /ω
]
, (F.23)

with the standard spin coefficients ωa
b

c given by

∇aeb = ωa
c

b ec, (F.24)

and [ /σ, /ω ] = /σ /ω − /ω /σ being the commutator. If one introduces 1-forms of the
curvature as ωb

c = eaωa
b

c, these satisfy the Cartan equations

dea + ωa
b ∧ eb = 0. (F.25)

Here ea is the frame of 1-forms dual to ea .

F.1.4 Dirac operator

The Dirac operator operator on spinors is defined by Dψ = /∇ ψ , that is,

Dψ = γ a∇aψ. (F.26)

When applied on a Clifford object /ω, its action D /ω = /∇ /ω can be translated to the
action on the corresponding antisymmetric form ω. We denote it by the same symbolD.

29 This choice is usually done by choosing an orthonormal frame ea in tangent space (but in the context
of Lorentzian geometry a choice of a null frame is also common) and by specifying a particular form of
the components of the gamma matrices γ a A

B . Different realizations of the gamma matrices which can be
found in the literature can thus be understood as a different choice of the frame ϑ A associated with the
spacetime frame ea . See (6.52) for a particular choice of the frame ϑ A in the Kerr–NUT–(A)dS spacetime.
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Taking into account the definition of the Clifford multiplication (F.6) and its relation to
the wedge and the dot operations (F.9), we can write the Dirac operator on the exterior
algebra �M as

Dω = ∇ ◦ ω = ∇ ∧ ω + ∇ · ω. (F.27)

F2 Symmetry operators of the Dirac operator

For solving the Dirac equation and for a discussion of its properties it is useful to know
the symmetry operators of the Dirac operator, and in particular those that commute
with D. A general first-order symmetry operator S satisfying DS = RD for some R
has been constructed in Benn and Charlton (1997), Benn and Kress (2004). It is in
one-to-one correspondence with conformal Killing–Yano tensors. Based on this result
it is possible to characterize the operators that commute with D—they are related to
the Killing–Yano and closed conformal Killing–Yano forms (Cariglia et al. 2011a).

F.2.1 First-order operators that commute with the Dirac operator

Using the exterior algebra representation, the most general first-order operator S that
commutes with the Dirac operator, [D,S] = 0, takes the following form:

S = K f + Mh, (F.28)

K f = f · ∇ +
(π − 1

2π
∇ ∧ f

)
, (F.29)

Mh = h ∧ ∇ +
(D − π − 1

2(D − π)
∇ · h

)
, (F.30)

where f is an (in general inhomogeneous) odd Killing–Yano form and h is an (inho-
mogeneous) even closed conformal Killing–Yano form.

Remark To illuminate the condense notation for the operators, we write explicitly
the action of the operators K f and Mh on a form ω in the case when f and h is a
homogeneous odd p-form and a homogeneous even q-form, respectively,

K f ω = [ f · ∇] ◦ ω + p

2(p + 1)
(∇ ∧ f ) ◦ ω, (F.31)

Mh ω = [h ∧ ∇] ◦ ω + D − q

2(D − q + 1)
(∇ · h) ◦ ω. (F.32)

The derivatives [ f · ∇] and [h ∧ ∇] enter into the Clifford multiplication as forms with
indices [− f · ∇]a2...ap = fa2...ap

a∇a = f a
a2...ap∇a (p odd) and [h ∧ ∇]a0a1...aq =

(q + 1)h[a1...aq ∇a0] (q even). ��
Writing these operators directly on the Dirac bundle, one gets

K f =
∑

p odd

[ 1

(p−1)! γ
a1...ap−1 p f a

a1...ap−1
∇a + p

2(p+1)! γ
a1...ap+1 pκa1...ap+1

]
,

(F.33)
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Mh =
∑

p even

[ 1

p ! γ
aa1...ap pha1...ap∇a + D − p

2(p−1)! γ
a1...ap−1 pξa1...ap−1

]
. (F.34)

Here, the inhomogeneous forms are written as

f =
∑

p odd

p f , h =
∑

p even

ph, (F.35)

where p-forms p f are odd Killing–Yano tensors, and ph are even closed conformal
Killing–Yano tensors, and satisfy

∇a
p fa1...ap = pκaa1...ap ,

pκa0a1...ap = ∇[a0
p fa1...ap], (F.36)

∇a
pha1...ap = p ga[a1

pξa2...ap], pξa2...ap = 1

D − p + 1
∇c

phc
a2...ap . (F.37)

To summarize, the operators commuting with the Dirac operator are in one-to-one
correspondence with odd Killing–Yano forms and even closed conformal Killing–
Yano forms.

F.2.2 Killing–Yano bracket

The conditions when the above operators also commute among each other have been
studied in Cariglia et al. (2011a). Having two operators S1, S2 of the type (F.29)
or (F.30), their commutator is of the first-order only if the corresponding Killing–
Yano and closed conformal Killing–Yano forms satisfy certain algebraic conditions.
Provided these conditions are satisfied, the commutator [S1,S2] is again an operator
that commutes with the Dirac operator and thus it has the form (F.28). This fact can
be exploited to define a new operation on the Killing–Yano and closed conformal
Killing–Yano tensors, called the Killing–Yano bracket (Cariglia et al. 2011a).

To illustrate the action of Killing–Yano brackets, let us consider two odd Killing–
Yano forms κ and λ. The Killing–Yano bracket is defined by the requirement that

[Kκ , Kλ] = K[κ,λ]KY , (F.38)

which is true provided the following necessary algebraic conditions are satisfied:

∑

k=1,...

(−1)k

(2k − 1)!κ ∧
2k

λ = 0, (F.39)

in which case the bracket can be explicitly written as (Cariglia et al. 2011a)

[κ,λ]KY = 1

π
∇ ·
∑

k=0,...

(−1)k

(2k + 1)! (πκ) ∧
2k
(πλ). (F.40)
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In particular, for homogeneous forms of rank p and q, respectively, the consistency
conditions splits into a set of conditions

κ ∧
2k

λ = 0 for k = 1, 2, . . ., (F.41)

and the Killing–Yano bracket simplifies to

[κ,λ]KY = p q

p + q − 1
∇ · (κ ∧ λ). (F.42)

As discussed in the main text, the algebraic conditions (F.41) (and the analogous
conditions for the closed conformal–Killing–Yano tensors) are automatically satisfied
for the Killing–Yano tower of hidden symmetries generated from the principal tensor
of the Kerr–NUT–(A)dS geometry.

F.3 Killing–Yano tensors and Killing spinors

In this section we review the connections between Killing–Yano tensors and various
Killing spinors, based on works of Semmelmann (2003), Cariglia (2004), and Houri
et al. (2012).

F.3.1 Conformal Killing spinors

To motivate the definition of conformal Killing spinors, let us recall that in Sect. 2.4
we have introduced conformal Killing–Yano forms as those annihilated by the twistor
operator (2.49) whose definition is based on splitting the space T∗⊗ � M into the
subspaces given by the projector A+ C and the projector T , cf. (2.45). The covariant
derivative ∇ω of an antisymmetric form ω can be thus split into the antisymmetric
plus divergence parts and the part given by the twistor operator. If the twistor operator
Tω yields zero, ω is the conformal Killing–Yano form.

Similarly, a 1-form spinor α ∈ T∗⊗ D M can be split into the parts given by the
projector B and the projector T ,

(Bα)a = 1

D
γaγ

nαn, (F.43)

(T α)a = αa − 1

D
γaγ

nαn . (F.44)

Obviously, B and T are complementary projectors as can be seen by using γ aBαa =
γ aαa and γ aT αa = 0. Applying these projectors on the covariant derivative ∇ψ , one
gets

∇ψ = B∇ψ + T ∇ψ = 1

D
γ Dψ + Tψ, (F.45)

where the (spinorial) twistor operator Tψ reads

Taψ = T ∇aψ = ∇aψ − 1

D
γaDψ. (F.46)
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Spinors for which the twistor operator vanishes are called twistor spinors or conformal
Killing spinors. They satisfy

∇ψ = 1

D
γ Dψ . (F.47)

F.3.2 Relation between conformal Killing spinors and conformal Killing–Yano
tensors

There is a natural connection between the twistor spinors and the conformal Killing–
Yano tensors:

Theorem Let ψ1 and ψ2 be two twistor spinors. Then the following p-forms, defined
using the invariant product (F.11) for any p = 0, . . . , D:

ωa1...ap = 〈ψ1, γa1...apψ2〉, (F.48)

are the conformal Killing–Yano tensors.

To prove the theorem, we compute the covariant derivative ∇ω. Employing (F.21),
(F.20) with (F.3) and the assumption that ψ1 and ψ2 satisfy (F.47), we obtain

∇aωa1...ap = 〈∇aψ1, γa1...apψ2〉 + 〈ψ1, γa1...ap∇aψ2〉
= 1

D
〈γaDψ1, γa1...apψ2〉 + 1

D
〈ψ1, γa1...apγaDψ2〉

(F.49)

Applying (F.13) in the first term and using (F.10), we get

∇aωa1...ap = 1

D

(
εA〈Dψ1, γaa1...apψ2〉 + (−1)p〈ψ1, γaa1...apDψ2〉

)

+ p

D
ga[a1

(
εA〈Dψ1, γa2...ap]ψ2〉 − (−1)p〈ψ1, γa2...ap]Dψ2〉

)
.

(F.50)

Clearly, the derivative ∇ω has the form (2.53) and ω is thus a conformal Killing–Yano
form.

Recalling (2.54), we can also read out

(∇ ∧ ω)aa1...ap = p + 1

D

(
εA〈Dψ1, γaa1...apψ2〉 + (−1)p〈ψ1, γaa1...apDψ2〉

)
,

(∇ · ω)a2...ap = D−p+1

D

(
εA〈Dψ1, γa2...apψ2〉 − (−1)p〈ψ1, γa2...apDψ2〉

)
.

(F.51)

F.3.3 Killing spinors

We call a spinor ψ obeying

∇ψ = μ

D
γ ψ (F.52)

for some μ ∈ C a Killing spinor.
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If a spinor ψ is both the twistor spinor and the Killing spinor, it follows that it
satisfies the massive Dirac equation

Dψ = μψ . (F.53)

The relation is symmetric, any two of the conditions (F.47), (F.52), and (F.53) imply
the third.

F.3.4 Special conformal Killing–Yano tensors

Let as define a special Killing–Yano tensor ω to be a p-form which obeys

∇Xω = 1

p + 1
X · (∇ ∧ ω), ∇X (∇ ∧ ω) = c X ∧ ω, (F.54)

for any vector field X and some constant c. Obviously, the special Killing–Yano tensors
are subclass of Killing–Yano tensors. They have been introduced by Tachibana and
Yu (1970) and exploited by Semmelmann (2003).

Substituting Killing–Yano equation into the second condition of (F.54), we obtain

∇a∇a0ωa1...ap = c ga[a0ωa1...ap]. (F.55)

Using (F.54) we also find that ω is an eigenform of the de Rham–Laplace operator
defined in (C.1), Δω = −∇ ∧ (∇ · ω)− ∇ · (∇ ∧ ω),

Δω = −c(D − p)ω. (F.56)

Moreover, when ω is an odd-rank special Killing–Yano tensor, so is

ω ∧ (∇ ∧ ω)∧k, (F.57)

for any k = 0, 1, . . . .
Similarly, one can define a special closed conformal Killing–Yano tensor ω to be a

p-form obeying

∇Xω = 1

D−p+1
X ∧ (∇ · ω), ∇X (∇ · ω) = c X · ω, (F.58)

for any vector field X and some constant c.
Again, such ω is an eigenform of the de Rham–Laplace operator,

Δω = −cp ω. (F.59)
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F.3.5 Relation between Killing spinors and special Killing–Yano tensors

Similar to twistor spinors, the Killing spinors also generate conformal Killing–Yano
forms:

Theorem Let ψ1 and ψ2 be two Killing spinors,

∇ψ1 = μ1

D
γ ψ1, ∇ψ2 = μ2

D
γ ψ2. (F.60)

Then the following p-forms:

ω
(p)
a1...ap = 〈ψ1, γa1...apψ2〉, (F.61)

p = 0, . . . , D, are conformal Killing–Yano forms.

The same reasoning as in (F.49) and (F.50), just using (F.60) instead (F.47), yields

∇aω
(p)
a1...ap = 1

D

(
εAμ1 + (−1)pμ2

) 〈ψ1, γaa1...apψ2〉
+ p

D

(
εAμ1 − (−1)pμ2

)
ga[a1 〈ψ1, γa2...ap]ψ2〉

= μ
(p)
+
D

ω
(p+1)
aa1...ap + μ

(p)
−
D

p ga[a1 ω
(p−1)
a2...ap],

(F.62)

i.e.,

∇Xω(p) = μ
(p)
+
D

X · ω(p+1) + μ
(p)
−
D

X ∧ ω(p−1), (F.63)

where we have set
μ
(p)
± = εAμ̄1 ± (−1)pμ2. (F.64)

We see that the derivative ∇ω(p) has the form (2.59) and ω is thus a conformal Killing–
Yano form, which concludes the proof of the theorem.

From (2.60) we obtain

∇ ∧ ω(p) = (p + 1)
μ
(p)
+
D

ω(p+1),

∇ · ω(p) = (D − p + 1)
μ
(p)
−
D

ω(p−1).

(F.65)

Taking the covariant derivative of these expressions while applying (F.63) and
μ
(p)
± = μ

(p+1)
∓ = μ

(p−1)
∓ , we obtain

∇X (∇ ∧ ω(p)) = p + 1

D2 μ
(p)
+ μ

(p)
− X · ω(p+2) + p + 1

D2 (μ
(p)
+ )2X ∧ ω(p),

∇X (∇ · ω(p)) = D−p+1

D2 μ
(p)
− μ

(p)
+ X ∧ ω(p−2) + D−p+1

D2 (μ
(p)
− )2X · ω(p).

(F.66)
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Inspecting (F.65) and (F.66), we can formulate:

Theorem Under assumptions of the previous theorem we recognize two special cases:

μ
(p)
− = 0 ⇒ ω(p) is a special Killing–Yano tensor with

c = p + 1

D

(
μ
(p)
+
)2
, (F.67)

μ
(p)
+ = 0 ⇒ ω(p) is a special closed conformal Killing–Yano tensor with

c = D−p+1

D

(
μ
(p)
−
)2
. (F.68)

If we assume μ1 = μ2 = μ, the conditions μ(p)
± = 0 require that μ must be either

real or imaginary, depending on the dimension, signature, and order p, cf. (F.64).
Let us finally note that all the results of this section can be straightforwardly gen-

eralized to the case of a covariant derivative with torsion. The torsion generalized
twistor/Killing spinors, which find applications in various supergravity theories, are
then related to the torsion generalized conformal Killing–Yano tensors discussed in
Sect. 7.6. We refer the interested reader to Appendix A in Houri et al. (2012) for more
details.
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Kubizňák D (2009) On the supersymmetric limit of Kerr–NUT–AdS metrics. Phys Lett B 675:110–115.
https://doi.org/10.1016/j.physletb.2009.03.050. arXiv:0902.1999
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Kubizňák D, Warnick CM, Krtouš P (2011) Hidden symmetry in the presence of fluxes. Nucl Phys B
844:185–198. https://doi.org/10.1016/j.nuclphysb.2010.11.001. arXiv:1009.2767

Kunduri HK, Lucietti J (2005) Integrability and the Kerr–(A)dS black hole in five dimensions. Phys Rev D
71:104021. https://doi.org/10.1103/PhysRevD.71.104021. arXiv:hep-th/0502124

Kunduri HK, Lucietti J (2014) Supersymmetric black holes with lens-space topology. Phys Rev Lett
113:211101. https://doi.org/10.1103/PhysRevLett.113.211101. arXiv:1408.6083

Kunduri HK, Lucietti J, Reall HS (2006) Gravitational perturbations of higher dimensional rotating black
holes: tensor perturbations. Phys Rev D 74:084021. https://doi.org/10.1103/PhysRevD.74.084021.
arXiv:hep-th/0606076

Kunz J (2015) Black holes in higher dimensions (black strings and black rings). In: Rosquist K, Jantzen RT,
Ruffini R (eds) The Thirteenth Marcel Grossmann Meeting. World Scientific, pp 568–581. https://doi.
org/10.1142/9789814623995_0027. arXiv:1309.4049

Laguna P, Miller WA, Zurek WH, Davies MB (1993) Tidal disruptions by supermassive black holes:
hydrodynamic evolution of stars on a Schwarzschild background. Astrophys J 410:L83–L86

Landsberg G (2015) Black holes at the large Hadron collider. Fundam Theor Phys 178:267–292. https://
doi.org/10.1007/978-3-319-10852-0_9

Lawson HB, Michelsohn ML (1990) Spin geometry. Princeton University Press, Princeton
Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math

21:467–490. https://doi.org/10.1002/cpa.3160210503
Lehner L, Pretorius F (2010) Black strings, low viscosity fluids, and violation of cosmic censorship. Phys

Rev Lett 105:101102. https://doi.org/10.1103/PhysRevLett.105.101102. arXiv:1006.5960
Leitner F (2004) Normal conformal Killing forms. ArXiv e-prints arXiv:math/0406316
Liouville J (1855) Note sur l’intégration des équations différentielles de la dynamique, présentée au bureau

des longitudes le 29 juin 1853. J Math Pures Appl 20:137–138
Lü H, Vázquez-Poritz JF (2014) C-metrics in gauged STU supergravity and beyond. JHEP 1412:057. https://

doi.org/10.1007/JHEP12(2014)057. arXiv:1408.6531
Lü H, Mei J, Pope CN (2009) New black holes in five dimensions. Nucl Phys B 806:436–455. https://doi.

org/10.1016/j.nuclphysb.2008.08.005. arXiv:0804.1152
Lü H, Mei J, Pope CN (2010) New charged black holes in five dimensions. Class Quantum Grav 27:075013.

https://doi.org/10.1088/0264-9381/27/7/075013. arXiv:0806.2204
Luminet JP, Marck JA (1985) Tidal squeezing of stars by Schwarzschild black holes. Mon Not R Astron

Soc 212:57–75. https://doi.org/10.1093/mnras/212.1.57
Luna A, Monteiro R, O’Connell D, White CD (2015) The classical double copy for Taub–NUT spacetime.

Phys Lett B 750:272–277. https://doi.org/10.1016/j.physletb.2015.09.021. arXiv:1507.01869
Lunin O (2017) Maxwell’s equations in the Myers–Perry geometry. ArXiv e-prints arXiv:1708.06766
Maartens R, Koyama K (2010) Brane-world gravity. Living Rev Relativ 13(1):5. https://doi.org/10.12942/

lrr-2010-5. arXiv:1004.3962
Majumdar AS, Mukherjee N (2005) Braneworld black holes in cosmology and astrophysics. Int J Mod Phys

D 14:1095. https://doi.org/10.1142/S0218271805006948. arXiv:astro-ph/0503473
Mann RB (1999) Misner string entropy. Phys Rev D 60:104047. https://doi.org/10.1103/PhysRevD.60.

104047. arXiv:hep-th/9903229
Mann RB, Stelea C (2004) Nuttier (A)dS black holes in higher dimensions. Class Quantum Grav 21:2937–

2962. https://doi.org/10.1088/0264-9381/21/12/010. arXiv:hep-th/0312285
Mann RB, Stelea C (2006) New multiply nutty spacetimes. Phys Lett B 634:448–455. https://doi.org/10.

1016/j.physletb.2006.02.019. arXiv:hep-th/0508203
Mansouri F, Witten L (1984) Isometries and dimensional reduction. J Math Phys 25:1991. https://doi.org/

10.1063/1.526392
Marck JA (1983a) Parallel-tetrad on null geodesics in Kerr–Newman space–time. Phys Lett A 97:140–142
Marck JA (1983b) Solution to the equations of parallel transport in Kerr geometry; tidal tensor. Proc R Soc

Lond Ser A 385(1789):431–438
Martelli D, Sparks J (2005) Toric Sasaki–Einstein metrics on S2 × S3. Phys Lett B 621:208–212. https://

doi.org/10.1016/j.physletb.2005.06.059. arXiv:hep-th/0505027

123

https://doi.org/10.1103/PhysRevD.79.024018
https://doi.org/10.1103/PhysRevD.79.024018
http://arxiv.org/abs/0811.0012
https://doi.org/10.1016/j.physletb.2009.06.037
http://arxiv.org/abs/0905.0722
https://doi.org/10.1016/j.nuclphysb.2010.11.001
http://arxiv.org/abs/1009.2767
https://doi.org/10.1103/PhysRevD.71.104021
http://arxiv.org/abs/hep-th/0502124
https://doi.org/10.1103/PhysRevLett.113.211101
http://arxiv.org/abs/1408.6083
https://doi.org/10.1103/PhysRevD.74.084021
http://arxiv.org/abs/hep-th/0606076
https://doi.org/10.1142/9789814623995_0027
https://doi.org/10.1142/9789814623995_0027
http://arxiv.org/abs/1309.4049
https://doi.org/10.1007/978-3-319-10852-0_9
https://doi.org/10.1007/978-3-319-10852-0_9
https://doi.org/10.1002/cpa.3160210503
https://doi.org/10.1103/PhysRevLett.105.101102
http://arxiv.org/abs/1006.5960
http://arxiv.org/abs/math/0406316
https://doi.org/10.1007/JHEP12(2014)057
https://doi.org/10.1007/JHEP12(2014)057
http://arxiv.org/abs/1408.6531
https://doi.org/10.1016/j.nuclphysb.2008.08.005
https://doi.org/10.1016/j.nuclphysb.2008.08.005
http://arxiv.org/abs/0804.1152
https://doi.org/10.1088/0264-9381/27/7/075013
http://arxiv.org/abs/0806.2204
https://doi.org/10.1093/mnras/212.1.57
https://doi.org/10.1016/j.physletb.2015.09.021
http://arxiv.org/abs/1507.01869
http://arxiv.org/abs/1708.06766
https://doi.org/10.12942/lrr-2010-5
https://doi.org/10.12942/lrr-2010-5
http://arxiv.org/abs/1004.3962
https://doi.org/10.1142/S0218271805006948
http://arxiv.org/abs/astro-ph/0503473
https://doi.org/10.1103/PhysRevD.60.104047
https://doi.org/10.1103/PhysRevD.60.104047
http://arxiv.org/abs/hep-th/9903229
https://doi.org/10.1088/0264-9381/21/12/010
http://arxiv.org/abs/hep-th/0312285
https://doi.org/10.1016/j.physletb.2006.02.019
https://doi.org/10.1016/j.physletb.2006.02.019
http://arxiv.org/abs/hep-th/0508203
https://doi.org/10.1063/1.526392
https://doi.org/10.1063/1.526392
https://doi.org/10.1016/j.physletb.2005.06.059
https://doi.org/10.1016/j.physletb.2005.06.059
http://arxiv.org/abs/hep-th/0505027


Black holes, hidden symmetries, and complete integrability Page 217 of 221 6

Mason LJ, Taghavi-Chabert A (2010) Killing–Yano tensors and multi-Hermitian structures. J Geom Phys
60:907–923. https://doi.org/10.1016/j.geomphys.2010.02.008. arXiv:0805.3756

Mazur PO (2000) Black hole uniqueness theorems. ArXiv e-prints arXiv:hep-th/0101012
McLenaghan RG, Spindel P (1979) Quantum numbers for Dirac spinor fields on a curved space-time. Phys

Rev D 20:409. https://doi.org/10.1103/PhysRevD.20.409
McLenaghan RG, Smith SN, Walker DM (2000) Symmetry operators for spin-1/2 relativistic wave equations

on curved space-time. Proc R Soc Lond Ser A 456:2629–2643
Miller W Jr (1988) Mechanisms for variable separation in partial differential equations and their relationship

to group theory. In: Levi D, Winternitz P (eds) Symmetries and nonlinear phenomena. World Scientific,
Singapore, pp 188–221

Milson R (2004) Alignment and the classification of Lorentz-signature tensors. In: Symmetry and pertur-
bation theory, conference = international conference on SPT 2004, Cala Gonone, Sardinia, Italy, May
30–June 6, 2004. https://doi.org/10.1142/9789812702142_0026, arXiv:gr-qc/0411036

Milson R, Coley A, Pravda V, Pravdová A (2005) Alignment and algebraically special tensors in Lorentzian
geometry. Int J Geom Meth Mod Phys 2:41–61. https://doi.org/10.1142/S0219887805000491.
arXiv:gr-qc/0401010

Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. Freeman, San Francisco
Monteiro R, O’Connell D, White CD (2014) Black holes and the double copy. JHEP 1412:056. https://doi.

org/10.1007/JHEP12(2014)056. arXiv:1410.0239
Moroianu A, Semmelmann U (2003) Twistor forms on Kähler manifolds. Ann Scuola Norm Sup Pisa Cl

Sci 2:823–845
Murata K (2011) Chapter 7. Perturbative stability analysis of higher dimensional rota ting black holes. Prog

Theor Phys Suppl 189:210–226. doi:https://doi.org/10.1143/PTPS.189.210
Murata K (2013) Instability of higher dimensional extreme black holes. Class Quantum Grav 30:075002.

https://doi.org/10.1088/0264-9381/30/7/075002. arXiv:1211.6903
Murata K, Soda J (2008a) A Note on separability of field equations in Myers–Perry spacetimes. Class

Quantum Grav 25:035006. https://doi.org/10.1088/0264-9381/25/3/035006. arXiv:0710.0221
Murata K, Soda J (2008b) Stability of five-dimensional Myers–Perry black holes with equal angular

momenta. Prog Theor Phys 120:561–579. https://doi.org/10.1143/PTP.120.561. arXiv:0803.1371
Myers RC (2011) Myers–Perry black holes. ArXiv e-prints arXiv:1111.1903
Myers RC, Perry MJ (1986) Black holes in higher dimensional space–times. Ann Phys (NY) 172:304–347
Newman ET, Janis AI (1965) Note on the Kerr spinning-particle metric. J Math Phys 6:915–917
Newman ET, Penrose R (1962) An approach to gravitational radiation by a method of spin coefficients. J

Math Phys 3:566–578
Newman ET, Tamburino L, Unti T (1963) Empty-space generalization of the Schwarzschild metric. J Math

Phys 4:915–923
Newman ET, Couch E, Chinnapared K, Exton A, Prakash A, Torrence R (1965) Metric of a rotating, charged

mass. J Math Phys 6:918–919
Ngome JP, Horvathy PA, van Holten JW (2010) Dynamical supersymmetry of spin particle-magnetic field

interaction. J Phys A 43:285401. https://doi.org/10.1088/1751-8113/43/28/285401. arXiv:1003.0137
Nijenhuis A (1955) Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I,

II. Nederl Akad Wetensch Proc Ser A 58:390–397, 398–403
Oota T, Yasui Y (2008) Separability of Dirac equation in higher dimensional Kerr–NUT–de Sitter spacetime.

Phys Lett B 659:688–693. https://doi.org/10.1016/j.physletb.2007.11.057. arXiv:0711.0078
Oota T, Yasui Y (2010) Separability of gravitational perturbation in generalized Kerr–NUT–de Sit-

ter spacetime. Int J Mod Phys A 25:3055–3094. https://doi.org/10.1142/S0217751X10049001.
arXiv:0812.1623

Ortaggio M (2005) Higher dimensional black holes in external magnetic fields. JHEP 0505:048. https://
doi.org/10.1088/1126-6708/2005/05/048. arXiv:gr-qc/0410048

Ortaggio M, Pravda V (2006) Black rings with a small electric charge: gyromagnetic ratios and algebraic
alignment. JHEP 0612:054. https://doi.org/10.1088/1126-6708/2006/12/054. arXiv:gr-qc/0609049

Ortaggio M, Pravda V, Pravdová A (2007) Ricci identities in higher dimensions. Class Quantum Grav
24:1657–1664. https://doi.org/10.1088/0264-9381/24/6/018. arXiv:gr-qc/0701150

Ortaggio M, Pravda V, Pravdová A (2009) Higher dimensional Kerr–Schild spacetimes. Class Quantum
Grav 26:025008. https://doi.org/10.1088/0264-9381/26/2/025008. arXiv:0808.2165

123

https://doi.org/10.1016/j.geomphys.2010.02.008
http://arxiv.org/abs/0805.3756
http://arxiv.org/abs/hep-th/0101012
https://doi.org/10.1103/PhysRevD.20.409
https://doi.org/10.1142/9789812702142_0026
http://arxiv.org/abs/gr-qc/0411036
https://doi.org/10.1142/S0219887805000491
http://arxiv.org/abs/gr-qc/0401010
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
http://arxiv.org/abs/1410.0239
https://doi.org/10.1143/PTPS.189.210
https://doi.org/10.1088/0264-9381/30/7/075002
http://arxiv.org/abs/1211.6903
https://doi.org/10.1088/0264-9381/25/3/035006
http://arxiv.org/abs/0710.0221
https://doi.org/10.1143/PTP.120.561
http://arxiv.org/abs/0803.1371
http://arxiv.org/abs/1111.1903
https://doi.org/10.1088/1751-8113/43/28/285401
http://arxiv.org/abs/1003.0137
https://doi.org/10.1016/j.physletb.2007.11.057
http://arxiv.org/abs/0711.0078
https://doi.org/10.1142/S0217751X10049001
http://arxiv.org/abs/0812.1623
https://doi.org/10.1088/1126-6708/2005/05/048
https://doi.org/10.1088/1126-6708/2005/05/048
http://arxiv.org/abs/gr-qc/0410048
https://doi.org/10.1088/1126-6708/2006/12/054
http://arxiv.org/abs/gr-qc/0609049
https://doi.org/10.1088/0264-9381/24/6/018
http://arxiv.org/abs/gr-qc/0701150
https://doi.org/10.1088/0264-9381/26/2/025008
http://arxiv.org/abs/0808.2165


6 Page 218 of 221 V. P. Frolov et al.

Ortaggio M, Pravda V, Pravdová A (2013) Algebraic classification of higher dimensional spacetimes based
on null alignment. Class Quantum Grav 30:013001. https://doi.org/10.1088/0264-9381/30/1/013001.
arXiv:1211.7289

Page DN (1976) Dirac equation around a charged, rotating black hole. Phys Rev D 14:1509–1510. https://
doi.org/10.1103/PhysRevD.14.1509

Page DN (1978a) A compact rotating gravitational instanton. Phys Lett B 79:235–238. https://doi.org/10.
1016/0370-2693(78)90231-9

Page DN (1978b) Taub–Nut instanton with an horizon. Phys Lett B 78:249. https://doi.org/10.1016/0370-
2693(78)90016-3
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