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Abstract 

The graph-theoretic based studies employing bipartite network approach mostly focus 
on surveying the statistical properties of the structure and behavior of the network 
systems under the domain of complex network analysis. They aim to provide the 
big-picture-view insights of a networked system by looking into the dynamic interac-
tion and relationship among the vertices. Nonetheless, incorporating the features of 
individual vertex and capturing the dynamic interaction of the heterogeneous local 
rules governing each of them in the studies is lacking. The methodology in achieving 
this could hardly be found. Consequently, this study intends to propose a methodol-
ogy framework that considers the influence of heterogeneous features of each node 
to the overall network behavior in modeling real-world bipartite network system. The 
proposed framework consists of three main stages with principal processes detailed 
in each stage, and three libraries of techniques to guide the modeling activities. It is 
iterative and process-oriented in nature and allows future network expansion. Two case 
studies from the domain of communicable disease in epidemiology and habitat suit-
ability in ecology employing this framework are also presented. The results obtained 
suggest that the methodology could serve as a generic framework in advancing the 
current state of the art of bipartite network approach.
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Introduction
The bipartite network approach applies network theory that has its basis in graph 
theory (Harary 1969). This graph-theoretic network approach commonly focuses on 
the properties, the structural dynamics, and the relationship between the structure 
and function of real-world networks like social networks, transportation systems, col-
laboration networks, epidemiology and the Web and Internet structures which are 
regarded as emergent fields of network science by Barabási (2013). A bipartite net-
work consists of nodes of two different natures with links joining only between unlike 
nodes. It is also referred to as an affiliation or two-mode network (Kevork and Kau-
ermann 2022). The heterogeneous nature of the bipartite network makes it a realistic 
model of the real-world system and applicable across a wide range of research fields, 
particularly in the studies related to science and technology (Valejo et al. 2021). It is 
commented as capable of providing insightful representation from mutualistic net-
works in ecology to trade networks in the economy (Saracco et al. 2015).

In the well-cited review paper by Newman (2003) on the structure and functions of 
complex networks, a bipartite network is regarded as both a preference network under 
the category of information or knowledge network and a type of network under the 
social network category among the four network categories given. Most of the stud-
ies that apply the bipartite graph or bipartite network approach focus on the statistical 
properties of the structure and behavior of these networked systems under the domain 
of complex network analysis. The emphasis is to delve into the properties of networks 
that discusses features like, but not limited to, the small-world effect, transitivity or clus-
tering, degree distribution of the vertices in the network, characteristics of community 
within a network, resilience of a network, assortativity of the connection between ver-
tices, network clustering that considers the density of edges among vertices and groups 
with different clustering structure, and navigation within a network (Baumgartner 2020; 
Derudder 2021; Ducruet and Beauguitte 2014; Kevork and Kauermann 2022).
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Complex network analysis has been employed in surveying the relationship between 
the two types of nodes like different aspects of epidemiological modeling on complex 
networks (Jin et  al. 2016; Zhao et  al. 2021), microbes-compound metabolic network 
(Zhang and Deng 2021), user-object bipartite network in abstracting the selection pat-
tern of web objects (Chandra et  al. 2017), the relationship between cyberspace and 
physical space regarding a grid cyber-physical systems (Huang et  al. 2018), hash-tags 
and users in studying the complex interactions between the semantic content of a debate 
and the users’ interest in the Twitter activity (Gargiulo et al. 2015), and ecological bipar-
tite networks of biotic interaction types within ecological communities (Kaszewska-
Gilas et al. 2021; Poisot et al. 2015). Apart from that, the bipartite network approach has 
been widely applied in the studies of social sciences or social networks. This includes 
the studies of disease transmission networks (Büttner and Krieter 2020; Hernándex and 
Risau-Gusman 2013; Rafo et al. 2021), biological system networks (Baumgartner 2020), 
food-web networks (Michalko et al. 2021), ecological network (Elliott et al. 2021), cogni-
tive network (Vitevitch et al. 2021), and governance-leadership relationship in a develop-
ment policy network (Rudnick et al. 2019).

These studies show that the focus in typical complex network research is on the big-
picture-view of the networked system and observation of the interaction or relation-
ship between the vertices of the network. Incorporating the features of individual nodes 
(which are the local rules governing the individual vertices) and capturing the dynamic 
interaction of the heterogeneous characteristics of the individual node in a network is 
scarce. Studies on how these could be done are lacking in the above complex network 
research. As Newman (2003) has pointed out, predicting the system behavior based on 
the measured structural properties and local rules governing individual vertices is still in 
its infancy. As a result, the methodology in bipartite network modeling that incorporates 
unique features of every individual node in a network is also lacking.

Typical modeling processes include understanding or formalizing the research prob-
lem to confirm the feasibility of employing an approach in modeling the studied prob-
lem before determining the potential variables and assumptions. This is followed by 
formulation of the intended model incorporating the variables, utilizing an approach 
that usually comprises iterative processes. Lastly is the process of evaluating the model 
formulated to validate its usefulness in achieving the intention it is developed. In stud-
ies utilizing a novel modeling approach, the last stage usually requires verifying the pro-
cesses implemented in formulating the model comply with the standard practices of a 
specific research community.

Studies employing the graph-theoretic network approach predominantly focus on the 
network data analyses, which are statistically based. The methodology generally includes 
formalizing the research problem, setting up the bipartite graph by defining the bipar-
tite nodes and the existence of edges between the unlike node types, abstracting the 
real-world system and formulating it into a bipartite network model, performing anal-
yses onto the network which focus on network structure, validating the bipartite net-
work model and concluding the real-world system based on the findings obtained from 
the network analyses (Derudder 2021; Kaszewska-Gilas et al. 2021; Kevork and Kauer-
mann 2022). In brief, the primary steps in typical network approach studies are network 
abstraction and network analysis (Derudder 2021). The heterogeneity in these studies 
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mainly refers to the heterogeneous nodes (two types of nodes) or the statistical charac-
teristics portrayed by the nodes in the network that are related to the network structure 
analyses like the node degrees, network connectedness and centralities.

When abstracting a real-world system into a bipartite network, the natural features of 
the nodes should be taken into consideration. These features could be the environmental 
variables, species specific variables, geographical variables of locations, epidemiologi-
cal variables, biological variables, depending on the domain and objectives of the stud-
ies. These features of real-world phenomena contribute to the way interactions happen 
between the unlike nodes in a bipartite network, which eventually impact the network 
structure and its subsequent network statistics. Nevertheless, studies employing the 
bipartite network approach that incorporate the features of individual node are scarce.

O’Sullivan and Manson (2015) stipulate the studies surveying urban systems using 
network approach are ontologically and epistemologically unique from network studies 
conducted by physicists, and thus warrant a distinct methodology. Likewise, although 
the bipartite network approach studies between researchers that do not incorporate the 
natural features and those that do are methodologically identical to a certain degree, 
there are discernible ontological and epistemological differences between them. This 
has resulted in difficulties in employing the methodologies used for typical bipartite 
network studies. As a result, this study proposes a methodology framework for studies 
that intend to incorporate features of individual nodes to capture and model the interac-
tions between the unlike nodes, employing a bipartite network approach. It is termed 
the bipartite network modeling (BNM) framework. Two case studies that fall under the 
disease transmission networks—mosquito-borne disease hotspot—and ecological net-
works—habitat suitability of a marine mammal—are presented to show the applicability 
of the framework.

The proposed framework could serve as an alternative to the typical system develop-
ment life cycle (SDLC) for bipartite network modeling study that intends to incorporate 
the unique features of the distinct bipartite nodes. The contributions of this methodol-
ogy framework include: a) specifying the need to check for the feasibility of employing 
a bipartite network approach, to determine the functional definitions of the nodes, links 
and the overall graph, to resolve the parameterization and the assumptions of the fea-
tures of the bipartite nodes in the first stage; b) detailing the need to quantify the hetero-
geneous properties of the bipartite nodes; c) accentuating the necessity to scientifically 
evaluate many available quantification methods represented as the library of quantifi-
cation techniques where computational intelligence approaches should be considered 
because the real data are always dynamic and complex; and d) specifying the network 
evaluation technique library to show that the verified and validated bipartite network 
model formulated can then be evaluated using both the typical and also novel network 
analysis where appropriate.

Therefore, the main contribution of this paper is the methodology framework serv-
ing as a generic methodology for researchers who intend to employ the bipartite net-
work modeling approach across research areas and domains. It is for studies that aim to 
capture the heterogeneous nature of features in individual vertices that are contributing 
to the behavior of the network formed. The rest of this paper is organized as follows: 
“Bipartite Network Modeling (BNM) Framework” section introduces our proposed 
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BNM methodology framework. “Dengue Hotspot Identification” and “Preferred Habitat 
of Irrawaddy dolphin (Orcaella brevirostris) at Kuching Bay” sections present the two 
case studies. In “Discussion” section, discussions are presented for the proposed BNM 
methodology framework with respect to the case studies presented with elaborations on 
the possible future works. Lastly, our conclusions are presented in the last section.

Bipartite network modeling (BNM) framework
The BNM framework depicted in Fig. 1 captures the complete process of modeling. It 
has three distinct stages. The methodology is iterative and process-oriented in nature. 
The purpose is to formulate a validated bipartite network model that is able to rank 
either one or both the nodes, which is the hotspot (entity of interest according to the 
problem domain). Principal processes are detailed in every stage to guide the modeling 
activities. These processes are numbered in sequential order based on the stage they 
belong to. For example, process 2.4 refers to the fourth process of the second stage, the 
Link Weight Quantification. Every process produces one composite output. The output 
from one process serves as the input to the following process. The description of every 
stage and its corresponding processes are presented in the following subsections.

Problem characterization

In this first stage are three main processes. They are current research scenario under-
standing, graph structure representation, and bipartite graph formulation. The focus of 
this stage is to formulate the graph structure for the network model of a research.

Current research scenario understanding

Denoted as process 1.1 in Fig. 1, the purpose of this process is to gauge the understand-
ing of the current state of the research scenario. It is achieved through a triangulation 
procedure. They include discussions with the experts or stakeholders of the field, con-
solidating results from the review of the past literature, and studying research data. At 
the same time, the features or characteristics of the bipartite nodes that are significant in 
contributing to solving the research problem are identified. These features are the poten-
tial variables of the bipartite nodes of a study. The assumptions to be adopted in the 
study are also identified. The finalized variables and assumptions will be decided at the 
second stage.

Graph structure representation

The aim of the second process, process 1.2 in Fig. 1, is to identify the basis of the graph 
structure representation for the network system being studied. It is achieved by setting 
up the basic building block (Fig. 2), which is the simplest form of a bipartite graph that 
consists of two nodes (one from each bipartite node)—node-type-1 (V) and node-type-2 
(U) as seen in Fig. 2—and an edge that joins them. Figure 2 shows that there are n and k 
features captured as variables for node-type-1 and node-type-2, respectively.

How the edge of a bipartite graph is defined depends on the research domain 
and the problem it is solving. For example, the edge could occur when there exist 
a virus-vector-host, supplier-manufacturer, manufacturer-contractor, cyberspace 
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domain-host, twitter user-hashtag, non-volatile-and-volatile wine compound, loca-
tion-pollutant, plantation-location, and species-habitat relationship. Next, the third 
process is important in formalizing and defining the bipartite nodes and the link 
through the information collected from the first process.

Fig. 1  Bipartite Network Modeling (BNM) Framework
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Bipartite graph formulation

For the third process, denoted as process 1.3 in Fig. 1, the research data obtained is 
used to form the bipartite graph using the basic building block formalized in the pre-
vious process. The complete bipartite graph representing the research scenario pro-
duced at this point is the output of the first stage. In addition, the potential variables 
of the study identified and the assumption to be adopted are also the pertinent out-
put from the first stage. Mathematical and graphical representations of the research 
problem are thus formulated. The general mathematical expression of a formulated 
bipartite graph, G, having i number of node-type-1 denoted as U and j number of 
node-type-2 denoted as V, with k number of edges denoted as E connecting only node 
U and node V, is given in Eq. 1.

Model construction

The second stage comprises five processes: data pre-processing, node-type-1 parame-
ters quantification, node-type-2 parameters quantification, link weight quantification, 
and search algorithm implementation.

Data Pre-processing The aim of the first process, denoted as process 2.1 in Fig. 1, 
is to ensure that the data is complete and balanced especially when real data is used. 
The output of this process is data that is ready to be used by the next processes.

(1)

Fig. 2  Representation of basic building block
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Node‑Type‑1 parameters quantification and Node‑type‑2 parameters quantification

Both the second and third processes, denoted as processes 2.2 and 2.3 in Fig.  1, 
involve the parameters quantification of the nodes. Node-type-1 and node-type-2 
refer to the respective bipartite nodes of the bipartite graph formulated in the first 
stage. The potential variables purportedly govern the behavior of a node within the 
network system have already been identified in the first stage. For instance, the n var-
iables of node-type-1 and k variables of node-type-2 in Fig.  2. Hence, the focus of 
these two processes is to identify the techniques to quantify the parameters.

The mean to quantify a parameter depends on, amongst others, the research objec-
tives, research domain or field, the past surveys, preference of researcher, and availability 
of traditional, novel, or emergent quantification techniques. One notable potential quan-
tification method we wish to highlight here is the computational intelligence technique 
that is powerful and promising in tackling complex real-world problems. As there are a 
huge number of techniques to choose from, our methodology has resorted to represent 
this collection of choices through a library. It is termed as the quantification techniques 
library, denoted as a green-color shape in Fig. 1. From this library, the researcher shall 
consider quantification techniques deemed appropriate through scientifically sound 
procedures or analyses. Values for parameters of the bipartite nodes are then generated 
and computed using these techniques or taken from the research data.

Link weight quantification

The fourth process, denoted as process 2.4 in Fig. 1, intends to identify a quantification 
technique for determining the link weight. The link that connects the bipartite nodes 
has already been formalized and defined in stage one. As in their counterpart in the sec-
ond and the third processes of the second stage, the researcher identifies these potential 
quantification techniques from the review of related work in their respective research 
domain. These potential techniques are also collectively represented as the quantifi-
cation techniques library as shown in Fig. 1. As discussed in section two above, there 
is a lack of studies that compute the edge or link weight by incorporating the distinct 
parameters of each feature or variable characterizing both node types (captured by 
their respective variables). Consequently, the quantification of the link weight ought to 
consider this alongside capturing the complex interactions among nodes of both types 
which are given by the edge set (E) in Eq. 1.

The finalized quantification technique used in the study requires repetitive validation, 
and verification too if needed. Computation of the weight for each link is then executed. 
The BNM methodology framework presented in Fig. 1 shows that processes 2.2, 2.3 and 
2.4 are grouped together, signifying that together they are responsible for producing the 
complete weighted bipartite network of a study.

Search algorithm implementation

The last process of the second stage uses a search algorithm to determine the ranking 
of one or both node-types. The nodes that are ranked at the top are the hotspots for the 
study. As revealed in Fig.  1, a green-colored shape named search algorithm technique 
library is connected to this process. This library symbolizes that there are many different 
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search algorithms available in the research community for use. Among them are the two 
well-established and widely used web-based search algorithm: graph-theoretic based 
PageRank (Borgatti et  al. 2002), Hypertext Induced Topic Selection (HITS) (Kleinberg 
1999), and their variations that are extensively applied in influence calculation and net-
work related research for nodes ranking purpose (Liao et al. 2020; London and Csendes 
2013).

On the other hand, a study identifying malaria transmission hotspots reported that 
web-based HITS search algorithms (Eze et al. 2014) are useful and could be applied in 
other domains employing a bipartite network modeling approach. The researchers stipu-
lated that a web-based HITS search algorithm exhibits the existence of structural simi-
larity among the social network, web graph and the malaria network. Web-based HITS 
algorithm particularly stands out because the search of HITS involves both authority 
and hub nodes (Liao et al. 2020) which is equivalent to the bipartite nodes in the bipar-
tite network. Adapting the HITS algorithm with the web graphs and the preference net-
work resulted in a hybrid search engine represented in Algorithm  1 (Eze et  al. 2014). 
Hub refers to either one of the bipartite nodes (Node-Type-1 or Node-Type-2) that is 
intended to determine its ranking.

The search engine model employed is made up of four main sections—the Input, 
Transformation, Search and Indexing, and the Output—as shown in Fig. 3. The hub and 
authority matrices refer to the bipartite nodes (Node-Type-1 and Node-Type-2) of the 
bipartite network system. The Input Section accepts the formulated bipartite network, 
in the form of two matrices—link matrix (LinkMat) and link weight matrix (ContStr-
Mat)—and the number of nodes for each bipartite node in the Malaria Contact Net-
work (Eze 2013)—public place node (NPub) and human being node (NHum) for the case 
of malaria network. The Transformation Section houses two generators—the Author-
ity (Auth.) Matrix Generator and the Hub Matrix Generator. Both were used to gener-
ate the hub and the authority matrices respectively. The Search and Indexing Section is 
made up of the Dominance Vector Generator and the Indexer. The result of the opera-
tions in this section is the ranking of hubs which are the public places in terms of the 
malaria vector densities. The Output Section generates the result of the search engine 
operations, which are the hotspots of malaria transmission. 

Fig. 3  The search engine workflow  (Source: Eze 2013)
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Consequently, the input for this process 2.5 is the complete bipartite network pro-
duced from the previous process 2.4. Implementing the selected search algorithm pro-
duces ranking indices where one or both bipartite nodes are ranked. The final result of 
stage two is the bipartite network model with the ranking of the nodes in the surveyed 
network system. Subsequently, the last stage, stage three, is elaborated next.

Model analysis and evaluation

This last stage consists of three processes: model verification, model validation and net-
work evaluation analysis. The main goal is to ascertain that the model formulated from 
the previous stage is verified, validated and evaluated.

Model verification and model validation

This process is denoted as process 3.1 in Fig.  1. The objective of model verification is 
to ensure that the research processes of modeling the network system in a study com-
ply with the standard regulation, requirement or specification of a research community 
(IEEE 2011). To achieve this, the researcher generally uses other analysis systems and 
analytical methods as a benchmark to verify the implementation processes performed 
in the study. Conversely, model validation makes sure that the network system modeled 
meets the objective of the study and fulfills the needs of its stakeholders (IEEE 2011). 
Typical validation practices in modeling use real data or past survey results, or both to 
validate the result obtained in stage two.

Appropriate error analysis and comparative analysis are to be performed in these two 
processes to compare the actual model results or performance and the verification or 
validation results. Should the model fail to pass the verification or validation, or both 
processes, the model needs to be further refined by returning to the earlier stage(s) of 
the methodology. It marked the iterative nature of the BNM methodology.

Network evaluation analysis

Upon verifying and validating the bipartite network system modeled, it is passed to the 
third process of stage three, denoted as process 3.2 in Fig. 1. Network evaluation analy-
sis aims to perform extended evaluations and analyses towards the model formulated. 
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It further gauges the behavior, properties, structure, and function of the abstracted net-
work system being studied. Typical complex network analysis methods, Petri nets meth-
ods for directed bipartite graph or network, existing and emergent analytical techniques, 
visualization tools that are scientifically sound are some examples for these purposes. 
In view of the numerous ways to analyze a network, they are collectively represented as 
a network evaluation techniques library in BNM methodology as shown in Fig. 1. The 
evaluation results obtained further validate and strengthen the research findings and 
provide auxiliary illustrations and insights for the research findings. The output of this 
stage, which is the final output of a study, is a verified, validated and evaluated bipartite 
network model.

The BNM methodology framework allows future expansion or extension of a for-
mulated bipartite network model. This enables the researchers to extend their existing 
model when more data are acquired, implying that more nodes and edges are added to 
the network model. The framework also allows model expansion whereby additional 
variable(s) are required to be included. Likewise, the existing model can be modified 
when researchers intend to achieve another objective using the current model that they 
have. The researchers could refer to the BNM framework to identify the process (es) that 
need to be carried out when they want to perform any one of the above expansions. The 
BNM framework could act as a checklist as well so that proper modeling processes are 
carried out.

In the following sections, two studies employing the bipartite network approach 
following the BNM framework will be presented. The studies are in the fields of epi-
demiology and habitat suitability in ecology. The former study investigates the hotspot 
identification of vector-borne diseases whereas the latter detects the preferred habitat of 
a marine mammal species.

Dengue hotspot identification
Hotspot detection of vector-borne diseases such as dengue is pivotal in ensuring the 
eradication (Aziz et al. 2014) of the disease concerned. Disease hotspots are geospatial 
areas with a high prevalence or efficient transmission of disease (Lessler et. al. 2017). 
Public health authority targets the hotspots to eliminate the vector effectively (Nagao 
et al. 2003; Ritchie and Johnson 2017). Dengue disease, like malaria, is one of the mos-
quito-borne diseases. The bipartite network approach is used to identify the dengue 
hotspots (Kok et al. 2018) where hotspots are defined as the public places of mosquito 
breeding sites. The BNM framework is adopted as the methodology in this study.

Problem characterization of dengue hotspot identification

This section discusses the process in Stage 1 of the BNM framework (as seen in Fig. 1) 
which focuses on the formulation of the basic building block and then a graph structure 
representation of the intended bipartite dengue contact network.

As demonstrated by Eze (2013), epidemiological studies that relate the interaction 
among environmental properties, public places and hosts can be visually represented as 
a graph consisting of three vertices and referred to as the epidemiological triangle (ET). 
Similarly, as depicted in Fig. 4, Kok et al. (2018 p. 3) use it as the basis for formulating the 
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study on dengue transmission. The three epidemiologic factors in the epidemiological 
triangle are interdependent and used to identify the basic building block.

As a mosquito-borne disease, the main hosts in this study are mosquitoes and humans. 
However, the mosquitoes are not characterized as a node in the network model of this 
study as the mosquitoes are reported to be unable to fly further than 400 m from a par-
ticular public place (Eze et al. 2011). Therefore, it is assumed that the public place node 
houses the mosquito nodes resulting in the consideration of simply the public place. 
Besides that, public place and environmental properties are two risk factors that are 
strongly related where the public place component specifies the spatial features of spe-
cific environmental properties (Liew 2016). At the same time, environmental properties 
characterize a specific public place and differentiate a public place from another. There-
fore, the public place component can be viewed as a component housing the environ-
mental properties. Hence the ET is further modified, as shown in Fig. 5. Public place is 
denoted as P, a component of environmental properties denoted as N and the compo-
nent of host denoted as H. The previous three vertex graph structure (Fig. 4) of ET is 
modified to a two-vertex graph structure as depicted in Fig. 5 (Kok et al. 2018 p. 3).

Based on the assumption that the public place component is strongly related to the 
environmental properties, forming the basic building block of the bipartite network 
model, as depicted in Fig. 5. The two different nodes consist of human and public place 
nodes. The component of the host is replaced with the human and denoted as H. There 
are two vertices, P and H, that imply the attributes for vertex public place (P) and vertex 
human (H) are different, signifying a bipartite network which is a heterogeneous net-
work of two node types. Consequently, Fig. 5 shows a network structure that consists of 
the sets of public place nodes (P), human nodes (H) and edges (E). The set of edges is the 

Fig. 4  Epidemiological triangle (ET)

Fig. 5  Basic building block of the bipartite dengue contact network
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link between the public place and human nodes. The graph structure is termed Bipartite 
Dengue Contact (BDC) graph, while the network model is coined as the Bipartite Den-
gue Contact (BDC) network.

Process 1.2 of the BNM framework ensures that a graph is different from a network 
where a BDC graph is an unweighted bipartite graph for a visual representation of the 
BDC network. BDC network is a weighted bipartite graph that gives the topological and 
functional relationship of the bipartite nodes and their respective links (Rayfield et al. 
2011). The link weight is a measure of affinity between nodes in the BDC network. To 
quantify the contact strength values, potential parameters for public places and human 
nodes are identified as both the nodes are associated with the increased probability of 
dengue spread.

Two parameters are potential to be considered for the human nodes, namely the fre-
quency of a patient visiting a public place (Fh), and the total duration of stay in a public 
place (Du in second, s). The parameters that are attached to public place nodes involve 
the mosquito characteristic, for instance, life cycle index (Lc), survival rate (S), and biting 
rate (B); environmental parameters, which includes, total precipitation amount (Pre in 
meter, m), humidity (K in percentage, %); geographical parameters, for instance, altitude 
(Al in meter, m); and frequency of a public place visited by humans (Fl). Based on the 
research data, the link between the nodes formed when humans visited public places.

For process 1.3 on Bipartite Graph Formulation in the BNM framework (Fig. 1), the 
complete BDC graph is formed in this process using the basic building block shown in 
Fig. 5. From process 1.1, a total of twelve Epidemiological Week (Epi Week 28 to 39) of 
dengue patients’ mobility data are collected. However, only data collected from the first 
two weeks of Epi Week (Epi Week 28 and 29) is chosen for this paper to demonstrate the 
formulation process of the BDC network model.

There are eight unique individual dengue patients and each of them is given a unique 
code. These eight unique coded individual dengue patients are consequently identified 
as the eight human nodes of the BDC network. They are labeled as H1, H2, H3, H4, H5, 
H6, H7, H8 where H is the symbol used for human nodes and the numerical number 
1 and 8 is used to differentiate one human from another. The number of human nodes 
includes dengue positive and possible positive patients. Based on process 1.1, individuals 
will be registered when the patient visits the hospital or clinic due to fever, and Immu-
noglobulin M (IgM) dengue serology test will be conducted to diagnose dengue fever. 
The possible positive patient in this study represents the patient who has negative IgM 
dengue serology test results (obtained from the investigation form). It is revealed from 
the report by the Centers for Disease Control and Prevention (CDC) (2014) that the pri-
mary infection shows a slow and low titer antibody response compared to the second-
ary infection. Dengue IgM serology has low sensitivity during the early phase of dengue 
fever as the virus and IgM antibodies may be at undetectable levels for those who submit 
a day five acute specimen (CDC 2014). Therefore, the human mobility of the patient who 
has a negative IgM serology needs to be considered in this model.

As for the public place nodes, they were visited by both human nodes with dengue 
positive and possibly positive capability to provide a possible new risk public place to 
the model. Based on the eight human nodes which have been identified, there are a total 
of 19 public places visited by the eight human hosts. Thus, these public place nodes are 
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labeled as P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18 
and P19, where P is the symbol used for the public place node and the numerical num-
ber 1 until 19 is used to differentiate a public place from another. Each of the public place 
nodes is labeled with its corresponding latitude and longitude values.

Next is the identification of the link which joins the human and public place nodes. 
The link is formed when H visits P. To trace all links, each unique human host’s move-
ment visiting each public place is extracted from the investigation form. The informa-
tion of links formed concerning each public place and each human can be identified and 
is revealed in the complete BDC graph for the BDC network presented in Fig. 6. BDC 
graph is the bipartite graph, denoted as BDCDEN_KCH where set H, the human nodes, 
consists of eight elements, and set P, the set of public place nodes, consists of nineteen 
elements. Set E, the set of links that join elements of H and P, has 20 elements. This is 
given in Eq. 2 (Kok et al. 2018 p. 5). Subsequently, the BDC graph in Fig. 6 is a graph of 
8H by 19P with 20 edges. The degree of each public place node is {1, 1, 1, 1, 1, 1, 2, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1}. On the other hand, the degree of each human node is {2, 3, 3, 4, 
1, 3, 2, 2}. The sum of the degrees of the public place or human nodes is 20, which is also 
the total number of edges in the BDC graph.

Bipartite dengue contact network model construction

This section discusses the processes in Stage 2 of the BNM framework (as seen in Fig. 1) 
which focuses on the formulation of the BDC network model. It explains the quantification 

(2)

Fig. 6  Complete bipartite dengue contact graph for dengue patients
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of the parameters for the public place and human nodes, and the quantification of links 
connecting these two types of nodes.

The first process (denoted as process 2.1 in the BNM framework) at this stage is to pro-
cess the data collected from the previous stage. The data obtained is raw and untidy, which 
requires data pre-processing for the public place and human nodes. This is an essential pro-
cess to determine the parameters’ values attached to or defined for the public place and 
human nodes in the following processes.

Public place node

The first step is to change the public place name into Global Positioning System (GPS) 
coordinates using Google Maps. An algorithm to call a user-defined function is used to cal-
culate the distance of the new incoming public place and the existing public places from the 
data frame. A new public place node is declared in the database only if the distance between 
the new public place node and the current public place (in the database) is greater than 
400 m because the maximum flight range of the Aedes mosquito is 400 m. Next, all the pub-
lic places’ GPS coordinates of the data frame are passed to a user-defined distance matrix 
generator where a matrix of geographical distances between public places is generated.

Human node

The human node refers to the patient’s identity and this can be obtained from the inves-
tigation form. To protect the patient’s confidentiality, patient identity is replaced by an 
algorithm-generated ID. The BDC network model consists of eight human nodes. Thus, the 
human nodes are identified as H1, H2, H3, H4, H5, H6, H7, and H8.

Parameters

Parameter values such as temperature, humidity, precipitation, and altitude are collected 
for node quantification. Pre-processing these parameter values is necessary to prepare the 
parameter in developing a robust model to quantify the nodes in the following processes.

The human mobility data capture the patients’ movement two weeks before the onset 
date. In order to observe the effect of the parameters on the environment, the average tem-
perature two weeks ago at that particular public place needs to be calculated. For instance, 
the onset date for the first patient (denoted as H1) was 2015–07-09. The human mobility 
data captured the movement two weeks ago, which is 2015–06-25 until 2015–07-08. The 
H1 visited P1 on 2015–06-25. Thus, the average temperature 14 days ago, between 2015–
06-11and 2015–06-24, is calculated with the Eq. 3. In Eq. 3, the i represents the day before 
the human mobility date starts and i is a positive integer. Thus, i = 14 represents 14 days 
calculated from the human mobility start date and gradually decreases to i = 1, which is one 
day before the human mobility date. The variable k in Eq. 3 represents temperature, humid-
ity, precipitation, or altitude.

With the pre-processed data, process 2.2 can be activated with the quantification of the 
parameter values of node-type-1, the public place nodes, specifically on the parameters 

(3)Averagek = Average

1

i=14

ki



Page 16 of 34Liew et al. Applied Network Science             (2023) 8:6 

namely the life cycle parameters, survival rate, biting rate and the frequency of humans 
visiting a public place. It is established that the mosquito vectors hardly move far away 
from their breeding sites. Thus, these vector activities taking place in that particular 
locality will affect the dengue transmission. The activities below have been considered in 
this study to model dengue transmission.

	 i.	 Number of days to complete a mosquito vector life cycle that will affect the den-
gue transmission rate. Thus, the vector life cycle duration model needs to be con-
structed.

	 ii.	 Mosquito survival rate is also affecting dengue transmission. As the higher the sur-
vival rate resulted in higher mosquito population, and hence the higher transmis-
sion rate. Thus, the vector survival rate model is incorporated into the contact net-
work.

	iii.	 Mosquito biting rate affects dengue transmission, as the more frequent the mos-
quito bites the human host, the higher the probability the dengue spreads. Thus, 
the vector biting rate model is constructed.

Quantification for duration of vector life cycle

The duration of the vector life cycle measures the life cycle duration of mosquito from 
an egg to an adult at every locality in a BDC network. Due to its known dependence on 
temperature, the life cycle of the Aedes mosquito plays an essential role in understanding 
the effects of environmental property on dengue transmission (Carrington et al. 2013). 
The life cycle duration is negatively associated with the temperature. Vector life cycle 
duration parameter is thus termed the vector life cycle index with symbol Lc. This vector 
life cycle index, valued between 0 and 1, is defined as the measurement of the life cycle 
duration of the Aedes mosquito. Development of Lc is presented in Kok et al. (2018). It 
is a temperature-dependent model formulated as a function of t where t represents tem-
perature, with a degree of 6 as in Eq. 4 (Kok et al. 2018, p. 5).

After the values of Lc for each public place node are computed, the inverse of it, 1/Lc 
is to be used in the link weight quantification later. This is because the life cycle index is 
inversely proportional to the dengue transmission rate, where the shorter the time taken 
for a complete life cycle leads to an increase in the dengue infection rate.

Vector survival

The survival parameter measures the survival probability at a locality to indicate the vec-
tor survival rate at one locality. This parameter is included to account for the importance 
of dengue transmission as one of the significant contributors to the vector hotspot (Lam-
brechts et al. 2011). The mosquito survival rate is positively associated with temperature 
(Rueda et al. 1990; Tsai et al. 2017; Lee and Farlow 2019). Nevertheless, there is no docu-
mented source for vector survival data. Quantification of the vector survival parameter is 
given in Kok et al. (2018). Vector survival parameter is termed the vector survival index 
with symbol S. In this study, generating a vector survival index is the same as the process to 

(4)Lc = −0.633t6 − 0.786t5 + 1.488t4 + 1.153t3 − 0.408t2 − 0.758t − 0.504
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generate the life cycle index. The resulting model is given in Eq. (5) (Kok et al. 2018, p.6). It 
is then used to compute the value of S for each public place node.

Vector biting

One of the crucial activities, like biting, contributes to dengue transmission (Phaijoo and 
Gurung 2015; Wesolowski et al. 2015). Scott et al. (2000) associated the temperature and 
blood-feeding frequency of female Ae. Aegypti. This blood-feeding frequency indicates the 
number of blood meals the mosquito takes, referring to the number of mosquito bites. A 
linear regression model of the blood-feeding is derived and given in Eq. 6 that represents 
the total mosquito biting rate per week where T represents the average weekly temperature 
range from 21℃ to 32℃ in the study area, Thailand.

As the unit of biting rate in this study is the daily mosquito biting rate, Eq. 6 is divided by 
7 to transform it into a daily biting rate. The modified biting parameter model is given in 
Eq. 7. Scott et al. (2000) applied the model when the temperature ranged from 21 to 34. If 
the temperature is out of this range, the biting parameter is a baseline value, 0.8 (Scott et al. 
2000). Subsequently, the vector biting index, B of this study is computed using the average 
temperature of the particular date and public place.

Frequency of public place visited

This study includes the number of times the dengue patients visit a public place as one of 
the parameters for public place nodes in the BDC network to capture the effect of visiting 
the dengue patients in a public place. This parameter is termed the frequency or number of 
times one human visits a public place and is denoted as Fl. A link matrix, Link_MattrixBDC 

Network is created to record the Fl and is defined in Eq. 8. It is used to generate the link matrix 
for this study. Another parameter, Fh measures the number of times that a human visited a 
public place and is discussed in the next section. Therefore, Fl is defined as in Eq. 9.

(5)
S(t) = 1.3908t

6 − 0.2951t
5 − 3.8642t

4 + 1.3217t
3 + 1.2971t

2 − 0.1412t + 0.591

(6)B(T ) = 0.03T + 0.66

(7)B(T ) =

{

0.004286T + 0.09429, 21◦C ≤ T ≤ 32◦C
0.8, otherwise

(8)

(9)
Fli =

8
∑

j=1

[

Link_MatrixBDC network

(

PiHj

)

× Fhji
]

where i ∈ {1, 2, . . . , 19}j ∈ {1, 2, . . . , 8}
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Four significant public place parameters namely Lc, S, B and Fli are explained. Lc and 
S are quantified through polynomial curve fitting with three attributes: latitude (x), lon-
gitude (y) and temperature (T). B is quantified using a linear step function with respect 
to temperature (T) and Fli is quantified through the Eq. 9 defined earlier. Parameters ini-
tially decided for the public place node of the BDC network are then further refined. It 
is crucial to keep the model simple (Barnes and Fulford 2014 p. 3). Thus, latitude, longi-
tude and temperature are excluded from the public place parameter as their effects have 
been accounted for in the life cycle model, survival model and biting rate.

The output of process 2.2 (Fig. 1) is the seven parameters finalized as the BDC net-
work public place node parameters. They are life cycle index, survival index, biting 
index, humidity, precipitation, altitude, and number of times a public place is visited by 
humans. The values of three parameters—Al, Pre and K—are directly obtained from the 
research data. Table 1 presents the values of all seven parameters for each of the 19 pub-
lic place nodes in the BDC network dataset.

Next, process 2.3 begins where two parameters are identified for the human node of 
a BDC network, namely, time duration of human stay at a public place, Du, and the fre-
quency of a human visiting a public place, Fh.

Time duration of stay of human at a public place

The total duration of a human stay at a public place across 14 days is recorded in the 
investigation form. These 14  days are the periods of dengue patients before the first 
symptoms and the dengue patients’ movement within these 14 days is essential in den-
gue transmission (World Health Organization (WHO) 2012). The duration is recorded 
in either day, hours or even minutes. The time taken of a human stay at a public place 

Table 1  Values of the seven parameters of BDC Network

Public Place 
Node

Lc S B AI(m) K (%) Pre (mm) FI

P1 0.1995 65.1060 0.8 13 76.3 2.2 1

P2 0.1817 78.1297 0.9 24 74.2 0.1 1

P3 0.2000 68.8743 0.8 7 85.3 13.1 1

P4 0.2008 64.4377 0.8 8 79.3 7.7 1

P5 0.1791 80.9369 0.8 20 78 1.1 1

P6 0.1791 80.9369 0.8 4 78 1.1 1

P7 0.2024 63.9387 0.8 9 78.8 5.4 2

P8 0.1709 91.3251 0.8 6 76.1 0.7 1

P9 0.1995 65.1060 0.8 13 76.3 2.2 1

P10 0.1817 78.1297 0.8 54 74.2 0.1 1

P11 0.2043 66.5415 0.8 9 82.6 11.6 1

P12 0.1977 65.9558 0.8 4 77.7 5.3 1

P13 0.1994 65.1060 0.8 21 76.3 2.2 1

P14 0.2010 64.4377 0.8 8 77.4 5.3 1

P15 0.1817 78.1297 0.8 28 74.2 0.1 1

P16 0.2043 66.5415 0.8 8 82.2 12.3 1

P17 0.2010 64.4377 0.8 10 76.9 5.3 1

P18 0.1791 80.9369 0.8 25 75.3 0.6 1

P19 0.1977 65.9558 0.8 9 76.1 0.1 1
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across 14 days is calculated in seconds. Denoted as Duij, the duration for human j vis-
ited a public place i across 14 days is calculated using Eq. 10 and the values are given in 
Table 2.

Frequency of human visiting a public place

The parameter of the number of times a human visited a public place is represented 
by the symbol Fh. Human and public places here refer to each of the respective public 
places and human nodes. This parameter is denoted as Fhij and is defined in Eq. 11 to 
record how many times has human node j visited public place node i.

The value of n and thus Fhij for every human node to each of the 19 public place nodes 
is determined by tracking the movement of each unique individual human. The values 
of Fhij agree with the number of link(s) formed between human node j and public place 
node i in the BDC graph shown in Fig. 6. The values of Fhij are provided in Table 3.

Seven parameters are identified and quantified for the public place node and two 
parameters are determined for the human node. Processes 2.2 and 2.3 in Stage 2 of the 
BNM framework are completed.

Once both distinct node types have been quantified, the link between them can now 
be quantified and is depicted as process 2.4 in the BNM framework. Twenty link edges 
are identified from the BDC graph established earlier and the weights of these edges 
need to be computed. This link weight is termed dengue contact strength (DCS), rep-
resenting the link affinity between the human and public place nodes. The stronger the 
strength indicates the greater degree of attachment between the human and the specific 
public place, which contributes to a higher degree of human contact with the specific 
public place.

Eze (2013) introduced a summation rule to compute the contact strength for the edge 
formed between the bipartite nodes of the malaria transmission network. The quanti-
fication technique is explained in Eq.  12. Summation is used because the total of the 
individual parameters will contribute to a more significant value, indicating a stronger 
strength. Since individual parameters consist of rational numbers such as 0.7, the prod-
uct of these rational numbers will contribute a smaller value which indicates a weaker 

(10)Duij = total duration of human j visited public place i in seconds

(11)Fhij =

{

n if Hj visited Pi n times where n ∈ Z+

0 if Hj did not visit Pi

Table 2  Values of parameters for human nodes for the BDC Network

P node H node Duij (s) P node H node Duij (s) P node H node Duij (s)

P1 H1 655,200 P7 H6 37,800 P12 H4 207,000

P2 H2 705,600 P2 H7 997,200 P13 H7 126,000

P3 H3 990,000 P8 H8 918,000 P14 H8 291,600

P4 H4 284,400 P9 H1 529,200 P15 H2 75,600

P5 H5 756,000 P10 H2 428,400 P16 H3 57,600

P6 H6 1,146,600 P11 H3 162,000 P17 H4 14,400
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strength. Thus, a summation rule is the most suitable one. DCSij refers to the dengue 
contact strength of the link formed between public place i and human j.

Using the normalized parameter values of Lc, S, B, Al, K, Pre and Fl, the complete 
DCS is computed. The output of DCS for all links in the BDC graph (Fig. 6) eventually 
resulted in the BDC network as shown in Fig. 7.

The BDC network represented in the form of a matrix (where the row of this matrix is 
the location node while the column represents the human node, and the elements of the 
matrix are the normalized link weight) is the input of process 2.5 in the BNM framework 
corresponding to the implementation of the search algorithm. Similar to the previous 
studies that adopt the framework, this study also used the HITS search algorithm that 
involves the computation of principal eigenvalues and eigenvectors. The implementation 
of the algorithm involves fours steps namely, the generation of hub and authority matri-
ces; the generation of the corresponding principal eigenvectors; the assignment of nodes’ 
labels according to the principal eigenvectors and the assignment of the dengue hotspot 
ranking (DHR) values; and finally the generation of the output of the algorithm which is 
the locations prioritized according to the DHR values (Fig. 3). The higher-ranking loca-
tion represents the more critical the location is in terms of dengue control intervention.

The final stage of the BNM framework is the Model Analysis and Evalua-
tion of the Bipartite Dengue Model. The model is verified via a comparison of the 

(12)

DCSij =

(

∑

PublicPlace_Node_Parametersi

)

+

(

∑

Human_Node_Parametersij

)

= (Lci + Si + Bi + Ali + Ki + Pr ei + Fli)+
(

Duij + Fhij
)

Table 3  Values of Fhij for human nodes for BDC Network

Fh j (Human Node)

1 2 3 4 5 6 7 8

i (Public places) 1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

4 0 0 0 1 0 0 0 0

5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 1 1 0

8 0 0 0 0 0 0 0 1

9 1 0 0 0 0 0 0 0

10 0 1 0 0 0 0 0 0

11 0 0 1 0 0 0 0 0

12 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 1

15 0 1 0 0 0 0 0 0

16 0 0 1 0 0 0 0 0

17 0 0 0 1 0 0 0 0

18 0 0 0 0 0 1 0 0

19 0 0 0 1 0 0 0 0
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Root-Mean-Square Error (RMSE) made with a benchmark system, that is the UCI-
NET 6 for Windows, a powerful network analysis software (Borgatti et al. 2002). The 
analytical verification is conducted by calculating the Spearman’s Rank Correlation 
Coefficient (SRCC) between the hub matrix and the DHR values. The validation pro-
cess was executed by calculating the SRCC between the targeted and validated net-
work. Further analyses like the predictive power analysis, parameter significance 
analysis and data size analysis were also conducted as reported in Kok et  al. (2018, 
2019).

Preferred Habitat of Irrawaddy dolphin (Orcaella brevirostris) at Kuching Bay
Irrawaddy dolphin (ID) (Orcaella brevirostris) is listed under the category and criteria 
of Endangered A2cd + 3cd + 4cd (version 3.1) where it has been categorized as Vul-
nerable A4cd (version 3.1) since 2008 by the International Union of Conservation of 
Nature and Natural Resources (IUCN) Red List of threatened species (version 2017) 
(Minton et  al. 2017). However, the sub-population of ID at Kuching Bay, Sarawak, 
Malaysia is not listed in the databases of the IUCN until the year 2017. No established 
and consistent scientific survey and research has been conducted on the distribution 
and abundance of the ID at Kuching Bay (Peter 2012) until the commencement of the 
Sarawak Dolphin Project (SDP) in 2008 by the Institute of Biodiversity and Environ-
mental Conservation (IBEC) of Universiti Malaysia Sarawak (UNIMAS).

The habitat suitability related studies reviewed (Clauzel et al. 2018; Heinonen 2019; 
Torres et al. 2017) always relate the abundances of a species with the environmental 
properties. The approaches employed are predominantly statistical, which demand 
a big data size whereas the deterministic approaches used by population dynamics 
studies incorporate the aspect of habitat suitability into their modeling effort (Cay-
uela et al. 2020; Marquez et al. 2021; Nusz et al. 2018). The deterministic approaches 
are based strongly on established physical or mechanistic laws and require detailed 

Fig. 7  Bipartite Dengue Contact (BDC) Network
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species-specific demographic values. Apart from this, generalization is mostly 
assumed and incorporation of features from individual habitat location or species, or 
both could hardly be found in these approaches.

The above approaches are not suitable to be applied in this study as the data that 
the study had is scarce. The reason is the lacking scientific and detailed demographic 
information about ID at Kuching Bay and suitable physical law to be applied in mod-
eling habitat suitability of a species at the time the study is carried out. Furthermore, 
this study intends to incorporate the attributes of individual habitat location or spe-
cies, or both. Nevertheless, the graph-theoretic network modeling approaches is not 
restricted by these limitations.

Problem characterization of preferred habitat

In this section, discussion, and justification for the formulation of basic building 
block as the graph structure representation for the intended bipartite habitat network 
are presented.

Habitat suitability studies reveal that species, location, and environmental prop-
erties are the three typical main components in its research structure. These graph-
structure-like components show that the location and environmental properties 
components, and the species’ component are of two different natures sharing dif-
ferent attributes. It is termed the Habitat Suitability Triangle (HST) in this study 
(Fig.  8a). The heterogeneous nature suggests the bipartite network approach could 
be applied and the BNM framework presented in Fig.  1 could be used to guide the 
modeling processes. The data this study has are real-world data collected by the SDP 
team (Peter 2012), which consist of four main sub-datasets. The data record individ-
ual ID identified by SDP; the ID re-sight’s maps (Peter 2012, Fig. 4.3c and 4.3d, p. 68); 
the physical and water parameter readings and sighting of ID at each data collection 
point; and species sighting data at the location point whenever ID are sighted. To tri-
angulate these data that are scarce, imbalanced, and without scientific information, 
opinions from the experts in the field of animal nutritional ecology, and the research-
ers of the SDP team are also collected. Three main assumptions adopted in this study 
include every individual ID at Kuching Bay is free to settle anywhere, and the territo-
riality and preemption by early settlers do influence settlement of other individual ID 
(Fletcher Jr. et al. 2011), is physically fit and possess the ideal capability to assess the 

Fig. 8  a Habitat Suitability Triangle (HST)  (Source: Liew et al. 2015a, p. 268); b Basic Building Block of the 
Bipartite Network (Source: Liew et al. 2015a, p. 268)
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quality of all locations available and locate their most preferred habitat (Fletcher Jr. 
et al. 2011), and possess prior knowledge which optimizes the foraging behaviors of 
each ID with the least trade-off of meeting predator.

Since the environmental properties (N) explain the physical characteristics of a loca-
tion (L) and are thus inseparable, HST is further modified into a two-node graph as 
depicted in Fig. 8b. It is used to form the basic building block of the network structure 
of this study. The basic building block consists of two nodes: the dolphin node (D) rep-
resenting the ID species under study and the location node (L) representing the loca-
tion with its unique environmental properties (N) enclosed within; and a link (E) that 
joins the two nodes. The link is formed when a D visits an L. The link weight is termed 
the Habitat Suitability Strength (HSS). It represents the relationship between the loca-
tion and dolphin nodes where greater link strength represents stronger affinity between 
the dolphin and the specific location, which implies higher suitability of this location to 
function as the preferred habitat.

With the basic building block identified (Fig. 8b), the graph representation of the ID 
habitat network at Kuching Bay is formulated using the first and second sub-datasets 
comprising 2 km by 2 km grid cells and the unique individual ID. The former is taken 
as the distinct location nodes for set L whereas the latter as the distinct dolphin nodes 
for set D. The data of grid cells in the second sub-dataset that shows visitations by dif-
ferent unique individual ID enables identification of the distinct links for set E. Conse-
quently, thirteen 2 km by 2 km grid cells are identified as the thirteen location nodes, 
and thirteen unique individual ID identified are taken as the thirteen dolphin nodes of 
the intended bipartite habitat suitability network (BiHSN). Together with the 38 unique 
links identified between the bipartite nodes, the complete bipartite graph constructed is 
defined in Eq. (13) (Liew et al. 2015a p. 269) and presented in Fig. 9.

Bipartite habitat suitability network model construction

In this section, the execution of five important processes of Stage 2 shown in Fig. 1—
data pre-processing, location node parameters quantification, dolphin node parameters 
quantification, link weight quantification, and search algorithm implementation—are 
discussed.

The data of this study are pre-processed to overcome the missing and faulty val-
ues and imbalanced data in the third sub-dataset. The former is achieved through 
the data interpolation technique (Bavay and Egger 2014) via MATLAB tool for scat-
tered data interpolation on known values of data points. At the same time, the latter 
is accomplished by applying the under-sampling technique via the systematic random 

(13)
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sampling method for Support Vector Machines (SVM), which is the machine learning 
approach employed in quantifying the location node parameter (Liew et al. 2015c).

The parameters of the location node (node-type-1 in Fig. 1) are determined based 
on the data available to the study. Twelve parameters are included in this study. They 
are seawater salinity (S) in Practical Salinity Unit (PSU), acidity (pH), seawater surface 
temperature (T) in Celsius degree (oC), seawater depth (de) in meter (m), tide height 
(Ti) in meter (m), water suitability index (W), latitude (x), longitude (y), distance to 
the river mouth (drm) in meter (m) and land (dl) in meter (m), fisheries (food) avail-
ability index (F), and the number of times a location is visited by ID (Fl). Out of these 
twelve parameters, W, F and Fl need to be quantified while the rest are available in 
the data. The water suitability index (W) provides the suitability degree measurement 
of seawater at a location point of the study location. Conversely, the fisheries (food) 
availability index (F) indicates the availability degree of food for the ID by measuring 
the possibility of observing fisheries activity at a location point of the study location. 
This is because the availability of food is a pertinent factor for ID in choosing their 
preferred habitat. SVM is employed in this study to quantify both W and F through 
two distinct machine learning classifiers (Liew et al. 2015a). These two SVM classifi-
ers are SVM Water Model and SVM Fisheries (food) Model formulated through LIB-
SVM (version 3.17) package (Chang and Lin 2011) with Gaussian radial basis function 

Fig. 9  The bipartite habitat suitability graph  (Source: Liew 2016, p. 67)
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(RBF) kernel function. The probability estimation of sighting an ID or fisheries activ-
ity respectively is extracted from the models and used in this study as the indices. 
The formal model is defined by six attributes: latitude, longitude, depth, temperature, 
salinity, and sighting of ID whereas the latter by four attributes: latitude, longitude, 
tide height, and sighting of fisheries activity.

As for Fl, it is given by Eq.  14 (Liew et  al. 2015a, p. 270) with Fd (dolphin frequency) 
being a parameter of dolphin node (node-type-2). It intends to rationalize the interaction 
between the ID and the location through the visitations of ID to a location. Consequently, 
this study resolves to contain W, F, dl, drm, Ti, pH, and Fl as the parameters for the location 
node where x, y, S, T and de have already been accounted for in the quantification of W and 
F. The values for all the parameters of the location nodes are presented in Fig. 10.

Likewise, the parameters of the dolphin node (node-type-2 in Fig.  1) are determined 
based on the data available to the study as well. The two parameters designated for the dol-
phin node are the number of times a dolphin visited a location (Fd) and the best-estimated 
number of individual ID in the group of ID sighted at a location (N). The former captures 
the number of times a dolphin node is linked to a location node, as given in Eq. 15 whereas 
the latter records the group size of each ID sighting as defined in Eq. 16 (Liew et al. 2015a 
p. 270). Group size refers to the number of individual ID approximated through standard 
scientific procedures when a group of ID is sighted (Peter 2012). Subsequently, these are 
the two parameters finalized for this study. The values for these parameters are presented 
in Fig. 10.

(14)

(15)

(16)
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For the link formed between any pair of location and dolphin nodes, its weight 
is referred as HSS. HSS is quantified by incorporating the parameters of both 
location and dolphin nodes (Liew et al. 2015a). An analysis is carried out on the 
applicability of different quantification techniques for the link weight, and this 
study resolved to employ the multiplication rule, as denoted by Eq. 17 (Liew et al. 
2015a p. 271). Using this quantification technique, the values of HSS, ranged 
between zero and one, are computed and presented in Fig.  10, the complete 
BiHSN.

Fig. 10  BiHSN with parameter values for location nodes, dolphin nodes and the link weights  (Source: Liew 
et al. 2015a, p. 272)
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With the quantification of the parameters for location and dolphin nodes, and the 
link that joins them, the preferred habitat of ID at Kuching Bay is then determined by 
adapting the HITS search algorithm of Eze et al. (2014), as detailed in Algorithm 1. In 
this study, the power iteration method is implemented with BiHSN as the searching 
space and the HSS matrix as the input. The output computed is taken as the ranking 
index, coined as the Habitat Suitability Index (HSI) in this study. It is defined as the suit-
ability degree measurement for the location nodes of BiHSN, valued between zero and 
one where the higher the value of HSI for a location node the more preferred the loca-
tion node is to the ID. The findings show that L2 ranked top among the location nodes, 
implying that it is relatively the most preferred habitat of ID (or the ID hotspot) at Kuch-
ing Bay. Table 4 and Fig. 11 present the results (ranking of location nodes, HSI of each 
location node, and the actual locations at Kuching Bay) obtained in this study. Finally, 
the bipartite habitat suitability network model for ID at Kuching Bay is formulated.

Model analysis and evaluation

This last stage consists of three processes: model verification, model validation and net-
work evaluation analysis. The purpose is to ascertain that the model formulated from the 
previous stage is verified, validated and evaluated.

Benchmark verification using UCINET 6.0 for Window (version 6.498) (Borgatti et al. 
2002) is carried out in this study for the BiHSN model. It compares the HSI computed 
by the BiHSN model and the benchmark system through the computation of RMSE. 
The resulting value has fulfilled the RMSE threshold value of no greater than 0.05 set in 
this study. BiHSN is then validated by computing the SRCC between the BiHSN results 
and two other sets of data: a different set of real data and a past survey result where 
the validation process is reported in Liew and Labadin (2017). As for the process 3.3, 

(17)

HSSi:j =
(

∏

Location_Node_Parametersi

)

×

(

∏

Dolphin_Node_Parametersj:i

)

= (Wi × Fi × dli × drmi × Tii × pHi × Fli)×
(

Fdj:i × Nj:i

)

where i ∈ {1, 2, . . . , 13} and j ∈ {1, 2, . . . , 13}

Table 4  Ranking of location nodes  (Source: Liew et al. 2015a p. 273)

Ranking Location Node HSI

1 L2 1

2 L1 7.3124×10–2

3 L12 6.4007×10–2

4 L8 4.8837×10–2

5 L7 3.5969×10–2

6 L5 3.9070×10–3

7 L11 2.7536×10–3

8 L6 1.0200×10–4

9 L9 1.0279×10–5

10 L13 5.5695×10–7

11 L10 7.8998×10–8

12 L4 3.4821×10–28

13 L3 2.7196×10–30
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a few extended analyses are executed to further evaluate the capability of the network 
modeled. The analyses also assess the effect of uncertainty faced when real data is used 
like uncertainty in data size, in having the unique individual dolphin data, and in having 
data for certain parameters. Eventually, the ability of BiHSN model to distinguish loca-
tion nodes where ID is sighted from those that are not sighted and to predict preferred 
habitat of ID when a new set of data is used is inspected. These analyses have reported 
encouraging results, supporting the relevance of BiHSN model as an abstraction of the 
real-world habitat suitability system of ID at Kuching Bay.

Discussion
The BNM methodology framework is developed to facilitate the modeling activities in 
studies that intend to use the bipartite network approach. It is a robust framework where 
the whole modeling effort is captured within three main stages. The specific processes 
required by each of the stages are explicitly detailed. As demonstrated in the case studies 
above, once researchers have identified that it is feasible to employ the bipartite network 
approach, the BNM framework guides the whole modeling processes that follow. The 
case studies presented above shows that the BNM framework is applicable in both fields 
of epidemiology in modeling dengue hotspot, and ecology in modeling the preferred 
habitat of a marine mammal species.

In the first stage that aims to characterize the research problem of a study, the liter-
ature reviews, opinions of experts of the field, and research data are the main inputs. 
These three components have collectively provided a comprehensive understanding 
of the research scenario (process 1.1) one is surveying. It includes the identification of 
the potential variables and assumptions for the study. In process 1.2, the graph struc-
ture representation of the study is identified. In the above case studies, the authors have 
recognized the ET and HST that show how the relationship between the entities being 
surveyed and modeled (the public places and humans, and locations and dolphins) can 

Fig. 11  Actual Location Nodes at Kuching Bay (overlaid on modified Fig. 3.5 of Peter (2012))  (Source: Liew 
et al. 2015a p. 273)
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be represented as discrete objects of two different natures that can be joined by an edge 
(the dengue contact strength and habitat suitability strength). The graph structure rep-
resentation is then modified and later evolves into the basic building block for the graph 
representation of the studies. In process 1.3, the basic building block is used to formu-
late the complete bipartite graph and its definition using the research data available. The 
resulting bipartite graphs (Figs. 7 and 9) are the graph structure version of the bipartite 
networks the studies intend to model.

In the second stage that targets for model construction, data pre-processing is desig-
nated as the first process. Getting ready the research data is pertinent for the next four 
prominent processes in building the intended model. As shown in the case studies dis-
cussed above, issues like determining public places, imbalanced and incomplete data 
are resolved accordingly. The processed data output is then ready to be used in the next 
three processes (processes 2.2 to 2.4).

The objectives of processes 2.2, 2.3 and 2.4 are to quantify the parameters for the 
respective bipartite nodes and the link formed between them. The library of quantifi-
cation techniques attached to them guides the researchers in the need to analyze and 
determine scientifically on the appropriate method(s) for the intended purpose. In 
the above case studies, we have shown how parameters for the public place nodes and 
human nodes, and locations and dolphins’ nodes in the BDC network and BiHSN are 
quantified by employing the respective traditional mathematical modeling and compu-
tational intelligence techniques as presented in "Bipartite dengue contact network model 
construction" and "Bipartite habitat suitability network model construction". Different 
methods have also been adopted to quantify the link weight—DCS and HSS—of the 
studies. The quantification techniques employed are decided and justified based on the 
results obtained from the scientific analyses or reviews performed. Hence, the choices 
of quantification techniques in the library depend closely on the review of the studies 
of the field, the techniques adopted before in research employing the bipartite network 
approach across the fields, and other emergent novel techniques like the advantages 
offered by the computational intelligence.

The output of processes 2.2 to 2.4 is the formation of a bipartite network with val-
ues for all the parameters of the bipartite nodes and the weights for all the links that 
are formed between them. The link weights of the network are then expressed in matrix 
form and input to process 2.5. A search algorithm is implemented in this process onto 
the link weight matrix with the bipartite network as the searching space. The library of 
search algorithm technique attached to process 2.5 points the researcher to choose and 
justify scientifically a method to be employed here. The case studies above resolved to 
employ the adapted HITS algorithm and produce ranking indices where the ranking of 
the nodes was based. Ranking indices in the above case studies were taken and termed as 
DHR value and HSI. The study was probing into utilizing the ranking indices in seeking 
the hotspot or preferred habitat of concerns. At this point in the methodology process, 
the intended bipartite network model was constructed. It was termed the BDC Model 
and BiHSN Model.

As stipulated in "Bipartite network modeling (BNM) framework" section for pro-
cess 2.5, the ranking index for the other bipartite node (Node-Type-2) can also be 
generated depending on the aim of the study. A further study has been conducted 
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for the second case study where leadership in species (Irrawaddy dolphin) is sur-
veyed (Liew and Labadin 2018). Using the state-of-the-art of bipartite-network-based 
approach and employing the BNM framework, promising results have been obtained 
and validated.

The model formulated in the previous stage needs to go through the model analysis 
and evaluation, which is the third stage of the BNM methodology framework before it 
can be accepted as a model by the respective research communities. Processes 3.1 and 
3.2 have specified the need to verify or validate, or both, the bipartite network model. 
These analyses have been carried out accordingly in the case studies presented above 
where BDC Model and BiHSN Model are verified or validated, or both.

Lastly, the model is further evaluated using appropriate analysis methods (process 3.3) 
from the library of network evaluation techniques that are attached to it. In the second 
case study, seven extended evaluations and analyses have been performed: to inspect the 
relationship between the properties of the model and the result obtained; to evaluate 
the effect of uncertainty on the performance of the model; and, to evaluate the poten-
tial predictive ability of the BiHSN Model. These extended network evaluation analyses 
implemented on the results produced by the bipartite network model further strengthen 
the justification of the use of the bipartite-network-based approach in a study as shown 
in the above study. Apart from that, process 3.3 is the process where the robust complex 
network analyses could come into further study the statistical properties of interest to 
the structure and behavior of the network systems formed. Subsequently, the final out-
put of this stage, which is also the output of the study is a verified, validated and evalu-
ated bipartite network model. It is represented as the final result in the BNM framework.

The BNM framework is also employed in modeling the rabies (Chia et al. 2021) and 
COVID-19 (Hong et al. 2021) transmissions where hotspots or sources of infection for 
the respective disease are identified using real-world data. On top of this, Hong et  al. 
(2021) managed to determine the ‘super spreader’ (p.132) of the disease and thus allows 
COVID-19 high-risk groups of people to be identified for better infectious disease man-
agement, particularly at the beginning stage of an outbreak. The studies have played a 
significant role in curbing the deadly rabies and COVID-19 diseases that are contagious. 
Alongside the applicability of the BNM framework in modeling individual-based net-
work systems, the bipartite network approach is relevant even in solving research prob-
lems with scarce or limited data. The bipartite habitat suitability model formulated in 
the second case study is an example of a solved real-life network system with as few 
as thirteen nodes. Consequently, the same BNM framework is believed to be applica-
ble in any study where the bipartite network approach is deemed feasible. Besides the 
principal processes, three libraries of techniques (one for the quantification of nodes 
parameters and links weights, one for the implementation of search algorithms, and the 
other one for the evaluations and analyses of the bipartite network model formulated) 
are included without specifying the actual technique should be employed for the cor-
responding processes. This implies the uniqueness of potential techniques applicable in 
a unique research field or domain. As an example, future works employing BNM in dis-
ease transmission of epidemiology studies may look into validating the bipartite model 
constructed with the conventional compartmental models like the Susceptible-Infected-
Recovered (SIR) model or any corresponding emergence SIR models.
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It shows the emphasis of the BNM framework for keeping the board abreast of updated 
emergent scientific techniques, and the importance to consider both novel and tradi-
tional methods. Grey system theory (Liu et al. 2012) is an example of a newly emerged 
methodology. It shares many similarities with the BNM approach where both are capable 
of handling problems with a small sample and limited scientific knowledge of uncertain 
systems, typical characteristics of the natural world. The possibility of incorporating grey 
system theory in the bipartite network approach could be an interesting future research 
recommendation worth looking into. The techniques identified should be scientifically 
justified within the context of the research field the study confined to. Besides that, the 
use of BNM methodology in studies with larger data size and in domains other than epi-
demiology and ecology are greatly desired in the future. These studies may include, but 
not limited to, surveying the human mobility, materials as vitreous metals, social media, 
and Web and Internet structure. They are able to strengthen the genericity and scalabil-
ity of the proposed BNM methodology framework. Subsequently, it is thus suggested 
that the BNM framework could serve as a generic methodology for a bipartite network 
approach across research domains and disciplines.

Conclusions
In this paper, a generic methodology termed the BNM methodology is developed and 
proposed for the use of the researcher who intends to employ the bipartite network 
modeling approach with the heterogeneous features of unique individual node of a net-
work system incorporated. The usability of the methodology has been presented in the 
modeling of the dengue hotspot identification and the habitat suitability of a marine 
mammal species that capture the features of distinct individual node of the set of bipar-
tite nodes. The BNM framework has the potential to add value to complex network stud-
ies especially when the local rules governing the individual vertices are to be considered. 
This modeling methodology is believed to be feasible and can be readily extended for 
studies across research fields where the state-of-the-art of bipartite network modeling 
approach is deemed applicable and appropriate.
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