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Introduction
Efficiently locating high-degree vertices in a graph can be important in many contexts. 
Without total knowledge of the graph, sampling a vertex purely at random, a method 
we call ‘Random Vertex’ or RV, will return a vertex whose expected degree is the mean 
degree of the graph. In 2003, Cohen et  al. (2003) introduced a new sampling method 
where a vertex is sampled at random, but then exchanged for one of its neighboring ver-
tices which is sampled at random from among all neighbors and selected1 in place of 
the first vertex. We call this method ‘Random Neighbor’ or RN. The method is loosely 
inspired by Scott Feld’s friendship paradox (Feld 1991) which states that the mean degree 
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of a graph’s collection of neighbors is higher than the mean degree of the set of the 
graph’s vertices.

RN is, in fact, a superior sampling method to RV for finding high-degree vertices and 
has gained popularity in many contexts and areas of research (for example, see Han et al. 
2013; Lü et al. 2016; Christakis and Fowler 2010). However, there is a cost for this gain. 
Specifically, every vertex that is ultimately selected requires two vertices be sampled, the 
original vertex that is discarded and the selected neighbor.

The concept is perhaps best illustrated with an example. Figure  1 demonstrates an 
experiment on a set of Barabási-Albert (BA) graphs. We fix some budget, b, that rep-
resents the number of vertices we will sample. We then sample with both RV and RN 
until the budget is exhausted. The x-axis represents increasing values of b. The points in 
the lowest curve represent the maximum degree vertex in the collection when the entire 
budget is spent on vertices, RV sampling. The points in the highest curve represent the 
maximum degree in a collection of b neighbors. This represents RN sampling, but only 
if we allow the entire budget to be spent on the selected neighbors. Doing so ignores 
any costs associated with sampling the original vertices that led to these neighbors. The 
points in the middle curve demonstrate what we consider a more realistic representation 
of RN’s results. A budget b should only yield b/2 neighbors, because half of the budget 
had to be spent on the initial vertices that were used to acquire the neighbors. So these 
middle values represent the maximum degree of a collection comprised of only b/2 
neighbors instead of b. This demonstrates the strength of RN as compared to RV from 
a new perspective, one that accounts for cost. It is worth noting that one could reason-
ably object and suggest the b/2 vertices that were sampled in order to acquire the neigh-
bors should also be included in the final collection for a total size equal to the sampling 
budget. This alternative sampling method, which we call RVN  , is something we analyze 
later in this paper. For this particular example we will demonstrate that it gives negligible 
benefit.

In order to analyze RN from a cost-based perspective, we will define costs related to 
the processes of sampling and selecting vertices. These costs will provide a model that 
can be used to analyze the true value of RN. In addition, the introduction of costs sug-
gests alternative sampling methods that may maximize performance for particular 
cost considerations. We will present a number of these alternatives here and provide 

Fig. 1  Max-degree in a collection of selections in BA graphs for a budget b of how many vertices to sample
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an in-depth analysis of their advantages and disadvantages vis-á-vis the different costs. 
This paper is an extension of our previous work (Novick and Bar-Noy 2021) where we 
first introduced our cost model. We build on this work here by adding additional results 
for many of the new sampling methods introduced there. We also provide previously 
omitted analyses that explore the RkN sampling method and the two-phase methods we 
introduced in that paper.

Terminology and notation

When we refer to the set of vertices in a graph, the term ’vertex’ retains its traditional 
meaning. However, when we refer to a single entity sampled from a graph as a ’vertex’, 
we specifically mean that it was sampled from the collection of vertices and not from the 
collection of neighbors of a specific vertex. We will use the term ’neighbor’ to refer to a 
sample taken from one vertex’s neighbors.

In this paper we use abbreviations to refer to sampling methods. So for example, we 
will use RV to refer to random vertex sampling, RN to refer to random neighbor sam-
pling, etc. However, we will also use these abbreviations in mathematical expressions 
such as equations and inequalities. For example, the inequality RN ≥ RV  would mean 
that RN is a superior or equivalent sampling method to RV in terms of finding high 
degree vertices. We rely on context to clarify the meaning of every abbreviation. Also, 
while we will employ multiple metrics of a sampling method’s success, when the method 
is not specified the assumed metric should be the expected degree of a single vertex 
returned by the method. Therefore, unless a different metric is specified, the inequality 
RN ≥ RV  means E[RN ] ≥ E[RV ] , or “The expected degree of a vertex sampled by RN is 
greater than or equal to the expected degree of a vertex sampled by RV”.

Preliminary
There are a few characteristics of RN that bear mentioning as foundational to our 
research. First, it is worth recognizing that the friendship paradox does not actually 
prove that RN is superior to RV. This is demonstrated by Kumar et al in an earlier draft 
of Kumar et al. (2021) that can be found on Vineet Kumar’s webpage in the Yale Univer-
sity website. Construct a graph comprised of two separate subgraphs, one of size i and 
one of size j with i > j ≥ 2 . The friendship paradox applies in this graph because there 
is a variance of degree so the mean degree of neighbors is strictly greater than the mean 
degree of the graph. Yet, by symmetry, we know that RN = RV  in this graph. In reality, 
the true sampling method suggested by the friendship paradox would be random edge 
(see Leskovec and Faloutsos 2006) which we compared to RN in Novick and BarNoy 
(2020). However RN’s superiority to RV has been demonstrated in Cohen et al. (2003) 
and Momeni and Rabbat (2018) among others. We have also constructed a simple proof 
that RN ≥ RV  which we later found in both Kumar et  al. (2021) as well as the afore-
mentioned draft where it is further attributed to a comment on an online article in the 
New York Times’s website. However, to our knowledge this proof has never appeared in 
a peer-reviewed publication so we will include it as an appendix to this paper.

Two other areas of interest are RN’s performance in Erdős Rényi (ER) graphs (Erdos 
and Rényi 1960) versus Barabási Albert (BA) graphs (Barabási and Albert 1999), and 
RN’s performance for finding high-degree vertices, which we will informally refer to as 
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‘hubs’, versus finding low-degree vertices, which we will informally refer to as ‘leaves’. We 
will explore both of these topics here.

RN in ER and BA graphs

In Novick and BarNoy (2020) we demonstrated experimentally that RN outperforms 
RV significantly in BA graphs while it is of minimal benefit in ER graphs. We suggest 
that there is a connection between the power-law distribution of degree (Faloutsos et al. 
1999) that characterizes BA graphs and RN’s performance in these graphs. We will infor-
mally explain this connection here.

The connection between degree-homophily and RN has been discussed in Novick and 
BarNoy (2020) and Kumar et al. (2021). In Novick and BarNoy (2020) we used the well 
known measure of assortativity (Newman 2002) (also Piraveenan et al. 2010; Thedchan-
amoorthy et al. 2014; Jackson 2019; Pal et al. 2019), whereas Kumar et al argue for their 
own measure, inversity. But here we will use the term assortativity to loosely refer to 
both measures as inversity correlates strongly with assortativity despite the significant 
differences the authors highlight in their paper. Intuitively, any difference between RN 
and RV clearly requires at least some amount of disassortativity in order for the neigh-
bor to differ from the vertex, and less assortativity in fact increases this effect. Newman 
demonstrated that both ER and BA graphs tend towards zero assortativity (Newman 
2002), neither positive or negative. However, research has shown that this value in BA 
graphs is an aggregate measure of two sharply contrasting types of edges (Bertotti and 
Modanese 2019). A number of leaves are highly assortative, connected to other leaves 
like themselves. However, the hubs connect to many leaves as well, and these connec-
tions are extremely disassortative. This suggests an intuition for RN’s strong perfor-
mance in BA graphs. The power-law distribution implies that a randomly sampled vertex 
is far more likely to be a leaf than a hub. However, exchanging it for one of its neighbors 
has a reasonable probability of increasing the resulting degree because of the significant 
likelihood that the leaf is disassortatively connected to a hub.

In truth though, the power-law distribution directly suggests the existence of the 
disassortative connections as well. The famous Erdős Gallai (1960) and Havel-Hakimi 
(1955; 1962) theorems are both in part predicated on a simple premise. If a graphic 
degree sequence is partitioned into high-degree hubs and low-degree leaves, any edge 
endpoints of the hubs that cannot be satisfied by connecting to other hubs must be sat-
isfied by connecting to leaves instead. This necessity definitionally translates into some 
amount of disassortativity. While a comparatively large amount of leaves does not neces-
sarily imply that the hubs cannot be entirely interconnected among themselves, a typical 
power-law distribution will have the number of hubs being far fewer than their accumu-
lated degrees and this explains why BA graphs in particular show a strong performance 
for RN over RV.

RN’s inefficiency in finding leaves

This understanding of the mechanics of RN’s success in BA graphs explains another 
important characteristic of RN which is its inferiority as a sampling method for selecting 
leaves in a graph. While a single sampling of RV will find any given leaf with probability 
1/n, in order for RN to select a given leaf, it would have to find it via one of its neighbors, 
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a particularly poor strategy when the number of neighbors is small, even worse when it 
neighbors a hub that neighbors so many other vertices.

Hubs versus leaves in a star graph

As an example, consider the star graph of n vertices. The star graph can be used as an 
exaggerated illustration of a power-law distribution as it has very few hubs (1) of very 
high-degree ( n− 1 ), and very many leaves ( n− 1 ) of very low-degree (1). It is therefore 
often useful to analyze a star graph in order to explore a feature of BA and other power-
law graphs.

When sampling from the star graph with RV, all vertices have an equal probabil-
ity of being sampled, P(vi) = 1

n . The expected number of samples required to find the 
center is E[C] = n , and the expected number of samples required to find all leaves is 
E[L] = n(Hn − 1) = �(n log n) per the coupon collector’s problem.

Contrast this with sampling using RN. The probability of selecting the center is 
P(C) = n−1

n  and the probability of selecting a leaf vertex is P(L) = 1
n . The expected 

number of samples required to find the center approaches 1 at E[Sc] = n
(n−1) , but the 

expected number of samples required to collect all leaves is

Hubs versus leaves in BA and ER graphs

We further demonstrate this phenomenon with a simple experiment. We repeatedly 
select vertices with both RV and RN and track how many iterations of each sampling 
method are required to select the top x% of the vertices ranked in descending order of 
degree. The aggregate results for repeated experiments on sets of BA and ER graphs is 
shown in Fig. 2. Because RV is naïve sampling, it finds the entire graph with �(n log n) 
samples per the coupon collector’s problem. RN, on the hand, finds hubs very quickly, 
but struggles greatly to complete the collection and find the lowest-degree vertices in the 
graph. As RN ≥ RV  , the phenomenon is still true in ER graphs. But it is comparatively 
muted for the reason we discussed. BA graphs have a strong element of disassortativity 
between hubs and some connected leaves, while ER graphs are more homogeneously 
unassortative.

Sampling costs—Cv and Cn
The main focus of our research is a thorough analysis of costs that are associated with RV, 
RN, and the other sampling methods that we will introduce. In our introduction we men-
tioned the most obvious cost, sampling a vertex. In many contexts this cost would be equiv-
alent for sampling a vertex from the graph and for sampling a vertex from the neighbors of 
an already sampled vertex, and we will in fact make this assumption in some of our analy-
ses. However, we suggest that this may not always be the case. Sampling a neighbor my be 

(1)

E[SL] =

n−1
∑

i=1

(

1

n

n− i

n− 1

)−1

= n(n− 1)

n−1
∑

i=1

1

n− i
= n(n− 1)

n−1
∑

i=1

1

i

= n(n− 1)Hn = �(n2 log n)
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less expensive as the set from which the neighbor will be sampled is smaller. Or, perhaps 
there is a privacy concern related to learning connections that would apply only to sampling 
a neighbor which would make sampling a neighbor more expensive. We therefore general-
ize the sampling costs to two distinct costs, Cv , the cost of sampling a vertex, and Cn , the 
cost of sampling a neighbor.

Critical Cn
Let us fix Cv = 1 so that we are expressing both Cn and total cost in terms of Cv . We seek 
a ‘critical Cn ’ value ( CCn ), that is a value for Cn where RV and RN perform equally well 
in light of their associated costs. Knowledge of a such a value for a specific graph would 
allow a proper evaluation of whether or not RN should be used instead of RV. CCn is, 
ultimately, a measure of RN’s superiority over RV as the higher the degree of a selected 
neighbor is compared to that of a sampled vertex, the more one would be willing to pay 
in order to sample the neighbor. Following the same logic, finding some scenario where 
CCn < 0 would indicate that (somehow) RV > RN .

CCn for expected degree

Obviously, in order to quantify CCn , we first need to define what metric of success we 
are using to quantify the respective performances of RV and RN. We will first focus on 
the expected degree of a vertex/neighbor selected by each. We have fixed Cv = 1 , so a 
vertex selected by RV, with its corresponding expected degree, requires one cost unit. A 
neighbor selected by RN costs Cv + Cn = 1+ Cn . Therefore, the CCn value that equates 
the two methods in terms of cost for their respective expected degrees can be calculated 
as follows:

There is a strong intuition to this expression. The ratio RNRV  should capture how much 
more someone would be willing to pay for a neighbor over a vertex. Also notice that, 
if RNRV < 2 , CCn < 1 . This means that if Cv = Cn , which would arguably be our natural 

(2)

RV =
RN

1+ CCn

RV + RV (CCn) = RN

CCn =
RN

RV
− 1

Fig. 2  Required iterations of RN and RV for finding the top x% of high-degree vertices
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assumption in most scenarios, sampling with RN would only be preferred to sampling 
with RV if RN is twice as strong as RV for the desired metric. Otherwise, a more robust 
cost model would be required in order to justify the intuitive appeal of RN sampling.

CCn in canonical graphs

We will apply Eq. 2 to a few famous graph types.
d-regular Graph In any perfectly assortative graph RN reduces to RV and CCn = 0 . 

The intuition is obvious. In a graph where RN offers no advantage, any positive cost 
would be wasted.

Star Graph RV in a star graph is equal to 2(n− 1)/n and RN is equal to 
((n− 1)2 + 1)/n , so

As n increases, CCn −→ n . This is of course the same bound as the degree of the hub. The 
expression’s similarity to the degree of the hub reflects the high Cn price worth paying for 
taking the leaf vertex one would initially sample with high probability and exchanging it 
for the hub.

Complete bipartite graph Assume we have a complete bipartite graph with 
sides L and R. All vertices in L are of degree R, and all vertices in R are of degree L. 
RV = (LR+ RL)/(L+ R) , and RN = (L2 + R2)/(L+ R) . Therefore, in a complete bipar-
tite graph, CCn = (L2 + R2)/2LR− 1.

CCn for different sampling amounts and results

Our second exploration of CCn will define it as a function of either how many samples 
are taken or a function of some desired result. Importantly, this means that these ver-
sions of CCn will not be fixed for a graph. This is an important use of CCn because it 
demonstrates how RN’s value can fluctuate even for the same graph depending on how 
long it is used or what the desired outcome is. For these analyses we will define three 
metrics to quantify the success of a sampling method: 

1	 Total Degrees—We repeatedly sample vertices from a graph with replacement and 
track the sum of the degrees of all selected vertices. CCn for this metric should con-
verge on the CCn value based on expected degree defined in Eq. 2.

2	 Total Unique Degrees—We repeatedly sample vertices from a graph with replace-
ment and track the sum of the degrees of any new vertices selected. Here we will 
present resulting values as a percentage of the sum of all degrees in the graph.

3	 Max Degree—We repeatedly sample vertices from a graph with replacement and 
track the maximum degree vertex selected. Here we will present resulting degree val-
ues as a percentage of the max-degree vertex in the graph.

The second metric corrects for the inclusion of duplicates in the first metric. If our goal 
is to immunize a network, for example, we probably can’t take credit for inoculating the 
same vertex twice. We include the first metric mostly for comparison, but we still sug-
gest it might be useful in some scenarios. For example, in a situation where the goal of 

(3)CCn =
1+ (n− 1)2

2(n− 1)
− 1



Page 8 of 23Novick and Bar‑Noy ﻿Applied Network Science            (2022) 7:34 

sampling is information dissemination, our goal would be to reach as many high-degree 
vertices as possible in order to spread the information to their neighbors. But we might 
still appreciate selecting the same vertex multiple times as each selection reiterates the 
importance of the information and therefore increases the likelihood of it being shared.

In order to calculate CCn as a function of sampling iterations, let RV(i) and RN(i) be 
the resulting values, according to one of the success metrics, of selecting i vertices with 
RV and with RN respectively. The cost of i vertices selected with RV is i and the cost of i 
neighbors selected with RN is i(1+ Cn) . Therefore, for any i, we can calculate CCn(i) as 
follows:

To calculate CCn as a function of resulting values, assume some resulting value V requires 
i sampling iterations of RV and j sampling iterations of RN, or V = RV (i) = RN (j) . For 
this value V, we can calculate CCn(V ) as

We experimented with ER and BA graphs with varying parameters as well as the graphs 
of multiple real world networks taken from the Koblenz online collection (Kunegis 
2013). Figure 3 shows results from some of the experiments on BA graphs. These results 
were fairly typical for ER and real world graphs as well.

The results for total degrees correlated with RN/RV − 1 as predicted. For the other 
two measures, the results are somewhat more interesting. The bottom two charts meas-
ure success by max degree. The first chart shows calculated values of CCn for samples 
taken. CCn starts off high, because RN gives a higher maximum degree than RV. How-
ever, as we continue to take samples, RV will eventually find the max-degree vertex in the 
graph, and any further sampling for either method accomplishes nothing. This explains 
the (roughly) monotonically decreasing values of CCn , ultimately converging on 0. The 
second chart plots CCn as a function of the percent of the maximum degree vertex being 
sought. This plot is noisier because sampling for a max degree vertex will not normalize 
as easily with repeated experiments, but the generally increasing nature of the function 
shows that RN has more relative value compared to RV as the degree of the maximum 
degree vertex being sought increases.

The middle charts are measuring the sum of all unique degrees accumulated. The 
chart on the left sees CCn steadily decrease as the hubs have already been selected and 
RN’s value is diminishing. Interestingly, CCn is actually negative for a range of values. 
This corresponds to the point where RN is continuing to sample hubs that have already 
been selected and therefore has no value, but RV is still finding new leaves. In this range 
RV > RN  which explains the negative CCn value. Then RV also finds all of the vertices it 
will find and CCn levels out at 0, neither method offers any advantage. The chart on the 

(4)

RV (i)

i
=

RN (i)

i(1+ CCn(i))

CCn(i) =
RN (i)

RV (i)
− 1

(5)

V

i
=

V

j(1+ CCn(V ))

CCn(V ) =
i

j
− 1
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right shows a roughly monotonically decreasing CCn . As we seek a higher and higher 
percentage of the total degrees in the graph, RN’s value over RV decreases because of 
its failure to find leaves. Eventually, when enough of the degrees are being sought, CCn 
becomes negative because of the difficulty it has finding leaves while RV is continuing to 
sample all vertices with uniform probability.

Selection costs ( Cs ) and RVN sampling
In our introductory example in Fig.  1 we mentioned that, given a budget b which we 
would use for sampling, and assuming Cv = Cn = 1 , we could collect at most b/2 neigh-
bors, but we could also retain the b/2 vertices we used as a means of collecting the neigh-
bors and our final collection would be of size b. We refer to the sampling method where 
we select both the originally sampled vertex as well as its sampled neighbor as RVN .

Fig. 3  Experimentally calculated CCn values in BA graphs for varied metrics of success
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The obvious explanation for why one would opt for RN over RVN  is a cost that would 
be associated with selecting a vertex, which we will call Cs . Even having spent Cv + Cn to 
sample the vertex and its neighbor, we select only the neighbor in order to capitalize on 
the Cs we spend to do so.

The inclusion of Cs in our model gives us a mathematical language for explaining prior-
ities in a particular sampling endeavor. For example, one could ask why the initial paper 
of Cohen et al. (2003) ignores cost in the context of network immunization. By defining 
Cv and Cn , we can offer a formal explanation by saying that perhaps Cn ≪ Cv , and the 
extra cost of sampling the neighbor can be ignored. However, the far more likely expla-
nation is that Cs ≫ Cv ≈ Cn . If the immunizations are in very short supply, it is waste-
ful to administer one to the low-degree vertex instead of paying an additional Cv + Cn 
to find another high-degree neighbor. Even without generalizing sampling costs to two 
separate values, the evaluation of the respective costs of sampling versus selecting in a 
given scenario will provide an indication of which sampling method to choose.

RVN versus RN

We will now present a few comparisons between RVN  and RN. Like the CCn value we 
sought for RV and RN, we will discuss a similar value that equates sampling costs with 
selection costs. We will also discuss why the two sampling methods are roughly the 
same for the metric of max-degree, and explore how RVN  compares to RN for collecting 
leaves.

Sampling costs versus selection costs and critical α

Let us ignore the direct comparison between Cv and Cn and simply define α = Cv + Cn 
so that α is the collective cost of sampling the vertex and neighbor from which we will 
select either both or just the neighbor by itself. We obviously assume a preference for 
spending the lower expense in order to capitalize on the higher expense. Therefore, if 
α < Cs we are more likely to sample again in order to spend Cs on the higher-degree 
neighbor, and if α > Cs we are more likely to spend Cs on selecting the vertex in order to 
capitalize more on the α we have already spent. But of course the direct comparison of 
RV and RN’s respective performances influences this decision as well.

We will define a ‘critical α ’ ( Cα ) as the α value for which RVN  and RN are equal and 
use it to relate α to Cs and the RN/RV ratio.

Cα for expected degrees

We will calculate Cα using the expected values of RVN  and RN. We will compare a single 
selection of RVN  to a single selection of RN. Every odd selection of RVN  is the selec-
tion of a vertex and every even selection of RVN  is a neighbor, so we will express the 
expected degree of an average selection of RVN  as RVN = (RV + RN )/2 . Therefore

(6)

RV + RN

Cα + 2Cs
=

RN

Cα + Cs

Cα = Cs

(

RN

RV
− 1

)
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This is the same expression as the one we found for CCn in Eq. 2. We see that a stronger 
RN as compared to RV leads to a higher Cα , that is α must be significantly larger than 
Cs for the selection of the first vertex to be worthwhile. As RN weakens vis-á-vis RV, Cα 
decreases and the importance of capitalizing on α increases relative to the importance of 
capitalizing on Cs.

Max degree for RN and RVN

It is worth explaining why RVN  and RN give comparable results when seeking to maxi-
mize the maximum-degree selected. The first chart in Fig. 4 is a direct comparison of RN 
and RVN  . It shows that selecting the vertex gives negligible benefit over selecting the 
neighbor by itself. The second chart reproduces the chart from our introduction in Fig. 1 
and the third chart shows the same experiment using RVN  instead of RN as the fair-cost 
method. Again, the gain in maximum degree is negligible.

The obvious explanation for this is that the maximum degree vertex is so likely to be 
found in the collection of selected neighbors that selecting the vertex fails to raise the 
maximum degree in a significant way. To corroborate this, we conducted experiments 
that test this exact hypothesis. We repeatedly sampled with RVN  in sets of ER and BA 
graphs with various parameters and tracked the percent of times the maximum degree 
vertex in the collection was a neighbor. The results are summarized in Table 1. Clearly 
even in ER graphs, but especially in BA graphs, there is a very high probability of finding 
the maximum degree entity among the neighbors. Some more extreme values for n and/
or µ may markedly change the characteristics of the graphs from those that typify the 
model, but the moderate values give a strong indication of why RVN  is not significantly 
better than RN for the metric of maximum degree.

RVN versus RN for selecting hubs and leaves

One area worth exploring in RVN  sampling is how it addresses the specific weakness of 
RN for finding leaves. Presumably, selecting vertices alongside the neighbors should pro-
vide additional coverage of the graph, and specifically cover leaves.

Figure  5 repeats our earlier experiment (Fig.  2) for assessing performances for hubs 
and leaves, but it includes RVN  and it breaks down the results by costs. The top row 
demonstrates results that are fairly obvious. Results for Cv are on the left. Clearly, when 
Cn = 0 , RVN  adds to the performance of both methods for no cost. Similarly, if Cv = 0 
and we only focus on Cn as we do in the chart on the right, RV gives unrealistic results. 
The third chart is more meaningful. As before we ignore a direct comparison between Cv 

Fig. 4  Comparison of RN and RVN for maximizing the max-degree in random collection
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Fig. 5  Required Cv , Cn , and Cs costs for finding the top x% of high-degree vertices in BA graphs

Table 1  Frequency of the max-degree vertex being among the selected neighbors. n is the size of 
the graph, µ is the average degree

ER graphs BA graphs

µ = 4 µ = 10 µ = 16 µ = 30 µ = 4 µ = 10 µ = 16 µ = 30

Sampling 0.025n

n = 500 .77 .72 .66 .65 .92 .87 .84 .82

n = 1000 .8 .72 .68 .65 .95 .94 .91 .85

n = 2500 .81 .74 .7 .64 .99 .98 .96 .92

n = 5000 .84 .72 .72 .65 .99 .98 .96 .94

Sampling 0.05n

n = 500 .78 .72 .70 .67 .96 .92 .86 .85

n = 1000 .82 .74 .72 .68 .97 .95 .91 .88

n = 2500 .84 .8 .72 .71 .98 .98 .96 .93

n = 5000 .83 .75 .72 .68 .99 .98 .97 .95

Sampling 0.075n

n = 500 .83 .73 .72 .66 .98 .93 .88 .88

n = 1000 .83 .74 .73 .67 .98 .96 .95 .9

n = 2500 .86 .76 .75 .69 .99 .98 .96 .94

n = 5000 .87 .78 .72 .7 .99 .99 .98 .96

Sampling 0.1n

n = 500 .82 .77 .72 .68 .98 .95 .9 .87

n = 1000 .85 .75 .73 .71 .99 .96 .96 .93

n = 2500 .85 .8 .73 .71 .99 .99 .98 .95

n = 5000 .87 .81 .76 .67 1 .99 .99 .97
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and Cn by assuming they are equal and track the total costs of the two combined. Here 
we see that RVN  overemphasizes hubs enough to be superior to RV for hubs but infe-
rior for leaves, but it still collects leaves far more quickly than RN which always selects 
neighbors and ignores vertices. The fourth chart shows results in terms of Cs . Ignoring 
sampling costs makes this chart mostly irrelevant for an actual analysis, but it does allow 
us to focus on how quickly vertices are sampled as that is when Cs will be paid in order 
to select them. A higher Cs cost for hubs indicates that more leaves have been selected 
along with the selected hubs. The chart demonstrates that the more a method focuses on 
hubs, the more leaves are ignored while selecting the hubs, whereas methods that focus 
on leaves more find them and pay Cs for them sooner.

The heatmaps in Figs. 6 and 7 give a perspective on how the significance of the costs 
manifest when hubs or leaves are sought. Figure 6 shows the total cost of selecting the 
top .1 and top .9 of the graph for RV, RN, and RVN  . The x axes represent Cv costs in the 
range of 0 ≤ Cv ≤ 1 and the y axes represent Cn costs in the range of 0 ≤ Cn ≤ 1 . For 
RV, Cn is irrelevant and regardless of the percent the total cost increases with Cv alone. 
Because Cs is not a factor, RN and RVN  appear the same. Total cost appears to be slightly 
more influenced by Cn , but generally influenced by both. In Fig. 7, the x axes represent Cs 
costs and the y axes represent α costs, the collective cost of sampling a vertex and neigh-
bor pair and ignoring how this cost is distributed between the two. RV is a function of 
both sampling and selection costs regardless of whether it is hubs or leaves being sought. 
In both RN and RVN  , finding hubs is mostly a function of selection costs, whereas find-
ing leaves is more greatly influenced by sampling costs.

RkN sampling
The sampling costs Cv and Cn suggest another alternative sampling method. As noted, 
RN is predicated on the understanding that exchanging the initially sampled vertex for 
its neighbor raises the expected degree. If we completely ignore Cv , it is perhaps not 
illogical to take our second vertex by repeating the process again, sampling a new vertex 
and then selecting one of its neighbors. But if Cv is significant, it makes sense to sample 
multiple neighbors of the same vertex in order to capitalize on the Cv that was already 
spent instead of selecting only the one neighbor and then immediately paying Cv again.

We call this alternative method RkN sampling. We select k random neighbors of every 
randomly sampled vertex. RkN is a generalization of RN with RN being the specific case 
of k = 1 . We can quantify the cost of each neighbor selected with RkN as Cv/k + Cn 
rather than the Cv + Cn cost of RN.

We conducted many repeated experiments with BA graphs and found that the aver-
age degree of all kth selected neighbors typically decreases as k increases. This is cor-
roborated by the cost analysis shown in Fig.  8. The first chart shows the significant 
decrease in Cv for accumulating various percentages of the total unique degrees in the 
graph as k increases. However, the second plot shows that Cn decreases far less rapidly, 
because selecting additional neighbors of the sampled vertex will not have a positive 
effect on the expected degree. In fact, the third plot shows that Cs actually increases 
slightly as more neighbors of lower degree are being selected. Ultimately, if the gen-
eral cost of sampling is significant, RkN appears to a be a useful sampling method. 
But theoretically, if Cv = 0 , it is probably worth sampling a new vertex and selecting 
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its first neighbor instead of selecting additional neighbors of the first sampled vertex. 
This probably also reflects somewhat on the lopsided distribution of degree in BA 
graphs. The initially sampled vertex is likely a leaf, but the leaf is not necessarily con-
nected to any hubs, and if it is it is likely connected to a very small number of them. 
While increasing k for a leaf that is connected to a hub does increase the likelihood of 
selecting the hub, it only adds additional leaves when the initially sampled vertex is an 
assortative leaf. And very large values of k will have even less of an effect because they 
will only be relevant when the initially sampled vertex is a hub and it will likely result 
only in the collection of additional leaves. Because of the disparity in degree between 
leaves and hubs, even a modest increase in the probability of selecting a hub can raise 

Fig. 6  Heat maps representing the effects of Cv and Cn (sampling) costs for the top 10% and 90% of 
high-degree vertices
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the average degree significantly. But when the focus is Cn or Cs and not Cv , the over-
sampling of neighbors does not have a strong positive net effect.

RVkN sampling

In the same way we tweaked RN with RVN  , we are able tweak RkN by selecting the ini-
tial vertex along with the k neighbors, RVkN  sampling. In scenarios where Cs is negli-
gible and sampling costs are the sole consideration, the initial vertex should clearly not 
be discarded. Also, as k increases and the average neighbor degree decreases, the initial 

Fig. 7  Heat maps representing effects of sampling ( Cv and Cn ) and selection ( Cs ) costs for the top 10% and 
90% of high-degree vertices



Page 16 of 23Novick and Bar‑Noy ﻿Applied Network Science            (2022) 7:34 

vertex may be of similar degree to many of the neighbors and may as well be selected. 
We will include RVkN  in our later analyses.

Full fair‑cost analysis
We are now ready to perform a full analysis of our sampling methods and costs. We will 
start with a theoretical analysis on a star graph to accentuate the strengths and weak-
nesses of our methods in regard to selecting hubs and leaves, then do an experimental 
analysis on BA graphs.

Below is a summary of the methods discussed so far:

•	 RV—Random Vertex Sampling. The naïve method of sampling and selecting a vertex 
at random from the set of vertices in the graph. Every selected vertex costs Cv + Cs.

Fig. 8  Costs of selecting percents of all unique degrees in the graph with RkN sampling for varying values of 
k 
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•	 RN—Random Neighbor Sampling, the method of Cohen et al. (2003). We sample a 
vertex, then sample one of its neighbors and select the neighbor. The cost of every 
neighbor is Cv + Cn + Cs.

•	 RVN—We sample a vertex, sample one of its neighbors, then select both. The aver-
age cost of a selection is (Cv + Cn)/2+ Cs.

•	 RkN—We sample a vertex, then sample and select k of its neighbors. The cost of 
every neighbor is Cv/k + Cn + Cs.

•	 RVkN—We sample a vertex and k of its neighbors, selecting all samples. The cost of 
a vertex is Cv + Cs , the cost of a neighbor is Cn + Cs , and the cost of an average selec-
tion is (Cv + kCn)/(k + 1)+ Cs.

Fair‑cost analysis in the star graph

As noted above, analyzing a star graph theoretically can highlight important strengths 
and weaknesses of a sampling method because of its exaggerated distinction between 
the lone hub and the n− 1 leaves. It should be noted though, that the analysis of a star 
graph is not a thorough examination because many concepts do not apply due to the 
graph’s simplicity. For example, we will not include Cs in this analysis as this value will 
always be 1 or n− 1 for the two distinct collections of a hub and all leaves. Furthermore, 
RkN is of no interest as k only matters when we sample the hub as our initial vertex, and 
when we do the only logical value of k is n− 1 . With these excluded concepts noted, we 
present the expected Cv and Cn costs for selecting the hub and all leaves in Table 2.

For RV, the expected number of samplings required to obtain the center is n, and get-
ting all leaves is n log n . These are all Cv costs, there are no Cn costs. RN finds the center 
with just over 1 sampling that incurs identical costs for Cv and Cn . As we noted, though, 
it is very weak for finding leaves, requiring n2 log n units of both Cv and Cn . In the star 
graph, RVN  is guaranteed to acquire the center after one iteration at a cost of Cv + Cn . 
But it pays Cn costs in order to acquire leaves whereas RV does not.

Experimental cost analysis on BA graphs

Our second analysis involved generating a set of BA graphs and recording the average 
costs for acquiring some percent of the graph. Here we have to note another oversimpli-
fication of the star graph, the clear delineation between hubs and leaves. In a BA graph 
this will of course not be as well defined. Our examination will consider the top 5% of 
high-degree vertices to be hubs. For this experiment we used BA graphs with n = 4000 , 
m = 3 . The results are presented in Table 3.

Table 2  An analysis of costs Cv and Cn in a star graph of n vertices

Method Selecting center Selecting all leaves

E[Cv ] E[Cn] E[Cv ] E[Cn]

RV n 0 n log n 0

RN n/(n− 1) n/(n− 1) n
2 log n n

2 log n

RVN 1 1 n log n n log n
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The top section demonstrates the characteristics of RV, RN, and RVN  that we have 
discussed. RN does far better than RV for hubs, far worse for leaves. And RVN  does bet-
ter than both methods in most categories, but spends more units of Cs on hubs because 
of the additional leaves it selects as a result of retaining the initially sampled vertex. The 
fact that RVN  has lower sampling costs for hubs implies that the initially sampled verti-
ces contain some hubs that are retained. But Cs is still higher because of the leaves that 
are selected.

We also include results for RkN and RVkN  . As discussed, increases in k have a strong 
impact on Cv , but mixed results on the other costs. Again, the initially sampled vertices 
include some hubs, so RVkN  reduces Cv and Cn over RN for lower values of k.

Two‑phase sampling methods
The weakness of RN for finding leaves suggests an entirely new category of sampling 
methods. We could use a method like RN in a first phase, trying to collect hubs, but then 
switch to RV in a second phase in order to collect the leaves that RN typically struggles 
to sample. We will call this method RN-RV. Significantly though, any of the RN variants 
we introduced here can be used for the first phase for the sake of the advantages dis-
cussed. We can therefore add the following new, ‘Two-Phase’ sampling methods:

•	 RN-RV  —A two-phase method that starts with RN to find hubs, then switches to RV 
to find leaves.

•	 RVN-RV  —A two-phase method that seeks to find leaves sooner by selecting verti-
ces along with neighbors in the first phase.

•	 RkN-RV  —A two phase method that tries to find hubs faster by sampling and select-
ing more neighbors per vertex in the first phase.

Table 3  An experimental analysis of Cv , Cn , and Cs costs in BA Graphs

Method Selecting hubs (top 5%) Selecting full graph

Cv Cn Cs Cv Cn Cs

RV 23,061 – 3979 35,251 − 4000

RN 6351 6351 2464 300,857 300,857 4000

RVN 4837 4837 3404 24,531 24,530 4000

RkN—k = 1 (RN) 6351 6351 2464 300,857 300,857 4000

RkN—k = 2 3166 6331 2463 139,021 278,040 4000

RkN—k = 3 2191 6571 2493 94,175 282,519 4000

RkN—k = 6 1497 6421 2590 48,621 208,456 4000

RkN—k = 7 1481 6663 2653 40,491 182,306 4000

RkN—k = 8 1420 6637 2661 34,483 161,077 4000

RkN—k = ∞ 1204 7205 2867 10,559 63,310 4000

RVkN—k = 1 (RVN) 4837 4837 3404 24,531 24,530 4000

RVkN—k = 2 2807 5613 3138 20,994 41,987 4000

RVkN—k = 3 1880 5638 2931 18,700 56,096 4000

RVkN—k = 6 1450 6212 2965 14,268 61,185 4000

RVkN—k = 7 1379 6203 2969 13,419 60,434 4000

RVkN—k = 8 1365 6376 2995 12,844 60,006 4000

RVkN—k = ∞ 1118 6694 3054 7951 47,650 4000
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•	 RVkN-RV  —A combination of the previous two methods that selects the sampled 
vertex along with the k neighbors in the first phase before switching to RV.

Two‑phase methods in the star graph

Table 4 shows the results for RN-RV and RVN-RV in the star graph (as noted, RkN and 
RVkN  are uninteresting in the star). The expected iterations for RN-RV to find the hub 
approaches 1 and RVN-RV will always find it in its first two selections. After that, the 
second phase finds the leaves for n log n units of Cv as expected, but saves the Cn costs of 
a one-phase method because it stops sampling neighbors in the second phase.

Two‑phase methods in BA graphs

We will now explore the two-phase methods experimentally in BA graphs. Here we will 
once again have to note a few details of this analysis that do not apply to the star graph.

The most obvious question that arises for a two-phase method would be the point at 
which the method would switch phases. And of course this will largely depend on how 
we delineate between hubs and leaves. Notice again how both of these issues are trivial 
in the star graph as discussed above. There is only one hub, and both phase-one meth-
ods find it after one iteration with at least high probability, so we can choose a number 
of phase-one iterations that provides a satisfactory probability of selecting the hub and 
then switch to RV.

Another issue that arises is the desired coverage for each set of vertices. If the inten-
tion is to select every hub in the first phase and then every remaining leaf in the second, 
two phase methods offer negligible benefit over RV by itself. As effective as RN or any 
variant is, it will almost certainly miss some hubs and then RV will have to find them. 
And if RV has to find all leaves, it will probably find most of the hubs already selected 
in the first phase while it is sampling. We therefore define a parameter ρ with 0 < ρ < 1 
where ρh would be the percent of hubs that need to be selected in the first phase, and ρl 
the percent of the leaves before terminating.

Our approach to simplify this problem and give meaningful results is as follows. First, 
we will generalize ρ = ρh = ρl , assume that we desire the same coverage for both hubs 
and leaves. We will also work with the same delineation between hubs and leaves that 
we employed previously in BA graphs, a .05/.95 split. Rather than specifying a switching 
point and testing whether or not we have acquired the requisite ρ percent, we will run 
each phase until we have selected ρ of the desired vertices and report the costs incurred 
in each phase.

Table 4  An analysis of costs Cv and Cn in a star graph of n vertices for two-phase methods

Method Selecting center Selecting all leaves

E[Cv ] E[Cn] E[Cv ] E[Cn]

RN-RV n/(n− 1) n/(n− 1) n log n 0

RVN-RV 1 1 n log n 0
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Also, because the connections are more complex than in a star graph, RkN sampling 
is again of interest, so we will include RkN-RV and RVkN-RV in this study. Table 5 sum-
marizes costs for ρ ∈ {.7, .8, .9}.

As expected, RN outperforms RV for hubs and RV is better for leaves, while RVN  is a 
strong compromise for sampling costs but not for Cs . As before we see that increases in 
k give diminishing returns in Cv for both RkN-RV and RVkN-RV, and do not meaning-
fully impact Cn or Cs . And we see that RVkN-RV reduces sampling costs over RkN-RV. 
The results also corroborate our explanation that, while RkN does find hubs faster than 
RN, many of its selections would have been found as vertices rather than neighbors. This 
is why RVN-RV pays a higher Cs price than RVkN-RV in phase 1 and lower in phase 2, 
because so many of the neighbors that would have been selected along with the first ver-
tex by increasing k, are selected as vertices anyway by RVN  , to the point where it makes 
more selections.

Conclusion and future research directions
In this paper, we have presented an analysis of the famous RN sampling method from the 
perspective of cost. We have built a useful cost-model that considers both sampling and 
selection which provides an infrastructure for a true fair-cost comparison of RN to RV. 
We described ‘critical cost’ values that can be used to evaluate a graph in order to con-
trast two different sampling methods and determine their relative values for a desired 
goal. We highlighted an interesting weakness of RN, its inability to find leaves efficiently. 
We also offered numerous tweaks to RN that seek to capitalize on certain costs over oth-
ers which would allow us to pick an appropriate method for the costs of a given scenario.

We consider this groundbreaking work which opens many avenues for future research. 
Our cost-model can clearly be expanded to account for other costs that might exist in 
specific scenarios. It is possible that exploring additional costs will lead to even more 
tweaks to RN that can be more performant for these new costs. In particular, we believe 
we have only scratched the surface in exploring the two-phase methods. Further analysis 
and experimentation could help establish stronger ideas of how methods can be com-
bined and what criteria would determine the point for switching phases.

Appendix
Proof that RN ≥ RV

Calculating RN requires calculating the average degree of every vertex’s individual col-
lection of neighbors, then averaging all these values across all vertices. We can therefore 
express RN as:

Essentially, the probability of sampling any vertex v as the initial vertex is 1/n, and the 
probability of selecting a neighbor u of an initially sampled vertex v is 1/dv . Notice that 
every edge (u, v) contributes du/dv + dv/du to the outer summation, which allows us to 
express RN as

(7)RN =
1

n

∑

v∈V

∑

u∈Uv

du

dv
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Table 5  Experimentally calculated Cv , Cn , and Cs costs of two-phase sampling methods in BA graphs

Phase 1 Method Phase 1 Phase 2 (RV) Total costs

Cv Cn Cs Cv Cs Cv Cn Cv + Cn Cs

ρ = .7

RV 4822 0 2796 156 47 4978 0 4978 2844

RN 1057 1057 794 4060 2006 5117 1057 6173 2800

RVN 854 854 1307 3342 1493 4197 854 5051 2800

RkN—k = 1 (RN) 1057 1057 794 4060 2006 5117 1057 6173 2800

RkN—k = 2 532 1065 798 4058 2002 4590 1065 5655 2800

RkN—k = 3 356 1068 800 4049 2000 4405 1068 5474 2800

RkN—k = 6 262 1123 851 3982 1949 4243 1123 5367 2800

RkN—k = 7 251 1130 856 3976 1944 4227 1130 5357 2800

RkN—k = 8 243 1133 863 3973 1937 4216 1133 5350 2800

RkN—k = ∞ 202 1210 930 3883 1870 4085 1210 5295 2800

RVkN—k = 1 ( RVN) 854 854 1307 3342 1493 4197 854 5051 2800

RVkN—k = 2 472 943 1087 3664 1713 4135 943 5078 2800

RVkN—k = 3 328 984 1007 3776 1794 4104 984 5087 2800

RVkN—k = 6 247 1057 1001 3789 1800 4036 1057 5092 2800

RVkN—k = 7 235 1060 997 3791 1803 4026 1060 5085 2800

RVkN—k = 8 231 1075 1005 3785 1796 4016 1075 5091 2800

RVkN—k = ∞ 193 1160 1044 3727 1757 3920 1160 5080 2800

ρ = .8

RV 6399 0 3184 253 53 6651 0 6651 3237

RN 1488 1488 1031 5393 2169 6881 1488 8369 3200

RVN 1174 1174 1657 4435 1543 5609 1174 6783 3200

RkN—k = 1 (RN) 1488 1488 1031 5393 2169 6881 1488 8369 3200

RkN—k = 2 740 1480 1028 5401 2172 6141 1480 7620 3200

RkN—k = 3 495 1486 1030 5393 2170 5888 1486 7373 3200

RkN—k = 6 364 1561 1095 5304 2105 5667 1561 7228 3200

RkN—k = 7 347 1564 1103 5306 2097 5654 1564 7217 3200

RkN—k = 8 340 1588 1122 5266 2078 5607 1588 7195 3200

RkN—k = ∞ 284 1687 1202 5146 1999 5430 1687 7117 3200

RVkN—k = 1 ( RVN) 854 854 1307 3342 1493 4197 854 5051 2800

RVkN—k = 2 472 943 1087 3664 1713 4135 943 5078 2800

RVkN—k = 3 328 984 1007 3776 1794 4104 984 5087 2800

RVkN—k = 6 247 1057 1001 3789 1800 4036 1057 5092 2800

RVkN—k = 7 235 1060 997 3791 1803 4026 1060 5085 2800

RVkN—k = 8 231 1075 1005 3785 1796 4016 1075 5091 2800

RVkN—k = ∞ 193 1160 1044 3727 1757 3920 1160 5080 2800

ρ = .9

RV 120 0 3583 398 43 9518 0 9518 3626

RN 247 2247 1381 7681 2219 9928 2247 12175 3600

RVN 740 1740 2157 6256 1443 7996 1740 9737 3600

RkN—k = 1 (RN) 2247 2247 1381 7681 2219 9928 2247 12175 3600

RkN—k = 2 1111 2221 1371 7702 2229 8813 2221 11035 3600

RkN—k = 3 740 2219 1369 7696 2231 8435 2219 10654 3600

RkN—k = 6 541 2316 1454 7555 2146 8095 2316 10411 3600

RkN—k = 7 526 2363 1484 7526 2116 8051 2363 10415 3600

RkN—k = 8 507 2370 1495 7505 2105 8013 2370 10383 3600

RkN—k = ∞ 423 2533 1612 7302 1988 7725 2533 10258 3600

RVkN—k = 1 ( RVN) 1740 1740 2157 6256 1443 7996 1740 9737 3600
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Using Eq. 8, we claim

The right side of the inequality is simply the sum of all degrees in the graph, or 2m

The left side of the inequality contains m terms in the form of a
b
+ b

a , and a
b
+ b

a ≥ 2 for 
all a, b, with a > 0 , b > 0.

We can also derive the following corollary:

Corollary: in a graph with at least one edge between vertices of unequal degrees, RN > RV

Proof a
b
+ b

a > 2 for all a, b with a > 0 , b > 0 , and a  = b.
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Table 5  (continued)

Phase 1 Method Phase 1 Phase 2 (RV) Total costs

Cv Cn Cs Cv Cs Cv Cn Cv + Cn Cs

RVkN—k = 2 977 1954 1848 6895 1752 7872 1954 9826 3600

RVkN—k = 3 676 2029 1709 7140 1891 7817 2029 9845 3600

RVkN—k = 6 511 2191 1712 7141 1888 7652 2191 9843 3600

RVkN—k = 7 491 2213 1717 7146 1883 7638 2213 9851 3600

RVkN—k = 8 481 2250 1731 7103 1869 7584 2250 9834 3600

RVkN—k = ∞ 401 2414 1796 6994 1804 7395 2414 9809 3600

http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/


Page 23 of 23Novick and Bar‑Noy ﻿Applied Network Science            (2022) 7:34 	

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Computer Science Department, City University of New York Graduate Center, New York, USA. 2 Computer Science 
Department, Touro University, New York, USA. 3 Computer Science Department, Brooklyn College and Graduate Center, 
City University of New York, Brooklyn, USA. 

Received: 27 February 2022   Accepted: 12 May 2022

References
Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
Bertotti ML, Modanese G (2019) The bass diffusion model on finite Barabasi-Albert networks. Complexity 2019
Christakis NA, Fowler JH (2010) Social network sensors for early detection of contagious outbreaks. PLoS ONE 5(9):12948
Cohen R, Havlin S, Ben-Avraham D (2003) Efficient immunization strategies for computer networks and populations. Phys 

Rev Lett 91(24):247901
Erdös P, Gallai T (1960) Gráfok elöirt fokú pontokkal. Mat lapok 11:264–274
Erdos P, Rényi A et al (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60
Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. ACM SIGCOMM Com‑

put. Commun. Rev. 29(4):251–262
Feld SL (1991) Why your friends have more friends than you do. Am J Sociol 96(6):1464–1477
Hakimi SL (1962) On realizability of a set of integers as degrees of the vertices of a linear graph. i. J Soc Ind Appl Math 

10(3):496–506
Han B, Li J, Srinivasan A (2013) Your friends have more friends than you do: identifying influential mobile users through 

random-walk sampling. IEEE/ACM Trans Netw 22(5):1389–1400
Havel V (1955) A remark on the existence of finite graphs. Casopis Pest Mat 80:477–480
Jackson MO (2019) The friendship paradox and systematic biases in perceptions and social norms. J Polit Econ 

127(2):777–818
Kumar V, Krackhardt D, Feld S (2021) Interventions with inversity in unknown networks can help regulate contagion. arXiv 

preprint arXiv:​2105.​08758
Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on world 

wide web, pp 1343–1350
Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD international confer‑

ence on knowledge discovery and data mining, pp 631–636
Lü L, Chen D, Ren X-L, Zhang Q-M, Zhang Y-C, Zhou T (2016) Vital nodes identification in complex networks. Phys Rep 

650:1–63
Momeni N, Rabbat MG (2018) Effectiveness of alter sampling in social networks. arXiv preprint arXiv:​1812.​03096
Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701
Novick Y, Bar-Noy A (2021) A fair-cost analysis of the random neighbor sampling method. In: International conference on 

complex networks and their applications. Springer, pp 3–15
Novick Y, BarNoy A (2020) Finding high-degree vertices with inclusive random sampling. In: International conference on 

complex networks and their applications. Springer, pp 319–329
Pal S, Yu F, Novick Y, Swami A, Bar-Noy A (2019) A study on the friendship paradox-quantitative analysis and relationship 

with assortative mixing. Appl Netw Sci 4(1):1–26
Piraveenan M, Prokopenko M, Zomaya AY (2010) Classifying complex networks using unbiased local assortativity. In: 

ALIFE, pp 329–336
Thedchanamoorthy G, Piraveenan M, Kasthuriratna D, Senanayake U (2014) Node assortativity in complex networks: an 

alternative approach. Procedia Comput Sci 29:2449–2461

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2105.08758
http://arxiv.org/abs/1812.03096

	Cost-based analyses of random neighbor and derived sampling methods
	Abstract 
	Introduction
	Terminology and notation

	Preliminary
	RN in ER and BA graphs
	RN’s inefficiency in finding leaves
	Hubs versus leaves in a star graph
	Hubs versus leaves in BA and ER graphs


	Sampling costs— and 
	Critical 
	 for expected degree
	 in canonical graphs

	 for different sampling amounts and results

	Selection costs (  ) and  sampling
	 versus RN
	Sampling costs versus selection costs and critical 
	 for expected degrees
	Max degree for RN and 

	 versus RN for selecting hubs and leaves

	RkN sampling
	 sampling

	Full fair-cost analysis
	Fair-cost analysis in the star graph
	Experimental cost analysis on BA graphs

	Two-phase sampling methods
	Two-phase methods in the star graph
	Two-phase methods in BA graphs

	Conclusion and future research directions
	Acknowledgements
	References


