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Abstract
Social network analysis (SNA) tools and concepts are essential for addressing many
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environmental management and sustainability issues. One method to gather SNA data
is to scrape them from environmental organizations’ websites. Web-based research can
provide important opportunities to understand environmental governance and policy
networks while potentially reducing costs and time when compared to traditional sur-
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vey and interview methods. A key parameter is ‘search depth, i.e, how many connected
pages within a website to search for information. Existing research uses a variety of
depths and no best practices exist, undermining research quality and case study
Emg;mﬁg‘;aa‘ zcn‘igtcte;‘ comparability. We therefore analyze how search depth affects SNA data collection
USA ¢ Y among environmental organizations, if results vary when organizations have different
objectives, and how search depth affects social network structure. We find that scrap-
ing to a depth of three captures the majority of relevant network data regardless of an
organization’s focus. Stakeholder identification (i.e,, who is in the network) may require
less scraping, but this might under-represent network structure (i.e, who is connected).
We also discuss how scraping web-pages of local programs of larger organizations
may lead to uncertain results and how our work can combine with mixed methods
approaches.
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Introduction

Understanding how and why different groups are connected is critical for addressing
many of society’s most challenging sustainability problems, which often involve coor-
dination and cooperation among different places and management sectors (Bodin 2017;
Clark and Harley 2020; DeFries and Nagendra 2017; Sayles et al. 2019). Examples include
non-point source pollution and emission reductions (DeFries and Nagendra 2017) and
coordinating among jurisdictions that fragment interconnected land-and-sea-scapes

. ©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
@ Sprlnger Open use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
— author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.


http://orcid.org/0000-0002-1837-8920
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00472-0&domain=pdf

Sayles et al. Applied Network Science (2022) 7:36 Page 2 of 16

(Crowder et al. 2006; Pittman and Armitage 2017). In response, academics and prac-
titioners increasingly look at environmental governance, stakeholder, and manage-
ment networks, often using social network analysis (SNA) tools and concepts' (Bodin
and Crona 2009; Bodin and Prell 2011; Bodin 2017; Bodin et al. 2019; Sayles et al. 2019;
Groce et al. 2019; Kluger et al. 2020).

Most SNA research focusing on the environment relies on traditional social science
methods, such as surveys and interviews, to collect primary data about network rela-
tionships (Bodin and Prell 2011). Recent scholarship, however, has used online informa-
tion to understand these networks and is motivated by both an interest in understanding
online interactions as a phenomenon of study and for their methodological potential
to provide faster and cheaper approaches to collect data (Park 2003; Park and Thelwall
2006; Kreakie et al. 2016; Hayes and Scott 2018).? Organizations can have an online pres-
ence through social media and websites, two different online sources that likely repre-
sent different kinds of network relationships (Hayes and Scott 2018). When deriving
network relationships from organizations’ websites, information is usually extracted
from descriptions in the body of the text, and can include information about roles and
functions, or from hyperlinks to another organization’s page.®

Previous work on hyperlink networks has established some important observa-
tions about how hyperlink data might be used. Several SNA studies have compared
results from data collected using online approaches to those using traditional survey
approaches. They found that the two approaches resulted in similar results when analyz-
ing small, core networks of environmental organizations, e.g., 25-60 groups (Morgans
et al. 2017; Yi and Scholz, 2016). With larger networks (e.g., > 100), however, there tends
to be much less similarity (Hayes and Scott 2018; Morgans et al. 2017; Yi and Scholz,
2016). Online data are likely not replacements for survey data, though this may be con-
text specific; however, online data can be a valuable supplement or scoping tool. For
example, Hayes and Scott (2018) found that structural patterns from online networks
could be used to calibrate simulations to “fill in the gaps” of missing survey data, a classic
research problem that can significantly undermine network analysis because it is very
vulnerable to missing data (Costenbader and Valente 2003). Additionally, while online
and survey derived data can result in different patterns of connection, several studies

! Analyzing social network patterns can provide key diagnostics about how to enhance collaborative governance (e.g.,
Sayles and Baggio 2017a; Vance-Borland and Holley 2011), analyze issues such as power asymmetries or information
flow (e.g., Bixler et al. 2016; Cohen et al. 2012), or test theories about building trust (e.g., Berardo and Scholz 2010;
Lubell et al. 2014) and effective collaboration (e.g., Bodin et al. 2014; McAllister et al. 2017) to solve environmental prob-
lems. Network approaches to studying environmental management and sustainability are not limited to relationships
among social actors. Network analysis can be used to understand more complex sets of relationships among organiza-
tions and policy forums (Lubell et al. 2014), organizations and environmental issues (Bergsten et al. 2019), and various
kinds of social actors and the environmental resources that they interact with (Sayles et al. 2019; Kluger et al. 2020).
These latter two examples are types of social-ecological networks (SENSs; Sayles et al. 2019). There is, however, a core and
foundational body of scholarship focusing on relationship among individuals or organizations involved in environmental
governance, policy, and resource use (Bodin and Prell 2011).

2 The majority of scholarship using online data collection for environmental research focuses on social networks, where
the network consists of organizations represented by their websites (Park 2003; Hayes and Scott 2018). Websites and
social media, however, likely contain ample information about the places, issues, resources, and other policy and envi-
ronmental information that could be used to analyze the more complex policy forum networks and SENs described in
footnote one. (Indeed, such information has been gathered from websites to complement surveys and interviews for the
analysis of a SEN (e.g., Sayles and Baggio 2017b)). Furthering our understanding about how best to use online informa-
tion to study policy forum networks and SENS is likely a promising area for future research as traditional approaches to
data collection remain a key hurdle to amassing empirical studies to support a larger evidence base (Sayles et al. 2019).

3 Websites might also be used to represent individuals, such as the home or bio-pages for prominent environmental
thinkers, activists, or decision makers, but work to date has focused on organizations.
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shows that there can be less variability about who simply is in the network (Kreakie et al.
2016; Morgans et al. 2017). This led Kreakie et al. (2016) to propose using online data as
a tool to help identify stakeholders for collaborative environmental governance.

A key question when gathering data from websites is how deep to search. A website
consists of any number of internally linked web-pages, collated under a unique Uni-
form Resource Locator (URL). The term ‘search depth’ refers to the minimum number
of clicks that a user would navigate through to go from a website’s homepage to a sub-
page within that website. Intuitively, searching more pages has the potential to uncover
more network information, with a possible tradeoff of time and energy spent search-
ing (whether it be computer automated or manually) versus the value of information
returned for the purpose at hand. Among studies using automated web-crawlers and
scrapers (terminology used synonymously here®), approaches have included searching
an entire website (Ackland and O’Neil 2011), searching to depths two or three (Hayes
and Scott 2018; Yi and Scholz 2016), searching a site’s home page (Elgin 2015), or the
home page plus purposefully selected sub-pages titled “partners” and “links” found
on the home page (Kreakie et al. 2016). Depth parameters for research using manual
approaches to derive network data from website are rarely reported, though often cited
as being systematic (Hileman and Lubell 2018; Hileman et al. 2018; Morgans et al. 2017;
Berardo et al. 2019). In general, there has been surprisingly little discussion in the litera-
ture about best practices and tradeoffs associated with search depth, with a variety of
depths used, often without explanation. A detailed assessment about how search depth
affects SNA data collection and analysis would thus be useful for several reasons.

First, it is necessary to understanding how search depth affects network data collection
and analysis to ensure that research results are robust and valid. Second, understanding
the effects of search depth can enhance case study synthesis by specifying how different
depth studies should be compared. It also highlights the need to have transparent and
justified search depths reported in research papers. Third, understanding search depth
has practical implications for stakeholders and practitioners looking to use web-based
network tools. While it is true that gathering data online is often faster and cheaper than
traditional survey or interview methods and can facilitate multiple time series of data
collection (Kreakie et al. 2016; Hayes and Scott 2018); even with computer assistance,
web-scraping can still take hours to days depending on the data set (Issuecrawler 2021).
Given that many environmental practitioners find their time and resources stretched
thin (Sayles and Baggio 2017a; Sayles 2018), improved guidance on how deep to search
and potential tradeofts is essential information for using web-scraping tools.

In this paper, we address the issue of search depth by analyzing hyperlink data scraped
from the web-pages of 78 environmental stewardship organizations. We focus on hyper-
link network data collection using an automated computer web-scraping tool, though
our work is generalizable to manual search approaches as well. Specifically, we quanti-
tatively assess how network structure changes with increased search depth by consider-
ing several metrics commonly used in SNA to describe network structure and function

4 Web-crawlers are programs that automatically browse the internet and access pages by following hyperlinks. Scrapers
are programs that extract specified content from web-pages. These processes can be done separately or simultaneously.
When a web-crawler also extracts data during the crawl, it can be called a web-scraper (Khalil and Fakir 2017).



Sayles et al. Applied Network Science (2022) 7:36 Page 4 of 16

(Table 1; Bodin et al. 2006; Carlsson and Sandstrom 2008). We also analyze the depth at
which specific sub-pages describing likely partnership or other inter-organizational rela-
tionships occur, to provide guidance on gathering online network data based on web-
page names. Finally, we assess how the quantity of hyperlink returns varies by search
depth and if there is any difference among stewardship groups with different primary
foci to understand if our results are contextual to a specific kind of stewardship group or

activity.

Methods

Organizational website selection

We used data from the 2017 NYC Stewardship Mapping and Assessment Project
(STEW-MAP) (USDA 2017), a relatively recent, publicly available data set about envi-
ronmental stewardship organizations working in New York City, USA (n=719). Since
hyperlink web-scraping can be computationally slow (Issuecrawler 2021), we took a geo-
graphically bounded subset of the data for analysis selecting organizations that worked
entirely within or overlapped the NYC borough of Staten Island (n=111). The STEW-
MAP data included organizations’ websites, which we verified resulted in 86 working
websites; however, eight sites could not be scraped, which we removed from our final
sample (n=78, Fig. 1). See Additional file 1 for details.

Web-scraping

We used the snaWeb package (version 1.0.1, Stockton 2020) in the R computational lan-
guage environment (R Core Team 2020) to collect hyperlink network data. The snaWeb
package is a web-scraper with a set of functions to retrieve URLs from specified web-
sites and build hyperlink networks. snaWeb scrapes sites to any specified depth, checks
the status of site URLs (e.g., URL status code 200 vs. 404 or other errors), and returns a
redirected URL if one exists. The ability to find redirects is an important behavior for
network studies, as two sites with hyperlinks to a common third site will be connected to
this third site even if one site uses an outdated URL, which is a frequent issue on the web
(Dellavalle et al. 2003; Duda and Camp 2008; Hennessey and Ge 2013; Jones et al. 2016;
Hondula 2020).

We scraped the 78 websites between 09 and 17 June 2020 to a maximum search depth
of ten, expecting most, if not all sites, to have a maximum depth below ten (see Addi-
tional file 1 for additional specification). Scraping returned 46,366 URLs; one third
(34.56%) were external links to other sites; two-thirds (65.41%) were internal (i.e., they
had the same root as the searched site). Most URLs (91.33%) were classified as valid
returns, meaning they responded successfully when accessed (URL status code 200).
While the number of URL returns differed among these categories, there was no differ-
ence in qualitative patterns or statistical comparisons (see Additional file 1). We there-
fore focus on valid external returns in the main text when analyzing network structure
and group comparisons, as valid external returns are most likely to be potential network
relationships. We then use valid internal sub-page returns for keyword analysis because
these sub-pages would list an organization’s collaborators (Fig. 1).

To fully understand what information is returned from the web-scraper, it is important
to understand how it responds to long URLs. Many large environmental organizations,
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Table 1 Definition of several social network metrics that are commonly used in SNA studies about
environmental issues and what the metrics imply for environmental governance and management

and the use of online hyperlink data

Metric Definition Implications for environmental governance
and management
Node count The number of nodes in a network, which  Knowing the number of actors for a given
indicates network size. environmental problem is a basic and important
variable to ensure policies and solutions fit the
situation at hand (Ostrom 2009). Implications are
contextual to the specific issue or problem.
Edge count The number of relationships among The number and distribution of edges in a net-
nodes in the network. work forms the foundation of a network perspec-
tive for environmental governance and sustain-
ability (Bodin and Crona 2009; Bodin 2017). See
the following definitions for implications.
Components Subgroups within a network that are Information and resources can travel faster in

weakly connected or disconnected

from each other. The number and size of
components indicates how fragmented a
network is.

Median in-degree Median number of incoming edges for a
given node. In-degree assumes that edges
have a direction, e.g,, node A sends infor-
mation to node B, as opposed to node

A and B just sharing information with an
undefined direction. In a hyperlink net-
work, in-degree of node A is the number
of hyperlinks going from other web-pages
(ie, other nodes) to node A.

Network density The proportion of total possible edges
that exists in the network. Density ranges
from 0 to 1, where 1 means all possible
edges are present and 0 means none are

present.

Network centralization ~ How edges in a network are distributed.
Centralization ranges from 0, where all
edges are distributed equally among the
nodes, to 1, where a single node holds the

network together.

Graph diameter The greatest distance (i.e,, number of
edges) between any pair of nodes. (For a
disconnected network, diameter is calcu-

lated for the largest component).

Reciprocity The percentage of edges that are recip-
rocated among two nodes; e.g., node
Ahas a hyperlink to node B and B has a

hyperlink back to A.

highly connected networks and poorly or not at
all among fragmented components; however,
hyper-connectivity can stifle innovation or foster
the spread of undesirable information (Bodin

et al. 2006; Vargas et al. 2020).

Highly connected organizations can be influ-
ential and act as information or resource hubs;
though maintaining many relationships can be
taxing if lacking adequate resources (Bodin and
Crona 2009). When hyperlinks represent positive
affiliations among organizations (Hayes and
Scott 2018) they can be interpreted as described
above; however, hyperlinks might also represent
negative motivations (Park and Thelwall 2006)
and thus, interpretation of in-degree values

can be contextual. These metrics also indicate
network connectivity.

Higher density facilitates transmission of knowl-
edge and resources, but can stifle innovation

if ideas become homogeneous (Janssen et al.
2006). Dense networks tend to support coopera-
tion and trust building (Berardo and Scholz 2010).

High centralization can be efficient in settings
with high levels of trust and agreement (Berardo
and Scholz 2010; McAllister et al. 2017), but can
also lead to, or result from, power imbalance in
the absence of trust and agreement (Ernstson
et al 2008; Bodin and Crona 2009). Structurally,
centralized networks can be fragmented if cen-
tral nodes are lost (Janssen et al 2006).

Diameter indicates the potential distance that
information or material might have to travel
to get from one side of a network to another.
All other variables being equal (e.g., levels of
trust, shared objectives, etc.), shorter distances
facilitate the flow of information and materials
(McAllister et al. 2017).

Reciprocity often indicates a stronger relation-
ship. In collaborative environmental governance
settings, reciprocity can reinforce trust building
and reduce the risk of defection in high-risk col-
laborative processes (Berardo and Scholz 2010).

In online hyperlink networks, ‘nodes’ typically represent environmental organizations’ websites and edges represent a hyper-

link from one website to another
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Fig. 1 Summary of workflow and data preparation. External links connect to web pages with a different root
URL than the searched site, while internal links connect to web pages with same root URL. Valid returns are
working websites with a URL status code 200. Internal pages can be family or sub- pages, which is relative to
the search URL as explained in the methods

such as government agencies or large non-profits, consist of sub-programs that in many
ways, function more like independent programs than a single entity (Sayles and Baggio
2017a; Sayles 2018; Newig et al. 2010). For the purpose of understanding environmen-
tal governance systems, it often makes sense to treat these sub-programs as different
groups. For example, when looking at stakeholders in the Northeastern United States, it
is logical to include the U.S. Environmental Protection Agency (EPA) Region One, which
works in the region, but not EPA Region Ten, which operates on the other side of the
continent. Both regions, however, have the same root URL (www.epa.gov). snaWeb uses
the full URL that is entered for the search (e.g., www.epa.gov/aboutepa/epa-region-1-
new-england) as the search base. Sub-pages of this base are classified as internal sub-
pages and scraped. Pages at the same level or higher (e.g., www.epa.gov/aboutepa/
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epa-region-10-pacific-northwest, or simply www.epa.gov) are classified as family pages
having the same root, so technically internal, but not sub-pages, and are not scraped.
This search behavior attempts to more accurately represent the structure and reality
of networked environmental governance. Eight organizations in our Staten Island data
self-identified by sub-pages (I.e., they listed sub-pages when replying to the STEW-MAP
survey).

Accuracy and stability assessments

We ran several stability and accuracy assessments to ensure our data’s validity (Fig. 1).
To test accuracy, we compared hyperlink returns at depth one from the snaWeb package
to manual inspections of the HTML source code for 19 sites (ten randomly selected and
nine purposefully selected; 24.36% of our sample). The data generated with snaWeb had
near 100% accuracy (see Additional file 1 for details).

To test for stability, we repeatedly scraped 26 sites (20 randomly and six purposefully
selected; 33.33% of our sample) three times to see if there were fluctuations in the search
depth and number of URL returns. The maximum search depth achieved per site was
consistent, with zero percent variability across all three test runs. The total number of
returned URLSs was also stable (mean and median variability of 1.48% and 0.00%, respec-
tively), with some variance attributed to slow-loading or unresponsive internal sub-
pages that would be scraped when they did respond to the HTTP call of snaWeb, but
not when they were unresponsive. Overall, snaWeb produced accurate and stable results
in what is itself a highly dynamic and variable environment of the world wide web. (See
discussion of potential limitations in the Additional file 1.)

Hyperlink data preparation and analysis

The analysis of hyperlink network data almost always involves a significant level of data
cleaning, re-coding, and consolidation (Ackland 2010; Elgin 2015). We reduced the total
hyperlink data (n=46,366 URLs, Fig. 1) to root URLs, as has been done elsewhere (Elgin
2015). It would not make sense, for example, for one of our search links to have multi-
ple network connections to an external site’s “home,” “about,” and “partners” pages. We
further removed links to social media, which show different but complementary infor-
mation from hyperlink networks (Hayes and Scott 2018), and removed links to images,
file storage, web-services, audio files, and any other content that did not represent an
organization, as well as news media, which illustrates information distribution, but not
necessarily inter-organizational connections.

Following Kreakie et al. (2016), we manually checked all URLs and consolidated them
when two different root URLs represented the same organization (Fig. 1). For example,
an organization might have a dedicated website, with a unique URL, to communicate
its environmental management plan. We did not further modify root URLs from poten-
tially related units, such as two academic units within a university (e.g., www.gc.cuny.
edu and www.guttman.cuny.edu). Such consolidations should be guided by case specific
information and the research questions at hand (Elgin 2015). Using the root URLs as
reported (with the aforementioned cleaning) is suitable for testing network structure
against search depth since our questions and analyses are largely methodological; how-
ever, other tests might warrant further refinement of URLs (Elgin 2015).
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Once cleaned, all edges were assigned a value corresponding to their search depth.
We removed all duplicate edges, retaining only the first instance and depth value. This
yielded a network of 2233 nodes (i.e., URLs), which we further reduced, by removing all
nodes with a total degree of one, to form a core network of 267 nodes (which included
five isolates). We then unweighted the network and calculated metrics (Table 1) for each
cumulative search depth, where returns for a given depth include those before it (Fig. 1),
using the R packages intergraph, sna, network and igraph (Bojanowski 2015; Butts 2008,
20204, b; Csardi and Nepusz 2006).

Key word analysis and group comparisons

To identify the depths of specific sub-pages describing likely partnership or other inter-
organizational relationships, we performed key word searches (listed in the results) for
the first occurrence by depth in valid internal URLs (Fig. 1). To test for differences in
total returns and maximum search depth based on stewardship foci we separated the
STEW-MAP sample into two groups based on organizations’ stated primary steward-
ship objectives in the STEW-MAP database: first, organizations focused on communi-
cation-based activities, i.e., education and advocacy (EA, n=40); second, groups doing
‘on-the-ground’ or management activities, i.e., conservation, management, monitor-
ing, participating and partnering in stewardship activities, and transforming the envi-
ronment (CMMPPT, n=35, Fig. 1). Groups were compared using Mann—Whitney U
tests in the R computation language (R Core Team 2020). Three groups were coded as
unknown (two did not provide information, a third listed “none of the above”) and were
not statistically compared due to the small sample.

Results

The reduced root URL network grew rapidly from depth one to two and largely sta-
bilized by depth three. There was little to no variability in calculated network metrics
beyond depth three (Figs. 2, 3). Interestingly, while there was only a 2.70% increase in the
number of nodes from depths two to three, there was a 30.07% increase in the number of
edges (Fig. 3A, Additional file 1: Table S3). While network size (i.e., the nodes or URLs in
the network) changed very little from depths two to three, the structure of who was con-
nected changed dramatically. It is worth noting, however, that the non-reduced network
(n=2,333) did not show this pattern at depths two to three; nodes and edges were added
at equivalent rates (22.77% and 27.12% respectively; Additional file 1: Table S3).

The first occurrences of within-URL key words meant to signifying inter-organiza-
tional relationship also occurred within the first three depths (98.4% of returns) and were
concentrated around depths one and two (Table 2). Three key words, however, were only
found at depths two or higher: “funding,” “donors,” and “team-members.”

The raw scrape of the data also returned the majority of URLs by depth three or four
(Fig. 4A), by which point, most sites reached their maximum depth (Fig. 4B). Even for 12
sites (15%) that reached the maximum search depth of ten (Fig. 4B), these higher search
depths accounted for a very small percentage of their total URL returns (Fig. 4A) and
there was little reward for the extra time needed to searching deeper.
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Fig. 2 Network diagrams for the reduced root URL network at depths one, two, three, and ten, panels A-D
respectively. New nodes were not added past depth three, thus depths four through nine are omitted for
clarity and depth ten is shown for comparison. Nodes represent websites and edges represent hyperlinks
from one site to another

Finally, the average number of valid external returns and maximum search depth were
not statistically different between the AM and CMMPT groups (Mann—Whitney U test,
p=0.375 and 0.908, respectively, Fig. 4C, D); and all other comparisons were similar
across the two groups (Fig. 4A, B).

Discussion

A social network perspective is fundamental for addressing many environmental
management and sustainability problems (Bodin 2017; Clark and Harley 2020; Say-
les et al. 2019). Studying online presences of environmental organizations holds great
potential to better understand environmental governance and policy (Hayes and Scott
2018; Yi and Scholz, 2016), as well as build tools to help environmental stakeholders
and managers (Kreakie et al. 2016). Working with online network data is relatively
new; we are still learning about best practices (Park and Thelwall 2006; Hayes and
Scott 2018). This paper provides insight on a key variable for online research: how
deep to search websites and whether this varies among organizations with different
foci.

Based on our results, searching sites to depth three seems to capture all relevant net-
work data. This does not vary among environmental stewardship organizations focused
on communication versus on the ground management. Several of our tests suggest that
simply searching to depth two could be appropriate in some cases. The majority of inter-
nal pages with possible relationships, based on key word search, occur within the first
two depths; and the number of nodes (i.e., who was in the network) changes very little
beyond depth two for the reduced focal network (n=267). If simply scraping websites to
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Fig. 3 Panels A-C show node and graph level statistics for the reduced root URL network at different depths.
Metrics are defined in Table 1. For reference, the number of edges and nodes returned at depths two and
three are labeled in panel “A’, since these values are discussed in the text. Further values for all metrics are
provided in Additional file 1: Table S1. (*The number of components does not include the 5 isolates in the
graph, described in the methods)

Table 2 Counts of the first occurrences of key words describing inter-organizational relationship in
valid internal sub-page URL strings by depth

Search term Depth 1 Depth 2 Depth 3 Depth 4 Depth 8 Total
Collaborators 1 - - - - 1
Contributors - - - - - 0
Donors - 1 1 - - 2
Funders 3 1 - - - 4
Funding - 3 4 - - 7
Links 2 3 - - - 5
Members 11 5 5 - - 21
Partners 14 7 1 - - 22
Resources 17 5 - - - 22
Sponsors 4 2 - - 1 7
Supporters 7 2 - - - 9
Team 18 3 - 1 - 22
Team-members - 1 - - - 1
Total 77 33 I 1 1 123

Counts only include the first time a key word was returned in a URL per site to avoid biasing the data by repetition within a
single site. No first returns were found at depths five, six, seven, nine, or ten, which are omitted from the table forclarity

identify major stakeholder groups, little information would be lost, in our case, by only
searching to depth two. This could save environmental practitioners, some of whom lack
time and resources (Sayles 2018; Sayles and Baggio 2017a), considerable computation
time, data cleaning, and interpretation (Ackland 2010; Elgin 2015). However, scraping
only to depth two would miss critical information about network structure (i.e., who is
connected), as the number of edges did not stabilize until depth three, illustrating the
importance of searching at this higher depth if one wants to analyze network patterns.
Furthermore, for the full, unreduced network, many nodes were still added at depth
three. While these are peripheral nodes within our network, they could be informative
for certain investigations, such as identifying potentially marginalized groups. For struc-
tural analysis, searching to depth three, or maybe even four to be extra conservative, is
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Fig. 4 Boxplots for groups AE (advocacy and education focus), CMMPT (conservation, management,
monitoring, partnership, and transformation focus), and unknown focus. A The percentage of a websites'
total valid external URL that were returned at each search depth; B the number of sites that achieved
their maximum depth at a given depth; C the number of valid external URL returns for each group; and
D the maximum search depth that the URLs were found. Stewardship focus was not reported for three
organizations, which were classified as unknown. Groups AE and CMMPT were not statistically different
(Mann-Whitney U test, C p=0.375 and D 0.908). Unknowns were not statistically compared due to the small
sample. Boxplots show the data’s distribution. The thick line in the middle of the box shows the median
values, with the box itself bounding 25% of the data'’s distribution above and below the median (i.e., the
upper and lower quartile, respectively, which together make the interquartile range). Lines extend out to
show the remaining data within the largest and smallest quarters of the datasets, but do not include extreme
values, or outliers (defined as larger than 1.5 times the interquartile range), which are indicated as dots. If
the median of two datasets falls within each other’s interquartile range, the distributions are generally not
statistically different, which is confirmed by the Man-Whitney U tests for panels C and D

number of url returns ©
max search depth O

likely best, unless other data justify something else. In the least, all search depth deci-
sions should be clearly documented and reported in publications to improve cross-study
comparisons and interpretations as search depth influences network structure.

While our case study clearly shows a sweet spot around depth three, regardless of an
organization’s focus, several limitations are worth noting. First, our results need to be
replicated for other locations and environmental issues beyond stewardship in order to
build a stronger evidence base and set of guiding principles for online network data col-
lections. Second, the sites in our sample predominantly represent non-profit and citizen
organizations. Only two organizations represented other sectors: a sub-program within
the NYC Department of Parks and Recreation and an academic unit within the City Col-
lege of New York. It is possible that different organization types, such as state or federal
government, may have different hyperlink patterns on their websites. While further test-
ing is needed, we suspect that any differences among websites are more likely to be case
specific as opposed to categorical. Nonetheless, our empirical results may be limited
to non-profit and citizen groups. Third, results from the key word search reflect sites
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that use a description of the page in the URL, e.g., “our partners” Analyzing cases where
the page URL is not descriptive text, but rather a numeric ID or something else, could
lead to different results; however, we are unaware of any theoretical reason why web-
sites organized using numerical IDs in the URL would be different than those using text
descriptions. These possible limitations noted, our results provide initial and important
guidance on scraping websites to study online environmental organization networks.

In addition to our empirical results, working with the snaWeb tool revealed several
interesting methodological issues relevant to the use and development of hyperlink net-
work web scraping tools. For example, navigating the fuzzy boundaries that some organ-
izations and sub-programs can exhibit is a known challenge when defining what a node
represents in SNA studies about the environment (Sayles and Baggio 2017a; Sayles 2018;
Newig et al. 2010). This problem may become more complex, however, when working
with hyperlink networks as the existing fuzziness around defining proper units of analy-
sis (i.e., what a node should represent) is compounded with website structure and all the
choices that went into designing it. Several organizations in our sample self-identified by
a sub-page of the root URL. When conducting research at a local scale, such as environ-
mental stewardship activities in the Staten Island Borough of NYC, reducing the scrape
of large Federal, State, and NGO websites to local programs or chapters makes a lot of
sense (and indeed has been done elsewhere, e.g., Ackland and O’Neil (2011)). Yet, our
own observations suggest, albeit anecdotally, that these sub-pages may not always match
the actual organizational units engaged in collaborative environmental actions, which
the network is meant to model. For example, some sub-pages had very few sub-pages of
their own (“sub-sub-pages” if you will). These pages sometimes linked to what seemed
like relevant internal organizational content stored elsewhere in the parent organiza-
tion’s website. Any such content would not be scraped by the snaWeb package, or other
similarly programmed web-scraper, because it is designed to only scrape sub-pages of
the input search URL, including when that search URL is itself a sub-page of a larger
website. These observations suggest that we need to better understand the relationships
between sub-page scrape results and how these relate to the environmental management
activities of sub-programs and chapters of larger organizations. Practitioners identify-
ing stakeholders through web-scraping may want to be extra cautious when using sub-
pages and integrate data from multiple sources and methods to ensure that they have
not missed or over-represented specific stakeholders or sectors.

In general, mixed methods approaches may be fruitful for online network data gather-
ing. Our research used an automated web scraping approach to gather hyperlinks, which
is particularly attractive for its potential to gather data quickly, at low costs, and at mul-
tiple time series (Kreakie et al. 2016; Hayes and Scott 2018). This speed and potential to
automate large datasets likely comes at the cost of more nuanced understandings about
why relationships exist.” In response, some researchers are employing qualitative man-
ual coding of websites to be able to better discern what constitutes a network edge. For
example, Hileman et al. (2018: 5) argue that for their study, “simply having a hyperlink

® Machine learning and text mining may alleviate tradeoffs in depth vs. breadth. Further research on the effects of search
depth on computation time and computer memory might also help understand and address technological limitations.
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or being mentioned on [a] website does not constitute a [network relationship]; partners
[must] be clearly designated as collaborators on shared projects or other work activities”
Manual coding could make use of automated scraping to generate website attribute data,
including the number of internal pages, external links to other sites, page names (which
are extracted by the snaWeb package), URL key words, and other relevant information to
guide more structured manual coding. Benefits might include more reproducible meth-
ods and enhanced case study comparisons. Such an approach is just one illustration
about how mixed methods could be used. Future work should continue to build upon
these methodological ideas.

Finally, organizations without a website cannot be documented by hyperlink web-
scraping as there is no site to link. While not necessarily a limitation of our research, as
our work focuses solely on the distribution of the hyperlinks that are present in a web-
site, web-presence is a limitation of hyperlink web-scraping in general if the goal is to
document and analyze environmental governance networks. Here again, the aforemen-
tioned mixed methods approaches can help. Manual coding, text mining, and machine
learning might record organization names within website text that lack hyperlinks. We
also observed in our work, however, that some organizations listed partners, funder, or
other relations using images of logos without any hyperlinks. Manual coding and analy-
sis may be needed in such cases.

Conclusion

Network science tools and concepts are essential for addressing many environmental
management and sustainability issues. Online network data provide important opportu-
nities to understand environmental governance and policy networks, with potential cost
and time savings compared to traditional research methods. Understanding how deep
to search websites is important for building a scientific evidence base through compa-
rable case studies and for developing efficient tools that can help stakeholders. Results
from our analysis of the Staten Island, NYC data show that searching to depth three
captures the majority of relevant network data and that organizations’ foci do not affect
this. While searching to depth two may be sufficient for identifying key actors, it misses
important structural information about who is connected. Future work should replicate
our study for different places, environmental issues, and group types. We also need to
better understand how to work with sub-programs of State and Federal agencies and
NGOs. Researchers should also continue exploring creative methodological approaches
such as combining automated methods to gather website metadata to inform systematic
manual coding to better understand what links mean.
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