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Introduction
Severe Acute Respiratory Syndrome Coronavirus 2, stated as a global pandemic by 
the World Health Organization, has infected over 200 million people and led to nearly 
4.5 million deaths worldwide. As lockdown and social distancing techniques (https://​
www.​who.​int/​news/​item/​13-​10-​2020-​impact-​of-​covid-​19-​on-​peopl​e’s-​livel​ihoods-​
their-​health-​and-​our-​food-​syste​ms) became the primary means to combat the soar-
ing infection counts, the impending economic challenges (Overberg et al. 2020) and 
recent successes in fast-track vaccine development (https://​news.​harva​rd.​edu/​gazet​
te/​story/​2020/​12/​antho​ny-​fauci-​offers-​a-​timel​ine-​for-​ending-​covid-​19-​pande​mic/) 
has encouraged the world leaders to lift lockdown restrictions. However, the late 
wave of infection surge in several countries, lingering doubts over the effectiveness 
and health impacts of the vaccines and new virus strains necessitate intelligent pub-
lic mobility policies that harness contact patterns and epidemiological information 

Abstract 

COVID-19 is a global health crisis that has caused ripples in every aspect of human 
life. Amid widespread vaccinations testing, manufacture and distribution efforts, 
nations still rely on human mobility restrictions to mitigate infection and death tolls. 
New waves of infection in many nations, indecisiveness on the efficacy of existing 
vaccinations, and emerging strains of the virus call for intelligent mobility policies 
that utilize contact pattern and epidemiological data to check contagion. Our earlier 
work leveraged network science principles to design social distancing optimization 
approaches that show promise in slowing infection spread however, they prove to be 
computationally prohibitive and require complete knowledge of the social network. In 
this work, we present scalable and distributed versions of the optimization approaches 
based on Markov Chain Monte Carlo Gibbs sampling and grid-based spatial paralleliza-
tion that tackle both the challenges faced by the optimization strategies. We perform 
extensive simulation experiments to show the ability of the proposed strategies to 
meet necessary network science measures and yield performance comparable to the 
optimal counterpart, while exhibiting significant speed-up. We study the scalability of 
the proposed strategies as well as their performance in realistic scenarios when a frac-
tion of the population temporarily flouts the location recommendations.

Keywords:  Social distancing, Network science, Clustering, Sampling, Parallelization

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Roy and Ghosh ﻿Applied Network Science            (2021) 6:95  
https://doi.org/10.1007/s41109-021-00437-9 Applied Network Science

*Correspondence:   
satyakir@unc.edu 
1 University of North Carolina, 
Chapel Hill, USA
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-6767-266X
https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people’s-livelihoods-their-health-and-our-food-systems
https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people’s-livelihoods-their-health-and-our-food-systems
https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people’s-livelihoods-their-health-and-our-food-systems
https://news.harvard.edu/gazette/story/2020/12/anthony-fauci-offers-a-timeline-for-ending-covid-19-pandemic/
https://news.harvard.edu/gazette/story/2020/12/anthony-fauci-offers-a-timeline-for-ending-covid-19-pandemic/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-021-00437-9&domain=pdf


Page 2 of 19Roy and Ghosh ﻿Applied Network Science            (2021) 6:95 

to check the impending threats of contagion during present and future outbreaks 
(https://​www.​healt​hline.​com/​health-​news/​exper​ts-​conce​rned-a-​4th-​covid-​19-​wave-​
may-​be-​build​ing).

The lack of foresight and preparedness on the part of the world leaders resulted in 
the absence of coordinated action plans or public policies. While the world was rely-
ing on the findings from the geneticists, doctors and health officials to design make-
shift regulations, the epidemiologists, statisticians, and computer scientists explored 
the socioeconomic and demographic factors contributing to this rapid spread (Adhi-
kari et  al. 2020). These efforts included computational and machine learning tech-
niques to predict trends on spread dynamics from epidemiological and clinical data 
(Wynants 2020; Holmdahl and Buckee 2020; Alimadadi et al. 2020; Randhawa et al. 
2020). Their findings lent insights into the epidemiology, causes, clinical manifesta-
tion and control measures and helped identify vulnerable communities. Regression 
analysis and computational approaches were employed as means to gauge effects of 
testing (Khan et al. 2020; Roy et al. 2021a) and lockdown (Roy and Ghosh 2020) on 
the pandemic, while unsupervised machine learning and natural language processing 
approaches broadened our understanding of disease transmissibility and economic 
challenges (Wang et al. 2020; Roy et al. 2021b).

The accuracy of the parameters of the epidemic models as well as the latter’s capa-
bility in modeling the epidemiological trends have been key areas of investigation. 
Holmdahl discussed the constant effort on the part of scientists to refine methods to 
learn spread dynamics of infectious diseases (Holmdahl and Buckee 2020). Clearly, 
the predictions from the epidemic models are contingent on factors such as knowl-
edge of demography, infectivity of the virus, accuracy of testing, etc. For instance, 
Bedi et  al. modified the Susceptible-Exposed- Infected-Recovered (SEIR) epidemic 
model by assuming exposed individuals to be infective and compared the accuracy 
of their model against that of a Long Short-Term Memory (LSTM) model (Bedi et al. 
2020). Gharakhanlou et  al. investigated the spread dynamics in Iran by employing 
agent-based simulation and recommended mitigation measures (Gharakhanlou and 
Hooshangi 2020), while Ghanam et  al. studied the role of government intervention 
(Ghanam et  al. 2020). Furthermore, efforts have been made to analyze the interre-
lationship between vaccinations, lockdown, mobility and spread (Roy et  al. 2021c; 
Lattanzio and Palumbo 2020) and curb spread through contact-tracing based mobile 
applications (Kretzschmar et  al. 2020; Ferretti et  al. 2020; Ahmed et  al. 2020; Vax 
2014; Nadini et  al. 2020; Koppeschaar and Colizza 2017; Dalton et  al. 2006). These 
applications rely on the duration of contact, proximity between individuals and online 
surveys recording location, patient health and demographic details to identify risk 
factors. Earlier, we proposed three optimization approaches on social networks that 
apply network science principles to mitigate contagion by guiding human mobil-
ity (Roy et al. 2021d). We carried out simulation experiments using realistic human 
mobility models and the New York City map to demonstrate that the approaches 
effectively slow contagion spread. We also designed a mobile application, MyCovid 
(Roy et  al. 2021d; Roy 2021) that is presently being deployed to validate the system 
performance in a realistic setting. However, these approaches face scalability and cen-
tralization challenges for large populations.

https://www.healthline.com/health-news/experts-concerned-a-4th-covid-19-wave-may-be-building
https://www.healthline.com/health-news/experts-concerned-a-4th-covid-19-wave-may-be-building
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Contributions

In this work, we present social distancing strategies that optimize the location of indi-
viduals residing in urban spaces, such as grocery stores, bus queues, auditoriums, etc., 
where individuals are likely to engage in social contacts leading to contagion. Our 
initial efforts in this direction (Roy et al. 2021d) demonstrated three proposed social 
distancing approaches leveraging network science principles such as homophily, net-
work clustering, etc. These approaches minimize the number of social ties between 
the vulnerable (i.e., susceptible individuals) and the vectors of infection (i.e., infected 
individuals), thereby dampening the rate of infection spread. However, this work is 
challenged on two fronts: (1) the number of parameters in the optimization scale lin-
early with the number of individuals, making them computationally prohibitive for 
large populations and (2) they rely on the knowledge of the entire social network 
topology. We address these issues in the scalable and distributed social distancing 
strategies that leverage Markov Chain Monte Carlo Gibbs sampling and grid-based 
spatial parallelization.

We carry out simulation experiments to show the efficacy of the proposed strate-
gies. We analyze how the system parameters, namely, convergence index and number 
of grids, can be utilized to tune the optimality vs. scalability trade-off. We gauge the 
performance of the distributed and sampling strategies in terms of the running time 
in seconds, optimization score (defined in terms of potential contact between sus-
ceptible and infected individuals) as well as the rate of contagion over time in terms 
of cumulative population of infected, recovered, and dead individuals as per the Sus-
ceptible-Exposed-Infected-Recovered-Dead (SEIRD) epidemic model (discussed in 
“SEIRD Epidemic Model” section). Finally, we show the scalability of the approaches 
and the effect of a fraction of individuals flouting the recommendations of the system 
on contagion.

This paper is organized as follows. In “Preliminary Concepts and System Model” 
section, we discuss the SEIRD epidemic model, preliminary concepts of network sci-
ence and the system model. In “Approach” section, we present the three social dis-
tancing optimization approaches, followed by the scalable and distributed solutions. 
Sections  4 and 5 deal with the experimental results and discussions. We draw the 
conclusions in Sect. 6.

Preliminary concepts and system model
Let us first discuss the SEIRD epidemic model, network science concepts (namely, 
network clustering and homophily) and the system model.

SEIRD epidemic model

The SEIRD model can represent the evolution of the susceptible (S), exposed (E), 
infected (I), recovered (R) and dead (D) populations (Hethcote 2000). The individuals 
in S transition to E with rate β, while E transition to I with probability σ; I transition 
to R with probability γ × (1 − α) and D with probability γα. In other words, γ denotes 
the proportion of infected that transition to other states, and α is the fraction of those 
individuals to die. We show the equations corresponding to the state transitions, 
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where R0 is the basic reproduction number ranging between 3 and 6 and β = γ × R0 
(Korolev 2021; Early release-high contagiousness and rapid spread of severe acute 
respiratory syndrome coronavirus 2020).

Arroyo-Marioli et al. presented an approach to track the rate of contagion in terms of 
effective reproduction number and growth rate (defined as rate of increase in daily infec-
tion numbers over time) (Arroyo-Marioli et al. 2021). They represented the new infec-
tion count at time t in a population of N, as

Given basic reproduction number R0 = β and growth rate Gt =
It−It−1

It
 , the effective 

reproduction number at time t(Rt) is calculated as:

Plugging Rt in Eq. 6, we get,

Key network science concepts

Given an undirected G (V, E), we discuss the network science concepts that are incor-
porated by the proposed mobility optimization approaches (details  discussed in “Social 
distancing optimization” section).

Network clustering

It is the tendency of nodes to form dense communities within G, measured in terms of 
the number of triads they participate in Holland and Leinhardt (1971), as follows:

(1)
S → E

(2)
E → I

(3)
I → R

(4)
I → D

(5)It → It−1 +
βt × It−1 × St−1

N
− γ It−1

(6)Hence, It − It−1 →
βt × It−1 × St−1

N
− γ It−1

(7)Rt = R0 ×
St−1

N
=

βt

γ
×

St−1

N

(8)Gt =
It − It−1

It−1

= γ × Rt − γ

(9)Rt =
It − It−1

It−1

= 1+
1

γ
× Gt
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In this equation, t(u) and δ(u) are the number of triads participated by node u and 
degree of u ∈ V, respectively. The overall node clustering coefficient of the network 
(i.e., average clustering of all nodes) shown in Fig. 1, on a scale of 0 and 1, is 0.6.

Homophily

It is the tendency of nodes choosing to attach with nodes of its own group, defined as 
nodes with similar characteristics (Kim and Altmann 2017; McPherson et  al. 2001; 
Kossinets and Watts 2009). We measure homophily in terms of E-I index, defined as 
the difference between proportion of ties between members from different groups 
and members from the same group (Bojanowski and Corten 2014). An E-I score of 
− 1 means complete homophily, while E-I score of 1 denotes complete heterophily. 
The network in Fig. 1 has E-I index =  − 0.6, making it highly homophilic.

System model

We consider an urban space of dimension X × Y square feet, where ν mobile indi-
viduals are placed. We define contact threshold d as the maximum distance between 
the susceptible and infected individuals such that the susceptible individual may be 
exposed to the pathogen. We create social network Gt(V, ϵt), where V is the set of ν 
nodes (each representing an individual) and ϵt is the set of temporal edges, where an 
edge (u, v) ∈ ϵt if individuals u and v are within threshold d at time t ∈ (experiment 
duration) T. A node, belonging to exactly one epidemic class (S, E, I, R or D) can 
move within a distance threshold τ of its current location between time t and t + 1.

(10)
ζ (G,u) = 0 if δ(u) < 2

=
2× t(u)

δ(u)× (δ(u)− 1)
otherwise

Fig. 1  Network clustering and homophily: Three clusters demarcated by boxes; a node belongs to either 
group 1 or 2 (denoted by red and yellow colors, respectively.) The inter and intra-group social ties are 
denoted by dashed and solid lines, respectively
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Approach
Each individual carries a smart mobile device capable of communicating with other 
devices in the vicinity via Wi-Fi or Bluetooth. The neighbor-list of a node u, nt (u), is the 
set of individuals that are within distance d at time t. Each individual u must belong to 
exactly one of S, E, I, R, D states, where S ∪ E ∪ I ∪ R ∪ D = V. (S, E, I, R and D occasion-
ally have a subscript to denote the number of individuals in that epidemic group at the 
t-th time epoch.) Fig. 2 shows node 1 relocates to a new location (colored green) within a 
threshold distance (τ feet) of its old location (colored red).

Social distancing optimization

The optimization approaches discussed below were originally proposed in Roy et  al. 
(2021d). Given any social network Gt, these approaches utilize network science princi-
ples of network clustering and homophily (see “Key Network Science Concepts” section 
for details) to generate new locations for individuals (and resultant network Gt+1). The 
goal is to minimize the contact (i.e., links in the social network) between the susceptible 
and infected individuals and slow the overall contagion.

Direct contact approach

It eliminates the contact between the susceptible and infected individuals (see Fig.  3a 
and Expression 11). This is based on the premise that the infected individuals are the 
primary sources of contagion, and the susceptible nodes are the target.

Clustering approach

This approach eliminates clusters containing infected individual(s) from the social net-
works, by re-positioning of nodes (see Expression 12). Recall from “Key Network Sci-
ence Concepts” section clustering is quantified by the triangle participation of the nodes. 
Figure 4 shows the four-triangle configurations eliminated by the optimization through 
node re-positioning.

Fig. 2  Network clustering and homophily: Three clusters demarcated by boxes; a node belongs to either 
group 1 or 2 (denoted by red and yellow colors, respectively.) The inter- and intra-group social ties are 
denoted by dashed and solid lines, respectively
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Contagion potential approach

It takes into account the scenario (similar to the model presented in Bedi et al. (2020)) 
where a person may act as spreader without being tested and identified as infected. We 
define contagion potential (CP) of node u (on a scale of 0 and 1) as its likelihood of act-
ing as spreader. Instantaneous CP is calculated in terms of the number of contacts with 
individuals with high CP, as follows:

Mt is the maximum number of neighbors of any node at time t. Overall CP till time T, 
ZT is estimated as the mean over the instantaneous values, as follows:

Figure 5 shows the evolution of the epidemic state of a node over time t = 1, 2, . . . ,T  . 
The node (depicted as a large circle) has potential of being a spreader due to its lack 
of contact with other infected individuals. Consequently, it has a low CP (colored 
green). This approach (formulated in Expression 13) considers the fact that untested 

= 0 if t = 0

Pt(u) = 1 if t ≥ 1,u ∈ I

=

∑
v∈nt (u)

Pt−1(v)

Mt
otherwise

0 if u ∈ R,D

Zt(u) = 1 if u ∈ I

1

T

∑
Pt(u) Otherwise

Fig. 3  Contagion potential (CP) of connected nodes: a Direct contact optimization approach eliminates ties 
between likely susceptible (CP = 0) and infected (CP = 1) individuals; b Contagion potential optimization 
approach minimizes ties if the difference of CPs of two connected nodes is high

Fig. 4  4 triangular configurations with at least one susceptible (S) (or exposed (E)) and one infected 
individual (I)
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individuals may be infected, and testing can be erroneous. It employs the principle of 
homophily (refer “Key Network Science Concepts” section) to group nodes with similar 
CP into clusters and minimizes the contact between individuals with a high variation 
in CP. This approach is a generalization of opt-1; instead of representing the infectiv-
ity of an individual as a binary case, it assumes a continuous CP value between 0 and 
1. In the experimental results discussed in Sect. 4.1, we show that the contagion poten-
tial (CP) optimization approach creates more homophilic social networks, by creating 
links among individuals with similar CP and eliminating links between nodes with dis-
similar CPs (see Fig. 3b). This similarity of CP among clustered nodes measured in terms 
of E-I index minimizes the risk of contact between a potential susceptible and infected 
individual.

Optimization formulations

In Expression 11, f (u, v, Gt) = 1 if nodes u and v are connected (i.e., (u, v) ∈ ϵt) in social 
network Gt, and 0 otherwise. Note that v ∈ It, while u ∈ St or Et because the susceptible 
and exposed are both asymptomatic and indistinguishable in the real world. Function δ 
(u, v, w, Gt) in Expression 12 is equal to 1, if u, v, w ∈ V form a triangle with at least one 
infected node, i.e.,

1. (u, v), (v, w), (u, w) ∈ ϵt, and
2. u ∈ St/Et||v ∈ St/Et||w ∈ St/Et and u ∈ It||v ∈ It||w ∈ It

The function δ (u, v, w, Gt) = 0 otherwise.

(11)min
Ct+1

∑∑
f (u, v,Gt)

(12)min
Ct+1

∑
u∈S,E,I

∑
u∈S.E.I;v>u

∑
u∈S.E,I ,w>v

δ(u, v,w,Gt)

(13)min
∑

(u,v)∈Et ;u,v∈S.E.I
|Zt(u)− Zt(v)|

(14)s.t.abs(Ct+1(u)− Ct(u)) ≤ τ

Fig. 5  Evolution of contagion potential (CP) over time. Every panel shows the location of nodes at time t 
(1 ≤ t ≤ T) and the spectrum of colors—dark green, light green, light red and dark red—represent increasing 
CP of the observed node (large circle) on contact with infected individuals (small circles)
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Expression 13 minimizes the contact between individuals with a high difference in 
contagion potential (CP), by grouping nodes with similar CP. Given the location of node 
u at time t, Ct(u) = (xt (u), yt (u)), Inequality 14 ensures that distance between the current 
location of any node u at time t, Ct(u), and his location at t + 1, Ct+1(u) is bounded by the 
distance threshold τ feet.

Scalable solutions

In the optimization strategies (see “Social distancing optimization” section), we are look-
ing for the next location of each individual in the social graph G, such that the opti-
mization goals (Eqs. 11 - 14) may be met. Therefore, the optimizer must output vector 
C = [C1, C2, · · ·, Cn], where C(u) = (x(u), y(u)) is the coordinate of individual u. This raises 
scalability challenges for large n. To address this, we propose two scalable social distanc-
ing strategies, namely the sampling and grid-based strategy. We define time epoch as 
follows:

•	 Sampling  approach. similar to MCMC Gibbs Sampling, all nodes at- tempted to re-
locate exactly once within the epoch, assuming all other nodes are fixed

•	 Grid-based  approach. one run of the optimization approaches (discussed in “Social 
distancing optimization” section) within the grid

For the direct contact, clustering, and contagion potential approaches, we calculate 
scores on social network as Expressions 11, 12 and 13, respectively, and the optimization 
goals are to minimize these scores calculated in all three optimizations based on the (1) 
social ties between S and I nodes, (2) triangles with S and I nodes and (3) difference in 
CP of connected nodes, respectively.

Sampling strategy

The sampling strategy is inspired by the Markov Chain Monte Carlo (MCMC) approach, 
namely Hastings-Metropolis (Carlo 2004). In each time epoch t and social network G_t, 
we iteratively sample a node u at a time with equal probability and attempt to re-locate 
it if other nodes V ( G_t)\u do not move. The optimizer is invoked to place u at locations 
within radius τ of current location Ct(u). The move is accepted if the resultant social 
network minimizes scores and rejected otherwise. The time epoch is complete when the 
convergence criteria, the fraction of total relocated nodes VR(Gt) is less than a threshold 
π, i.e., VR(Gt )

V (G)
< π , is satisfied. In Fig.  6, we demonstrate the above steps for a 3-node 

social network.

Grid‑based strategy

We parallelize the optimization approaches by partitioning the deployment region into 
grids. Figure  7 depicts a scenario where the region is partitioned into 4 grids colored 
red, orange, blue and green. At each time epoch, every grid with the nodes placed within 
it at the time is initialized in a parallel process. Each grid has a padding region, whose 
area extends from the horizontal and vertical border of each grid, by length equal to 
the distance threshold τ . Since any node can move a distance of τ in each epoch, a node 
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belonging to a grid experiences an illusion that it is not restricted by the grid boundary 
and can reside anywhere within the padded boundary (see Fig. 7).

Approach  We consider a master–slave paradigm running a map reduce approach. 
Given Z spatial grids, in a time epoch, the master maps grids to parallel slave processes 
and the optimization approaches are simultaneously and independently invoked in the 
different grids. At the end of an optimization run, the processes return the optimized 
locations from their grids to the master. The master performs the reduce step where any 
node u, with location C(u), located (outside its grid boundary and) in padded region is 
assigned to another grid if C(u) belongs to the grid’s boundary. Consider the location of a 
node, marked in orange cross, originally belonging to grid 2 is reassigned to grid 3 as its 
new location is within the latter’s grid boundary.

Hybrid strategy

We combine the sampling- and grid-based approach in order to achieve greater scal-
ability. We follow three steps: (1) the deployment region is partitioned into grids, (2) 
within each grid the sampling strategies are invoked by master, and (3) slave processes 
return the optimized locations of its nodes once the sampling convergence criterion is 
achieved. The above steps are repeated in each time epoch.

Observations  Note that high convergence index or grid count in the sampling and grid-
based approaches result in greater speed-up at the expense of optimality of the optimi-

Fig. 6  Sampling on 3-node network: a original location, b move node 1, c move node 2 but reject 
movement of 3

Fig. 7  Deployment region partitioned into 4 grids. Each grid has a padding boundary; if the current location 
of a node (marked by orange cross) is outside the boundary of current grid 2, it is reassigned to grid 3 since 
its location belongs to the latter’s grid boundary
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zation goal (as shown in the experimental results in “Results” section). In the rest of the 
paper, we use the term approach to refer to the three optimizations (“Social distancing 
optimization” section) and the term strategy to refer to sampling- (or distributed) and 
grid-based solutions.

Results
We create a platform on Python SimPy discrete event simulation environment (Mat-
loff 2009), where each node is an agent, and the total time is divided into discrete time 
epochs. The simulation environment enforces the differential equations of the SEIRD 
epidemic model (Eqs. 1–4) indirectly as follows: the social network at any time epoch is 
implemented through a spatial model, where moving agents are nodes that form a tem-
poral social tie when they are within contact threshold d . This section has the follow-
ing subsections: (1) optimization versus sampling approaches, (2) effect of convergence 
index, the performance of (3) distributed strategy, and (4) grid-based solution and (5) 
scalability analysis (Table 1).

Default parameters

We carry out experiments on 2.6 GHz 6-Core Intel Core i7 macOS 16 GB RAM, each 
of duration 100 time epochs, on a population ranging from 15–4000 individuals and 
contact rate β = 0.55. We plot mean curve from 25 iterations, showing the cumulative 
count, which we measure as the sum of infected, recovered, and dead individuals at a 
given time. To ensure fairness of comparison, individuals have the same initial starting 
location and epidemic status in each run of the experiment. The contact threshold is 
d = 6 ft . and individuals move within distance threshold τ = 25 ft. on an average at every 
time epoch. All three strategies are run using the SEIRD model for contagion spread. 
We compare the scalable and distributed solutions against the random mobility strat-
egy. Grid-based parallelization was achieved using the Python Multiprocessing library 
(Palach 2014). It is worth repeating that we define scores for the scalable versions of the 
three optimization approaches in terms of the values of expressions 11, 12 and 13; the 
lower the score, the closer the scalable solution is to the optimal solution (Table 2).

Table 1  Default parameter values

Parameter Notation Value

Number of iterations - 25

Population size ν 50–4000

Simulation area length X 50–400 ft.,

Simulation area breadth Y 50–400 ft

Simulation duration T 50, 100 time epochs

SEIRD parameters (Korolev 2021) σ, γ, α, β 0.25, 0.1, 0.05, 0.55

Contact threshold d 6 ft

Distance threshold τ 25 ft

Init. sus. and inf. fraction - 0.7, 0.3

Convergence index π 0.3–0.5

Grid count Z 1–64
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Optimization versus sampling approaches

We calculate the running time and scores of direct contact and clustering approaches 
against the corresponding sampling approaches with convergence index 0.3. Figure 8a 
shows that sampling strategy for direct contact approach is much closer to its opti-
mization counterpart than clustering approach. With respect to the running time in 
seconds, the optimization approaches exhibit a significantly higher growth rate than 
the sampling versions (see Fig. 8b). We apply nonlinear curve-fitting to fit the running 
time to polynomials of order 2 (i.e., y = c0 + c1x1 + c2x2 ). In Table  3, we show that 
the direct contact and clustering approaches have higher coefficient or order 2 ( c2 ), 
resulting in higher running time than the sampling counterparts.

Recall from “Key Network Science Concepts” section, homophily of a network is 
measured in terms of E-I index. Since optimization contagion potential approach 
(Expression 13) attempts to achieve homophily by grouping nodes with similar CPs. 
We compare the E-I indices of the original and (sampling approach) modified net-
works. We discretize the node CPs by rounding them off to one decimal place (i.e., 
0.05 becomes 0.1) and record the E-I indices. Figure 8c shows that the E-I indices of 
the optimized networks are significantly lower (even negative), suggesting that they 
exhibit a higher proportion of links among nodes with similar CPs.

Table 2  No. of nodes vs. area

Nodes 75 90 105 120 135 150

Area (sq. ft) 100 × 50 100 × 60 100 × 70 100 × 80 100 × 90 100 × 100

Fig. 8  Sampling strategy: Comparison of a scores for optimization versus sampling approaches, b running 
time for optimization versus sampling approaches; c E-I scores for original and optimized social networks. 
(Optimizations 1, 2 and 3 refer to direct contact, clustering, and contagion potential approaches, respectively.)

Table 3  Polynomial coefficients from the nonlinear curve fitting (of order 2) on the running time 
in seconds against the number of nodes, for approach 1 (i.e., direct contact) and approach 2 (i.e., 
clustering)

Approach Coeff. 0 (c0) Coeff. 1 (c1) Coeff. 2 (c2)

Opt-1 (Direct contact) 0.98 − 4.24 3.39

Sam-1 (Direct contact) − 2.62 11.70 − 1.59

Opt-2 (Clustering) 1.82 − 7.54 4.63

Sam-2 (Clustering) 0.04 0.08 0.07
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Effect of Convergence Index

We vary the convergence indices—0.3, 0.4, 0.5—and record the running scores and run-
ning time for sampling approaches 1 and 3. We study the trade-off offered by the conver-
gence parameter. Figure 9a, b show that starting with the original scores (colored red), 
the sampling approaches exhibit better scores. For both approaches, lowering in conver-
gence does not cause a major improvement. Figure 9c, d show that, for both approaches, 
convergence indices 0.4 and 0.5 greatly outperform 0.3 in terms of running time.

Performance of distributed strategy

We estimate the performance of the distributed approach (defined in “Scalable solu-
tions” section) with respect to the cumulative count (constituting infected, recovered, 
and dead population) and waiting times needed to wait for their neighbors with lower 
IDs to move. Figure  10a shows that for 75, 105, 100 nodes, the distributed approach 
exhibits a lower cumulative count (i.e., slower contagion) over time.

We also consider the two variables that may result in variable waiting times – number 
of nodes and deployment area. Figure 10b shows that (1) varying population 25, 50, 75, 
100 for fixed area 100 × 100 sq. ft. causes a linear growth in mean waiting epochs per 
node (brown bars); similarly, (2) for a fixed population of 100 individuals and varying the 
area of 100 × 100, 135 × 100, 170 × 100 and 200 × 100 results in a decrease in the mean 
waiting time epochs per node.

Flouting recommendation. We study the effect of flouting the location recommen-
dation of the social distancing strategy. We record the score when the nodes fol-
low sampling approach 1 for 90%, 70%, 30% of time and thereby undertake random 

Fig. 9  Effect of convergence index: For varying convergence indices 0.3, 0.4, 0.5, mean scores for sampling a 
direct contact approach and b contagion potential approach; running time in seconds for sampling c direct 
contact approach and d contagion potential approach
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mobility 10%, 30%, 50% at other times. Figure  11a shows that scores are hampered 
as the nodes increasingly ignore recommendation. This result may also be viewed in 
light of situations where certain nodes may temporarily get discharged or fall off the 
grid and lose contact with their immediate neighbors. Furthermore, we plot the effec-
tive reproduction number (refer to “SEIRD Epidemic Model” section for details) that 
provides a realistic measure of the number of secondary cases caused per infected 
individual. Figure  11b shows that the effective reproduction number (smoothed by 
the Savitzky–Golay filter (Press and Teukolsky 1990)) is the least when the population 
obeys the mobility recommendations.

Performance of grid‑based solution

The goal of the grid-based solution is to achieve a running time vs. performance 
trade-off. We evaluate the efficacy of the grid-based approach with respect to the 
score and running time in seconds for varying grid counts. For a social network of 
150 nodes, Fig. 12a shows the mean original score and the improved scores with 4 and 
9 grids with direct contact approach; the scores achieved by the two grid configura-
tions are comparable. With respect to the running time in seconds, Fig.  12b shows 

Fig. 10  Distributed strategy: Comparison of a cumulative counts (comprising infected, recovered, and 
dead individuals) of distributed approach against random mobility b running time for optimization versus 
sampling approaches. (Optimizations 1, 2 and 3 refer to direct contact, clustering, and contagion potential 
approaches, respectively.)

Fig. 11  Flouting recommendations: a Score for direct contact approach and b effective reproduction 
number (smoothed by the Savitzky–Golay filter) for variation in fraction of times nodes flout the optimizer 
recommendation
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that the 9-grid configuration yields approximately 5 times speed up compared to the 
4-grid counterpart, proving the efficacy of the parallel solution.

We compare the performance of the sampling and grid-based solutions with respect to 
the cumulative counts. Recall from our discussion in “Sampling strategy and Grid-based 
strategy” section that a (1) high convergence index in the sampling approach or (2) large 
number of grids in the grid-based approaches, yield higher speed-up at the cost of the 
optimality of the optimization objectives. Figure 12c shows that the sampling strategy 
with convergence indices 0.4, 0.5 achieve a significantly lower mean count than 4- and 
9-grid configurations for networks of 25 nodes.

Scalability analysis

We analyze the improvement achieved in running time due to the grid and sampling 
approaches by recording the running time for 250, 500, 750, 1000 nodes with area 
200 × (1) 50, (2) 100, (3) 150 and (4) 200 sq. ft., respectively. For the sampling and grid 
strategies we use convergence index 0.4 and 16 grids, respectively. Figure  13a shows 
that, for direct contact approach, the sampling strategy scales better than the grid-based 
strategy.

We also evaluate how the running time compares for a hybrid of sampling and grid 
strategies on direct contact approach, particularly when more computational resources 
are employed. Recall from “Hybrid strategy” section, the hybrid approach uses grid-
based parallelization and the sampling approach with the grids. We consider four 

Fig. 12  Grid based solution: For approaches 1, 2 and 3 with 4 and 9 grids a optimization score, b running 
time in seconds; c comparison of cumulative count for grid strategy (9, 16 grids) and sampling approach 
(convergence index 0.4, 0.5)
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settings (summarized in Table 4). Figure 13b shows that the running time for the hybrid 
strategy grows proportionally with the order of the social network. The growth rate in 
this experiment, with increasing computational resources, is lower than that reported in 
Fig. 13a where the number of grids is kept constant.

Discussions
Our simulations suggest that the proposed strategies mitigate the scalability chal-
lenges of solving the three optimizations for large populations. In addition to the speed 
up exhibited by the sampling, grid-based and hybrid strategies, the distributed algo-
rithm enables each node to operate solely on the knowledge of immediate neighbors, 
as opposed to the entire social network topology. It however raises a few questions and 
offers new research directions. First, the dynamics of mobility in an urban setting is 
highly noisy (characterized by (1) erratic movements and (2) uneven spatial population 
density), making it imperative to deploy the system in a real setting to study their run-
ning time complexity and load balancing. To achieve this, we have designed a MyCovid 
mobile application (Roy et al. 2021d; Roy 2021) that is currently being used by a small 
population of students to validate the original optimization strategies. Second, although 
we have tested the optimization on human mobility models, we will need to incorpo-
rate the fact that individuals may have predetermined source and destination locations 
that may override the recommendations of the optimization strategies. This requires an 
online algorithm to learn personalized schedules and itineraries to make informed rec-
ommendations. Similarly, we shall compare the performance of the proposed strategies 
for small and large population sizes. For accurate predictions with small population, we 
shall incorporate the necessary correction factors (Grima 2010). Third, there are impor-
tant security and privacy considerations associated with location sharing. Although 
the distributed strategy annuls the need to know the entire social network topology, 

Fig. 13  Scalability on direct contact approach: time in seconds for a grid strategy (16 grids) and sampling 
strategy (conv. 0.4), b hybrid approach on 50, 250, 1000, 4000 nodes with 1, 4, 16, 64 grids

Table 4  No. of nodes vs. area

Nodes 50 250 1000 4000

Area (sq. ft) 50 × 50 100 × 100 200 × 200 400 × 400

Grids 1 4 16 64
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individuals may exhibit reluctance to be detected by neighbor devices, making it essen-
tial to build adaptive models that can work with uncertainty as well as infuse identity 
detection and privacy-preserving techniques into the system. Fourth, it is worth explor-
ing dynamic algorithms that autonomously adjust system parameters like convergence 
index and grid count (or size) based on the influx or outflow of nodes in urban space.

Conclusion
In this paper, we presented scalable and distributed social distancing strategies to inform 
the mobility of individuals roaming in an urban space. The proposed strategies leverage 
network science principles, such as homophily and network clustering, in conjunction 
with MCMC Gibbs random sampling and grid-based spatial parallelization. In addition 
to scaling well for large social networks, the distributed strategy allows individuals to 
determine next locations without knowledge of the entire network topology. We per-
form simulation experiments to delineate how one can tune system parameters such as 
convergence index and grid count to achieve trade-off between running time and rate 
of contagion. We compare the performance of the proposed strategies, as well as their 
hybrid, against random human mobility for varying human population sizes and analyze 
how ignoring optimization recommendations affect overall infection spread.
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