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Introduction
The increasing amount of scientific literature is posing new challenges for scientists. 
Identifying the most relevant articles dealing with a topic is not straightforward, leading 
to the high chance of missing essential references and relevant literature. In particular, in 
research areas like biology or bio-medicine, thanks to fast-track publication journals, the 
number of published papers increases significantly fast.

On the other hand, network analysis has become a critical enabling technology to 
understand mechanisms of life, living organisms, and in general, uncover the underlying 
fundamental biological processes. Examples of applications include: (i) analyzing dis-
ease networks for identifying disease-causing genes and pathways (Barabási et al. 2010); 
(ii) discovering the functional interdependence among molecular mechanisms through 
network inference and construction Szklarczyk et al. 2016; (iii) releasing Network-based 
inference models with application on drug re-purposing (Himmelstein et al. 2017).

In the last few years, thanks to the availability of sizeable open-access article reposi-
tories such as PubMed Central (Beck 2010), arxiv (https://​arxiv.​org) bioarxiv (https://​
www.​biorx​iv.​org/) as well as ontology databases which hold entities and their rela-
tions (Lambrix et  al. 2007), the research community has focused on text mining 
tools and machine learning algorithms to digest these corpora and extract valuable 
semantic knowledge from them. Text mining (Cohen 2005), and Natural Language 
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Processing (Krallinger et  al. 2005) tools employ information extraction methods to 
translate unstructured textual knowledge in a form that can be easily analyzed and 
used to build a functional network (i.e. a network in which the relations between 
two entities are not necessarily physical but can be indirect), or knowledge graphs 
(Szklarczyk et  al. 2016; Dörpinghaus et  al. 2019; Nicholson and Greene 2020). This 
technology allows us to infer putative relations among molecules, such as under-
standing how proteins interact with each other or determining which gene mutations 
are involved in a disease. In the context of biology and biomedicine, the Biological 
Expression Language (BEL) (Slater 2014), or Resource Description Framework (RDF) 
(McBride 2004) have been widely applied to convert a text in semantic triplets having 
the following form: <subject, predicate, object>. The subject and object represent bio-
logical elements, whereas the predicate represents a logical or physical relationship 
between them (Szklarczyk et al. 2016; Himmelstein and Baranzini 2015).

However, the implementation of biological text mining tools requires highly spe-
cialized skills in Natural Language Processing and Information Retrieval. Therefore, 
several ecosystems and tools have been implemented and made available to the bio-
science community. Relevant tools include PubAnnotation (Kim et al. 2019), a pub-
lic resource for sharing annotated biomedical texts based on the “Agile text mining” 
concept; PubTator (PTC) (Wei et al. 2019), a web service for viewing and retrieving 
bio-concept annotations (for genes/proteins, genetic variants, diseases, chemicals, 
species, and cell lines) in full-text biomedical articles. This latter tool annotates all 
PubMed abstracts and more than three million full texts. The annotations are down-
loadable in multiple formats (XML, JSON, and tab-delimited) through the online 
interface, a RESTful web service, and bulk FTP. Another interesting tool is SemRep 
(Rindflesch and Fiszman 2003), which extracts relationships from biomedical sen-
tences in PubMed articles by mapping textual content to an ontology that represents 
its meaning. To establish the binding relation, SemRep relies on internal rules (called 
“indicator rules”), which map syntactic elements, such as verbs, prepositions, and 
nominalization, to predicates in the Semantic Network. We also mention Hetionet 
(Himmelstein et  al. 2017), a heterogeneous network of biomedical knowledge that 
unifies data from a collection of several available databases and millions of publi-
cations. Also, the edges are extracted from omics-scale resources and consolidated 
through multiple studies or resources. Finally, in Yuan et al. (2019) authors propose 
a minimally supervised approach for knowledge-graph construction based on 24,687 
unstructured biomedical abstracts. Authors included entity recognition, unsuper-
vised entity and relation embedding, latent relation generation via clustering, rela-
tion refinement, and relation assignment to assign cluster-level labels. The proposed 
framework can extract 16,192 structured facts with high precision.

Starting from our previous work (Muscolino et  al. 2021), we introduce NETME a 
novel web-based app (available at https://​netme.​click/ website, and https://​github.​
com/​alemu​scoli​no/​netme.​git github repository), which is capable of extracting 
knowledge from a collection of full-text documents. The tool orchestrates two differ-
ent technologies:

https://netme.click/
https://github.com/alemuscolino/netme.git
https://github.com/alemuscolino/netme.git
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•	 A customized version of the entity-linker TAGME (Ferragina and Scaiella 2010) 
(called OntoTAGME) for extracting network nodes (i.e., genes, drugs, diseases) 
from a collection of full-text articles.

•	 A software module, developed on top of SpaCy (Honnibal et al. 2020) and NLTK 
(Loper and Bird 2002) libraries, that derives relations (edges) between pair of 
nodes. Edges are weighted according to their frequency within the collection of 
full-texts used to create the on-fly knowledge graph.

These inferred networks are handy in biomedicine, where it is essential to understand 
the difference between various components and mechanisms, such as genes and dis-
eases, and their relations, such as up-regulation and binding. Therefore, the tool helps 
scientists fast identify reliable relations among the biological entities under investiga-
tion, based on their occurrences and mentions in PubMed ’s articles.

The novelties with respect our previous work (Muscolino et al. 2021) include:

•	 The sentence’s grammatical structure is extracted by Spacy linguistic annotations. 
Such a structure includes the word types (parts of speech) and how the words 
are related to each other. In the previous NETME release, the nltk bottom-up and 
top-down approach were employed for building the syntactic tree of each docu-
ment sentence. Furthermore, the Spacy’s Matcher has been used to identify verbs’ 
passive forms. With this approach the system is now capable of properly establish-
ing the correct edge direction.

•	 In Muscolino et al. (2021), the proposed system was able to build a network com-
posed of only genes, diseases, and drugs. Now, thanks to the extension we made 
on OntoTAGME, our new system is able to build networks composed of much 
more biological entities such as: genes, variants, diseases, drugs, compounds, 
molecular function, biological proves, pathways, enzymes, etc.

•	 Finally, we designed and implemented a new module to handle the disambiguation 
among gene symbols and the acronyms of diseases or other biological elements. In 
fact, in many documents, the authors assign acronyms for very long biological ele-
ments that are usually equal to genes symbols.

To the authors’ knowledge, NETME is the first tool that allows to interactively synthe-
size biological knowledge-graphs on-the-fly starting from a PubMed query.

The paper is organized as follows. Section “The NETME model” introduces NETME 
system together with its components. Section  “The annotation tool” provides the 
technical details of the back-end and the front-end of NETME. Section “Experimental 
analysis” reports two different case studies that allow evaluating NETME ’s prediction 
qualitatively. The first one is focused on: (i) recovering known gene interactions; (ii) 
avoid false-negative ones. For this purpose, we selected a subset of gene-gene inter-
actions in KEGG/REACTOME (Kanehisa and Goto 2000; Kanehisa 2019, 2000; Fab-
regat et  al. 2017) by making use of STRING API. More precisely, such interactions 
were obtained by selecting 100 random gene-gene interactions (manually curated in 
KEGG or REACTOME database) for each of the following STRING text-mining score 
intervals: 500-600,600-700, 700-800, 800-900, >= 900 . Next, we selected the first 100 
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pairs of non-interacting genes from the Negatome 2.0 database (Blohm et  al. 2013; 
Smialowski et  al. 2009) in order to understand if NETME can avoid false-negative 
interactions. The experiment yielded accuracy values from 58% when the STRING 
text-minig score is in [500, 600] interval, to 84% when the value of such a score is 
higher than 900. Whereas, the second case study is focused on building a “CD147-
genes” interaction network through selected papers containing valuable information 
about CD147 gene. We compared the network returned by NETME against a man-
ually-curated network derived from these selected papers. The experiment yielded 
98% sensitivity and 100% specificity. Therefore, both experiments clearly showed the 
high reliability of NETME inferred networks. Moreover, we have also assessed the 
NETME performance for inferring “CD147-diseases” interactions by selecting 100 
random interactions from DisGenNET, and the same “abstracts” used by DisGenNET 
for inferring these interactions. NETME detected 63 True Positive values out of 100, 
revealing a sensitivity of 63% Sect.  “Conclusion” ends the paper and sketches future 
research directions.

The NETME model
A Knowledge Graph (also known as a semantic network) is a systematic way to connect 
information and data to knowledge. It represents a collection of interlinked descriptions 
of entities, real-world objects, and events, or abstract concepts, obtained from knowl-
edge-bases such as ontologies (O1,O2, · · · ,Ok) . Basically, a semantic network is defined 
as a graph G = (V ,E) where entities are in V, and relationships in E. Each relation rep-
resents a connection between entities of one (intra-relationship) or more (inter-relation-
ship) ontologies (Nettleton 2014). Therefore, there might exist a relation e = (v1, v2) ∈ E 
where v1 ∈ Oi and v2 ∈ Oj with i  = j.

An ontology is a formal description of knowledge as a set of domain-based concepts in 
relationships among them. As a result, the ontology does not only introduce a shareable 
and reusable knowledge representation, but it can also provide new knowledge about 
the considered domain (Xiaoke and Lin 2012).

NETME builds a biomedical knowledge graph starting from a set of n documents 
obtained through a query to the PubMed database. Papers can be sorted by relevance 
(default) or publication date. Users can also provide a list of PMCID/PMID or a set of 
PDF documents. The inferred network contains biological elements (i.e., genes, diseases, 
drugs, enzymes) as nodes and edges as possible relationships.

In Fig. 1 we outline the architecture of NETME. The user provides the query terms to 
perform the search on PubMed, and she may directly provide PDFs or PMCIDs/PMIDs 
of other pertinent documents. Then NETME begins to create the network as follows: 

1	 First, OntoTAGME converts the full-text of the input documents into a list of enti-
ties (nodes) using literature databases and ontologies (such as GeneOntology Con-
sortium 2004, Drug-Bank Wishart et  al. 2017, DisGeNET Piñero et  al. 2019, and 
Obofoundry Smith et al. 2007) as corpus. These entities will be the knowledge graph 
nodes. Note that, Obofoundry contains a several ontologies, but only the following 
have been currently used in our model: GO, DO, PW, BTO, PRO, AEO, PATO, CL 
and CLO.
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2	 Next, an NLP model based on Python SpaCy (Honnibal et  al. 2020), and NLTK 
(Loper and Bird 2002) libraries, is executed to infer the relations among nodes entity-
nodes belonging to the same sentence ( Si ) or to the adjacent ones ( Si , Si+1 ) of the 
same document. Such relationships indicate disease treatment, genes regulations, 
molecular functions, gene-gene interactions, gene-disease interactions, gene-drug 
interactions, drug-disease interactions, disease-disease interactions and drug-drug 
interactions.

The final network will contain both directed and undirected edges according to the pre-
dictions made by the model. At the end of the process, the network will be rendered 
through Cytoscape JS. The following two subsections provide the details of these two 
phases.

OntoTAGME: Ontology oN Top Of TAGME

TAGME Ferragina and Scaiella (2010) is a state-of-the-art entity linker for annotating 
Wikipedia pages mentioned in an input text. The tool searches for sequences of words 
(spots) that can be linked to pertinent Wikipedia pages (entities) that explain those 
words in that context. The use of Wikipedia as corpus allows to enrich texts with explan-
atory links in order to provide a structured knowledge for any unstructured fragment 
of the text. These links are then used for drawing a network of relationships among the 
extracted spots.

To mitigate ambiguity and polysemy, TAGME computes a ρ value ∈ [0, 1] for each 
Spot-Entity (Node) association, and keeps only those ones having the ρ value higher 
than an established user threshold. This value estimates the “goodness” of the annotation 
compared to other possible associations in the input text. A suitable use of ρ ensures the 
highest accordance among the extracted spots.

Due to the topics-generality of the Wikipedia corpus used by TAGME, several non-
biological spots could be extracted during the annotation procedure. To overcome 
this limitation, we developed a customized version of TAGME, called OntoTAGME, 
which makes use of several ontology and literature databases, such as: GeneOntology 
(GO) (Consortium 2004), DiseaseOntology (DO) (Schriml et  al. 2018), PathwayOn-
tology (PW) (Petri et al. 2014), BRENDA tissueenzyme source (BTO) (Gremse et al. 
2010), ProteinOntology(PRO) (Natale et al. 2016), Anatomical Entity Ontology (AEO) 

Fig. 1  NETME pipeline architecture
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(Bard 2012), Phenotype And Trait Ontology (PATO) (http://​obofo​undry.​org/​ontol​
ogy/​pato.​html), Cell Ontology (CL) (Diehl et  al. 2016), Cell Line Ontology (CLO) 
(Sarntivijai et al. 2014), DrugBank (Wishart et al. 2017), Disgenet (Piñero et al. 2019), 
HGNC (Gray et al. 2016), ENSEMBL (Birney 2004), CIViC (Griffith et al. 2017), and 
PharmGKB (Whirl-Carrillo et  al. 2012). The usage of topic-specific ontology data-
bases ensures reduced disambiguation errors and therefore yields highly reliable 
knowledge graphs inference.

The integration consisted of releasing a new intermediate python layer (Python 
Parser in Fig. 2), and a customized two-steps procedure (Wikipedia Adapter module 
in Fig. 2) for converting ontology databases in a wikipedia-like structure. The Python 
layer transforms a generic ontology or database in a list of CSV files: pages.csv, pag-
eslink.csv and category.csv. The pages.csv stores the name of each biological element, 
and all possible synonyms. The pageslink.csv contains all the relationships among the 
nodes of the ontology. Finally, the category.csv has the type of each element extracted 
from the ontology or database entry (i.e Genes, Diseases, Drugs).

Next, a two-steps procedure is triggered to convert each row of the page.csv file 
into an XML file containing a unique ID generated by our system, the name (title), 
type (category) and the description (page’s body) of the considered biological ele-
ment. Since an element j could have several linked pages “LPs” (i.e. DOID:0002116 
is a DOID:10124), or redirected pages “RPs” due to synonyms (CD147 is a synonym 
of BSG), the process generates a tuple 

〈

uniqueIDj , uniqueIDk

〉

 for each element k 
belonging to LPs, and a tuple 

〈

uniqueIDj , uniqueIDi

〉

 for each element i belonging to 
RPs. These tuples are then stored in the SQL files “wiki-latest-pagelinks” and “wiki-
latest-redirect”, respectively.

Finally, the SQL and XML files are used to generate the complete OntoTAGME net-
work. It contains 331 thousand of main nodes, 700 thousand of synonyms, and 4 mil-
lion of relationships.

Fig. 2  OntoTAGME pipeline architecture

http://obofoundry.org/ontology/pato.html
http://obofoundry.org/ontology/pato.html
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Ontology databases

In order to build the OntoTAGME annotation networks we used the following nine 
ontology and six bio-databases.

DrugBank Wishart et al. (2017) contains data about drugs name, drugs synonyms, 
drug-drug interaction, and other comprehensive drug-target information. The data-
base release used in our project is the v5.1 which contains 13,  367 drugs entries, 
including 2,  611 approved small molecule drugs, 1,  300 approved biotech (protein/
peptide) drugs, 130 nutraceuticals and over 6, 315 experimental drugs. Additionally, 
5, 155 non-redundant protein (i.e. drug target/enzyme/transporter/carrier) sequences 
are linked to these drug entries.

HGNG (HUGO Gene Nomenclature Committee) Gray et al. (2016) assigns unique 
and informative gene symbols and names to human genes. Standardized HGNC 
approved nomenclature is used in publications and biomedical databases to remove 
ambiguity and facilitate communication between researchers worldwide. The last 
database release contains more than 40,  000 approved gene symbols of which over 
19, 000 are for protein-coding genes. The HGNC also names a set of small and long 
non-coding RNA genes and pseudo-genes (659 since 2017). The genes are grouped 
on the basis of several shared characteristics such as homology, associated phenotype 
and encoded protein function.

Ensembl Birney (2004) contains genome annotation (i.e genes, variation, regulation 
and comparative genomics) across the vertebrate sub-phylum and key model organ-
isms. This tool is also able to compute multiple alignments, predicts regulatory func-
tion and collects disease data. The last complete version of the Ensembl database has 
been downloaded through their FTP service, and then integrated in OntoTAGME 
thanks to Python Parser layer. All data in Ensembl are used in combination with those 
coming from HGNC to detect Genes name and symbols within a text.

Disgenet Piñero et al. (2019) contains collections of genes and variants associated 
with human diseases. It integrates data from scientific literature, GWAS catalogues, 
expert curated repositories and animal models. Additionally, several original metrics 
are provided to assist the prioritization of genotype–phenotype relationships. Dis-
GeNET releases two types of databases, Gene-Disease Associations and Variant-Gene 
Associations.

CIViC Griffith et al. (2017) is an expert-crowd-sourced knowledge-base for Clinical 
Interpretation of Variants in Cancer describing the therapeutic, prognostic, diagnos-
tic and predisposing relevance of inherited and somatic variants of all types. CIViC 
is committed to open-source code, open-access content, public application pro-
gramming interfaces (APIs) and provenance of supporting evidence to allow for the 
transparent creation of current and accurate variant interpretations for use in cancer 
precision medicine.

PharmGKB Whirl-Carrillo et al. (2012) is an interactive tool for researchers inves-
tigating how genetic variation affects drug response. It displays genotype, molecular, 
and clinical knowledge integrated into pathway representations and Very Important 
Pharmacogene (VIP) summaries with links to additional external resources. A user 
may search and browse the knowledge-base by genes, variants, drugs, diseases, and 
pathways through the website: http://​www.​pharm​gkb.​org).

http://www.pharmgkb.org
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OBO Foundry Smith et al. (2007) is the Open Biological and Biomedical Ontology 
(OBO) Foundry. It provides well-formed and scientifically accurate ontology thanks 
to the collaboration of ontology developers. They contribute to develop an evolv-
ing set of principles and common syntax based on ontology models that ensure the 
proper functioning of the system. In NETME, we use the following list of ontology:

•	 Gene Ontology (GO) Consortium (2004) project provides a uniform way to 
describe the functions of gene products from organisms across all kingdoms of 
life and thereby enable analysis of genomic data. it contains more than 44 thou-
sand GO terms, 8 millions of annotations, 1.5 millions of gene products and 
nearly 5 thousand species.

•	 Human Disease Ontology (DO) Schriml et al. (2018) is a standardized ontology 
for human disease with the purpose of providing the biomedical community with 
consistent, reusable and sustainable descriptions of human disease terms, pheno-
type characteristics and related medical vocabulary disease.

•	 Pathway ontology (PW) Petri et al. (2014) is a controlled vocabulary for pathways 
that provides standard terms for the annotation of gene products.

•	 PRotein Ontology (PRO) Natale et  al. (2016) defines taxon-specific and taxon-
neutral protein-related entities in three major areas: proteins related by evolu-
tion; proteins produced from a given gene; and protein-containing complexes.

•	 BRENDA tissue / enzyme source (BTO) Gremse et al. (2010) is a structured con-
trolled vocabulary for the source of an enzyme comprising tissues, cell lines, cell 
types and cell cultures.

•	 Anatomical Entity Ontology (AEO) Bard (2012) is an ontology of anatomical 
structures that expands CARO, the Common Anatomy Reference Ontology, to 
about 160 classes using the is_a relationship; it thus provides a detailed type clas-
sification for tissues. The AEO is useful in increasing the amount of knowledge 
in anatomy ontology, facilitating annotation and enabling interoperability across 
anatomy ontology.

•	 Phenotype And Trait Ontology (PATO) (http://​obofo​undry.​org/​ontol​ogy/​pato.​
html) is used in conjunction with other ontologies such as GO or anatomical 
ontology to refer to phenotypes. Examples of qualities are red, ectopic, high tem-
perature, fused, small, edematous and arrested.

•	 Cell Ontology (CL) Diehl et  al. (2016) is designed as a structured controlled 
vocabulary for cell types. This ontology covers cell types from prokaryotes to 
mammals. However, it excludes plant cell types. One of the main uses of the CL 
is to describe samples used in transcriptomic and functional genomics studies, 
such as FANTOM5, ENCODE and LINCS.

•	 Cell Line Ontology (CLO) Sarntivijai et al. (2014) is a community-driven ontol-
ogy that is developed to standardize and integrate cell line information and sup-
port computer-assisted reasoning.

The data relating to the number of nodes and relationships extracted from each 
mentioned ontology have been listed in Table 1

http://obofoundry.org/ontology/pato.html
http://obofoundry.org/ontology/pato.html
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Network edge inference

Once the network nodes have been extracted the system will annotate their position 
and their main characteristics within the text. We capture the significant elements in 
each sentence, by making use of the parts of speech (POS tags). Then through a syntac-
tic analysis we verify the coherence of the extracted elements. Indeed, sentences have 
an internal organization that can be represented using a tree. Solving a syntax analy-
sis problem for a sentence consists of looking for predefined syntactic forms which, 
like a tree, branch out from the single words. The main syntactic form is the sentence 
(S) which contains noun phrases (NP) or verb phrases (VP) that are formed by further 
elementary syntactic forms such as nouns (N), verbs (V), determiners (DET), etc (see 
Table 3). All these information will be used by the textual analysis phase to infer rela-
tions between them.

A transition-based dependency parser is then used to first check the syntactic coher-
ence and then build the syntactic tree. The dependency parser component inside the 
spaCy library jointly learns sentence segmentation and labelled dependency parsing. 
The parser uses a variant of the non-monotonic arc-eager transition-system (Honnibal 
and Johnson 2015), with the addition of a break transition to perform the sentence seg-
mentation. Nivre’s (2005) pseudo-projective dependency transformation is also used to 
allow the parser to predict non-projective parses. The parser is trained through an imi-
tation learning objective. It follows the actions predicted by the current weights and, at 
each state, it determines which actions are compatible with the optimal parse that could 
be reached from the current state. The weights are updated in a way that the scores 
assigned to the set of optimal actions is increased, while scores assigned to other actions 
are decreased. Note that more than one action may be optimal for a given state.

Once OntoTAGME have extracted the set of nodes n1, . . . , nz from a list of N full-
text documents [p1, p2, . . . , pN ] , the edge inference module of NETME (developed on 
top of the Python library NLTK Loper and Bird 2002 and spaCy (Honnibal et al. 2020)) 
starts to establish any verbal relationships between those pairs of nodes. When two or 
more nodes are detected within a sentence or adjacent sentences, the syntactic analyzer 
extracts the parts of speech and syntactic dependencies within the sentence. For each 
sentence we then get a set of labelled tokens lt1, lt2 . . . , ltki . Each token is a tuple of the 
following form {token,POS, dependency_label} , where POS and Dependency label are 
valued with the data present in Table 3.

Table 1  Number of nodes and edges per ontology

Ontology name Nodes number Edges number

go 43917 142086

doid 10862 29938

pr 326811 846366

pw 2619 6210

cl 10809 34410

clo 44712 91966

aeo 248 523

bto 6515 9378

pato 4610 13027



Page 10 of 24Muscolino et al. Applied Network Science             (2022) 7:1 

Irrelevant POS are filtered out (stop-words, URLs, etc.), we keep only the useful verb 
forms and the nodes which correspond to the noun parts. A final pruning phase is 
also executed in which we use: (i) POS tag labels and dependency labels to check if the 
syntactic link between the verb form and the annotations is correct and consistent, as 
described in the Fig. 3; (ii) a dictionary of biological verb forms to check if they are perti-
nent. The surviving nodes and verb forms will allow to generate network edges.

In our final network, each edge e = (a, b) is weighted with three parameters: the term 
frequency and inverse document frequency (tf.idf ), the medium relatedness (mrho) and 
the biological degree (bio). More specifically, tf.idf is a measure of how much informa-
tion the edge provides, namely if it is common or rare across all input documents. In 
formula, we compute tf .idf(e, p,P) = tf(e, p) ∗ idf(e,P).

Where, term frequency tf(e, p) is the frequency of edge e, is defined as 
tf(e, p) = fe,p/

∑

e′∈p fe′,p , with fe,p representing the number of times that edge e occurs 
in paper p. The inverse document frequency idf(e,P) is a measure of how much informa-
tion the edge e provides. It is defined as idf(e,P) = logN/|{p ∈ P : e ∈ p}| , where N is 
the number of documents analyzed by the query such that N = |P| , and |{p ∈ P : e ∈ p}| 
is the number of documents where the edge e appears. The parameter mrho measures 
the relatedness of the labels starting from the ρ value assigned by OntoTAGME to the 
two annotations involved, i.e. mrho(e) =

ρa∗ρb
2

 . The bio-parameter is the cosine similar-
ity (having a value ranging from 0 to 1) between the inferred relationship and a set of 
biological verb forms (see Table 2). Figure 4 provides an example of such an annotation.

The annotation tool
NETME is provided with a front-end developed in PHP and Javascript, in which the 
network rendering is performed through the CytoscapeJS library (Franz et  al. 2015). 
Its back-end, which integrates OntoTAGME, is written in Java and communicates with 
both Python NLTK (Loper and Bird 2002) and SpaCy (Honnibal et al. 2020) libraries for 
the NLP module. PubMed search is performed with the Entrez Programming Utilities 
(https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK25​501/), a set of server-side programs pro-
viding a stable interface to the Entrez database and to the query system at the National 
Center for Biotechnology Information (NCBI).

741DC

PROPN
(nominal subject)

regulates

VERB
(ROOT)

lareves

ADJ
(adjectival modifier)

VEGF

PROPN
(compound)

smrofosi

NOUN
(direct object)

dna

CCONJ
(coordinating conjunction)

latnecalp

ADJ
(adjectival modifier)

growth  

NOUN
(compound)

factor  

NOUN
(conjunct)

FGLP

PROPN
(appositional modifier)

nsubj

amod

compound

dobj

cc

amod

compound

conj

appos

NOUN PART NOUN PART NOUN PART

SPOTSPOTgaa RELATION

Fig. 3  NETME example of POS extraction and coherence checking for the sentence [...] CD147 regulates 
several VEGF isoforms and placental growth factor (PLGF), and it has unique effects on trophoblastic function.
[...]. Through OntoTAGME we detect the spots [“BSG”, “VEGFA”, “PGF”]. After the syntactic analysis, three noun 
parts are identified (the phrase spots, highlighted via orange segments): two of them (“VEGF” and “PLGF”) 
have a joint relationship with the first (“CD147”). The verbal part is the root between the two pairs of nouns 
(“CD147”—“VEGF”), (CD147—“PLGF”)

https://www.ncbi.nlm.nih.gov/books/NBK25501/


Page 11 of 24Muscolino et al. Applied Network Science             (2022) 7:1 	

NETME is equipped with an easy-to-use web interface providing three major func-
tions (see Fig. 5): (i) Pubmed query-based network annotation; (ii) user-provided free-
text network annotation; (iii) user-provided PDF documents network annotation.

In the query-based network annotation, the user provides a list of keywords, which are 
employed to run a query on PubMed, or a list of article ids. The top resulting papers are 
retrieved and then the network inference procedure is run. Several parameters can be 
set by the user (or left with default values) such as: the number of top article to retrieve 
from PubMed, and the criteria used to sort papers (relevance or date).

In the user-provided free-text network annotation, users provide a free text which is 
then input to the network inference procedure.

Table 2  List of biological verb forms

Verb forms

Activate Downregulate Reduce

Affect Enhance Regulate

Associates Express Release

Block Find Reveal

Cause Inactivate Stimulate

Contain Increase Trigger

Control Induce Ubiquitination

Decrease Interacts Upregulates

Detect Overexpress

Display Produce

Annotations

Papers

[...] CD147 regulates
several VEGF isofor
ms and placental

growth factor
(PLGF), and it has 

trophoblastic 
function.[...]

{ annotations : 
[
 { spot:  “CD147”, word: “BSG”, rho: 0.5 },
 { spot:  “VEGF”, word: “VEGFA”, rho: 0.67 },
 { spot:  “PLGF”, word: “PGF”, rho: 0.5 }
]
}

Edges
{ edges : 
 [
  { source: “BSG”, edge: “regulate”, target: “VEGFA”, weight: 0.056, mrho: 0.50, bio: 0 },
  { source: “BSG”, edge: “regulate”, target: “PGF”, weight: 0.111, mrho: 0.58, bio: 0 }
 ]
}

Fig. 4  Example of annotation of the sentence [...] CD147 regulates several VEGF isoforms and placental growth 
factor (PLGF), and it has unique effects on trophoblastic function.[...]. Through OntoTAGME we detect the spots 
[“BSG”, “VEGFA”, “PGF”], and after the syntactic analysis and noise reduction steps, we detect two valid edges: 
[“BSG”, “regulate”, “VEGFA”] and [“BSG”, “regulate”, “PGF”]. Note that “regulate” is a biological verb forms and it has 
bio parameter set to 0
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Table 3  List of POS tag and syntactic dependency labels

POS tag Dependency label

Symbol Meaning Symbol Meaning

ADD email acl clausal modifier of noun (adjectival clause)

AFX affix acomp adjectival complement

CC conjunction, coordinating advcl adverbial clause modifier

CD cardinal number advmod adverbial modifier

DT determiner agent agent

EX existential there amod adjectival modifier

FW foreign word appos appositional modifier

HYPH punctuation mark, hyphen attr attribute

IN conjunction, subordinating or preposition aux auxiliary

JJ adjective auxpass auxiliary (passive)

JJR adjective, comparative case case marking

JJS adjective, superlative cc coordinating conjunction

LS list item marker ccomp clausal complement

MD verb, modal auxiliary compound compound

NFP superfluous punctuation conj conjunct

NN noun, singular or mass csubj clausal subject

NNP noun, proper singular csubjpass clausal subject (passive)

NNPS noun, proper plural dative dative

NNS noun, plural dep unclassified dependent

PDT predeterminer det determiner

POS possessive ending dobj direct object

PRP pronoun, personal expl expletive

PRP$ pronoun, possessive intj interjection

RB adverb mark marker

RBR adverb, comparative meta meta modifier

RBS adverb, superlative neg negation modifier

RP adverb, particle nmod modifier of nominal

SYM symbol npadvmod noun phrase as adverbial modifier

TO infinitival “to” nsubj nominal subject

UH interjection nsubjpass nominal subject (passive)

VB verb, base form nummod numeric modifier

VBD verb, past tense oprd object predicate

VBG verb, gerund or present participle parataxis parataxis

VBN verb, past participle pcomp complement of preposition

VBP verb, non-3rd person singular present pobj object of preposition

VBZ verb, 3rd person singular present poss possession modifier

WDT wh-determiner preconj pre-correlative conjunction

WP wh-pronoun, personal predet None

WP$ wh-pronoun, possessive prep prepositional modifier

WRB wh-adverb prt particle

punct punctuation

quantmod modifier of quantifier

relcl relative clause modifier

xcomp open clausal complement
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Fig. 5  NETME web interface in (a), generated network in (b)
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In the user-provided PDF documents network annotation, users give a set of PDF docu-
ments which are then input to the network inference procedure.

The result of the network inference procedure is a direct graph (network) which shows 
all inference details in three main tables containing: the list of extracted papers, the list 
of annotations, and the list of edges together with their weight.

The user can then click on a node of the network to view all incoming and outgo-
ing connections, or she can click on an edge to display its type and the verbal relation 
between the nodes it connects.

Experimental analysis
To analyze the reliability of NETME  knowledge graphs, we performed two case stud-
ies. The first one aims at providing a comprehensive analysis of NETME  performance 
by checking its ability to predict known relations between genes drawn from Kyoto 
Encyclopedia of Genes and Genomes - KEGG (Kanehisa and Goto 2000; Kanehisa 2019, 
2000) or REACTOME (Croft et  al. 2010; Joshi-Tope 2004; Croft et  al. 2013) pathways 
and, on the other hand, its ability to avoid inferring false connections between proteins 
by using the Negatome 2.0 database (Blohm et  al. 2013; Smialowski et  al. 2009). The 
second case study is more specific and focuses on building a network based on some 
selected publications that contain valuable information specific to the CD147 gene. 
Such a network is then compared against a manually-curated one derived from the same 
papers by a bio-expert. In both cases, the performance of NETME has been measured in 
terms of a precision/recall curve.

Case study 1

The first case study focuses on assessing NETME  performance through its capability to 
recover known gene interactions. For this purpose, we selected a subset of gene-gene 
interactions from KEGG/REACTOME by making use of STRING API. More precisely, 
such interactions were obtained by selecting 100 random gene-gene interactions for 
each of the following STRING text-mining score intervals: 500–600, 600–700, 700–800, 
800–900, ≥ 900 (listed in Additional files 1, 2, 3, 4, 5, respectively). These interactions 
form the true-positive set.

Next, we selected 100 random pairs of non-interacting genes from the Negatome 2.0 
database as a true-negative set (listed in Table  5). For each interacting gene-pairs, we 
queried NETME with the papers used by STRING to infer the interactions. On the other 
hand, to annotate non-interacting genes, we queried NETME with the pair of genes 
of interest, selecting the top 20 papers from PubMed. Accuracy, sensitivity, specificity 
and PPV values, detected by NETME, are listed in Table 4 The results clearly show that 
NETME produces reliable results when the annotations are performed on top of rele-
vant literature (STRING text-mining score higher than 700). On the other hand, when 
the STRING text-mining score is lower than 700, the NETME performances degrade in 
accordance with STRING predicted confidence as highlighted by their score . The reason 
behind such a behaviour is due: (i) not enough literature about these interactions; (ii) the 
interactions have been inferred by human curators as a combination of other interac-
tions occurring in the text. Furthermore, when the text-mining score is small, STRING 
predictions could be wrong. In fact, as reported in Szklarczyk et al. (2016), a score of 500 
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would indicate that roughly every second term of an interaction might be erroneous (i.e., 
a false positive). Therefore, the computed value of accuracy, sensitivity, specificity and 
PPV could be incorrect.

Case study 2

Many tools (Alaimo et  al. 2020) and computational models rely on existing network 
databases, such as KEGG (Kanehisa and Goto 2000; Kanehisa 2019, 2000) and Reactome 
(Croft et al. 2010; Joshi-Tope 2004; Croft et al. 2013). However, despite the enormous 
amount of available data, these databases are still incomplete and therefore have par-
tial information (Menche et  al. 2015). As an example, KEGG includes approximately 
one-third of the known genes. In this case study, we have chosen CD147, also known 
as Basigin (BSG) or EMMPRIN, as a starting point for the gene-gene interactions net-
work construction. This gene represents an example of a biological element that should 
be supplemented to the KEGG network since it is not currently described in their path-
ways. Among the bibliography consulted to build the network manually, we have care-
fully selected 11 papers containing a significant amount of helpful information for our 
purpose. On the other hand, in this case study, we have also assessed the capabilities of 
NETME in inferring CD147-diseases relations. For this purpose we selected 100 random 
interactions from DisGenNET (Piñero et al. 2019), as well as the same abstracts used by 
DisGenNET for inferring such interactions (listed in Additional file 6).

CD147 is a transmembrane glycoprotein of the immunoglobulin superfamily, 
expressed in many tissues and cells, which is known to participate in several high bio-
logical and clinical relevance processes and is a crucial molecule in the pathogenesis of 
several human diseases (Xiong et al. 2014). Recently Wang et al. (2020) discovered an 
interaction between host cell receptor CD147 and SARS-CoV-2 spike protein, together 
with Angiotensin-Converting Enzyme 2 (ACE2), as an entry point for SARS-CoV-2.

In this direction, CD147 is an example of how a missing crucial gene within a biologi-
cal network can compromise scientists’ efforts to understand certain molecular phenom-
ena. In literature, there are many valuable tools (Himmelstein et al. 2017; Himmelstein 
and Baranzini 2015) to integrate the missing information into bio-databases, such as 
KEGG. However, the most reliable approach in terms of accuracy and updated informa-
tion remains the manual curation of such networks through careful and time-consuming 
literature analysis. On the other hand, a manually constructed network provides partial 
information due to the limited number of articles that a scientist could read. Our second 
case study affords this issue by providing a practical example of how NETME can create 
valuable networks by analyzing quickly and automatically larger sets of publications. The 
set of 11 selected papers, described in Fig. 7a, was analyzed by a bio-expert to derive a 
CD147-genes interactions network manually. This process resulted in 50 genes and 64 
interactions, as shown in Fig. 7a. Next, by using the same set of papers, we run NETME 
with no upstream filter. The automatically generated network consisted of 86 genes and 
139 relationships between them (see Fig. 7a, b). As the manually curated network con-
sists of genes and proteins, only elements from these two categories were selected for the 
evaluation. This was performed by considering edges with the lowest “bio” score for each 
node pair. Qualitatively, this network includes most of the interconnections mentioned 
in the papers, thus providing a reliable and comprehensive overview of the molecular 
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function of Basigin. Quantitatively, NETME achieved an accuracy of 98.99%, a sensitivity 
of 100%, a specificity of 98.98%, and a positive predicted value of 46.32%.

Figure 6a–c depicts the precision/recall curve (AUC 0.997), the sensitivity/specificity 
curve and the True positive rate/False Positive Rate one. The construction of the curves 
considered all possible gene-pairs and their edges.

Finally, we queried NETME with the selected 100 random CD147-diseases interac-
tions in DisGenNET, selecting the same PubMed abstract used by DisGenNET for infer-
ring those interactions. NETME detected 63 True Positive values out of 100, revealing a 
sensitivity of 63%

Fig. 6  Metrics of BSG-network performed by NETME. The plots show a Precision/Recall curve; b Sensitivity/
Specificity; c True positive rate/False Positive Rate. The red dashed line in b, c, indicates the expected result 
if the used method was random that is any method which, given a pair of nodes, elects whether between 
them there is a link with a probability of 0.5
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It is essential to stress that NETME  allows us to extract a satisfactory and valid amount 
of information in a few minutes, compared to a manual search that may take days or 
weeks. We also believe that this case study is significant because, in the evaluation, we 
considered not only the presence of a link between two nodes but even more closely the 
type of edge, hence the adequacy and specificity of the annotated edge in its biological 
context.

Conclusions
In this paper, we have introduced NETME system to infer on-the-fly knowledge-graphs 
from a collection of either full-text papers obtained from PubMed or user-provided ones. 
It has been implemented upon a customized version of TAGME, called OntoTAGME, in 
connection to a syntactic analysis module developed on top of the Python NLTK and 
SpaCy libraries. Our results clearly show that NETME allows extracting reliable knowl-
edge graphs in a few minutes or hours compared to a manual search that could take 
several days or weeks. The completeness of the extracted knowledge increases when the 
documents used by NETME comprehensively describe the desired topic under study. 
To evaluate NETME, we performed two case studies. The first one tested the ability of 
NETME in recovering relationships between genes. The experiment yielded accuracy 
ranging from 58%, when using low reliable relations (i.e. False Positives) from STRING, 

Fig. 7  a Depicts the pathway constructed by hand from the selected papers (Jiang et al. 2014; Kong et al. 
2014; Ke et al. 2012; Grass and Toole 2016; Xiong et al. 2014; Rucci et al. 2010; Ding et al. 2017; Ulrich and 
Pillat 2020; Wang et al. 2014; Kong et al. 2014; Kirk et al. 2000), with CD147(BSG) as the central node. b Shows 
the molecular mechanisms summarised in the knowledge network developed by NETME in accordance 
with the same papers used in a NETME shows that CD147 is a potent inducer of metalloproteinases (MMPs) 
such as MMP2, MMP14 and MMP9 as reported in Xiong et al. (2014); Rucci et al. (2010); Ding et al. (2017). 
Furthermore, the overexpression of CD147, which results in increased phosphorylation of PI3K(PIK3CA), 
Akt(AKT1), leads to the secretion of vascular endothelial growth factor (VEGFA) in several biological contexts 
such as KSHV infection Xiong et al. (2014); Rucci et al. (2010). In addition to its ability to induce MMPs, CD147 
regulates spermatogenesis, lymphocyte reactivity and MCT system, in particular MCT1 and MCT4 (MCTS1 
and SLC16A4) expression (Xiong et al. 2014; Kirk et al. 2000). Our results also show that CD147 can increase 
the expression of ATP-binding cassette transporter G2 (ABCG2) protein, regulating its function as a drug 
transporter, as mentioned by Xiong et al. for MCF-7 cells (Xiong et al. 2014). NETME identifies also BSG as 
an upstream activator of STAT3, highlighting its involvement in tumor development in agreement with 
the literature (Wang et al. 2014). As summarized by our knowledge network, CD147 is regulated by various 
inflammatory mediators, such as RANKL (TNFSF11), denoting its involvement in inflammatory processes 
(Grass and Toole 2016; Rucci et al. 2010). Among the potential activators of BSG, NETME also find the 
transcription factor c-Myc (MYC) (Kong et al. 2014)

(See figure on next page.)

Table 4  Metrics on NETME ’s ability to predict known interactions (from KEGG/Reactome) and non-
interactions (from Negatome 2.0) between genes

Text-mining score 
interval

Accuracy (%) Sensitivity (%) Specificity (%) PPV 
(%)

500–600 58.5 31 86 68.8

600–700 66.5 47 86 77.05

700–800 72.5 59 86 80.8

800–900 73.5 61 86 81.3

≥ 900 84 82 86 85.4
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Fig. 7  (See legend on previous page.)
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Table 5  List of the first 100 pairs of non-interacting genes from the Negatome 2.0 database.The 
column “SOURCE” indicates the starting gene, instead the column “TARGET” indicates the gene to 
which the action of the source gene is directed

Non-interacting genes from Negatome 2.0

SOURCE TARGET SOURCE TARGET

AKT1 TSC1 MAD2L2 MAD1L1

ARAF BCL2L1 NCK1 EGFR

ARAF BCL2 OSM LIFR

BCL10 BIRC3 PARD3 LIMK1

BCL2L1 MAVS PDGFC FLT1

BMPR1A TGFB1 PFN4 ACTB

BMPR1A BMP5 PGF KDR

BMPR1A BMP6 PIAS3 STAT1

BMPR1B TGFB1 PIK3CG PIK3R2

BMPR1B BMP5 PKN1 RPS6KA1

BMPR1B BMP6 PKN1 RPS6KA3

BMPR2 BMP2 PKN1 MAP3K2

CCND1 MCM2 PKN2 RPS6KA1

CCR3 CCL3 PKN2 RPS6KA3

CCR3 CCL4L2 PKN2 MAP3K3

CD274 CD28 RB1 SMAD3

CD274 CTLA4 RBL2 SMAD3

CD274 ICOS RIPK1 TNFRSF10A

CD3G ZAP70 RIPK1 TNFRSF10B

CD74 NOTCH1 SFN TSC1

CDKN1B TSC1 SH3KBP1 TNFRSF14

CSF2 IL3RA SMAD1 ANAPC10

CTNNB1 HSP90AA1 SMAD4 ANAPC10

CTNNB1 DDIT3 SOCS3 JAK2

CTNND1 IL2 STIM1 TRPC6

CTNND1 APC TANK RBCK1

CTNND1 CTNNA1 TBC1D7 TSC2

CTNND1 CTNND1 TFDP1 CDK2

CTNND1 CTNNB1 TFDP1 CCNA1

DKK1 WNT1 TICAM1 TLR4

DKK1 SOST TJAP1 F11R

DVL1 TSC1 TJAP1 CLDN1

EIF3I ACVR2A TJAP1 TJP1

EIF3I ACVR1 TNF EGFR

EIF3I TGFBR1 TRADD TNFRSF10A

EP300 CD44 TRADD TNFRSF10B

ERBB2 PIK3R2 TRAF6 IRF3

ETS1 CREBBP TSC1 CDKN1B

FOXO1 TSC1 VAV1 SHC1

GRAP2 SOS1 VEGFB KDR

GRAP2 CBL VEGFB FLT4

HDAC2 RELA VEGFC FLT1

HIPK2 MDM2 VIPR2 RAMP1

HSPA4 BAX VIPR2 RAMP2

IGF2 IGF1R VIPR2 RAMP3

IL15 IL2RA VWF F8

IL1A EGFR YWHAB TSC1
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to 84% when such STRING relations are very reliable. At the same time, the second case 
study tested the ability of NETME in integrating knowledge about genes starting from 
a selected set of papers. The experiment yielded 98% sensitivity and 100% specificity. 
Therefore, both experiments clearly showed the high reliability of NETME ’s inferred 
networks.

Future work will include: (i) the construction of knowledge-graphs from all the open-
access papers stored in PubMed Central; (ii) the integration of all Obofoundry ontology 
within OntoTAGME; (iii) the design of a more effective algorithm to select the pertinent 
papers on which NETME has to be applied (Ponza et al. 2019, 2020); and finally, add a 
methodology that allows to extract context-based relationships
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