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Introduction
Many real world applications can be modeled as bipartite graphs, vertices of which are 
divided into two distinct groups: the tasks of user-product recommendation, mem-
ber-club recommendation, authors-venues recommendation etc. (Sun et  al. 2005). 
Many recommendation systems fall into this category (Li and Chen 2013). The prob-
lem setting that motivates our work also falls in the same group—the prediction of links 
between drug candidates and biological targets, an essential step of computational drug 
development.

Design of new drugs is a very important and expensive process in modern pharma-
cology. A molecule cannot be picked by random from the set of chemical elements 
and optimized until it can be used as a drug. The probability of successful outcome of 
this event tends to be zero, because the search space of chemical elements and their 
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combinations is enormous. To develop a valid drug for a certain biological target, 
many molecules must be tested first to find a subset of active ones towards a given tar-
get. Computational methods are employed more and more frequently to automate this 
search, while the main approach to reliably identifying such molecules still depends on 
in vitro testing, such as high-throughput screening (HTS)(An and Tolliday 2010). Com-
putational methods, in turn, are able to fine-tune the set of candidates in silico, cutting 
down on time and money invested in real-world testing.

A common challenge which the data on drug–target interaction prediction presents 
is sparsity. It introduces difficulties or makes it impossible to use traditional recom-
mendation systems techniques for making predictions. As a common solution, differ-
ent sources of information are combined into a heterogeneous structure, i.e. represented 
by networks the edges of which have different types. Such a representation significantly 
improves connectivity of the combined entities, but it introduces another challenge: 
the straightforward use of most existing link prediction methods becomes impossible 
in this new setting. The state of the art solutions are limited by the number or type of 
networks, often referred to as layers, e.g. three layers, with two assumed to be similarity 
networks (Chen et al. 2012; Lim et al. 2016; Buza and Peska 2017).

To address these restrictions, we model the problem as a link prediction problem in 
a bipartite multi-layer graph and take inspiration from existing methods that use com-
munity detection to perform link prediction (Guimerà and Sales-Pardo 2009; Yan and 
Gregory 2012; Soundarajan and Hopcroft 2012; Valverde-Rebaza and de Andrade Lopes 
2014). While this decouples the problem into how to find communities in multi-layer 
graphs, and how to exploit them for prediction, existing link prediction measures (Can-
nistraci et  al. 2013; Xie et al. 2014; Ding et al. 2016) are not directly applicable to the 
bipartite and/or multi-layer setting. To address this restriction, we extend several of 
those measures to our problem setting. In addition, we propose two ways for exploiting 
community information, one based on an existing bipartite local model and an alterna-
tive, and adapt existing measures to both of these settings.

Our main contribution is the resulting link-prediction-by-community-detection 
approach. The approach consists of three main steps: community detection, commu-
nity matching and link prediction. Community matching defines how resulting commu-
nities will be exploited, then link prediction is performed using matched communities 
and one of the proposed measures. We emphasize that our approach is agnostic to any 
particular community detection algorithm; we demonstrate that several such algorithms 
allow good performance. We perform evaluation with two most common techniques for 
community detection, spectral partitioning and the Louvain algorithm, both of which 
can be easily applied to multi-layer graphs. As we show in the experimental evalua-
tion, our approach is able to effectively perform drug-target prediction on bipartite 
multi-layer data using one of those techniques. Our contribution includes the proposi-
tion of two community matching techniques and the adaptation of existing link-predic-
tion-by-community-detection measures to the bipartite multi-layer setting. We evaluate 
them experimentally and select the best measure and community matching combina-
tion. In addition, we propose to set the parameters of the community detection methods 
via internal cross-validation and demonstrate the effectiveness of this method. Finally, 
using publicly available data, we construct two bipartite multi-layer networks the origin 
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of which are different than drug–target interactions and experimentally demonstrate 
the genericness of our approach on these networks. Taking into account that data in the 
bipartite multi-layer setting are rare, we consider the construction of those networks an 
additional contribution.

A final contribution consists of evaluating a number of recently proposed approaches 
for bipartite link prediction and comparison of those techniques to each other on data 
other than drug–target interactions for the first time, to the best of our knowledge.

The rest of the paper is organized as follows. Section “Related work” discusses related 
work on link prediction and community detection in multi-layer networks. Section 
“Definitions and problem setting” provides basic notations and definitions. Section “The 
LPbyCD approach” presents our link-prediction-by-community detection approach and 
explains how we adapt existing measures for our setting. Section “Experimental evalu-
ation” describes the data used for evaluation, the experimental setup and presents the 
results. Finally, Section “Conclusion” provides the conclusion and future perspectives. In 
addition, “Appendix 1” describes the construction of the two generic data sets used for 
assessing the genericness of our approach.

Related work
Existing approaches for link prediction in bipartite multi-layer networks to address the 
drug–target interaction problem can be grouped into three classes: similarity, random-
walker, and latent models based. The first group assumes two out of three possible layers 
to be similarity networks for drugs and targets respectively, and exploits similarity infor-
mation to perform link prediction on the third bipartite layer (Ding et  al. 2013; Buza 
and Peska 2017; Buza et al. 2020). When more than two similarity networks are used, an 
aggregation technique is employed to imitate the standard setting: matrix factorization 
(Luo et al. 2017), similarity network fusion (Olayan et al. 2018), cross-network embed-
dings (Chen et al. 2020), or a combination of several functions (Thafar et al. 2020). The 
use of a such technique increases the overall complexity, and the predictions are per-
formed based on the aggregated data. The second group models the behavior of a ran-
dom-walker to perform link prediction in multi-layer graph using PageRank adaptations 
(Chen et al. 2012; Cheng et al. 2012; Wang et al. 2014). Such approaches are dependent 
on fixing the similarity networks and while the approach was extended to any number 
of networks in (Koptelov et al. 2018), it pays for this flexibility with high computational 
cost. The last group of approaches maps drugs, targets and their interactions into a com-
bined feature space, and performs drug–target interaction prediction using regression 
analysis (Yamanishi et al. 2008), matrix factorization (Zheng et al. 2013; Luo et al. 2017) 
or denoising models (Tang et  al. 2020). The most recent family of approaches in this 
mold is often referred to as graph embeddings (Goyal and Ferrara 2018; Mohamed et al. 
2020; Thafar et al. 2020). The main disadvantage of this group of approaches is a certain 
lack of interpretability. The common problem of the state of the art on drug-target activ-
ity prediction remains the same. Many recent well performing approaches are not suited 
for de novo drug discovery, when no prior interactions are known for specific drugs and 
targets at the same time (Olayan et al. 2018; Buza et al. 2020; Mohamed et al. 2020).

The idea to use community information to predict links in graphs is not novel. 
Clauset et al. (2008) proposed to exploit a learned hierarchical generative community 
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model to estimate the probabilities of missing links in partially known networks. The 
authors of Guimerà and Sales-Pardo (2009), Yan and Gregory (2012), Valverde-Rebaza 
and de Andrade Lopes (2014), Shahriary et al. (2015) combine community detection 
with existing edge prediction methods to improve prediction accuracy. For instance, 
in Shahriary et al. (2015) communities are exploited by a PageRank/HITS approach to 
perform ranking of nodes which are then used for predicting the sign of edges in sign 
networks. These approaches are based on the hypothesis that vertices in the same 
community have similar properties, and missing edges are more likely to be found 
within communities. Missing edges are predicted by node similarity using nearest-
neighbor measures (Yan and Gregory 2012), Stochastic Block Models (Guimerà and 
Sales-Pardo 2009), or in-group/out-group neighbor similarity measures (Valverde-
Rebaza and de Andrade Lopes 2014). Edges can be predicted for vertices belonging 
to the same community even if there is no path between them within the community 
(Jalili et  al. 2017). In Jiang et  al. (2020) the authors propose a link prediction strat-
egy which only predicts the edges related to the central nodes of the communities. 
According to the authors, carrying out link prediction in this way can effectively 
reduce the probability of predicting edges between communities. More recent stud-
ies demonstrate that missing links can be predicted not only for node-pairs within 
a community, but also for the nodes belonging to different communities (Xu et  al. 
2020; Ding et  al. 2020). The density of links in a particular community or between 
two communities can be exploited in a naïve Bayes model (Liu et al. 2013). Links can 
be predicted simultaneously with community detection by decomposing the adja-
cency matrix to several matrices, one of which is used to derive communities and 
the others to perform prediction of edges (Shao et al. 2019). The authors of Ahn et al. 
(2010) reimagine communities as groups of edges rather than vertices, and Sounda-
rajan and Hopcroft (2012) use community detection to modify similarity measures. 
Finally, there is a set of approaches which extend the concept of shared neighbor-
hoods (Liben-Nowell and Kleinberg 2007) to community neighborhoods (Cannistraci 
et  al. 2013; Xie et  al. 2014; Ding et  al. 2016). In addition, in Hristova et  al. (2016) 
neighborhood measures have been extended to multiple layers.

Community detection in multi-graphs can also be performed in different ways: 
directly, by ensemble-based methods, or by graph flattening. The direct methods per-
form discovery of communities on the multi-layer network directly, e.g. by adapting 
objective functions for community detection to the multi-layer setting (Kuncheva 
and Montana 2015; Tagarelli et  al. 2017; De  Bacco et  al. 2017). The main drawback 
of these methods is the implementation complexity, making them hard to use “out 
of the box”. Ensemble-based methods perform community detection on each layer 
separately, and aggregate discovered communities afterwards (Tagarelli et  al. 2017). 
Their main uncertainty is the aggregation mechanism, which requires additional opti-
mization. Flattening methods, finally, summarize multiple edges into single ones and 
use the resulting single-layer network to discover communities by using one of the 
common community detection methods such as spectral partitioning (Leskovec et al. 
2014) or Louvain algorithm (Blondel et al. 2008). In this work, we test our approach 
with the last type of method, because it is able to provide the desired result, it is the 
easiest to use and its computational complexity is potentially the lowest. Please note 
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that our approach is not fixed to this type of method and can potentially perform pre-
diction with any community detection technique.

Definitions and problem setting
Basic notations

A graph is a tuple G = (V ,E,w) , where V = {v1, v2, . . . , vn} denotes a set of verti-
ces or nodes, E ⊆ V × V  a set of edges defined by distinct vertex pairs (u, v) ∈ V × V  
with u  = v (without self-loops), and w a labeling function for edges. We also use the 
notion of a bipartite graph, which we define as a graph whose vertices can be divided 
into two classes V1 and V2 such that there is no edge between vertices of the same class: 
G = (V1 ∪ V2,E,w) , E ⊂ V1 × V2.

We address weighted and unweighted graphs in the same manner. We define a 
weighted graph as one with a labeling function for edges w : E �→ [0, 1] , value of which 
represents a link probability (in case of an interaction network) or vertex similarity (in 
case of a similarity network). An unweighted graph is one where every edge is labeled by 
1.

To exploit different sources of information in one single structure, we employ multi-
layer networks. We define a multi-layer network as a weighted graph where more than 
one edge (u, v) can exist for a pair of vertices u, v. Multi-layer networks can be decom-
posed into disjunct sets of graphs Gl that contain at most a single edge for each pair of 
vertices, called layers or just networks. As we wrote above, our original setting is a bipar-
tite one. To combine it with the multi-layer framework, we define a bipartite multi-layer 
graph as a multi-layer network whose vertices can be divided into two classes, and where 
exactly one of the layers is a bipartite graph (see Fig. 1 for an example). Note, following 

Fig. 1  Example of a bipartite multi-layer graph with 6 layers for drug–target prediction problem. The two 
types of nodes are presented by vertices of different colors: blue nodes represent drugs or ligands, green 
nodes represent targets. The different layers are presented by edges of different colors: drug–target network 
is in deep blue (bipartite layer based on the IUPHAR network), drug networks are in light blue and violet, 
target networks are in light green, grey and brown. Numerical edge labels represent edge weights. New 
possible interactions in the bipartite layer are represented by dashed edges with question marks
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Kivelä et  al. (2014), the multi-layer networks used in this work are not node-aligned,1 
not layer-disjoint,2 have diagonal couplings3 which are categorical,4 and the number of 
non-bipartite layers can be any.

We represent graphs as matrices. The adjacency matrix A has size n× n , n = |V | , and 
Aij represents the weight of the edge (vi, vj) in case of a single layer graph, or the sum of 
the weights of multiple edges between vi and vj in case of a multi-layer network. Note 
that A has zeros on the main diagonal, because graphs as used in this work have no self-
loops. The degree matrix D is the diagonal matrix of same size as A, where deg(vi) repre-
sents the degree of vertex vi . The degree of a vertex is the sum of the weights of the edges 
adjacent to vi (Gallier 2013):

The last, and arguably most important, matrix used in this paper is the Laplacian 
matrix. The Laplacian matrix, denoted by L, is a matrix of the same dimensionality as 
A and D, defined as the difference between the degree matrix and the adjacency matrix: 
L = D − A . L has the same values as D on the diagonal, and off the diagonal Lij is equal 
to −Aij.

Problem setting

We define the problem of link prediction in bipartite multi-layer graphs addressed in 
this paper as follows.
For a given bipartite multi-layer graph G = GV1V2

∪ G
(n)
V1

∪ G
(m)
V2

 with 1+ n+m lay-
ers, where:

•	 GV1V2
= (V1 ∪ V2,EV1V2

,w
V1V2

) is a bipartite layer with ∀(u, v) ∈ E , u ∈ V1 , v ∈ V2 

and labeling function for edges w
V1V2

: EV1V2
�→ {0, 1},

•	 Gi
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i
V1
,wi

V1
) with wi

V1
: Ei
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•	 G
j
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= (V2,E
j
V2
,wj

V2
) with wj

V2
: E

j
V2

�→ [0, 1] are layers of type V2,

Predict, whether for a given (u, v)  ∈ E,u ∈ V1, v ∈ V2 , edge labeling function 
w

V1V2
((u, v)) = 1.

We limit ourselves to predicting whether there is an activity or not, leaving the predic-
tion of its strength as a perspective.

D =







deg(v1) 0 . . .

0
. . . 0

0 deg(vn)






, deg(vi) =

n
�

j=1

Aij .

1  In node-aligned networks, all nodes are shared between all layers.
2  In layer-disjoint networks, each node is present only in a single layer.
3  Inter-layer edges, that cross layers, are only between nodes and their counterparts.
4  Diagonal couplings for which all possible inter-layer edges are present.
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The LPbyCD approach
In our problem setting, we want to predict links between two distinct types of nodes, 
e.g. drugs and targets in our experiments (see Fig.  1). To achieve this, we perform 
community discovery using an existing community detection approach, then exploit 
the discovered communities to solve the link prediction task. The resulting approach, 
which we call Link-Prediction-by-Community-Detection or LPbyCD, can be sum-
marized as a 3 step algorithm (Fig.  2). In the first step of this algorithm, nodes are 
grouped into communities by a selected community detection method. We perform 
experiments with spectral partitioning and the Louvain algorithm as such a method, 
but it can be any community detection algorithm from Section “Related work”. In 
the second step, obtained communities are matched using one of the two techniques 
which we developed. In the last step of the algorithm, the matched communities are 
exploited with one of the link prediction measures which we adapted to our setting. 
In this section, we describe how communities are used with our approach (the second 
step of the algorithm) and explain how we adapt existing measures for link prediction 
to our setting (the third step).

Link prediction by community detection in a bipartite setting

Due to the construction of the networks we use and the community detection meth-
ods we evaluate, resulting communities can be mixed, i.e. containing both types of 
nodes, drugs and targets, as well as pure, of either type, drugs or targets only. Also, 
the community detection methods we use produce non-overlapping communities 
only. Mixed communities can be exploited directly with existing measures for link 
prediction via community detection (see Section “Related work”), but pure communi-
ties cannot, ignoring a large number of drug-target pairs. To treat all communities in 
a consistent manner, we treat all of them as non-mixed, i.e. each mixed community is 
treated as two pure ones with links between them. We exploit discovered communi-
ties in one of two proposed ways: by matching “community to community” or “node 
to community”.

Fig. 2  A general pipeline of the LPbyCD approach
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Community to community

In this case, each drug community is paired with each target community, then an 
adapted measure is used to perform link prediction between paired communities. Each 
non-interacting drug-target pair between paired communities is assigned the same link 
probability score. At the end of the matching, each non-interacting drug–target pair 
from the network will have been assigned a single score, which can be used to rank pre-
dictions. We refer to this approach as community to community (or CC).

In the example shown in Fig.  3, for instance, community C1 is twice connected to 
community C3 and twice to community C4. C2, on the other hand, is connected once to 
C3 and once to C4. This matching therefore implicitly assumes that all ligands in C1 have 
a connection of strength two to all targets in C3 etc. The big advantage of this matching 
is that even vertices that have no bipartite connection at all can receive a positive score.
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An appealing characteristic of our approach is that it can overcome the cold-start 
problem: many recommendation techniques require one item in the predicting pair, e.g. 
drug (target), to have at least one explicit connection with the other type of entities, e.g. 
with targets (drugs), that can be exploited. In CC, this is not necessary.

Node to community

Another way of exploiting communities is to pair each node of one type with communi-
ties of the other type. The advantage of that method is that for a selected drug di and 
target tj , the prediction can be made twice: once analyzing connections of a drug with 
target communities and second analyzing target connections with drug communities, 
providing a more reliable estimate. This approach is also referred to as Bipartite Local 
Models (BLM) (Bleakley and Yamanishi 2009).

Figure 4 illustrates the difference of this method with the CC matching using the same 
communities and the same strengths of the connections as in Fig. 3. For example in Fig. 4, 
there is twice evidence for l1 and t1 to be connected with strength 2, twice evidence for l2 
and t2 to be connected with strength 1, and mixed evidence for the connections between 
pairs l1 and t2, and l2 and t1 coming from different origin: l1 is strongly connected to the 

Fig. 3  An example of community to community matching (label on edges represent number of existing 
edges between vertices of matched communities). Note that this example is independent from the network 
shown in Fig. 1

Fig. 4  An example of node to community matching (labels on edges represent number of existing edges 
between vertices and matched communities, dotted edges represent non-interacting pairing)
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target community C3 with strength 2 and t2 is weakly connected to the drug community C1 
with strength 1, and l2 is weakly connected to the target community C3, but t1—strongly to 
the drug community C1. In the case of CC matching, only one evidence is provided with 
less detailed description: all combinations between l1, t1 and t1, t2 are strongly connected 
with strength 2 (Fig. 3).

Vertices belonging to the same community will therefore not necessarily receive the same 
score but a vertex such as l5 will be strongly punished because it is not connected with a 
bipartite edge. The link probability score between di and tj is computed by aggregating the 
two results (Buza and Peska 2017). We report results using mean as an aggregation func-
tion. Our experiments showed that the difference between max and mean is negligible, and 
we use mean to get a more reliable result. We do not consider min as aggregator, because in 
the case of no evidence for existence of the link in one of the independent predictions the 
combined probability is also 0. We refer to this approach as node to community (or NC).

An advantage of our approach with regards to solving the cold-start problem while using 
the CC matching also holds for NC. Depending on the link prediction measure that is used, 
NC might not be required to have explicit connections with the opposite type of entities 
(the other type of connections, e.g. similarity networks, might be exploited in such cases).

Adapting existing link prediction measures

To be able to use the existing link-prediction-by-community-detection measures, we have 
to adapt them to the bipartite setting, and to the multi-layer one where it is required. We 
divide all existing link prediction measures into two broad categories: neighborhood meas-
ures and others, which we refer to as community-based. The first group of measures are 
based on the notion of neighborhood, i.e. the set of vertices directly connected to the exam-
ined vertices. The semantic similarity between neighborhood and community, i.e. sets of 
vertices in both cases, allows us to use neighborhood measures in our setting. The other 
measures are not based on a notion of neighborhood, but on other metrics, and thus are 
grouped into a separate group in our work.

Adapting neighborhood measures

Many existing link prediction measures exploit the neighborhoods of vertices e.g. in the 
form of common neighbors (CN), the Jaccard coefficient (JC), preferential attachment (PA), 
or SimRank (SR). These measures, defined in Liben-Nowell and Kleinberg (2007) as neigh-
borhood measures, take the following form in drug-target formulations:

(1)CN (di, tj) =|{v | (di, v) ∈ E} ∩ {u | (tj ,u) ∈ E}|,

(2)JC(di, tj) =
CN (di, tj)

|{v | (di, v) ∈ E} ∪ {u | (tj ,u) ∈ E}|
,

(3)PA(di, tj) =||Ŵ(di)|| · ||Ŵ(tj)||, with ||Ŵ(di)|| =

|V |
∑

k=1

Aik and ||Ŵ(tj)|| =

|V |
∑

k=1

Ajk ,
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||Ŵ(v)|| denotes the weight of a neighborhood of a vertex v, which for individual vertices 
is equivalent to their degree.

Due to the nature of the communities we obtain, there is little overlap between ver-
tices’ neighborhoods, preventing the direct use of neighborhood-based measures. To 
overcome this, we adapt neighborhood measures for use with our communities, treat-
ing them like neighborhoods: 

1.	 The CN measure turns the number of common neighbors of communities di and tj 
into the number of connections. Instead of the measure from Eq. 1, we define the 
CNCC version corresponding to CC matching: 

 where C(di) , C(tj) denote sets of nodes that the communities of a drug di and a tar-
get tj have, respectively. The NC version of CN is defined as the average of the two 
independent predictions, CNNC(di) and CNNC(tj) , for di and tj respectively: 

 with CNNC(di) and CNNC(tj) defined as: 

2.	 JC represents the fraction of all possible connections of di and tj that are connected 
to both. Using the CC and NC formulations, our bipartite adaptations of Eq. 2 take 
the form: 

 where |C(di)| , |C(tj)| represent sizes that the communities of a drug di and a target tj 
have, respectively.

3.	 PA is defined as the product of degrees of communities of di and tj . The CC formula-
tion of the measure from Eq. 3 takes the form: 

 where ||Ŵ(C(v))|| denotes the degree of the neighborhood of a community, v defined 
as: 

(4)SR(di, tj) =
CN (di, tj)

PA(di, tj)
.

(5)CNCC(di, tj) = |{(d, t) ∈ E | d ∈ C(di), t ∈ C(tj)}|,

(6)CNNC(di, tj) =
1

2

(

CNNC(di)+ CNNC(tj)
)

,

CNNC(di) = |{t | (di, t) ∈ E, t ∈ C(tj)}|,

CNNC(tj) = |{d | (tj , d) ∈ E, d ∈ C(di)}|.

(7)JCCC(di, tj) =
CNCC(di, tj)

|C(di)| · |C(tj)|
,

(8)JCNC(di, tj) =
1

2

(

CNNC(di)

|C(tj)|
+

CNNC(tj)

|C(di)|

)

,

(9)PACC(di, tj) = ||Ŵ(C(di))|| · ||Ŵ(C(tj))||,
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 with the neighborhood of a community defined as the set of neighbor vertices the 
community has: Ŵ(C(v)) = {v | v ∈ C(v),u /∈ C(v), (u, v) ∈ E} . Taking into account 
that PANC(di) = ||Ŵ(di)|| · ||Ŵ(C(tj))|| and PANC(tj) = ||Ŵ(tj)|| · ||Ŵ(C(di))|| we can 
define the NC version for PA (Eq. 3): 

4.	 Finally, SR is equal to the number of connections of the communities of di and tj nor-
malized by the product of their degrees. Instead of the measure from Eq. 4, we define 
SRCC and SRNC versions corresponding to CC and NC matching respectively: 

Adapting community‑based measures

Other measures proposed in the literature are based on one or several of the follow-
ing assumptions: all vertices have the same semantic, all edges have the same seman-
tic, edges are unweighted, or vertices whose link is to be predicted find themselves 
in the same community. They exploit community information in some sense, and we 
thus call them community-based. The different assumptions are violated in our prob-
lem setting and we therefore cannot use these measures in a straightforward manner, 
but we can adapt some to our bipartite setting: 

1.	 Cannistraci et al. (2013) in their CAR-based measures propose to exploit the density 
of communities to reward (or penalize) densely (sparsely) connected neighbors of 
the vertices whose link is to be predicted. These measures are based on the assump-
tion that common neighbors of the given vertices should belong to the same commu-
nity, in which case the probability of the connection will be highest. We thus cannot 
adapt the measures to the CC formulation, which assumes that the vertex communi-
ties are separated, but can propose the NC versions. Our adapted CAR-based com-
mon neighbors (CCN) will be defined as CN regularized by local community degree, 
in turn defined as the sum of weights of all edges inside a community. The NC for-
mulation of CCN takes the form: 

 with CCNNC(di) and CCNNC(tj) in turn defined as: 

(10)||Ŵ(C(v))|| =
∑

v∈C(v),u/∈C(v)

A(v,u),

(11)PANC(di, tj) =
1

2
(PANC(di)+ PANC(tj)).

(12)SRCC(di, tj) =
CNCC(di, tj)

PACC(di, tj)
,

(13)SRNC(di, tj) =
1

2

(

CNNC(di)

PANC(di)
+

CNNC(tj)

PANC(tj)

)

.

(14)CCNNC(di, tj) =
1

2

(

CCNNC(di)+ CCNNC(tj)
)

,
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 In the same manner, we redefine the CAR-based Jaccard coefficient (CJC) as CCN 
normalized by the size of the community: 

2.	 Xie et al. (2014) propose to exploit the connection of vertices to communities, sum-
ming over all communities. Their measure, which we refer to as Neighboring commu-
nity-based (NCB), estimates the probability that two given nodes belong to the same 
community. Our adaptation of the measure is defined as the normalized sum of all 
CN regularized by the size of the respective community. As in the case of CAR-based 
measures, we cannot define a CC formulation because of the same reason, and thus 
propose only an NC formulation: 

 with NCBNC(di) and NCBNC(tj) in turn: 

 where |D| and |T| represent the number of drug and target vertices respectively. 
Moreover, assuming communities are pure, i.e. consisting only of either drugs or tar-
gets, these equations can be simplified to the sum of all CN normalized by the num-
ber of vertices of one type: 

3.	 Ding et al. (2016) in their Community relevance measures, finally, propose to extend 
the notion of node neighborhoods in neighborhood measures to neighborhoods of 
communities. Our CC adaptation of their version of the JC measure is defined as the 
number of common nodes of examined communities and nodes of the opposite type 

CCNNC(di) =|{t | (di, t) ∈ E, t ∈ C(tj)}| ·
∑

tl ,tk∈C(tj)

A(tl , tk) and

CCNNC(tj) =|{t | (tj , d) ∈ E, d ∈ C(di)}| ·
∑

dl ,dk∈C(di)

A(dl , dk).

(15)CJCNC(di, tj) =
1

2

(

CJCNC(di)+ CJCNC(tj)
)

,

with CJCNC(di) =
CCNNC(di)

|C(tj)|
and CJCNC(tj) =

CCNNC(tj)

|C(di)|
.

(16)NCBNC(di, tj) =
1

2

(

NCBNC(di)+ NCBNC(tj)
)

,

NCBNC(di) =

ct
∑

k=1

|{t | (di, t) ∈ E, t ∈ Ck}|

|Ck |
·
|{t | t ∈ Ck}|

|T |
and

NCBNC(tj) =

cd
∑

k=1

|{d | (tj , d) ∈ E, d ∈ Ck}|

|Ck |
·
|{d | d ∈ Ck}|

|D|
,

NCBNC(di) =
1

|T |

ct
∑

k=1

|{t | (di, t) ∈ E, t ∈ Ck}|,

NCBNC(tj) =
1

|D|

cd
∑

k=1

|{d | (tj , d) ∈ E, d ∈ Ck}|.
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connected to those communities normalized by the total number of nodes in this 
selection. We refer to it as Community relevance Jaccard coefficient (CRJC): 

 with CRJCCC(di) and CRJCCC(tj) in turn: 

 Since the adapted versions of Community relevance are not based on counting spe-
cific edges, but on counting nodes instead, the NC version of CRJC for a single node 
would be the same as CRJCCC for the same node in our interpretation. For the same 
reason, Community relevance versions of other neighborhood measures in our set-
ting also become meaningless.

The pseudo-code of our approach using two most common link prediction measures is 
presented in Algorithm 1.

Experimental evaluation
We test the LPbyCD approach with two community detection methods. To evaluate 
these methods, effects of their parameter settings, and prediction measures defined in 
the preceding section, we performed experiments on several benchmark data sets for 
drug-target activity prediction.

Experimental setup

We begin by evaluating the different measures described in Section “The LPbyCD 
approach” with two common community detection approaches, keeping most of the 
parameters fixed, and select the best performing measure. Following this, we show how 
an internal cross-validation can be used to fix a method’s parameters, and report on 
their results, which we compare to the state-of-the-art. We also perform experiments on 
a larger and more challenging data set and give some scalability results.

Community detection methods

We test our approach with spectral partitioning (Leskovec et al. 2014) and the Louvain 
algorithm (Blondel et  al. 2008) as community detection methods. The first finds the 
best cut to partition nodes based on eigenvalues of the Laplacian matrix and a thresh-
old method (Spielman and Teng 2007; Fortunato 2010), the second greedily optimizes 
modularity, a generic measure to determine the quality of any partition produced by a 
community detection method (Newman and Girvan 2004; Fortunato 2010). We apply 
spectral partitioning to multi-layer graphs by “flattening” the graph, i.e. summing edge 
weights to derive the adjacency and degree matrices before performing partitioning. 
Since Louvain does not employ matrices, we translate the graph into a single-layer graph 
by summing up the weights of all edges between two vertices. Practically, this is the same 
operation, but technically it is performed differently.

(17)CRJCCC(di, tj) =
|CRJCCC(di) ∩ CRJCCC(tj)|

|CRJCCC(di) ∪ CRJCCC(tj)|
,

CRJCCC(di) ={t | (d, t) ∈ E, d ∈ C(di)} ∪ {d | d ∈ C(di)} and

CRJCCC(tj) ={d | (t, d) ∈ E, t ∈ C(tj)} ∪ {t | t ∈ C(tj)}.
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Parameters to optimize

Spectral partitioning has two parameters: the value of m and the thresholding method. 
The m parameter represents the number of eigenvectors corresponding to the m small-
est non-zero eigenvalues used to partition the graph into at most 2m groups. As thresh-
olding several methods can be used: sign cut (or default), which partitions entries based 
on whether they are greater or less than zero, bisection cut (or median), using the median 
value of entries in an eigenvector as a threshold, producing two components of approxi-
mately equal size (Guattery and Miller 1995), and mean, which uses the average. In addi-
tion to them we propose sum that exploits the fact that there are approximately equally 
as many positive and negative values in eigenvectors of Laplacian matrix, i.e. in prac-
tice they sum to a value close to zero, creating groups of vertices approximately equal 
in size. Moreover, the same thresholding function can be applied to all eigenvectors, or 
each individual eigenvector can have its own threshold. We call the former approach 
global, and the latter individualized. Additionally, the global threshold can be computed 
by applying the aggregating function (mean, median or sum) to all eigenvectors or only 
to the m actually used. We refer to this latter type as localized. To sum up, we evaluate 9 
different thresholding methods: global, localized, individualized and their combinations 
with mean, median and sum. The combination global sum is a special case since taking 
the first eigenvector, whose entries all have the same, positive value, into account violates 
the “close to zero” property sum thresholding exploits. We therefore do not evaluate 
that thresholding method, but add default thresholding to the mix for the experimental 
evaluation.

The Louvain algorithm has only one parameter—resolution limit—which defines 
a modularity scale. Practically speaking, at different moments of time t, the difference 
between optimal partitioning and partitioning produced by the Louvain varies and the 
resolution parameter represents this change in time (Lambiotte et al. 2008). The reso-
lution limit is not required to be preselected by the user as the m value is in spectral 
partitioning. Instead, the default value usually gives satisfying results. However, as in the 
case of selecting the optimal thresholding method in spectral partitioning, the resolu-
tion limit value can be optimized to get a better result.

Data sets

We perform our experiments on the data sets introduced in Yamanishi et  al. (2008): 
Enzyme, G-protein coupled receptors (GPCR), Ion Channels (IC) and Nuclear Recep-
tors (NR). In addition, we use the Kinase set (Davis et  al. 2011). These data sets have 
been used in prior work on drug–target interaction prediction (Chen et al. 2012; Zheng 
et al. 2013; Lim et al. 2016; Buza and Peska 2017), and can be considered benchmarks. 
The data consist of 3 networks: drug similarities, target similarities and drug–target 
interaction (the bipartite graph). The data sets’ basic properties are presented in Table 1.

In addition, we evaluate our approach on a bigger data set, IUPHAR5 network, hav-
ing 6 layers (see Fig. 1 for an example). We have taken that data set from (Koptelov et al. 

5  International Union of Basic and Clinical Pharmacology.
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2018), where it is described in detail. The data set basic properties are also presented in 
Table 1, which shows that IUPHAR is significantly larger.

Finally, we perform evaluation of our approach on the data sets the origin of which are 
different than drug–target interactions. To achieve that we construct two new bipartite 
multi-layer data sets based on publicly available data, which we refer to as generic. The 
first, the MovieLens network, contains user-movie ratings and the second, the Unicode-
lang network, concerns countries and languages spoken in them. The construction of 
the sets is detailed in “Appendix 1”, and the data sets’ basic properties are presented in 
Table 1.

It is worth to notice that all data sets from Table 1 have one single connected compo-
nent. The number of connected components of each data set have been reduced to one 
by aggregating different similarity layers with an original bipartite network, which helps 
to improve performance of link prediction. This phenomena and the effects of aggregat-
ing different layers are discussed in our prior work (Koptelov and Zimmermann 2019).

Evaluation protocol and quality measures

To perform evaluation of our experiments, we performed a 5 ×5-fold cross-valida-
tion (CV), with each fold containing 20% of all drug–target interactions, acting as test 
set for link prediction once, while community detection is performed on the other 80%. 
The process is repeated 5 times, the results are averaged among all runs. We evaluate 
all the predictions by Area Under ROC Curve (AUC) and Area Under Precision-Recall 
Curve (AUPR), averaging the results. We also report standard deviation values when it is 
applicable.

Comparison methods

Link prediction measures evaluation We first test the different link prediction measures 
and compare the results with the use or spectral partitioning and the Louvain algorithm 
as a community detection method. To reduce computational complexity, we use default 
parameters for community detection: default as threshold for spectral partitioning and 
1.0 as resolution limit for the Louvain algorithm. Note that we optimize m for spectral 
partitioning on the test data in this experiment, because there is no a priori number of 
eigenvalues that will fit all data.

Table 1  Basic properties of benchmark, IUPHAR and generic data sets

Data set V1 V2 Interactions Layers |V| |E| Sparsity Connected 
components

Enzyme 445 664 2926 3 1109 321832 0.524 1

GPCR 223 95 635 3 318 29853 0.592 1

IC 210 204 1476 3 414 44127 0.516 1

NR 54 26 90 3 80 1846 0.584 1

Kinase 68 442 1527 3 510 101266 0.780 1

IUPHAR 8137 2502 12456 6 10639 26706838 0.472 1

MovieLens 943 1682 100000 3 2625 1940394 0.563 1

Unicodelang 254 614 1255 3 868 218996 0.582 1
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Parameter selection via internal cross-validation In link prediction, as in any other pre-
dictive task, the main issue is choosing parameter values, in the case of spectral partition 
m and the thresholding method, in the case of Louvain the resolution limit. We propose 
to use internal cross-validation as a systematic way to fix community detection approach 
parameters implemented as follows: splitting off each of 5 external test folds (containing 
20% of present edges each) to evaluate the model, and using an internal cross-validation 
on the remaining 80% training data as described in Section “Evaluation protocol and 
quality measures” to fix the model’s parameters. During the internal cross-validation, we 
performed grid search over the different parameter settings, varying m in the interval 
[1, 25], and testing this value with all nine options for thresholding for spectral parti-
tioning, and varying resolution in the interval [0.1, 1] using steps of 0.1 for Louvain. We 
report averaged results using mean.

Comparison with a random walk approach and to the state of the art Our problem 
setting was addressed in (Koptelov et  al. 2018), using a random walk approach which 
is basically an extension of PageRank for any number of layers, and thus can be used as 
a baseline in this work. We perform comparison with the results of the state-of-the-art 
approaches6 reported in Buza et al. (2020) for Enzyme, GPCR, IC and NR data sets, and 
in Buza and Peska (2017) for Kinase data set.

Performance on a bigger data set We evaluate our approach on IUPHAR, which is 
much bigger than any of the benchmark sets, then compare the results with our baseline. 
As we will show in Section “Parameter selection via internal cross-validation” that fix-
ing parameter values internally gives effectively the same results as reporting the best 
result on the testing data, we do the latter for IUPHAR to save time. IUPHAR is too 
large to search the parameter space for m starting from m = 1 with step size 1—instead 
we used step size 10 for the grid search and searched in a more fine-grained manner 
once we had found a maximum in this way. Note, that negative edges were not removed 
from IUPHAR as in the structure of the benchmark data sets. Instead, edge labels were 
ignored for measures computation step, allowing us to compare the results with the 
baseline taken from Koptelov et al. (2018).

Running times and scalability In order to verify scalability of our approach, we com-
pared running times on the benchmark sets to ones with IUPHAR, which is significantly 
larger than any of the benchmark sets. Note that we show results for complete test folds 
since optimizing the parameter values via internal cross-validation will require five times 
this running time before the derived model can be applied to unseen data.

Performance on generic data sets In order to evaluate the genericness of our approach, 
we first repeat parameter selection via internal cross-validation experiment to check if 
this method also works with generic sets. As in the setting of Section “Parameter selec-
tion via internal cross-validation”, we optimize the thresholding method and the value 
of m for spectral partitioning and resolution limit for the Louvain algorithm. The grid 
search range is same as before: m is varied in the interval [1, 25] and resolution in [0.1, 1] 
with steps 0.1. The only exception is that for JCCC on the Unicodelang network, the 

6  Using the same evaluation framework with 5 × 5 cross-validation.
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interval was extended by [1, 75], otherwise the local optimum for this setting could not 
be found.

State of the art comparison on generic data sets In addition to evaluating the generic-
ness internally, we optimize our approach on the test data to get an idea of maximum 
attainable performance and we compare the results with the state of the art approaches: 
DTIP_MDHN7 (Tang et  al. 2020), DTiGEMS+8 (Thafar et  al. 2020), ALADIN9 (Buza 
and Peska 2017), BLM-NII10 (Mei et al. 2013), WNN-GIP11 (Van Laarhoven and Mar-
chiori 2013) and NetLapRLS12 (Xia et al. 2010). We use these approaches because they 
can be used directly with our setting and they have source code available. As evaluation 
protocol we use 5 × 5 fold cross-validation as described in Section “Evaluation protocol 
and quality measures”, which allows us to compare running times with other approaches. 
We optimize m in the interval [1,10] for spectral partitioning, other parameters remain 
unchanged: 9 different thresholds for spectral partitioning and resolution limit from 
0.1 to 1 with steps 0.1 for Louvain. In addition to standard quality measures—averaged 
AUC, AUPR and their standard deviation—we measured both cpu time and exact time 
to assess computational complexity of the approaches.13

Implementation

We implemented spectral partitioning with all thresholding methods and all link predic-
tion measures in Python,14 and we used python-louvain package as implementation of 
Louvain.

To perform comparison with the state of the art, the source code from Tang et  al. 
(2020) was used as implementation of DTIP_MDHN, the code from Thafar et al. (2020) 
as implementation of DTiGEMS+ and the toolbox from Buza and Peska (2017) was used 
as implementation of ALADIN, BLM-NII, WNN-GIP and NetLapRLS. The evaluation 
framework was fixed to 5 × 5 where it was required in the aforementioned implementa-
tions, and DTiGEMS+ was used with single similarity network for each type of node.

All experiments in this article were run on servers with 2 processor units of class Intel 
Xeon E5-2680 with 48 cores in total and 512 Gb of RAM.

Experimental results

Link prediction measures evaluation

We first test the different link prediction measures from Section “The LPbyCD approach” 
on communities produced by either spectral partitioning or the Louvain algorithm. The 
results are presented in Fig. 5, with CC formulations on the left, NC ones on the right 
of each plot. The best-performing measure for each group is indicated by a + sign over 

13  the difference is that cpu time gives more accurate estimation when using multi-thread computations.
14  https://​github.​com/​kopte​lovmax/​LPbyCD.

7  Drug–Target Interaction Prediction method using Marginalized Denoising model on Heterogeneous Network.
8  A computational method that predicts Drug–Target interactions using Graph Embedding, graph Mining, and Similar-
ity-based techniques.
9  An Advanced Local Drug–Target Interaction Prediction technique.
10  Bipartite local model with neighbor-based interaction-profile inferring.
11  Predicting Drug–Target Interactions for New Drug Compounds using a Weighted Nearest Neighbor profile.
12  Laplacian Regularized Least Square method improved for drug–protein interaction Network.

https://github.com/koptelovmax/LPbyCD
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the corresponding bar. We also report the optimal m value for every measure in spectral 
partitioning on the figure.

The results show that a number of measures, e.g. SRCC , CNNC , SRNC , CCNNC , CJCNC , 
NCBNC , have acceptable performance in terms of AUC on most of data sets while the 
Jaccard coefficient performs best for both the CC and NC versions in Enzyme, GPCR, IC 
and NR sets. This might be because the JC gives less extreme values due to normaliza-
tion, it also takes community sizes into account, while most of the other measures (CN, 
PA, SR, CCN and NCB) do not. For Kinase, this is only partially true (NCBNC is the 
best in spectral partitioning and CNNC performs the same as JCNC for Louvain), which 

Fig. 5  Link prediction measures evaluation on the benchmark data sets. The symbol + denotes the best 
performing measure for each group of formulations in each data set
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can be explained by the fact that Kinase is a quite specific set (has many more targets 
than drugs, not as sparse as others), and comes from a different source. We will therefore 
use JCCC and JCNC as best performing measures in the following experiments, and test 
the LPbyCD approach further with more diverse data. Another result is that for these 
parameter settings spectral partitioning and the Louvain algorithm give approximately 
the same AUC, but the latter improves on AUPR. This is not enough to draw a conclu-
sion that Louvain is always better, and we will continue testing both community detection 
approaches going forward. Finally, using NC predictions requires a lower m, i.e. less fine-
grained partitions, for spectral partitioning. NC is a more expensive approach than CC 
in terms of computational time (requires more operations on matching and performs 
predictions twice), thus this requirement compensates the final cost when searching for 
the optimal m.

Table 2  The LPbyCD parameter optimization via internal cross-validation on benchmark data sets 
and how it compares to the setting when not discovering communities at all

The results for spectral partitioning and the Louvain algorithm used as a community detection (CD) method. The results 
between internal and external validation align very closely w.r.t. AUC (highlighted in bold)
a Assuming m = 0 for spectral partitioning as CD method

Data set CD method/measure Internal validation External validation

AUC​ σ AUPR σ AUC​ σ AUPR σ

Enzyme w/o CDa/JCNC – – – – 0.88 0.01 0.11 0.01

Spectral part./JCCC 0.85 0.00 0.14 0.04 0.85 0.01 0.19 0.07

Spectral part./JCNC 0.91 0.00 0.19 0.02 0.92 0.01 0.26 0.06

Louvain/JCCC 0.94 0.00 0.52 0.00 0.96 0.00 0.69 0.04

Louvain/JCNC 0.95 0.00 0.56 0.02 0.96 0.01 0.71 0.02

GPCR w/o CDa/JCNC – – – – 0.78 0.02 0.18 0.02

Spectral part./JCCC 0.79 0.01 0.11 0.02 0.80 0.02 0.15 0.02

Spectral part./JCNC 0.84 0.01 0.19 0.01 0.85 0.01 0.25 0.02

Louvain/JCCC 0.73 0.01 0.18 0.02 0.80 0.03 0.31 0.05

Louvain/JCNC 0.85 0.01 0.28 0.03 0.89 0.01 0.49 0.04

IC w/o CDa/JCNC – – – – 0.85 0.01 0.25 0.02

Spectral part./JCCC 0.82 0.01 0.31 0.03 0.83 0.02 0.40 0.04

Spectral part./JCNC 0.87 0.00 0.32 0.06 0.88 0.01 0.41 0.05

Louvain/JCCC 0.94 0.00 0.50 0.01 0.95 0.01 0.65 0.04

Louvain/JCNC 0.96 0.00 0.61 0.02 0.97 0.01 0.78 0.03

NR w/o CDa/JCNC – – – – 0.68 0.08 0.16 0.05

Spectral part./JCCC 0.73 0.02 0.21 0.03 0.72 0.06 0.24 0.08

Spectral part./JCNC 0.75 0.03 0.19 0.02 0.77 0.06 0.23 0.13

Louvain/JCCC 0.79 0.03 0.27 0.06 0.82 0.06 0.45 0.13

Louvain/JCNC 0.81 0.03 0.30 0.05 0.80 0.09 0.42 0.14

Kinase w/o CDa/JCNC – – – – 0.85 0.01 0.32 0.03

Spectral part./JCCC 0.76 0.01 0.17 0.01 0.77 0.03 0.23 0.02

Spectral part./JCNC 0.85 0.00 0.26 0.02 0.86 0.01 0.35 0.02

Louvain/JCCC 0.72 0.00 0.15 0.01 0.73 0.01 0.19 0.01

Louvain/JCNC 0.90 0.00 0.38 0.01 0.91 0.01 0.50 0.03
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Parameter selection via internal cross‑validation

Table 2 presents the results for spectral partitioning and the Louvain algorithm used as 
a community detection (CD) method. It shows both the results of internal evaluation, 
i.e. on the validation set used to fix parameter values, and of the external evaluation, i.e. 
on the unseen training data. The results between internal and external validation align 
very closely w.r.t. AUC (highlighted in bold), at the same time, the relatively low stand-
ard deviation shows that AUC/AUPR values for different folds do not differ much. Both 
allow us to draw the conclusion that the results are rather stable and there is no risk of 
overfitting when building the model. Concerning AUPR, interestingly enough, the results 
on the testing folds are in fact higher than for the validation data used in the internal 
validation. For Enzyme and NR, this might be explainable by slightly higher standard 
deviation, i.e. for some folds the result remains approximately the same, for others it is 
an improvement. In addition, using NC matching always gives better results than CC 
matching, often by a large margin.

As in the case of spectral partitioning, the performance of Louvain is rather close in 
terms of AUC but the differences in AUPR are even more pronounced. GPCR is a bit 
of an outlier for this experiment in that the differences between internal quality estima-
tion and test fold results are larger than for the other data sets. This motivates us to also 
test our approach with more diverse data. Concerning the superior performance of NC 
matching, as in the case of spectral partitioning this also holds for Louvain.

Table 3  The LPbyCD performance comparison with a baseline approach and the state of the art

LPbyCD with the Louvain and JC_{NC} comes close to the performance of the state-of-the-art in terms of AUC (highlighted 
in bold)
a  Buza et al. (2020)
b  Buza and Peska (2017)

Data set Approach Performance

AUC​ AUPR

Enzyme Baseline 0.84 0.15

LPbyCD(Louvain/JCNC) 0.96 0.71

MOLIEREa 0.99 0.90

GPCR Baseline 0.80 0.22

LPbyCD(Louvain/JCNC) 0.89 0.49

MOLIEREa 0.95 0.75

IC Baseline 0.76 0.27

LPbyCD(Louvain/JCNC) 0.97 0.78

MOLIEREa 0.98 0.91

NR Baseline 0.63 0.26

LPbyCD(Louvain/JCCC) 0.82 0.45

MOLIEREa 0.91 0.68

Kinase Baseline 0.61 0.13

LPbyCD(Louvain/JCNC) 0.91 0.50

ALADINb 0.93 0.60
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Comparison with a random walk approach and to the state of the art

The baseline approach presented in Section “Comparison methods” already had an 
acceptable performance in terms of AUC (Table 3). However, LPbyCD with JCCC and 
JCNC as a link prediction measure in combination with both spectral partitioning and 
the Louvain clearly outperforms it (Table 2). Table 3 demonstrates the gap between the 
results of the baseline and the best performing setting of LPbyCD. Our approach pro-
vides a higher margin, because it is based on a more complex heuristic rather than sim-
ple random walk. It also demonstrates that the communities it produces are useful.

Concerning comparison with the state-of-the-art, LPbyCD with the Louvain and JCNC 
comes close to the performance of the state-of-the-art in terms of AUC (Table  3, high-
lighted in bold). The reason why our approach does not outperform them could be in 
the fact that benchmark sets are too small to form good communities, and the regression 
based approaches, such as ones used in this comparison as the implementations of the 
state-of-the-art, are better suited for small sets.

Performance on a bigger data set

The five benchmark data sets on which we have reported to far are relatively small and 
dense, as shown in Table 1. In this section, we therefore contrast those results with those 
on the IUPHAR data set.

The results are shown in Table 4. As Table 4 shows, LPbyCD using either spectral par-
titioning or Louvain clearly improves on the results of the baseline. Contrary to the results 
on the benchmark data sets, however, the settings with spectral partitioning outperform 
the ones with Louvain, even though the two are close for node-community matching. 
The table also shows a very surprising result in that spectral partitioning with node-
community matching does best when not creating communities at all! In that case it is 
the matching technique that does the heavy lifting and effectively treats each entity as a 
community of size 1 when the time comes to predict new links.

To evaluate whether this is a phenomenon that is specific to IUPHAR or occurs more 
generally, we compare the results for m = 0 on the benchmark data to the ones achieved 
by parameter-optimized spectral partitioning in Table 2. As the table shows, optimizing 
parameters does provide a performance gain, sometimes strongly so, as in the case of 
NR. Yet at the same time, the results for m = 0 are acceptable. This indicates both that 

Table 4  Performance ceiling on IUPHAR with optimal parameters

a  for 1 fold in average
b  taken from Koptelov et al. (2018), where AUPR was not reported
c  must be run for each drug
d  without thresholding optimization

Approach CD method/measure Optimal parameters Performance Running time, sa

AUC​ AUPR

Baseline – eta = 0.2, beta = 0.7 0.57 –b
11.9× 8137

c

LPbyCD Spectral part./JCCC m = 400, defaultd 0.74 0.01 3477.8

Spectral part./JCNC m = 0, w/o threshold 0.85 0.01 2484.91

Louvain/JCCC Resolution = 0.1 0.61 0.10 5263.97

Louvain/JCNC Resolution = 0.8 0.82 0.02 2702.62
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those benchmark data sets are not fully representative of the problem setting, and that for 
large data one could do some quick-shot prediction using m = 0 and node-community 
matching before going to the effort of optimizing parameters.

Running times and scalability

Table 4 shows running times for a single test fold for the different combinations of com-
munity detection algorithm and matching method.

According to the results, the settings with spectral partitioning are remarkably faster 
than ones with Louvain, but for NC matching this difference shrinks. Notably, even 
though NC matching is more expensive in itself, it compensates by the fact that this 
matching technique by its nature requires fewer communities, which are less expensive 
to discover.

To understand how our approach scales, we compare relative network sizes to relative 
running times. To represent network size we use both the size of the adjacency matrix 
(i.e. the number of vertices squared) and the number of edges. Dividing these values for 
IUPHAR by those for the benchmark sets indicate how much bigger, in relative terms, 
the former is than the latter (Table 5, left-hand side).

Relative running times, i.e. running times on IUPHAR divided by running times on 
the benchmark sets, are shown on the right-hand side of Table 5. With spectral parti-
tioning, we see that size quotients grow faster than running times quotients, with the 
exception for the NR data set in the CC formulation, which is so small that it can be 
treated in less than a quarter second in this setting. Another exception is the Kinase data 
set, running times of which grow faster than edge count. This might have to do with the 
fact that Kinase is rather unbalanced, with far fewer drugs than targets. These are the 
cases for JCCC measure, for JCNC quotients of running times are lower than ones of net-
work size for all sets without exceptions. However, JCNC setting with m = 0 , i.e. without 
community discovery at all, might be not representative enough, the JCCC does not have 
this limitation. These results imply that the approach scales, at least when using spectral 
partitioning. Concerning the results with Louvain, the approach does not show similar 
behavior. Instead, it does not scale at all using neither JCCC nor JCNC . We believe this 
is due to the Louvain algorithm implementation that we use, since implementations of 

Table 5  Relation between network sizes and running times for IUPHAR and benchmark data sets for 
spectral partitioning and the Louvain algorithm as a community detection method in LPbyCD 

Data set Quotient IUPHAR/benchmark set

Network size Running times

Spectral partitioning Louvain algorithm

|V |2 |E| JCCC JCNC JCCC JCNC

Enzyme 92.03 82.98 59.27 34.58 419.11 219.37

GPCR 1119.3 894.61 871.62 528.70 6926.28 3256.17

IC 660.39 605.22 492.60 253.56 5599.97 2525.81

NR 17685.67 14467.41 23185.33 9939.64 131599.25 67565.50

Kinase 435.17 263.73 349.88 204.35 1949.62 1185.36
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the matching procedures and the evaluation framework remain the same as for spectral 
partitioning.

Performance on generic data sets

So far we performed evaluation of LPbyCD approach while solving the drug–target 
interaction prediction task. This experiment shows that our approach is more general, 
i.e. it can be used for any kind of bipartite multi-layer data regardless of its origin. The 
results are summarized in Table 6 with best values for each data set and CD method 
highlighted in bold.

The results are similar to the ones on benchmark sets (0.89/0.37 as maximum AUC/
AUPR among generic sets on MovieLens with spectral partitioning and JCNC meas-
ure compared to 0.92/0.26 the best performance on the benchmark data, on IC, for 
the same measure). We can therefore conclude that the good results shown above are 
not due to the specific application domain of biological networks but transfers to other 
data. In addition, one can notice that spectral partitioning outperformed Louvain 
(0.89/0.37 vs. 0.88/0.34 for AUC/AUPR on MovieLens with JCNC ), which already hap-
pened before when evaluating IUPHAR. This supports the idea that trying different 
community detection algorithms can help to improve results. Finally, we show again 
that our auto-tuning method works. Our detailed results shown in “Appendix 2” sup-
port this observation (and the fact that different folds have different optimal param-
eters tells us that this optimization is important). Although AUPR values on external 
validation are slightly better than ones validated internally, the results on external and 
internal validation still align very closely, thus there is no risk of over-fitting. We can 
conclude again that approach parameters can be fixed internally.

There is another interesting observation, which cannot be seen from the table but 
appears in our logs. Different thresholding methods behave differently when the num-
ber of eigenvalues becomes higher: “local sum” on Unicodelang with CC matching 
is not working at all, “personal sum” starts working only at m = 46 , and “default” 
requires a higher number of eigenvalues to reach the optimum compared to others 
( m = 62 is optimal for “default”, while “personal median” outperforms it on m = 49 ). 

Table 6  The LPbyCD parameter optimization via internal cross-validation on generic data sets

The results are summarized in Table 6 with best values for each data set and CD method highlighted in bold

Data set CD method/measure Internal validation External validation

AUC​ σ AUPR σ AUC​ σ AUPR σ

MovieLens Spectral part./JCCC 0.82 0.00 0.22 0.02 0.82 0.01 0.26 0.02

Spectral part./JCNC 0.88 0.00 0.30 0.01 0.89 0.00 0.37 0.01

Louvain/JCCC 0.79 0.01 0.18 0.00 0.77 0.01 0.22 0.01

Louvain/JCNC 0.88 0.00 0.26 0.00 0.88 0.00 0.34 0.01

Unicodelang Spectral part./JCCC 0.69 0.01 0.04 0.01 0.68 0.03 0.02 0.01

Spectral part./JCNC 0.78 0.01 0.14 0.01 0.78 0.01 0.17 0.05

Louvain/JCCC 0.73 0.00 0.09 0.01 0.72 0.02 0.10 0.03

Louvain/JCNC 0.80 0.01 0.13 0.01 0.81 0.02 0.16 0.05
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These are all results that we have not observed before. In addition, despite the fact 
that MovieLens is relatively bigger than Unicodelang in terms of both the number of 
vertices and edges, it requires a much smaller number of eigenvalues compared to 
Unicodelang for both matchings to reach the optimum (5/11 vs. 10/55 as average m 
for MovieLens and Unicodelang with NC/CC matching respectively). These results 
let us conclude that trying different settings have marked impact on results, and our 
auto-tuning method can help to find an optimal parameter setting by automatically 
optimizing parameters on the test data.

State of the art comparison on generic data sets

Finally, we measure the performance ceiling on generic data sets by optimizing 
parameters on test data and compare the results of our approach with state of the art 
approaches mentioned in Section “Comparison methods”. We should point out that all 
these approaches have been proposed for the express purpose of performing drug–tar-
get activity prediction, the main bipartite network edge prediction setting in the litera-
ture. As a result of this, this is the first time that their performance has been tested on 
generic data. In addition, this is the first time that very recent approaches for bipartite 
link prediction such as DTIP_MDHN, DTiGEMS+ and ALADIN have been compared 
to each other, to the best of our knowledge.

The results presented in Table 7 demonstrate that DTIP_MDHN has best AUC and 
AUPR on both sets, while other approaches behave differently on different sets. On 
MovieLens, DTiGEMS+, ALADIN and NetLapRLS are the second, the third and the 
fourth best in terms of both AUC and AUPR respectively. Our approach with Spec-
tral partitioning with JCNC , also with Louvain with JCNC , and BLM-NII go next in this 

Table 7  The LPbyCD performance comparison with state of the art approaches on generic data sets

a  with JCNC measure
b  quick optimization16

c  slightly modified data

Data set Approach Performance Time, h

AUC​ σ AUPR σ cpu exact

MovieLens LPbyCD(Spectral part.a) 0.89 0.00 0.38 0.00 1759 233

LPbyCD(Louvaina) 0.89 0.00 0.34 0.01 32 32

DTIP_MDHN 0.96 0.00 0.69 0.00 211 30

DTiGEMS+ 0.94 0.00 0.56 0.00 24 37

ALADINb 0.93 0.00 0.51 0.00 1076b 4672b

BLM-NII 0.89 0.01 0.29 0.02 609 20

WNN-GIPb 0.78 0.07 0.21 0.08 3667b 152b

NetLapRLSb 0.92 0.00 0.47 0.00 1267b 17b

Unicodelang LPbyCD(Spectral part.a) 0.79 0.02 0.17 0.02 91 4

LPbyCD(Louvaina) 0.80 0.01 0.17 0.03 1 1

DTIP_MDHN 0.97 0.01 0.71 0.03 5 1

DTiGEMS+ 0.79 0.02 0.23 0.02 2 2

ALADINc 0.85c 0.01 0.20c 0.03 25 541

BLM-NIIc 0.83c 0.01 0.07c 0.00 229 6

WNN-GIP 0.70 0.01 0.06 0.01 411 12

NetLapRLSc 0.83c 0.01 0.20c 0.02 354 7
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comparison with very similar results: all of the three have same AUC, but first two are 
better on AUPR. On Unicodelang, ALADIN and NetLapRLS are the second and the 
third best respectively, and DTiGEMS+ shares approximately similar results with our 
approach with Spectral partitioning with JCNC , also with Louvain with JCNC and BLM-
NII: BLM-NII has better AUC than the rest, but the others improve on AUPR. The fact 
that the last three approaches have approximately similar performance is not surpris-
ing. BLM-NII uses a bipartite local model, which is implemented in the JCNC measure 
used by our approach to compute the average between predictions, the only difference 
being that predictions themselves for BLM-NII and our approach are derived in a differ-
ent manner. The reason why DTiGEMS+ performs differently on different sets could be 
explained by the fact that the approach is dependent on the presence of multiple similar-
ity measures for each type of nodes but we run our experiments with one type of simi-
larity only. In addition, the Unicodelang network that we constructed shows a certain 
lack of non-zero similarity information, an issue that we will discuss later in more detail 
since it also affects other approaches to a certain degree. When it comes to the cpu time 
comparison, DTiGEMS+, the second best performing approach on MovieLens, has the 
fastest time on MovieLens, but its exact running time is not the best by far. On Unicode-
lang, the cpu time of DTiGEMS+ is not the best anymore, but the second best, losing 
out to LPbyCD(Louvain/JCNC ). The other three best performing approaches, DTIP_
MDHN, ALADIN and NetLapRLS, come in slower than LPbyCD(Louvain/JCNC ), ALA-
DIN and NetLapRLS by an order of magnitude. On the MovieLens data set, NetLapRLS 
is slower than LPbyCD(Spectral part./JCNC ), but on Unicodelang becomes even slower 
by an order of magnitude. BLM-NII goes from fourth fastest on MovieLens to sixth fast-
est on Unicodelang. WNN-GIP has the worst performance and remains the slowest. We 
use cpu time to illustrate total complexity of each approach implementation when using 
multi-thread computations. The implementation of LPbyCD(Louvain/JCNC ) does not 
use this optimization, which is why cpu time and exact time for this approach are equal 
and its running times are consistently rather low. The only result that is surprising is that 
the exact time of ALADIN is much higher than its cpu time. We can only conjecture that 
the cpu time measured by the toolbox with the implementation of this approach is not 
correct.

One common limitation the ALADIN, NetLapRLS and BLM-NII approaches have, is 
that their implementation do not support sparse similarity networks, i.e. the non-zero 
similarity problem we mentioned above. All the state of the art approaches that we 
tested require to input data in the form of adjacency matrices. Our data often do not 
have similarity information for entries. When an entry in the data does not have a value 
for any of the attributes, we cannot compute the similarity for this entry, and the adja-
cency of such entry to all others is set to zero in the adjacency matrix corresponding to 
the given similarity layer. This results in many rows in the adjacency matrices represent-
ing similarity networks been filled by zeros. As a consequence, ALADIN, NetLapRLS 
and BLM-NII fail on Unicodelang, similarity networks of which are more sparse than 
in other sets. To overcome this, we have to perform experiments on slightly modified 
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data.15 This could also explain the fact that DTiGEMS+, which is very dependent on 
similarity information, performs worse on Unicodelang. Another issue we faced with 
ALADIN, NetLapRLS and WNN-GIP on the MovieLens data set, is that we could only 
run these approaches in quick optimization mode16 due to incredibly high exact running 
time in the “full” mode. Taking into account that MovieLens is a bigger set than Unicode 
by the number of both vertices and edges (Table 1), we suspect that means that those 
approaches (or at least their implementations) are not scalable enough.

To sum up, DTIP_MDHN is the clear winner in this comparison. Its complexity and 
running time are not the best, but can be compensated by the performance it pro-
vides. However, DTIP_MDHN is a latent model based approach, which means that it 
lacks possibility of interpretability. The latter might not be essential in the user-movie 
and other recommendation tasks in general domain, but it is very desired functional-
ity in life science applications such as drug–target interaction prediction (the impact 
from watching a not properly recommended movie is different from one caused by a 
wrong medication treatment). The other best performing approaches that we tested 
are data quality dependent (DTiGEMS+, ALADIN, BLM-NII, NetLapRLS) or possess 
extreme time complexity on a bigger set (ALADIN, WNN-GIP, NetLapRLS). We can 
conclude that the LPbyCD approach based on the Louvain algorithm with JCNC meas-
ure provides the best trade-off in this experiment. Being faster than most of the com-
parison approaches, it has no limitations regarding the input data and its predictive 
results are not far from the maximum.

State of the art comparison across multiple data sets

To verify whether the results on generic data sets correspond to the results obtained 
in previous experiments or it is specific for given data, we computed average rank-
ing position for AUC, AUPR and running times for all comparison methods across 
benchmark and generic data sets (Table 8). We do not compare the state of the art on 

Table 8  Average ranking position for AUC, AUPR and running times for all comparison methods 
across benchmark and generic data sets

a  Spectral partitioning with JCNC measure
b  The Louvain algorithm with JCNC measure
c Running time

LPbyCD DTIP_MDHN DTiGEMS+ ALADIN BLM-NII WNN-GIP NetLapRLS

1a 2b

AUC​ 7.0 5.0 1.0 2.9 2.7 4.3 6.7 4.6

AUPR 6.9 5.6 1.0 2.0 3.0 6.6 6.4 4.1

tc, cpu 4.7 1.1 3.4 2.1 4.0 5.9 7.3 7.4

tc, exact 3.4 2.3 1.7 3.9 7.3 4.7 6.3 6.4

15  we replace the default similarity value 0.0 for such items without properties by a default similarity value 0.0001.
16  an undocumented feature available in the toolbox of (Buza and Peska 2017).
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IUPHAR since the majority of the comparison methods do not support input with 
more than 2 similarity layers.

The results are similar to ones from Section “State of the art comparison on generic 
data sets”: DTIP_MDHN performs best and DTiGEMS+ is the second best. On the 
other hand, LPbyCD with Louvain provides best cpu time and the second best exact 
time if averaged across all sets. We also performed the significance assessments 
using the Nemenyi Post-Hoc test (Nemenyi 1963). According to these assessments 
the difference in ranking between multiple methods in our comparison is not signifi-
cant since the critical distances which we obtained are 3.97/3.64 at the 0.05/0.1 level 
respectively. For instance, the difference in performance between LPbyCD with Lou-
vain and DTIP_MDHN is significant, because the difference in their ranks is higher 
than any of the two critical distances, but between LPbyCD with Louvain and the two 
other best performing approaches DTiGEMS+ and ALADIN is not, because their dif-
ferences are lower then any of the critical distance values.

We can draw a conclusion that the result in its current form just supports the results 
obtained in the previous sections. To get more reliable ranking the critical distance 
needs to be reduced. To achieve that one needs to evaluate all comparison methods on a 
higher number of sets, which is hardly possible taking into account how bipartite multi-
layer data are rare in open access. On the other hand, we believe that the performance of 
our approach can be improved further if one could find a technique which produces com-
munities of better quality for our setting.

Interpretability

Our approach offers a straightforward option for interpretation of a link prediction. In 
addition to basic information such as ranking or optimal parameter settings, we can 
show for each of the two vertices in the network the following: 

1.	 the communities they belong to (with possibility to explore all nessesary information 
about communities: their sizes, nature (were they mixed or pure), identifiers of other 
drugs and targets in the communities),

2.	 the weights of intra-community edges,
3.	 the number and layout of inter-community edges,
4.	 their numerical translation by the measure and matching technique (which equates 

to a link probability in the case of a normalized measure, with the JC for instance).

To illustrate how it works, consider the same example network as in Section “Link pre-
diction by community detection in a bipartite setting”. Suppose that the pair of drug l2 
and target t2 from that network is predicted to be interacted. The following information 
can be presented in addition to this result: 

1.	 drug l2 belongs to community C1 (size 3, other drugs: l1, l3) and target t2 to commu-
nity C3 (size 2, other targets: t1);

2.	 in this simplified example, there is no similarity networks, thus the vertices inside 
communities are not directly connected;

3.	 there are 2 links between C1 and C3 shown as in Fig. 3;
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4.	 in case of JCCC measure the probability of interaction for the predicted pair 
is JCCC(l2,t2) = 2/6 = 0.33 (Fig.  3), and in case of JCNC is JCNC(l2,t2)  = 
(1/2+ 1/3)/2 = 0.42 (Fig. 4).

This is a possibility that is not available for recent, well-performing techniques based on 
latent models, such as graph embedding and neural networks.

This kind of information might be useful for a domain expert (drug researcher in case 
of drug–target prediction), who will be the end-user of the approach. It should help to 
get a better understanding and/or more confidence in the prediction results.

Conclusion
We have presented an approach for link prediction in bipartite multi-layer graphs using 
graph community structure and link prediction measures adapted from those proposed 
in the literature. We have found empirically that combining the well-known and rela-
tively straightforward Jaccard coefficient, particularly in a BLM formulation, with the 
Louvain algorithm for community detection allows us to achieve results that are com-
petitive with the state-of-the-art. We have also demonstrated that it is possible to set the 
parameter values of the community detection techniques via internal cross-validation 
and that they transfer well to unseen data.

In addition, we demonstrated scalability of our approach by performing evaluation on 
the much larger and sparser IUPHAR data set and comparing the time complexity with 
benchmark data sets, and assessed interpretability.

Finally, we tested our approach on data sets of which the origin is different from drug–
target interaction. We demonstrated experimentally that our approach performs well 
regardless of the domain of the task. Comparison with the state of the art (most of which 
had not been evaluated on such data before) showed that our approach is more general, 
does not depend on the structure of data, and can be one of the fastest compared to 
other approaches, depending on the employed community detection method. The sets 
which we constructed, in their turn, demonstrated to be challenging enough to be new 
benchmarks in the field.

Taking into account that the predictive performance of our approach is not the best 
compared to the state of the art, as well as the advantages of our approach, it can be 
recommended to be used as a quick-shot prediction tool regardless of the quality of 
data, particularly with the regards to solving the cold-start problem that many recent 
approaches have (Olayan et al. 2018; Buza et al. 2020; Mohamed et al. 2020). At the same 
time, our approach offers the opportunity to interpret its results, which has its own 
importance in the research on computational drug discovery.

We have limited ourselves to two easy-to-use community detection methods in this 
work, and propose to evaluate the use of other methods in the future. As we mentioned 
in Section  “Definitions and problem setting”, so far we have only looked at predicting 
interaction as a binary setting but the more challenging setting would be to predict the 
strength of the interaction. Finally, it would be interesting to add layers derived from 
other information sources to the networks and use our approach to identify possible 
redundancies among them.
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Appendix 1
This appendix describes construction of the generic data sets used in section “Experi-
mental evaluation”.

MovieLens

MovieLens data sets17 are well-known benchmarks for recommendation sys-
tems  (Harper and Konstan 2015). Based on real-life surveys of individuals on existing 
movies, they are made for solving user-movie recommendation task (Herlocker et  al. 
1999).

The original set description

For minimizing evaluation complexity, we base construction of our multi-layer network 
on the oldest, and thus the smallest, set of the MovieLens group.18 The version we use 
includes information about 943 users, 1682 movies and 100,000 movie ratings made by 
users. In the data, users are presented by age (integer value), gender (binary value), occu-
pation (one of 21 categories) and a post code (in the US or Canadian format for citizens 
from US and Canada respectively). Movies are described by name, release date, genre 
(19 multiple categories) and include links to Internet Movie Database (IMDB).19

Feature construction

To build similarity networks, we first create features to describe users and movies. To 
achieve that, we exploit available properties of both types of entities.

User descriptors To describe users by age, we introduced five age groups for users: less 
then 18, between 18 and 25, between 26 and 34, between 35 and 49, and 50 and more. 
The first and the last usually have opposing preferences in movies, the middle groups 
were selected based on principle of balance (Fig. 6). Gender category was used as it is, 
and occupation as well. Post codes were converted into the exact location names they 
belong to using publicly available databases.2021 Then we binarised these locations into 
two groups: “big city” and “province” based on the top 100 US cities22 and the top 10 

Fig. 6  Handcrafted descriptors for users in the MovieLens data set (the number of instances in each category 
of each descriptor as well as the amount of unclassified instances, where it is applicable, are shown in grey 
color)

18  100K Dataset (containing the user ratings from 1998).
19  A popular internet database of movies: http://​www.​imdb.​com.
20  Database of ZIP codes of the USA states: http://​www.​pier2​pier.​com/​links/​files/​Count​rysta​te/​USA-​Zip.​xls
21  Database of post codes of Canada: http://​www.​posta​lcode​sinca​nada.​com.
22  According to census of 1990 (published in 1998): http://​www.​census.​gov/​popul​ation/​www/​docum​entat​ion/​twps0​
027/​tab22.​txt.

17  http://​group​lens.​org/​datas​ets/​movie​lens.

http://www.imdb.com
http://www.pier2pier.com/links/files/Countrystate/USA-Zip.xls
http://www.postalcodesincanada.com
http://www.census.gov/population/www/documentation/twps0027/tab22.txt
http://www.census.gov/population/www/documentation/twps0027/tab22.txt
http://grouplens.org/datasets/movielens
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Canadian cities.23 The resulting partitioning produced groups with roughly 20% of indi-
viduals from “big cities” and 80% from “province” (Fig. 6).

To sum up, we encode each user by the vector with 30 binary values:

•	 5 bits for age (5 bins),
•	 2 bits for gender (2 categories),
•	 21 bits for occupation (21 categories),
•	 2 bits for location (2 groups).

We use 1 bit per bin because some of the properties can be unknown (they are encoded 
by 0s in such cases).

Movie descriptors The movie descriptors are more complex to build. They require more 
information to be merged together, however, the vectors constructed with these descrip-
tors are more informative. The basic properties, including release date and genre, do 
not require much preprocessing. We only binarised the dates into 13 categories based 
on the principle of balance. For that we kept approximately similar number of items for 
each group of old movies, and for individual groups corresponding to each year of recent 
movies, we also used the same principle (Fig. 7).

IMDB identifiers provided with the data are not active anymore, and therefore we did 
not find a better way than to parse new IMDB identifiers from the website. We matched 
candidate movies by title, year and release date24 and used edit distance algorithm 

Fig. 7  Handcrafted descriptors for movies in the MovieLens data set (the number of instances in each 
category of each descriptor as well as the amount of unclassified instances, where it is applicable, are shown 
in grey color)

24  The imdb.com was accessed on 19/10/2019.

23  According to census of 1996: http://​en.​wikip​edia.​org/​wiki/​List_​of_​large​st_​Canad​ian_​cities_​by_​census.

http://en.wikipedia.org/wiki/List_of_largest_Canadian_cities_by_census
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(Damerau 1964) to filter candidates. We then processed the lists of candidates and filled 
in blanks, manually double checking movie genres. Once IMDB identifiers were col-
lected, the IMDB database was parsed one more time to retrieve additional informa-
tion about the movies:25 budget, country of origin, main language, length, type (movie or 
other), actors, production company and crew members (directors, musicians, operators 
etc).

We initialized construction of additional descriptors from the budget property, which 
was converted from multiple currencies into US dollars using historical exchange rates26 
on 1998, 22 of April.27 Then these values were binarised into 3 categories with meaning-
ful ranges: less than $1 mln, between $1 mln and $10 mln, and more than $10 mln. The 
values of the next property, countries of origin, were placed into 5 groups using expert 
knowledge: USA, Britain and France are major movie production countries of all time,28 
while Europe (except France) has own cinematic trends (Fig. 7). We split languages into 
three categories: English, French, and other, emphasizing French movies as a separate 
group since France has own influence on movie production and thus can be placed sepa-
rately. The lengths of the movies were binarised into four categories with meaningful 

Table 9  Ranges of Generic data sets’ similarity networks

Data set Network Similarity values

Min Mean Median Max

MovieLens User similarity 0 0.27 0.33 1

Movie similarity 0 0.25 0.24 1

Unicodelang Country similarity 0.03 0.31 0.29 1

Language similarity 0 0.31 0.27 1

Fig. 8  An extract from the MovieLens network with 3 layers represented by different colors: the bipartite 
layer is in grey (MovieLens), user similarity network is in pink and movie similarity network is in violet

26  http://​www.​pound​sterl​ingli​ve.​com/​bank-​of-​engla​nd-​spot/​histo​rical-​spot-​excha​nge-​rates/​usd.
27  The last day of the MoveLens survey for 100K Dataset.
28  http://​www.​the-​numbe​rs.​com/​movies/​produ​ction-​count​ries.

25  The imdb.com was accessed again on 25/10/2019.

http://www.poundsterlinglive.com/bank-of-england-spot/historical-spot-exchange-rates/usd
http://www.the-numbers.com/movies/production-countries
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ranges as shown in Fig. 7. Concerning the last three properties, we have chosen the top 
n values for actors, companies and crew members, allowing multiple categories. Value of 
n for each property was selected individually using the principle of minimizing redun-
dancy of vector representation.

To sum up, we encode each movie by a vector with 108 binary values: 18 bits for genre 
that goes with the data, plus 90 bits for the manually created features summarized in 
Fig. 7.

Network construction

As in the case with IUPHAR, the construction of similarity networks is performed with 
the use of the Tanimoto coefficient, which is well suited for binary vector comparison. 
The resulting distribution of values offer us intuition about the quality of constructed 
networks. As can be seen from Table 9 (first two rows), these values are diverse enough, 
covering the full range from 0 to 1 with mean and median far from 0 or 1. This allows 
the conclusion that the resulting similarity networks are informative enough. In other 
words, it would be possible to find a similar movie for a randomly selected one by maxi-
mizing their similarity value (see Fig. 8 for an example: Grease 2 (1982, comedy, musical, 
romance) is more similar to Top Gun (1986, action, romance), than to Star Wars (1977, 
action, sci-fi)).

As defined in Section “Definitions and problem setting”, we do not predict the strength 
of the interaction, and therefore user-movie ratings in the bipartite network need to be 
binarised. We use ranks from 3 to 5 to represent positive interaction and from 1 to 2 as 
negative. That produced 82,520 positive and 17480 negative edges.

In total we have built three networks:

•	 the user-movie binary interaction network,
•	 a user similarity network calculated using the Tanimoto coefficient, and
•	 a movie similarity network also calculated using the Tanimoto coefficient.

The resulting MovieLens network can be downloaded from the repository.29 Fig. 8 illus-
trates an extract from the network.

Basic properties of the resulting network are presented in Table 1. As can be seen from 
this table, the MovieLens network has acceptable sparsity and consists of a single con-
nected component.

Unicode languages

There are not many data sets with bipartite structure which are both open source 
and provide a rich property set for both types. For instance in KONECT,30 a popular 
open-access collection of network data sets, there is only one network satisfying these 
requirements (Kunegis 2013). Unicode languages or “Unicodelang” is that set describing 
languages, countries, and their relations.

29  https://​github.​com/​kopte​lovmax/​datas​ets.
30  Koblenz Network Collection.

https://github.com/koptelovmax/datasets
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The original set description

The Unicodelang network represents 254 countries (territories), 614 languages and 
1255 of their “interactions”, denoting the proportion of the population of a given coun-
try speaking a given language. As in the case with the previous data set, we perform an 
extension of the basic network by constructing additional layers.

Feature construction

As before, to build similarity networks, we first construct features to describe both type 
of entities. For doing that, we parse country and language properties from the origi-
nal source of the set used by KONECT. We then exploit collected properties to build 
descriptors for both of types.

Country descriptors The countries are presented by 10 basic properties.31 We binarise 
the first three: population size, percentage of literacy and GDP PPP32, into 5, 3 and 6 cat-
egories respectively using meaningful ranges (Fig. 9).

Fig. 9  Handcrafted descriptors for countries in the Unicodelang data set (the number of instances in each 
category of each descriptor as well as the amount of unclassified instances, where it is applicable, are shown 
in grey color)

Fig. 10  Handcrafted descriptors for languages in the Unicodelang data set (the number of instances in each 
category of each descriptor as well as the amount of unclassified instances, where it is applicable, are shown 
in grey color)

31  http://​www.​unico​de.​org/​cldr/​charts/​25/​suppl​ement​al/​terri​tory_​langu​age_​infor​mation.​html, accessed on 7/11/2019.
32  Gross domestic product based on purchasing power parity.

http://www.unicode.org/cldr/charts/25/supplemental/territory_language_information.html
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Another property, currency, was placed into 20 multiple categories, ignoring distinct 
values and taking into account that some countries can have more than one official cur-
rency (Fig. 9). Next six properties we used as they are given: number of days in a week, 
first day of a weekend, last day of a weekend, measurement system and paper size. Next, 
we parse supplementary information33 to get additional properties. That includes conti-
nent, subcontinent and two time zone offsets. The first two were used in a straightfor-
ward manner, while the time zone names of the latter were converted to the exact values 
using publicly available chart.34 Then collected offset values were fitted into 27 and 28 
categories for UTC​35 and DST36 respectively, ignoring distinct values (Fig. 9).

Language descriptors The languages are presented by boolean properties whether a lan-
guage is modern, primary or one/none of them, and a language script type, both of which 
we use unchanged.37 Another property, language population, was adopted from the coun-
tries’ supplementary information[33] summing up numbers for several instances (Fig. 10).

The next two, plural rules’ types (cardinal, ordinal etc.) and plural rules’ categories 
(one, many, other etc.), were extracted from the languages’ supplementary informa-
tion.38 The first attribute, plural rules’ types, is used unchanged, while the second, plural 
rules’ categories, was aggregated with the first to create a new feature, “plural rules” (see 

Fig. 11  An extract from the Unicodelang network with three layers represented by different colors: the 
bipartite layer is in grey (Unicode languages), country similarity network is in smoked blue and language 
similarity network is in light blue

33  http://​www.​unico​de.​org/​cldr/​charts/​25/​suppl​ement​al/​terri​tory_​conta​inment_​un_m_​49.​html, accessed on 7/11/2019.
34  http://​en.​wikip​edia.​org/​wiki/​List_​of_​tz_​datab​ase_​time_​zones, accessed on 8/11/2019.
35  Coordinated Universal Time.
36  Daylight Saving Time.
37  http://​www.​unico​de.​org/​cldr/​charts/​25/​suppl​ement​al/​langu​ages_​and_​scrip​ts.​html, accessed on 7/11/2019.
38  http://​www.​unico​de.​org/​cldr/​charts/​25/​suppl​ement​al/​langu​age_​plural_​rules.​html, accessed on 7/11/2019.

http://www.unicode.org/cldr/charts/25/supplemental/territory_containment_un_m_49.html
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://www.unicode.org/cldr/charts/25/supplemental/languages_and_scripts.html
http://www.unicode.org/cldr/charts/25/supplemental/language_plural_rules.html
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Fig. 10 for an example). The last property values, number of characters in the alphabet, 
were parsed from the additional supplementary materials for languages3940 and placed 
into five categories with meaningful ranges (Fig. 10).

Network construction

As before, we used the Tanimoto coefficient to build similarity layers, and we received 
acceptable similarity values (last two rows in Table 9). Similarly to MovieLens, we intro-
duced a threshold to binarise bipartite interactions. If the percentage of population 
speaking given language is greater than or equal to 0.01% then the relation is considered 
to be positive, negative otherwise, giving us 819 positive and 436 negative edges in the 
network. As a result, we obtain a three layer graph with network characteristics as in 
Table  1 (see Fig.  11 for an illustration). As in the case of the MoveLens network, the 
resulting Unicodelang graph has acceptable sparsity, and is fully connected. The Uni-
codelang network can also be downloaded from our repository29.

Appendix 2
This appendix provides additional results for the parameter selection via internal 
cross-validation experiment performed in Section “Performance on generic data sets” 
(Tables 10, 11).

Table 10  Spectral partitioning parameter optimization on generic data sets

Data set Measure Fold Internal CV External CV

Optimal parameters AUC​ AUPR AUC​ AUPR

thresholding m

MovieLens JCCC 1 Local median 12 0.82 0.23 0.80 0.28

2 Individual median 11 0.82 0.18 0.83 0.22

3 Local median 10 0.82 0.23 0.82 0.25

4 Local median 11 0.82 0.22 0.83 0.27

5 Local median 13 0.82 0.24 0.83 0.26

JCNC 1 Local median 6 0.88 0.29 0.89 0.39

2 Local median 5 0.88 0.29 0.88 0.37

3 Local median 5 0.88 0.30 0.89 0.36

4 Individual median 4 0.88 0.30 0.89 0.38

5 Local median 6 0.88 0.30 0.88 0.36

Unicodelang JCCC 1 Individual median 54 0.70 0.05 0.72 0.02

2 Individual median 54 0.68 0.05 0.65 0.01

3 Individual median 55 0.69 0.03 0.68 0.02

4 Individual median 54 0.70 0.04 0.66 0.02

5 Individual median 57 0.68 0.02 0.68 0.01

JCNC 1 Individual mean 3 0.79 0.14 0.79 0.13

2 Local median 9 0.77 0.13 0.77 0.11

3 Individual sum 16 0.78 0.13 0.78 0.16

4 Default 16 0.79 0.13 0.78 0.19

5 Global mean 7 0.78 0.15 0.78 0.25

40  http://​www.​unico​de.​org/​cldr/​charts/​25/​summa​ry, accessed on 7/11/2019.

39  Using Main Letters/Native attribute

http://www.unicode.org/cldr/charts/25/summary
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