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Introduction
A probabilistic network is a network in which edges are associated with existence prob-
ability. This model has been used in multiple areas such as social networks in which we 
aim to infer one type of relation (e.g., users’ mutual influence) based on another type of 
interactions (e.g., friendship) (Pfeiffer and Neville 2011) or in road networks in which we 
require to predict the availability of roads after a catastrophe (Fushimi et al. 2018).

Several studies have been conducted to analyze and evaluate tasks on probabilistic 
networks such as clustering (Kollios et al. 2011; Han et al. 2019; Ceccarello et al. 2017), 
core decomposition (Bonchi et al. 2014) and st-reliability (Ke et al. 2019). Most of these 
studies are based on possible worlds semantics. In possible worlds semantics, all possi-
ble instances of a probabilistic network are generated and the intended task is evaluated 
over all instances. Then the answer to the task will be either a probability distribution (in 
tasks such as shortest path between two nodes) or a number which is the expectation of 
the answers to the task over all possible worlds (e.g., source-terminal reliability).

As the number of possible worlds grows by the number of edges exponentially ( 2|E| ), 
following possible worlds semantics is prohibitive even for moderate size networks. To 
refrain from dealing with such complexity, researchers have chosen two approaches. 
First, thresholding, in which the edges whose probability is lower than a specific thresh-
old are removed and the remaining edges are kept as deterministic edges. Hence, the 
resulting network is a deterministic network and there is no need for possible worlds 
semantics. However, it has been shown that this approach may lead to a considerable 
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Sparsification is the process of decreasing the number of edges in a network while one 
or more topological properties are preserved. For probabilistic networks, sparsification 
has only been studied to preserve the expected degree of the nodes. In this work we 
introduce a sparsification method to preserve ego betweenness. Moreover, we study 
the effect of backboning and density on the resulting sparsified networks. Our experi-
mental results show that the sparsification of high density networks can be used to 
efficiently and accurately estimate measures from the original network, with the choice 
of backboning algorithm only partially affecting the result.

Keywords:  Probabilistic network, Ego betweenness, Sparsification, Sampling

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Kaveh et al. Appl Netw Sci            (2021) 6:58  
https://doi.org/10.1007/s41109-021-00401-7 Applied Network Science

*Correspondence:   
amin.kaveh@it.uu.se 
InfoLab, Department 
of Information Technology, 
Uppsala University, 
Lägerhyddsvägen 2, House 1, 
75105 Uppsala, Sweden

http://orcid.org/0000-0001-5797-1068
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-021-00401-7&domain=pdf


Page 2 of 21Kaveh et al. Appl Netw Sci            (2021) 6:58 

information loss (De Choudhury et al. 2010). The second approach is sampling in which 
a percentage of possible worlds are sampled (Jin et al. 2011; Li et al. 2015; Maniu et al. 
2017). As probabilistic graphs’ entropy1 is high, the variance of measures over samples 
and the required number of samples are also high (Parchas et al. 2018; Potamias et al. 
2010; Dang et  al. 2015; Kahn and Marshall 1953). Therefore, to decrease the required 
number of samples Parchas et  al.  proposed the probabilistic networks sparsification 
approach in which the number of edges and graph’s entropy are reduced while nodes’ 
expected degrees are preserved by modifying the remaining edges’ probabilities (Parchas 
et al. 2018).

In this work we generalize the definition of probabilistic network sparsification. More 
specifically, we define sparsification as a method to decrease a probabilistic graph’s 
entropy while any specific measure is preserved. This paves the way to examine various 
topological properties in sparsification. We focus on ego betweenness as a fundamental 
path-based measure to show the broader applicability of sparsification.

The sparsification procedure includes two steps. (i) In the first step we extract a back-
bone of the original graph through which we decrease original graph’s density2 and 
(ii) in the second step we modify the edges’ probabilities of the backbone graph. This 
raises three questions: first, which backboning method leads to a better sparsified graph 
in terms of preserving the original graph’s property? Second, to what extent can we 
decrease the original graph’s density? Third, does the original graph’s density have any 
impact of the quality of the sparsified graph?

Figure  1 shows a probabilistic graph and two steps of sparsification. Figure  1a is a 
probabilistic graph with 10 edges. Figure 1b shows a backbone extracted from the origi-
nal graph as the result of the first step. The second column in Table 1 shows the mean 
relative error (MRE) of expected degree and expected ego betweenness in the back-
bone. Figure  1c illustrates the second step of sparsification in which edge probabili-
ties are modified such that nodes’ ego betweenness are preserved. The third column in 
Table 1 shows the MRE values of expected degree and expected ego betweenness in this 
network.

Fig. 1  Procedure of sparsifying a probabilistic graph: a input graph to be sparsified, b backbone and c 
sparsified graph with our proposed method in which our goal is to preserve nodes’ ego betweenness

1  Entropy of network G is H(G) =
∑

e∈E −pe log pe − (1− pe) log (1− pe) (Parchas et al. 2018).
2  Density of graph G is ρ(G) = 2|E|/(|V | · (|V | − 1)) (Lee et al. 2010).
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Contributions

We summarize our contributions as follows: 

1.	 Generalization: Sparsification is defined by Parchas et al. as the problem of preserv-
ing expected degree. We generalize that definition to the problem of preserving a 
generic function.

2.	 Formalization: As a specific case of generic function we use expected ego between-
ness. Therefore, we formulate how the change of an edge probability alters the ego 
betweenness of the corresponding nodes.

3.	 Evaluating Backbones: We evaluate the effect of four different backboning algorithms 
on the resulting sparsified graphs.

4.	 Evaluating Graph Density: We evaluate the effect of the original network density on 
the resulting sparsified graphs.

The structure of the paper is as follows: “Problem statement” section  presents the 
problem. “Solution framework” section explains the solution framework which includes 
two algorithms. “Experiments” section  includes experimental results and “Discussion 
and conclusion” section concludes the paper.

Problem statement
A probabilistic network G = (V ,E, p) is a graph (V, E) whose edges are associated with a 
probability of existence p : E → (0, 1].

One of the most practiced approach to analyze probabilistic networks is Monte-Carlo 
sampling. However, the number of required samples increases as the entropy of the 
probabilistic graph increases. To decrease the required number of samples, Parchas et al. 
(2018) have defined probabilistic graph sparsification as:

Definition 1  Given a probabilistic graph G = (V ,E, p) and a sparsification ratio 
0 < α < 1 , sparsification is to find G∗ = (V ,E∗, p∗) , where E∗ ⊂ E and |E∗| = α|E| in 
which 

∑
v∈V |ExDv − ExD∗

v | and entropy of G∗ are minimized.

Where, ExD∗
v is the expected degree of node v in the sparsified graph G∗.

We change this definition to be more inclusive and not to be limited to expected 
degree. As a result, we can consider other structural properties and examine the effect of 
changing edge probabilities on that structural property.

Table 1  Mean relative error of expected degree and expected ego betweenness in the backbone 
and the sparsified graph in Fig. 1

Backbone Sparsified

MRE—expected degree 0.23 0.10

MRE—expected ego betweenness 0.29 0.17
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Problem  1  Given a probabilistic network G = (V ,E, p) and sparsification ratio 
0 < α < 1 , sparsification is the process to extract a new probabilistic network 
G∗ = (V ,E∗, p∗) where E∗ ⊂ E and |E∗| = α|E| , while 

∑
v∈V |Mv −M∗

v | and entropy of G∗ 
are minimized.

where M and M∗ are the values of a structural property in the original graph G and the 
sparsified graph G∗ respectively.

In this paper, ego betweenness is the structural property that we aim to preserve. 
Betweenness of node u is:

where, gst(u) is the number of shortest paths between s and t passing through u and gst is 
the total number of shortest paths between s and t (Freeman 1978). In probabilistic net-
works, the probability of paths decreases as the number of constituent edges increases. 
Contrary to deterministic networks in which all shortest paths with different length have 
the same contribution in the calculation of betweenness, lengthy shortest paths have 
lower effect in the calculation of betweenness in probabilistic networks. Therefore, ego 
betweenness is a reasonable alternative for betweenness in probabilistic networks. Ego 
betweenness of node u is the betweenness of u between its immediate neighbors (Ever-
ett and Borgatti 2005). Although the calculation of ego betweenness in probabilistic net-
works is computationally expensive, it can be estimated as:

where puv is the probability of the edge between nodes u and v, and N(u) is the set of 
nodes having an incident edge to u in probabilistic graph G and if edge (v,w) /∈ E , we 
consider pvw = 0 . Computational complexity is O(L2) where L is the number of incident 
edges to node u (Kaveh et al. 2020).

Solution framework
The solution of Problem 1 includes two steps: 

1	 extract a backbone graph Gb = (V ,Eb, pb) from the original graph G = (V ,E, p) such 
that |Eb| = α|E| , where α is the sparsification ratio,

2	 modify the probability of the edges in Eb such that nodes’ ego betweenness is as close 
as possible to their value in the original graph. The resulting graph is a sparsified 
graph G′ = (V ,E′, p′) , where |E′| = |Eb| = α|E| . As we see in “Solution framework” 
section, E′ = Eb in the output of the Gradient-Descent algorithm (see “Gradient-
descent (GD)” section) and E′ ⊂ E in the output of the Expectation-Maximization 
algorithm with E′ and Eb not necessarily equal (see “Expectation-maximization 
(EM)” section).

Therefore, we define ego betweenness discrepancy as follows:

(1)B(u) =
∑

s,t �=u∈V

gst(u)

gst

(2)EBG(u) =
∑

{v,w}⊆N (u),v �=w

puv puw (1− pvw)
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Definition 2  (ego betweenness discrepancy) Given a probabilistic network G and a 
sparsified network G′ , ego betweenness discrepancy of node u is:

where, EBG(u) is the ego betweenness of u in G.

Formally, in the second step of the solution we aim to minimize D =
∑

v∈V |δ(v)| . Lin-
ear programming (LP) is a possible solution to get the global minimum D. However, it 
has been shown that not only it is inefficient on large graphs, but also it does not explic-
itly reduce entropy (Parchas et  al. 2018). Therefore, we adapt Gradient-Descent (GD) 
and Expectation-Maximization (EM) algorithms as in Parchas et al. (2018) to approxi-
mate the optimal probability adjustment in a small proportion of time compared to LP 
while decreasing the entropy. Since in both algorithms we need to have a differentiable 
function as the objective function, and 

∑
v∈V |δ(v)| is not differentiable at 0, then we use 

D =
∑

v∈V δ2(v) (Parchas et al. 2018) as the objective function hereinafter.

Backboning

In this section we introduce concisely four backboning methods that have been utilized 
in this research. 

1	 Noise corrected (NC): The first backboning method is a simplified version of the noise 
corrected method (Coscia and Neffke 2017; Coscia and Rossi 2019) in which an edge 
is kept if its probability is higher than the ratio of the sum of the expected degree 
of its incident nodes divided by the total number of edges connecting to these two 
nodes. In the NC backboning algorithm the edge under consideration is excluded in 
the calculation of the ratio.

2	 Maximum Spanning Tree (MST): The second method is the iterative spanning tree 
method (Nagamochi and Ibaraki 1992; Parchas et  al. 2018). First we construct the 
backbone graph and initialize it with the same set of nodes in the original graph and 
empty set of edges. Then, in the first iteration of the algorithm we remove the edges 
of the spanning tree of G and add them to the backbone. After that in each iteration 
we compute the spanning tree/forest of the remaining graph and move the selected 
edges from remained graph to the backbone. This procedure is repeated until the 
backbone includes α|E| edges.

3	 Monte Carlo (MC): The third method is Monte-Carlo sampling through which α|E| 
edges of the input graph are sampled.

4	 Hybrid (MST/MC): The forth method is the combination of the second and the third 
methods (Parchas et al. 2018). First α′|E| edges where α′ < α are selected via the iter-
ative spanning tree method and then (α − α′)|E| edges are sampled via the Monte-
Carlo sampling method.

(3)δ(u) = EBG(u)− EBG′(u)
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We illustrate the differences between the backboning methods on the example of a 
complete graph K10 as shown in Fig. 2. For all backboning methods we repeat the pro-
cedures as long as the backbone maintained as single connected component. The first 
column in Fig. 3 shows the four resulting backbones with α = 0.31 resulting from NC, 
MST, MST/MC ( α′ = 0.155) and MC methods respectively. Although the edges with 
the highest probabilities are most likely to be represented, there are still considerable 
differences among the four resulting backbones (e.g., the edge with probability .95 is 
only present in three of the four backbones.

In the following two sections we describe the Gradient-Descent and the Expecta-
tion-Maximization algorithms where the first one modifies edges’ probabilities and 
the second one rewires backbones as well as modifies edges’ probabilities.

Gradient‑descent (GD)

Given Gb = (V ,Eb, pb) , the Gradient-Descent algorithm picks one edge e ∈ Eb in each 
iteration and optimizes that edge’s probability. To achieve this goal, in each iteration 
we have to reduce the objective function D =

∑
v∈V δ2(v) . According to Eq. 3, if the 

probability of the edge e = (u, v) changes by ∂pi+1
e  at iteration i + 1 , then the discrep-

ancies of two groups of nodes will change; first the discrepancies of incident nodes 
to that edge, i.e., u and v and second the discrepancies of common neighbors of the 
incident nodes. The discrepancies of those nodes that are not members of these two 
groups do not change because of ∂pi+1

e  . Then the derivative of the objective function 
at iteration i + 1 with respect to the change of pe at that iteration is:

where W(u, v) is the set of common neighbors of nodes u and v.

(4)
∂Di+1

∂pi+1
e

= −2
∂δi+1(u)

∂pi+1
e

− 2
∂δi+1(v)

∂pi+1
e

+ 2
∑

w∈W (u,v)

∂δi+1(w)

∂pi+1
e

Fig. 2  Probabilistic instance of a complete graph K10 with uniformly distributed edge probabilities
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Fig. 3  (First column) Backbones of the original graph in Fig. 2 have been extracted with the methods 
explained in “Backboning” section (second column) Sparsified graphs of the corresponding backbones 
resulting from Algorithm 1

Fig. 4  The effect of changing pe on discrepancy of other nodes
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In Fig. 4, if the probability of edge e = (u, v) increases, the ego betweenness of node 
u increases, because first nodes x1 and x2 rely more on u to be connected to v and 
second node v relies relatively more on node u to connect to common neighbors w1 
and w2 if compared to direct connections, i.e., (v,w1) and (v,w2) . At the same time, if 
the probability of e increases, the ego betweenness of the common nodes w1 and w2 
decreases as nodes v and u rely relatively more on their adjacent edge (u, v) in com-
parison to the two-hop paths that cross nodes w1 and w2.

In the following we express the change of discrepancies based on the change of pe 
(probability of edge (u, v) in Fig. 4) at iteration i + 1 based on the aforementioned intui-
tions. Equations 5 and 6 represent the change of discrepancies on nodes adjacent to the 
edge e, and Eq. 7 shows the change of discrepancies of the common neighbors of u and v.

where, N(u) are the neighbors of u, and W (u, v) = N (u) ∩ N (v) is the set of common 
neighbors of u and v, and piuv is the probability of edge (u, v) at iteration i. Hence, by cal-
culating pi+1

uv  as follows, we will be assured that 
∑

v∈V δ2(v) will get one step closer to the 
local minimum value:

where, 0 < h ≤ 1 is the gradient descent step size. For proof see Appendix 1.
Algorithm 1 illustrates the Gradient-Descent algorithm in which the objective func-

tion converges to the local minimum. In line 1, the sparsified graph is initialized with 
backbone graph ( Gb ). Then, the algorithm takes iterative steps to reach a local minimum 
of D. In each iteration, it picks an edge and assigns a new probability to it according to 
Eq. 8 (line 5). Lines 6-10 assure that the new probability value does not violate constraint 
0 ≤ p ≤ 1 . At the beginning and at the end of each iteration the objective function is cal-
culated in lines 3 and 12 respectively. If the difference between these two values is equal 
to or lower than the input threshold τGD , the algorithm finishes.

(5)
δi+1(u) = δi(u)− (pi+1

uv − piuv)

( ∑

w∈W (u,v)

puw(1− pvw)+
∑

x∈N (u)−W (u,v)

pux

︸ ︷︷ ︸
Cu

)

(6)
δi+1(v) = δi(v)− (pi+1

uv − piuv)

( ∑

w∈W (u,v)

pvw(1− puw)+
∑

y∈N (v)−W (u,v)

pvy

︸ ︷︷ ︸
Cv

)

(7)
δi+1(wj) = δi(wj)− (pi+1

uv − piuv)(−puwjpvwj
︸ ︷︷ ︸

C(wj)

)

(8)pi+1
uv = piuv +�p , �p = h

∑
k∈{u}∪{v}∪W (u,v) Ckδ

i(k)
∑

k∈{u}∪{v}∪W (u,v) Ck
2
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The second column in Fig.  3 shows the resulting sparsified graphs applied on the 
four backbones.

Expectation‑maximization (EM)

Algorithm 1 only modifies the probability of the edges of the input backbone graph 
Gb . Therefore, the output sparsified graph G′ is dependent not only on the probability 
modification of the Gradient-Descent (GD) algorithm but also on Gb . The authors in 
Parchas et al. (2018) proposed Expectation-Maximization (EM) algorithm that both 
rewires Gb and modifies edge probabilities.

The objective function of the EM algorithm is 
∑

v∈V δ2(v) . Algorithm 2 illustrates 
the EM algorithm. The EM algorithm first initializes G′ with the input backbone graph 
Gb . Lines 2-20, for each edge in E′ the algorithm replaces it with an edge in E\E′ that 
yields lower D. In more details, in lines 5-6 the selected edge is removed from G′ and 
the discrepancies of all corresponding nodes are updated. Line 7, selects the node 
that has the highest discrepancy, vc . In lines 8-15, all incident edges to vc that are not 
available in the current G′ are examined and the one that has the maximum gain is 
added to G′ . Line 18 runs the GD algorithm to modify edge probabilities of G′ in that 
iteration. At the beginning and at the end of each iteration the objective function is 
calculated and if the difference between these two values is equal to or lower than the 
input threshold τEM , the algorithm finishes.

The gain of candidate edges are calculated as follow:

where, D(G′) is the objective function computed on G′ and D(G′ + ec) is the objective 
function computed on G′ after adding ec.

(9)gain(ec) = D(G′)− D(G′ + ec)



Page 10 of 21Kaveh et al. Appl Netw Sci            (2021) 6:58 

It should be noted that if the probability of an edge becomes zero in the final out-
put of the Gradient-Descent or Expectation-Maximization algorithms, that edge will be 
removed from the sparsified graph. This is because according to the definition of proba-
bilistic networks, edge probability has to be in the range (0, 1]. As a result, the condition 
|E′| = α|E| becomes |E′| ≈ α|E| . Notice that the condition |E′| = α|E| cannot be obtained 
exactly in practice anyway, because it can define a non-integer number of edges. As a 
result, the sparsified graph will only contain approximately α|E| edges.

An easy way to avoid probabilities to go to 0 would just be to set a minimum prob-
ability of ǫ > 0 in Algorithm 1 line 9. A small ǫ would keep the edge but not have any 
significant impact on the measures. However, the objective of sparsification is to reduce 
the size and entropy of the network, so having an algorithm that may lead to a slightly 
lower size and entropy than requested is practically reasonable in our opinion, without 
needing any ad hoc fine-tuning.

Experiments
We evaluate the effect of the input graph’s density (“Density” section), the impact of 
the backboning method used (“Backbone” section), and discuss performance (“Perfor-
mance” section).

Datasets

To evaluate the proposed method, we use three real datasets and six synthetic datasets. 
While the real datasets give general insights into the scalability and performance on 
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realistic networks where sparsification will potentially play an important role, we use the 
synthetic datasets to specifically study the impact of density and network structure.

Brain network

The first dataset is a brain network in which nodes are regions of interest (ROIs). The 
number of nodes based on the modified version of the standard AAL3 scheme is 89 
(Termenon et al. 2016). This graph is a complete graph and an edge probability is the 
absolute value of Pearson correlation between the incident ROIs’ activity timeseries. A 
probability value indicates the likelihood that two incident nodes (ROIs) will be func-
tional in the next scanning experiment.

Enron

The second dataset is a snowball sample of the Enron email network in which nodes rep-
resent employees and there is an edge between two nodes if at least one email has been 
exchanged between them. Edge probabilities quantify the likelihood that a new email will 
be exchanged between a pair of nodes at time t, pi,j = 1−

∏
k(1− exp(−µ(t − tk))) . µ 

is the scaling parameter, and tk is the time when message k has been exchanged between 
nodes i and j (Pfeiffer and Neville 2011).

FriendFeed

A snowball sample of the FriendFeed online social network (Magnani et al. 2010) with 
9894 nodes and 172567 edges is the third dataset. There is an edge between two nodes 
if they follow each other mutually and the probability of that edge is the likelihood that 
the two incident nodes will exchange a message in the future. This probability is quanti-
fied by the exponential function pij = 1− exp(−µn) , where n is the number of messages 
exchanged between them in any direction and µ is the scaling parameter with the value 
of 0.2.

Synthetic networks

In addition to the real networks, we also assess multiple synthetic networks, three 
Erdős–Rényi and three Forest-Fire networks (Leskovec et  al. 2005) with densities 
ρ = {0.1, 0.5, 0.9} . While Erdős–Rényi is a simple random network, the Forest-Fire net-
work is characterized by a heavy-tailed node degree distribution and community struc-
tures. Edge probabilities are assigned using a uniform random distribution between 0 
and 1. All datasets are summarized in Table 2.

Density

In this section we study the impact of density and average degree on the sparsifica-
tion. Figure 5 shows the properties of Erdős–Rényi networks that have been sparsi-
fied with the proposed algorithms GD and EM that preserve nodes’ ego betweenness 
(btw). It also shwos GD and EM as proposed in Parchas et  al. (2018) that preserve 
nodes’ expected degree (deg). Columns 1-3 represent relative entropy, i.e. H(G′)

H(G)
 , mean 

3  Automated Anatomical Labeling is the most widely used anatomical parcellation scheme, which partitions cerebral 
cortex into 90 parcels (45 for each hemisphere) (Tzourio-Mazoyer et al. 2002).
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Table 2  Characteristics of datasets, |V| is the number of nodes, |E| is the number of edges, p is the 
mean of the edge probabilities, ρ = 2|E|/(|V |(|V | − 1)) is graph density and D = 2|E|/|V | is average 
degree (Lee et al. 2010)

Dataset |V| |E| p ρ D

Brain network 89 3916 0.526 1 88

Enron 805 3956 0.173 0.012 9.83

FriendFeed 9894 172,567 0.11 0.002 34.88

ER (high ρ) 1000 449,550 0.49 0.9 899.1

ER (medium ρ) 1000 249,750 0.5 0.5 499.5

ER (low ρ) 1000 49,950 0.53 0.1 99.9

FF (high ρ) 1000 449,550 0.51 0.9 899.1

FF (medium ρ) 1000 249,750 0.49 0.5 499.5

FF (low ρ) 1000 49,950 0.48 0.1 99.9

Fig. 5  Impact of density and backboning methods on sparsification - synthetic data: Relative entropy 
(column one), mean relative error of expected degree (column two) and mean relative error of expected 
ego betweenness (column three) of sparsified Erdős–Rényi graphs of different density and average degree. 
The results compare different sparsification methods over various backboning methods. In all graphs 
sparsification ratio is α = 0.45 . In MST/MC backboning method α′ = 0.5α
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relative error (MRE) of expected degree (deg) and mean relative error of ego between-
ness (btw) respectively. Rows 1-3 show the results for Erdős–Rényi networks with 
average degree D = 899.1, 499.5 and 99.9 accordingly.

Figure 5 shows that all algorithms obtain better results for networks with high den-
sity ρ and average degree D . We have repeated the same experiments over Forest-Fire 
networks and the results confirm the same conclusion. For the sake of brevity we only 
include figures for Erdős–Rényi networks. The same evaluations have been performed 
over the real datasets in Fig. 6. All methods extract low entropy sparsified graphs from 
the brain network and the FriendFeed network. On the contrary all methods show poor 
results for the Enron network. This shows that higher average degree of the input graph 
gives more choices to optimize edge probabilities, and we conclude from these results 
that sparsification algorithms work better for graphs with high average degree.

Backbone

The structure of the backbone does not seem to have a significant impact on the final 
sparsified graph. All experiments including Erdős–Rényi (Fig. 5), Forest-Fire as well as 

Fig. 6  Impact of density and backboning methods on sparsification–real data: Relative entropy (column 
one), mean relative error of expected degree (column two) and mean relative error of expected ego 
betweenness (column three) after sparsification of a–c the brain network with α = 0.55 , d–f the FriendFeed 
network with α = 0.1 , and g–i the Enron network with α = 0.65 . In the MST/MC backboning method 
α′ = 0.5α
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the real networks (Fig. 6) show only little variation among the backboning algorithms. 
This happens due to the fact that all backboning methods pick high probability edges 
as the constituent edges of the backbones (or in the case of Monte-Carlo (MC) method 
the likelihood that high probability edges are picked is higher). As a result, the majority 
of the edges in the backbones are common. Our experiments show that between 60 and 
80% of the edges in all backboning methods are the same.

Performance

In this section we evaluate the performance of the proposed sparsification methods in 
the format of computational time (4.4.1), the required number of samples (4.4.2) and 
precision (4.4.3).

Time complexity

Computational complexity of a node’s expected degree and approximated ego between-
ness are O(L) and O(L2) respectively where L is the number of incident edges to that 
node. Therefore, sparsification based on approximated ego betweenness is computation-
ally more expensive compared to expected degree. Figure 7 shows the time spent to spar-
sify Erdős–Rényi, the brain and the FriendFeed networks depending on the backboning 
method. As expected Gradient-Descent (GD) and Expectation-Maximization (EM) with 
approximated ego betweenness (btw) take more time than GD and EM with expected 
degree (deg). However, EM (deg) takes more time compared to GD (btw). While time 
complexity of EM (deg) is higher than GD (btw), Fig. 5 demonstrates that GD (btw) out-
performs EM (deg) in reducing entropy. Figure 5c shows that if we use the (btw) algo-
rithms instead of the (deg) algorithms the MRE (btw) error decreases from around 0.2 
to around 0.1 while the MRE (deg) error in Fig. 5b increases from around 0.1 to around 
0.12. This pattern can be seen in other networks in Figs. 5 and 6.

Number of samples

In this section, we aim to obtain the required number of samples to evaluate measures in 
sparsified graphs. To estimate the value of measure M, we start with N1 = 100 samples 
and gradually increase the number of samples until the mean of the measure converges, 

Fig. 7  Time elapsed to sparsify three networks using different sparsification methods. a and b has been 
sparsified with α = 0.45 and FriendFeed, α = 0.1
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i.e. |MNi −MNi−1
| < τerror , where MNi is the mean value of measure M over Ni samples. 

In this regard we examine betweenness, normalized closeness (harmonic Marchiori 
and Latora 2000) and eigenvector centrality. Figure 8 shows that the calculated meas-
ures over all sparsified graphs converge with lower number of samples compared to the 
original graph. This happens because sparsification methods decrease graphs’ entropy 
and subsequently the variance of measures decreases. As a result the required number 
of samples is lower compared to what is needed for the original graph. Figure 8 shows 
that measures converge with a lower number of samples if the networks are sparsified 
with Gradient-Descent (btw). Eigenvector centrality converges faster in the case that 
the Erdős–Rényi network has been sparsified with the Expectation-Maximization (btw) 
method. For the brain network all measures converge faster in the sparsified graphs with 
GD (btw) and EM (deg). However, note that Gradient-Descent (btw) takes less time 
compared to Expectation-Maximization (deg) for the brain network (see Fig. 7).

Precision

In order to examine precision of measures over sparsified graphs first we compute meas-
ures over 50000 samples of the original graph and consider them as the actual value 
of those measures (although they are estimations of measures, calculating the actual 
measures are computationally prohibitive). Then, we obtain those measures over 1000 
samples of each sparsified graph. Finally, we represent precision of the measures over 
sparsified graphs by calculating MRE between these two values.

As mentioned in the introduction the majority of measures over probabilistic networks 
are represented as probability distributions. One of the most fundamental measures is 

Fig. 8  Required number of samples to calculate measures over sparsified graphs with errors lower than 
a specific threshold: a–c The original graph is Erdős–Rényi with ρ = 0.1 . The sparsification ratio is α = 0.45 
and backboning method the maximum spanning tree method, d–f the original graph is the brain network, 
sparsification ratio is α = 0.55 and the backboning method is the noise corrected method



Page 16 of 21Kaveh et al. Appl Netw Sci            (2021) 6:58 

shortest path length distribution between a pair of nodes. Therefore, instead of compar-
ing the mean value of shortest path length distribution between two nodes we intend to 
calculate the distance between two distributions. In doing so we require a method to cal-
culate the minimum change that is needed to convert a distribution to another (Parchas 
et al. 2018). In this regard earth mover’s distance ( Dem ) is an appropriate option (Rubner 
et al. 2000).

Rows 1 and 2 in Fig. 9 represent Erdős–Rényi and the brain networks respectively. The 
first column in Fig. 9 shows earth mover’s distance over various α sparsified graphs. All 
methods show a similar precision using the earth mover’s distance. For small alpha the 
earth mover’s distance has lower error if networks are sparsified with Expectation-Max-
imization (btw) method. Similarly, betweenness can be estimated with lower errors if 
the networks are sparsified with Gradient-Descent (btw) and Expectation-Maximization 
(btw) methods (see Fig. 9).

Gradient-Descent (btw) and Expectation-Maximization (btw) are likewise good meth-
ods to sparsify networks if we aim to estimate nodes’ closeness with a lower number 
of samples. However, Fig.  9f shows that Gradient-Descent (deg) outperforms other 
methods for high values of α . This can be explained because of the often high correla-
tion between closeness and degree in networks. As these two measures are highly corre-
lated, sparsifiying a graph while preserving expected degree leads to preserving expected 
closeness.

Fig. 9  Error of calculation of measures over sparsified graphs with 1000 samples: In all figures the y-axis 
shows the difference between the value of measures in the original graphs and the estimated value (over 
1000 samples) in the sparsified graphs. The x-axis shows sparsification ratios. a–c Erdős–Rényi network 
with density ρ = 0.1 and MST/MC backbone ( α′ = 0.5α ), and d–f the brain network with noise corrected 
backbone
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Discussion and conclusion
In this paper we generalized the definition of probabilistic network sparsification pro-
posed in Parchas et al. (2018). Our generalized definition is more inclusive and is able 
to incorporate any topological measure in the process of sparsification. In particular, we 
examined estimated expected ego betweenness and derived mathematical equations that 
represent the change of nodes’ discrepancies as the function of edge probabilities.

However, we should note that using other topological measures may have scalabil-
ity issues if we use them naively. A major challenge in probabilistic networks analysis 
is that all measures are represented in the form of probability distributions and their 
calculation is expensive. Therefore, developing a closed-formed relation that calcu-
lates or estimates each measure may require more research before being able to use 
it in an efficient sparsification process. Among all measures expected degree can be 
calculated precisely with O(L) and has been used in sparsification in Parchas et al. 
(2018) and ego betweenness can be estimated in O(L2) as done in this paper.

Therefore, using other measures in sparsification algorithms requires (1) calculat-
ing/estimating that measure with an efficient time complexity, and (2) finding the 
relationship of the change of those measures by changing the edges’ probabilities.

To evaluate the proposed sparsification methods, we examined various backbon-
ing methods (iterative MST, Noise corrected and Monte-Carlo sampling) over mul-
tiple synthetic and real datasets. Our experimental results show that the denser a 
graph is, the better sparsified graphs yield regardless of which sparsification method 
is used. Better here means lower discrepancies and lower MRE when we compare 
measures over original and sparsified graphs. This can be explained by the fact that 
probabilities are real numbers between 0 and 1 and this limits variation of edge 
probabilities. More precisely we can not increase the values of edge probabilities to 
be more than 1 in order to compensate positive discrepancies or decrease the values 
to be less than 0 to compensate negative discrepancies. If the graph is too sparse, the 
sparsification process may result in all edges having extreme probabilities, which can 
no longer be updated in the following iterations.

Moreover, it should be noted that the distribution of edge probabilities of the syn-
thetic datasets used in the experiments reported in this paper are uniformly distrib-
uted between 0 and 1. We have repeated our experiments for not-skewed (Normal) 
and skewed (Beta) distributions. While for distributions with a mean lower than 0.5 
we have not observed a significant difference with the current experiments, for dis-
tributions with higher mean values we have observed lower entropy for the sparsi-
fied graphs as well as higher mean relative errors. These errors even increase when 
we choose small values for α . The intuition on this finding is that when edges prob-
abilities are high on average and we remove ( 1− α ) edges in the backboning stage, 
discrepancies will be high compared to the case where edges probabilities are low 
on average. Therefore, Gradient-Descent and Expectation-Maximization algorithms 
have to minimize discrepancies by adding the probability of the edges available in 
the sparsified graph. However, as those edges’ probabilities are initially high, then 
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(1) their probability will increase to one and as a result the entropy of the sparsified 
network will be low (or even zero and in this case the sparsified graph is a determin-
istic graph) and (2) the minimum discrepancies are still high as edges’ probabilities 
can not be higher than one and as a result the mean relative errors will be high (see 
Figs. 10 and 11 in Appendix 2). This can affect the estimation of measures such as 
closeness and shortest path length considerably. For example in the case that the 
resulting sparsified graph is a deterministic graph and we aim to estimate the reli-
ability between two nodes, it will be estimated either as 0 or 1 which is not a reason-
able estimation.

Finally, our experiments show that no sparsification method is consistently out-
performing the others. While one method may accurately preserve shortest path 
length distributions on one network, it does not necessarily have satisfying results 
for other measures.

Appendix 1: Proof
We notate discrepancy of node v as δ(v) and define the objective function as 
D =

∑
v∈V δ2(v) . We know that discrepancy of node v at iteration i + 1 is:

And, the gradient of δi+1(v) is:

Therefore, to minimize the objective function:

Appendix 2: Impact of edge probability distributions
To study the impact of edge probability distributions on the sparsification, we compare 
two groups of distributions, normal and beta (skewed), with means lower and higher 
than 0.5 on the synthetic datasets. Figures  10 and 11 show relative entropy and MRE 
errors for Normal and Beta distributions, respectively. The first rows in both figures rep-
resent the cases in which the mean of edge probabilities is 0.2. The second rows show the 
cases in which means of edge probabilities are 0.7. In all cases, the synthetic graphs are 
sparsified with sparsification ratios α = 0.1, 0.25, and 0.5. The backboning methods used 
to sparsify the graphs in Figs. 10 and 11 are NC and MST/MC respectively.

δi+1(v) = δi(v)− Cv�p

∇δi+1(v) = ∇δi(v)−∇(Cv�p)

∇Di+1 =
∑

v∈V 2δi+1(v)∇δi+1(v) = 0

→ ∇Di+1 =
∑

v∈V 2
(
δi(v)− Cv�p

)(
∇δi(v)− ∇(Cv�p)

)
= 0

→ ∇Di+1 =
∑

v∈V 2
(
δi(v)∇δi(v)− δi(v)∇(Cv�p)− Cv�p∇δi(v)+ Cv�p

)
= 0

→ ∇

(∑
v∈V δi(v)

2
−

∑
v∈V δi(v)Cv�p−

∑
v∈V (Cv�p)2

)
= 0

→
∑

v∈V δi(v)Cv�p =
∑

v∈V Cv
2�p2

→ �p =

∑
v∈V δi(v)Cv∑
v∈V Cv

2
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Fig. 10  Normal distributions: relative entropy (column one), mean relative error of expected degree (column 
two) and mean relative error of expected ego betweenness (column three) of sparsified Erdős–Rényi graphs 
with 500 nodes and density ρ = 0.5 . Edge probabilities are assigned according to Normal distributions (row 
1) N (µ = 0.2, σ = 0.3) , and (row 2) N (µ = 0.7, σ = 0.3)

Fig. 11  Beta distributions: relative entropy (column one), mean relative error of expected degree (column 
two) and mean relative error of expected ego betweenness (column three) of sparsified Erdős–Rényi graphs 
with 500 nodes and density ρ = 0.5 . Edge probabilities are assigned according to a Beta distribution with 
(row 1) B(1, 4) and mean = 0.2, and (row 2) B(7, 3) and mean = 0.7
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