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Introduction
One of the non-trivial heterogeneous properties of complex networks is captured by 
the phenomenon of the friendship paradox which states that people, on average, have 
fewer friends than their friends do. The friendship paradox has been the focus of vari-
ous research studies related to social networks, including (Feld 1991; Eom and Jo 2014; 
Alipourfard et al. 2020; Fotouhi et al. 2015; Momeni and Rabbat 2016; Bollen et al. 2017; 
Jackson 2019; Higham 2018).

To quantify some characteristics of the friendship paradox for real networks, the 
paper (Pal et al. 2019) proposes a local network metric (called the “friendship index”, 
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FI). Its value for a node is defined as the ratio of the average degree of the node neigh-
bors to the degree of this node. The metric contains important information associ-
ated with the friendship paradox. Firstly, it shows the ‘direction of influence’ which 
may be interpreted as an answer to whether the node is more or less popular than 
its neighbors. Secondly, it measures the ‘disparity’ compared to a network without 
the friendship paradox: if values of FI are higher than 1, the paradox is present. In 
the paper (Pal et al. 2019) the value of FI is aggregated over the whole network, and 
this aggregate measure is examined theoretically and experimentally. Other meas-
ures and approaches for analysis of vertex popularity compared to its neighbors were 
developed in papers (Eom and Jo 2014; Momeni and Rabbat 2016; Fotouhi et al. 2015; 
Lee et al. 2019), e.g. a binary measure was used for analyzing the friendship paradox 
based on the comparison between a node’s degree to both the mean and median of 
neighbors’ degrees.

Theoretical properties of FI were studied in Pal et al. (2019). Friendship index quan-
tifies the local degree asymmetry as it shows the differences in the structure of node 
degree distributions at a local level. For example, the value of the index will be equal 
to 1 in a graph in which degrees of all vertices are equal to each other (e.g. a complete, 
lattice or cyclic graphs). At the same time, for a star-type graph (one central and n 
peripheral vertices) the value of this index for the central vertex will be equal to 1n , 
while for peripheral vertices it will be equal to n. Differences in the value of this index 
for different vertices indicate the unevenness of the local structures of the graph in 
terms of node degree distributions.

This paper (Section “Friendship index distribution in real complex networks: exam-
ples”) provides empirical evidence of the friendship paradox in four undirected and 
two directed real networks:

•	 the product network based on Customers Who Bought This Item Also Bought fea-
ture of Amazon [the network was introduced in Yang and Leskovec (2013)];

•	 the network of phone calls [data was taken from Song et al. (2010)];
•	 the network based on 2019 snapshot of a number of Github users (Rozemberczki 

et al. 2019a);
•	 the network based on a 2017 snapshot of Facebook users [data from Rozemberczki 

et al. (2019b)],
•	 the citation network of APS journals [from Redner (2004)];
•	 the web graph, based on web pages and hyperlinks between them (Rossi and 

Ahmed 2015).

We show that all these networks exhibit the following features: the FI distributions 
are heavy-tailed and the vast majority of nodes have the friendship index value greater 
than 1.

It should be noted that all of these networks are growth networks. It is well-known 
that many phenomena exhibited by such networks can be partially explained by the 
use of preferential attachment mechanism. Moreover, their local clustering is higher 
in comparison with random or BA networks. One of the mechanisms that allows this 
to be explained is triadic closure.
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Therefore, the main research question of this paper is the following: does the use of 
preferential attachment and/or triadic closure mechanisms lead to the emergence of the 
friendship paradox phenomenon in growth networks? This paper examines the analyti-
cal properties of the friendship index in random networks generated by two models:

•	 the Barabási–Albert model,
•	 the triadic closure model by Holme and Kim (2002).

The participation of triadic closure in the formation of real complex networks was ini-
tially described in Rapoport (1953). Triadic closure is a generating mechanism that 
explains community creation in a variety of complex networks (Stolov et al. 2000; Mack 
2001), including knowledge, citation and research collaboration (Jin et al. 2001; Wu and 
Holme 2009; Juhasz and Lengyel 2017; Golosovsky and Solomon 2017; Muppidi and 
Reddy 2020; Ren et al. 2012; Carayol et al. 2019), affiliation (Brunson 2015), social (Fang 
and Tang 2015; Bianconi et al. 2014; Huang et al. 2015, 2018; Linyi and Shugang 2017; 
Huang et  al. 2015), mobile network (Zhou et  al. 2018), social interaction (Song et  al. 
2019; Li et al. 2013; Chen and Poquet 2020; Wharrie et al. 2019; Yin et al. 2019), financial 
(Souza and Aste 2019) and WWW-based networks (Louzoun et al. 2006).

One of the accountable models utilizing the triadic closure mechanism was examined 
by Holme and Kim (2002). It is an expansion of the Barabási–Albert model of preferen-
tial attachment (Barabási and Albert 1999) and uses the idea of triadic closure previously 
specified in papers (Rapoport 1953; Stolov et al. 2000; Mack 2001). This model generates 
networks with heavy-tailed degree distributions (as BA model does), but with a much 
higher clustering similar to real-world networks. In accordance with the model, a new-
born node obtains a link with one of the already existing nodes chosen with the prob-
ability proportional to its degree (i.e. using preferential attachment mechanism). Each 
of the leftover m− 1 edges is linked with a probability p to a randomly taken neighbor 
of the node that has obtained the preferentially attached link (it is called triad forma-
tion step), while the newborn node links with a probability 1− p to a random node of 
the whole network chosen with use of PA mechanism. It has been shown in Holme and 
Kim (2002) that the model may produce networks with various levels of clustering by 
selecting p and m. On the other hand, their degree distributions follow a power law with 
exponent γ = −3 for any p, i.e. it is the same pattern as in the BA model.

A different version of triadic closure model was studied in Bianconi et al. (2014) (each 
newborn node is linked to a random vertex of the network selected with uniform proba-
bility). Extensions of the triadic closure mechanism can be found in works (Itzhack et al. 
2010) and (Brot et al. 2015).

To answer the main research question of this paper, we first find the dynamics of the 
friendship index expected values for every single node vi in the networks generated in 
accordance with both models (Sections “Dynamics of the friendship index in Barabási–
Albert model” and “Dynamics of the friendship index of a node”, respectively). In addi-
tion, we study how the friendship index values are distributed in such networks. Results 
indicate that there is a clear presence of the friendship paradox for networks evolved in 
accordance with both models. The results also show that the FI values are decreasing 
over time for all nodes in both models. However, for networks constructed based on the 
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triadic closure model, this decrease occurs at a much slower rate than for the Barabási–
Albert graphs. Moreover, the FI distributions for networks of both types are heavy-tailed 
and comparable with the empirical FI distributions for real networks. However, for net-
works based on the triadic closure model, their FI distributions are more heavy-tailed 
and, in this sense, are closer to the FI distributions for real networks.

In contrast with the paper (Pal et al. 2019) which examines the behavior of the FI value 
averaged over all nodes, this paper examines the dynamics of the FI for any node of the 
Barabási–Albert network. This paper expands the paper (Sidorov et al. 2021) in which 
the simplest version of BA model was examined (with one attached link to a new node at 
each iteration).

Notations, definitions and methodology
A complex network at iteration t is represented by graph G(t) which can be defined 
as a pair (V(t), E(t)) where V (t) = {v1, . . . , vt} is a set of vertices representing nodes of 
complex network and E(t) is a set of edges representing connections (links) between the 
network nodes, i.e. E(t) = {(vi, vj)| vi, vj ∈ V (t)} . If (vi, vj) ∈ E(t) then vi and vj are neigh-
bors. In this paper, index i will denote the iteration at which node vi appeared.

Let di(t) denote the degree of node vi at iteration t. Then si(t) would denote the total 
degree of all neighbors of node vi at given iteration t:

Let αi(t) denote the average degree of all neighbors of node vi (at iteration t), i.e. the 
ratio of the sum of the degrees of the node vi neighbors to the number of its neighboring 
vertices:

The friendship index of node vi (at iteration t) is defined in Pal et al. (2019) as follows:

Local characteristics of node vi , such as the sum of the degrees of its neighbors si(t) , 
or its friendship index βi(t) , may change at each subsequent iteration, depending on 
whether the newborn node chooses this node or its neighbors. The trajectories of these 
local characteristics over time are described by stochastic Markov nonstationary pro-
cesses. These processes are Markov processes, since their behavior depends only on the 
network state at current iteration, and does not depend on its states at previous times. 
On the other hand, the processes under consideration are non-stationary due to the fact 
that their characteristics change with the growth of the network scale. We are interested 
in finding the expected values of these processes at any given time.

We will use standard scheme, called the mean-field method, summarized in Fig.  1. 
First, we should obtain a stochastic equation describing the dynamics of the studied 
quantity in the interval between two adjacent iterations t and t + 1 . This stochastic 

si(t) =
∑

j: (vi ,vj)∈E(t)
dj(t).

αi(t) =
si(t)

di(t)
.

βi(t) = FIi(t) =
αi(t)

di(t)
=

si(t)

d2i (t)
.
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equation should then be transformed into a difference equation that describes the 
change in the quantity under study, taken at times t and t + 1 . The next step is to replace 
the difference equation with its approximate analogue—the corresponding differential 
equation, the solution of which describes the dynamics of the quantity under investiga-
tion. In the course of this reasoning, we calculate (if possible) the averaged (expected) 
values of the random variables which are present in these relations.

Friendship index distribution in real complex networks: examples
Let us briefly demonstrate the presence of friendship paradox in real networks. Six real 
networks with varying characteristics are chosen for the analysis. These networks rep-
resent Github users (Rozemberczki et al. 2019a), phone calls (Song et al. 2010), Amazon 
products (Yang and Leskovec 2013), Facebook users (Rozemberczki et al. 2019b), cita-
tions (Redner 2004) and web hyperlinks (Rossi and Ahmed 2015). Network statistics are 
shown in Table 1.

We build histograms to observe the friendship index distribution. For each network 
we use linear and log-log plots, the latter is required as friendship index in real networks 
follows the power law, which can be observed on the log-log plots. From the obtained 
results we calculate what percentage of β is greater than 1, which is directly related to 
the detection of friendship paradox. The power-law exponents γ were obtained fitting 
linear regression to logarithmically binned data points taken from the decreasing parts 
of histograms.

Figure 2a, b show the friendship index distribution of β for real network of phone 
calls from Song et al. (2010). Nodes are represented by a sample of cell phone users, 
which are connected if they called each other during the observed period. The net-
work is of size |V | = 37,000 and |E| = 92,000 . The amount of nodes with β > 1 is 
78.6% . The histogram for the real network and its log-log variant are shown in Fig. 2a, 

Fig. 1  The mean-field approach for finding the dynamics of expected values of si(t) and βi(t)

Table 1  Networks and their characteristics of friendship index distribution, β is the friendship index, 
γ is the power law exponent

Network |V| |E| β > 1, % γ Directed

Amazon products 335,000 950,000 80.5 2.33 −
Phone calls 37,000 92,000 78.6 2.7 −
Github users 37,700 289,000 99.0 1.11 −
Facebook artists 50,500 819,000 93.4 1.6 −
Literature citations 449,700 4,689,500 84.3 1.34 +
Web hyperlinks 875,000 5,105,000 75.4 1.28 +
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b, respectively. It should be noted that the empirical distribution for the real network 
is asymmetric, heavy-tailed, and has a large variance ( E(βi) = 2.3 , VAR(βi) = 9.4 ). 
The results also indicate that the overwhelming majority of nodes in the network has 
the friendship index greater than 1, which means that there is a remarkable friendship 
paradox in it.

Figure 2c, d show the distribution of β for real product network based on Customers 
Who Bought This Item Also Bought feature of Amazon. The network was introduced 
in Yang and Leskovec (2013), 2012. Nodes are products that are connected by undi-
rected edges if they are frequently co-purchased.

Fig. 2  The figures a–h show empirical histograms of βi(N) and their log-log plots, for various real undirected 
networks
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Figure  2e, f show the distribution of friendship index for network based on 2019 
snapshot of a number of Github users. Individuals represented in nodes are con-
nected if there are mutual follower relationships between them.

Figure 2g, h show empirical histograms of βi(N ) and its log-log plot, respectively, 
for real network based on a 2017 snapshot of users of Facebook (Rozemberczki et al. 
2019b). Nodes are blue verified Facebook pages which are connected if there are 
mutual likes among them.

Similar results are obtained for directed networks. The main difference for them 
is that friendship index calculation is based on in-degree of vertices. We plot β dis-
tributions for directed networks on linear and log-log plots as seen in Fig. 3. Unlike 
undirected networks, the large number of vertices are with β in the range of 0 to 1. 
However, due to the fact that the distributions are heavy-tailed, the percentages of 
nodes with β > 1 remain high enough to undoubtedly consider that the networks are 
under the effect of friendship paradox. Network characteristics and results are shown 
in Table 1.

Figure  3a, b show the distribution of β in a citation network of the APS journals. 
Nodes are papers, and node vi is connected with a directed link with vj if paper vi cites 
paper vj.

Figure 3c, d show the empirical histograms of β in a sparse directed network of web 
pages. Node vi is connected with a directed link to vj if page vi has a hyperlink to page 
vj.

It can be seen that the majority of nodes in all networks have friendship index value 
greater than 1, which implies the existence of friendship paradox. Furthermore, all 
networks have a distinguishable slope in their distributions of β , however the length 
of the tail may differ. We may see that all β distributions follow the power law.

Fig. 3  The figures a–d show empirical histograms of βi(N) and their log-log plots, for two real directed 
networks
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Dynamics of the friendship index in the Barabási–Albert growth networks
Preliminary analysis

In the Barabási–Albert model (Barabási and Albert 1999) network evolves according to 
the following rules. Let m be the number of attached links for each newborn node, then 
at each iteration t: 

1.	 Single node vt is added;
2.	 One link is added to the graph, and the new node is connected by this link to one of 

existing nodes vi with a probability proportional to the degree of this node di(t) . This 
process is repeated m times over the iteration.

As a result of each of the m attachments, the value si(t) may increase in three cases only:

•	 the new node vt+1 (of degree m) connects with node vi on iteration t + 1 , and thus 
the value of si(t) is increased by m, while di(t) is increased by 1: di(t + 1) = di(t)+ 1 
(Fig. 4a);

•	 the new node vt+1 connects with one of the neighbors of node vi by one of its m 
edges, and then the value of si(t) is increased by 1, while di(t) remains the same: 
di(t + 1) = di(t) (Fig. 4b);

•	 the new node vt+1 is connected by one of its m edges with a neighbor of node vi , 
while one of the other edges links to the node vi . Then the total degree of neighbors 
of node vi is increased by m+ 1 and the degree of node vi is increased by 1 (Fig. 4c).

It should be noted that the probability of the third case is an order of magnitude closer 
to zero compared to the probabilities of the first two cases, so we exclude this case from 
the analysis so as not to clutter the derivation of the equations.

In order to obtain stochastic relations describing the dynamics of these processes in 
time, we will introduce auxiliary indicator variables that characterize random events 
associated with whether node vi will be selected by a new node (variable ξ (t+1)

i,l  ), or 
whether a neighbor of vi will be selected (variable η(t+1)

i,l ):

•	 Let the random variable ξ (t+1)
i,l = 1 if node vi is chosen by node vt+1 to be connected 

at iteration t + 1 with one of its links l ∈ {1, . . . ,m} , and ξ (t+1)
i,l = 0 , otherwise.

•	 Let the random variable η(t+1)
i,l = 1 if the new node vt+1 connects to one of the 

nodes already linked to node vi using one of m generated links l ∈ {1, . . . ,m} , and 
η
(t+1)
i,l = 0 , otherwise.

Fig. 4  The cases in which the degree of node i or the degree of its neighbor j may change in BA model. PA 
means that the link is attached using the preferential attachment (PA) mechanism
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For further convenience we shall write ξ (t+1)
i =

∑m
l=1 ξ

(t+1)
i,l  and η(t+1)

i =
∑m

l=1 η
(t+1)
i,l .

For simplicity, we assume that all m links at iteration t + 1 are drawn simultane-
ously and independently of each other. However, in this case, it is possible that node 
vi will be selected two or more times. The probability that node vi will be chosen k 
times during the iteration is proportional to 

(

di(t)
2mt

)k
 . Although this value is not equal 

to zero, it is an order of magnitude less than the probability of choosing node vi once 
in the series of m experiments, and therefore we can exclude these cases from the 
analysis. Since node vi has m chances to be chosen at iteration t + 1 with the proba-
bility proportional its degree di(t) , we get

and

Dynamics of the total degree of node neighbors in Barabási–Albert model

Let us calculate how the value of si(t) changes after a new node is added at iteration 
t + 1 . The analysis of Section “Preliminary analysis” gives

Then from (1) and (2) we get the linear nonhomogeneous differential equation of first 
order (as an approximation to the difference equation (3)):

Solving the equation (see “Appendix A”), we get that the expected value of si(t) is

The expected initial value of si(t) at moment t = i is

where P(vi, vj) denotes the probability that at the moment of its appearance node vi will 
be linked with node vj.

Figure  5 presents the evolution of the si(t) averaged over 100 independent sim-
ulations. The empirical behavior of si(t) are indistinguishable from predictions of 
Eq. (5).

(1)E(ξ
(t+1)
i ) = m

di(t)

2mt
=

di(t)

2t

(2)E(η
(t+1)
i ) = m

∑

j:(vj ,vi)∈E(t)

dj(t)

2mt
= m

1

2mt
si(t) =

si(t)

2t
.

(3)�si(t + 1) = si(t + 1)− si(t) = mξ
(t+1)
i + η

(t+1)
i .

(4)
dsi(t)

dt
= m

di(t)

2t
+

si(t)

2t
,

(5)si(t) = E(si(t)) =
m2

2

(

t

i

)
1
2
(

log t + c(i)
)

.

(6)E(si(i)) =
i−1
∑

j=1

P(vi, vj)dj(i) = m2
i−1
∑

j=1

(

i
j

)
1
2

2i

(

i

j

)
1
2

=
m2

2

i−1
∑

j=1

1

j
∼

m2

2
log i,
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Dynamics of the friendship index in Barabási–Albert model

In order to measure the dynamics of βi(t) we may calculate the changes in βi(t) after add-
ing a new node at iteration t + 1 . Note that it would be incorrect to find E(βi(t)) as the 
ratio of the expected value of the sum of degrees of neighbors of node vi to the square of the 
expected number of its neighboring vertices, since

Let ξ (t+1)
i , η

(t+1)
i  be defined as above. Then we have

Since E(ξ (t+1)
i ) = di(t)

2t  and E(η(t+1)
i ) = si(t)

2t  we get

β i(t) := E(βi(t)) = E

(

si(t)

d2i (t)

)

�=
E(si(t))

E(d2i (t))
.

(7)

�βi(t + 1) = βi(t + 1)− βi(t)

= ξ
(t+1)
i

si(t)+m

(di(t)+ 1)2
+ η

(t+1)
i

si(t)+ 1

d2i (t)

+
(

1− ξ
(t+1)
i − η

(t+1)
i

) si(t)

d2i (t)
−

si(t)

d2i (t)

= ξ
(t+1)
i

(

si(t)+m

(di(t)+ 1)2
−

si(t)

d2i (t)

)

+ η
(t+1)
i

(

si(t)+ 1

d2i (t)
−

si(t)

d2i (t)

)

= ξ
(t+1)
i

(

m

(di(t)+ 1)2
− 2

di(t)

(di(t)+ 1)2
βi(t)−

1

(di(t)+ 1)2
βi(t)

)

+ η
(t+1)
i

1

d2i (t)
.

Fig. 5  Evolution of sum of neighbors’ degrees in networks generated by Barabási–Albert model for selected 
nodes vi , i = 10, 50, 100, 1000 , as t iterates up to 25000. Network in the figure a is modeled with m = 3 while 
in b is simulated with m = 5
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From the asymptotic k2

(k+1)2
∼ 1− 2

k+1 we can get the following first order linear nonho-

mogeneous differential equation (as an approximation of the difference equation (7)):

Solving Eq. (8) it can be seen (“Appendix B”) that the expected value of βi(t) asymptoti-
cally follows

where the little-o notation f (t) = o(g(t)) means that g(t) grows much faster than f(x). It 
follows from (6) that the initial value of β i is

since d2i (i) = m2.
Eq. (9) describes the trajectory of the expected value of βi(t) with the increase in the 

number of iterations t. It should be noted that the equation describes the trajectory of 
the expected value of the friendship index, while the actual trajectory in every particu-
lar simulation may differ significantly from the theoretical one. However, by averaging 
ones obtained from a large number of simulations, we can get a curve that lies close to 
the curve predicted by the equation (9). Such averaged trajectories for some nodes are 
shown in Fig. 6. The figure presents the dynamics of the friendship index βi(t) for nodes 

�βi(t + 1) =
mdi(t)

2t(di(t)+ 1)2
− βi(t)

(

d2i (t)

t(di(t)+ 1)2
+

di(t)

2t(di(t)+ 1)2
−

1

2t

)

.

(8)
dβi(t)

dt
∼

mdi(t)

2t(di(t)+ 1)2
− βi(t)

(

1

2t
−

3di(t)

2t(di(t)+ 1)2

)

,

(9)β i(t) := E(βi(t)) ∼
1

2

(

i

t

)
1
2

log t + o(t−
1
2 ),

β i(i) =
E(s(i))

d2i (i)
=

1

m2

m2

2

i−1
∑

j=1

1

j
∼

1

2
log i,

Fig. 6  Empirical trajectories of the values of βi in networks generated with Barabási–Albert model for 
selected nodes vi , i = 10, 50, 100, 1000 , as t iterates up to 25000. Network in the figure a is modeled with 
m = 3 , while b is simulated with m = 5
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vi , i = 10, 50, 100, 1000 , averaged over 100 simulated networks of size |V | = 25,000 . It 
can be seen that βi(t) are gradually decreasing to 0 with the growth of the network.

The analysis of Eq. (9) allows us to draw the following conclusions regarding the behav-
ior of the friendship index over time: 

1	 The trajectory of the expected value of βi(t) lies on the curve (9), and with the 
increase in the number of iterations t, i.e. with the growth of the network, the value 

of β i(t) decreases to zero with the rate 12
(

i
t

)
1
2
log t depending on the number of iter-

ations t. In other words, the value of βi(t) tends to zero for all nodes i, as t → ∞.
2	 For node vi that appears on iteration i, the expected initial value of βi(i) is 12 log i.
3	 For each node vj that is added after node vi , the expected value of the friendship index 

is higher than the expected value of the friendship index for node vi , i.e. β j(t) > β i(t) 
if j > i . Thus, the more popular a node is, the lower the value of its friendship index 
is. The scattered plot of points (log i, log βi(n)) , i = 1, . . . , 5000 , obtained for simu-
lated BA network of size n = 5000 with m = 4 , is shown in Fig.  7. It presents the 
empirical evidence of the fact that the earlier a node appears, the lower its friendship 
index is, and vice versa.

4	 Figure 8a, b show the theoretical trajectories of the friendship index for some nodes 
of a network built according to the Barabási–Albert (BA) model with m = 4 over 
iterations. The starting points of each individual trajectory lie on the curve 0.5 log t . 
Each trajectory is shown as a solid line, while the dotted line corresponds to those 
portions of the same curve where the corresponding node has not yet existed. The 
density of the values of βi(t) at moment t increases from 0 to 0.5 log t.

5	 Having solved the equation 12
(

i
t

)
1
2
log t = 1 , we can find the index i∗ = i∗(t) = 4 t

log2 t
 

for which the value of β i∗(t) = 1 at iteration t. Thus, for every node vj that appeared 
earlier, i.e. j < i∗ , the inequality β j(t) < 1 holds, while for any node vl that appeared 
later, i.e. l > i∗ , the relation β l(t) > 1 holds. The fraction of nodes, for which the 
expected value of the friendship index is less than 1, is equal to i

∗(t)
t = 4 1

log2 t
 . There-

fore, with an increase in the number of iterations t, the fraction of such nodes 
decreases and tends to zero. On the other hand, the proportion of nodes, for which 
the expected value of the friendship index is greater than 1, tends to 1, i.e. the friend-
ship paradox will affect almost all nodes as the network grows. If one compares 

Fig. 7  The scattered log-log plot of points (log i, logβi(n)) , where i is the iteration i = 1, . . . , 5000 in which 
node vi appears and βi(n) is its friendship index evaluated at iteration n = 5000 , after simulating BA network 
of size n = 5000
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Fig. 16a ( n = 104 ) and b ( n = 105 ), one can see that the share of nodes with β i(n) < 1 
decreases.

We verify our results by running experiments in which we create synthetic networks 
and obtain β distribution over all nodes in the network. Table  2 shows the averaged 
results obtained from 100 individual runs per each network with different parameters. 
We sum all nodes from the intervals of size 1 and divide them by the number of experi-
ments. Then we calculate the percentage of nodes that did not fall into 0 to 1 interval. It 
can be seen that with the network growth the percentage of nodes with β exceeding 1 
steadily increases with the growth of the network.

FI distribution in BA networks

Note that Eq. (9) gives the expected value of βi(t) at moment t, and does not tell anything 
about how random variable βi(t) is distributed at iteration t.

To understand how much the empirical values of βi(t) obtained by simulations are 
scattered around its mean β i(t) , how skewed the values βi(t) are, i.e. how the values βi(t) 
obtained by simulations are distributed, we generate N = 1000 networks of the same 

Fig. 8  Theoretical trajectories of the expected value of the friendship index β(t) over 
t for nodes a i = 10, 500, 1000, 1500, . . . , 9000, 9500 , the size of network n = 104 , b 
i = 100, 5000, 10000, 15000, . . . , 90000, 95000 , the size of network n = 105

Table 2  Characteristics of friendship index distributions in synthetic networks generated with 
Barabási–Albert model

|N| |E| β > 1, %

5,000 25,000 91.591

10,000 50,000 91.961

15,000 75,000 92.287

25,000 125,000 92.516

50,000 250,000 92.672
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size n = 5000 , and for each of 1000 networks we find empirical values of the friendship 
index βi(n) for their nodes at moment n. Figure 9a shows the corresponding histograms 
obtained for three nodes i = 100 , i = 500 and i = 2500 . Simulations show that the distri-
butions of βi(t) are heavy tailed.

We use the Kolmogorov–Smirnov (K–S) test to compare 1000-length samples, 
obtained for nodes i = 1, . . . , 5000 , with log-normal probability distribution. The null 
hypothesis is that the samples are drawn from the (reference) log-normal distribution. 
The general formula for the probability density function of the (standard) log-normal 
distribution is

where σ is the shape parameter, m is the scale parameter.
We let the threshold value for p-value (the significance level of the K–S test) at 0.05. 

Results of the Kolmogorov–Smirnov test show that p-values are more than 0.05 for all 
i-samples, they increase with growth of i, e.g. p-value for i = 500 is equal to 0.16 and 
p-value for i = 2500 is equal to 0.29. We may conclude that the observed samples are 
sufficiently consistent with the null hypothesis and that the null hypothesis may not 
be rejected. Figure  9b presents the density functions of the log-normal distribution 
with estimated parameters for corresponding nodes i = 100, 500, 2500.

To construct a histogram of FI for the Barabási–Albert network, we generate a net-
work of size n = 5000 , and then we obtain values over each of intervals of length 0.25. 
The obtained histogram (Fig. 10a) and its log-log variant (Fig. 10b) show that the FI 
distribution in the simulated network has heavy tail and a huge variance. The results 
also indicate that the overwhelming majority of nodes in the modeled BA networks 

f (x) =
e
− log2 x

m
2σ2

xσ
√
2π

, x > 0, σ > 0, m > 0,

Fig. 9  a Empirical histograms for values of βi(n) for three nodes i = 100, 500, 2500 , obtained by simulating 
of 1000 BA networks of size n = 5000 ; b the density functions of log-normal distribution with parameters 
estimated for the corresponding samples of βi(n) , i = 100, 500, 2500
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have the friendship index greater than 1, which means that there is a remarkable 
friendship paradox.

Moreover, we conduct the Kolmogorov–Smirnov test to verify the null hypothesis 
(that the samples are drawn from the (reference) log-normal distribution). Results of 
the K–S test show that p-value is equal to 0.1313. Thus, observed data are sufficiently 
consistent with the null hypothesis, i.e. the null hypothesis may not be rejected at sig-
nificance level 0.05.

Triadic closure model analysis
Triadic closure model

The triadic closure model by Holme and Kim (2002) generates growth networks as 
follows. At each iteration t: 

1.	 One node vt is added;
2.	 m links are added to the network, which connect the new node vt and m other nodes 

as follows: 

(a)	 the first link at iteration vt is connected to node vi using preferential attachment 
(probability of being connected to node vi is proportional to its degree)

(b)	 other remaining m− 1 links connect the new node vt as follows: 

	(b1)	with probability p, triad formation occurs, which means that the link is attached to 
an arbitrary neighbor of the node vi;

	 (b2)	 with probability 1 − p, the link is connected to one node of the network using 
preferential attachment.

The main difference between the BA and triadic closure models is that the latter cre-
ates many more triangles during the network growth process. The degree evolution of 
every node over time, as described in Holme and Kim (2002), follows

Fig. 10  a the empirical histogram of βi(n) and b its log-log variant, obtained by simulation of the Barabási–
Albert model with m = 4 , the size of network is n = 5000
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with the same exponent β = 1
2 for all nodes. Furthermore, it was shown in Holme and 

Kim (2002) that the degree distributions of networks generated by the triadic closure 
model follows the power law with exponent γ = 3 that does not depend on p and m. 
Throughout the rest of this section we will assume p  = 0 and m ≥ 2.

If new vertex vt+1 chooses a neighbor vj of vertex vi at step (a), and then new vertex 
vt+1 links by remaining m− 1 edges to its neighbors (with probability p) at step (b1), 
so the probability that they are common neighbors of node vi is very high. This is 
due to the fact that the triadic closure model generates many triangles as the network 
grows, which leads to a greater local and global clustering. To analyze the growth of 
networks, we need certain facts about the behavior of the clustering coefficient over 
time. The average value of the clustering coefficient at iteration t is defined as follows

where θi(t) denotes the local clustering coefficient of node vi at iteration t. In “Appendix 
C”, we obtain equations describing the dynamics of the clustering coefficient and show 
that for networks generated by the triadic closure model, its value tends to some con-
stant value θ with an increase in the number of iterations. Note that this fact was estab-
lished empirically in the work (Holme and Kim 2002). Therefore, we approximate θ(t) by 
θ in our analysis.

Preliminary analysis

In order to obtain stochastic relations describing the dynamics of processes si(t) and 
βi(t) in time, we need auxiliary indicator variables that characterize random events 
associated with whether this node will be selected by a new node at steps (a), (b1) or 
(b2) (variables ζ (a,t+1)

i , ζ
(b1,t+1)
i,l  and ζ (b2,t+1)

i,l  , respectively):

We have

(10)ki(t) = m

(

t

i

)β

θ(t) :=
1

t

t
∑

i=1

θi(t),

ζ
(a,t+1)
i =

�

1, if node vt+1 links to node vi at step (a) of iteration t + 1,
0, otherwise,

ζ
(b1,t+1)
i,l =







1, if l-th edge, l = 1, . . . ,m− 1, links node vt+1 with node vi
at step (b1) of iteration t + 1,

0, otherwise,

ζ
(b2,t+1)
i,l =







1, if l-th edge, l = 1, . . . ,m− 1, links node vt+1 with node vi
at step (b2) of iteration t + 1,

0, otherwise.

ζ
(b1,t+1)
i :=

m−1
�

l=1

ζ
(b1,t+1)
i,l , ζ

(b2,t+1)
i :=

m−1
�

l=1

ζ
(b2,t+1)
i,l .
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where |E(t)| is the number of edges in the network after t iterations.
Let nodes vj and vi be neighbors, i.e. (vj , vi) ∈ E(t) . The probability that a randomly 

chosen neighbor of node vj is also the neighbor of node vi can be approximated by 
the value of the averaged clustering coefficient θ(t) obtained in “Appendix C” (see Eq. 
(30)).

Let us study how the values of di(t) and si(t) change during the iteration t + 1 . To do 
this, let us consider two groups of situations: situations in which a new node is attached 
to node vi at iteration t + 1 , and situations where a new node is attached to a neighbor of 
node vi , but not to itself.

First, we examine the cases in which the degree of node vi changes as the result of link-
ing the new node vt+1 to node vi . It may occur at steps (a), (b1) and (b2). Let us consider 
them separately:

•	 If new node vt+1 joins node vi at step (a) (see Fig. 11a), then the total degree of all 
neighbors for the node vi will increase by 

•	 m, since this node will obtain the new neighbor with a degree of m, while its 
other neighbors will not change their degrees;

•	 p(m− 1) , since we should add, on average, p(m− 1) edges to the neighbors of 
the node vi as a result of the choice of the node vi at step (a).

	  Therefore, in this case we have si(t + 1)− si(t) = m(1+ p(m− 1)) . The degree 
of node vi will be increased by 1, i.e. di(t + 1)− di(t) = 1.

E(ζ
(a,t+1)
i ) =

di(t)

2|E(t)|
,

E

(

ζ
(b1,t+1)
i

)

=
∑

(vi ,vj)∈E(t)

dj(t)

2|E(t)|
1

dj(t)
p(m− 1) =

di(t)

2|E(t)|
p(m− 1),

E

(

ζ
(b2,t+1)
i

)

=
|V (t)|
∑

j=1

dj(t)

2|E(t)|
di(t)

2|E(t)|
(1− p)(m− 1) =

di(t)

2|E(t)|
(1− p)(m− 1),

Fig. 11  The cases in which the degree of node vi may change at iteration t + 1 of the triadic closure model. 
PA means that the link is attached using the preferential attachment (PA) mechanism



Page 18 of 35Sidorov et al. Appl Netw Sci            (2021) 6:51 

•	 In order for node vi to be selected at step (b1), it is necessary that at step (a) one of 
the neighbors vj of node vi was selected, and then the node vi would be selected as a 
neighbor of the node vj at step (b1) (see Fig. 11b1). In this case, the degree of node vi 
will increase by 1, while the total degree of its neighbors si(t) will increase by 

•	 m as a result of joining node vt+1 of degree m to the node vj;
•	 p(m− 2)θ as a result of linking the newborn node vt+1 to p(m− 2)θ (in aver-

age) common neighbors of nodes vj and vi at step (b1). After one of the m− 1 
edges is drawn to node vi , it remains to attach m− 2 nodes.

	  Thus, si(t + 1)− si(t) = m+ p(m− 2)θ and di(t + 1)− di(t) = 1 in this case.

•	 If node vi was selected at step (b2) (see Fig. 11b2), then the node degree increases 
by 1, while the total degree of its neighbors will increase by m as a result of joining 
the new neighbor vt+1 of degree m.

Denote �si(t + 1) := si(t + 1)− si(t) , �di(t + 1) := di(t + 1)− di(t).
All these cases are present in Table 3 with corresponding probabilities.
Now let us consider those cases in which no links are drawn to node vi as a result of 

the iteration t + 1 , but nevertheless one of its neighbors increases its degree. This is 
possible in three cases:

Table 3  The cases in which the degree of node vi changes

Step (a) Step (b1) Step (b2)

�si(t + 1) m+ p(m− 1) m+ p(m− 2)θ m

�di(t + 1) 1 1 1

Probability di (t)
2|E(t)|

di (t)
2|E(t)|p(m− 1) di (t)

2|E(t)| (1− p)(m− 1)

Fig. 12  The cases in which the degree of node vi remains the same but the degree of its neighbors may 
change at iteration vt+1 in the triadic closure model. PA means that the link is attached using the preferential 
attachment (PA) mechanism
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•	 If one of the neighbors vj of the node vi is selected at step (a), and the node vi is not 
chosen at step (b1) (see Fig. 12a), then the degree of node vi will not change, while 
the overall degree of its neighbors si(t) will increase by 

•	 1 as a result of joining node vt+1 to the node vj;
•	 p(m− 1)θ as a result of linking the newborn node vt+1 to common neighbors of 

nodes vj and vi at step (b1).

	  The probability of this case is 

•	 If one of the neighbors vl of the node vj (which in turn is the neighbor of the node 
vi ) is selected at step (a), and then the node vj is chosen at step (b1) (see Fig. 12b1), 
then the degree of node vi does not change, while the total degree of its neighbors 
will increase by 

•	 1 as a result of joining node vt+1 of to the node vj;
•	 p(m− 2)θ2 as a result of linking the newborn node vt+1 to common neighbors 

of nodes vl , vj and vi at step (b1).

	  The probability of this case is 

•	 If one of the neighbors vl of the node vj (the neighbor of the node vi ) is chosen 
at step (a), and then the node vj is selected at step (b2) (see Fig. 12b2), then the 
degree of the node vi also does not change, while the total degree of its neighbors 
will increase by 1. The probability of this case is 

For clarity, we present all these three cases in Table 4.

Dynamics of the total degree of the node neighbors

Combining all the cases, the expected value of �si(t + 1) = si(t + 1)− si(t) is equal to

∑

(vj ,vi)∈E(t)

dj(t)

2|E(t)|

(

1−
p(m− 1)

dj(t)

)

=
si(t)

2|E(t)|
−

di(t)

2|E(t)|
p(m− 1).

∑

j:(vj ,vi)∈E

∑

l:(vl ,vj)∈E,l �=i

dl(t)

2|E(t)|
1

dl(t)
p(m− 1) =

si(t)− di(t)

2|E(t)|
p(m− 1).

∑

j:(vj ,vi)∈E

|V (t)|
∑

l=1

dl(t)

2|E(t)|
dj(t)

2|E(t)|
(1− p)(m− 1) =

si(t)

2|E(t)|
(1− p)(m− 1).

Table 4  The cases in which the degree of node vi does not change

Step (a) Step (b1) Step (b2)

�si(t + 1) 1+ p(m− 1)θ 1+ p(m− 2)θ2 1

�di(t + 1) 0 0 0

Probability si (t)
2|E(t)| −

di (t)
2|E(t)|p(m− 1) si (t)−di (t)

2|E(t)| p(m− 1)
si (t)
2|E(t)| (1− p)(m− 1)
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Since E(|E(t)|) = mt , we obtain the linear nonhomogeneous differential equation of 
first order corresponding to the difference equation (11)):

where

The solution of Eq. (12) can be found in “Appendix D”, where it is shown (see Eq. (35)) 
that the expected value of si(t) follows

where c1 , c2 do not depend on t.
Eq. (15) shows that there is a huge difference between the BA model (Eq. 5) and the 

triadic closure model with respect to the dynamic behavior of the total degree of all 
neighbors of a node.

Figure 13 presents the evolution of the si(t) over t averaged over 100 independent 
simulations. The figures show that the empirical behavior of si(t) is indistinguishable 
from predictions of Eq. (15).

Dynamics of the friendship index of a node

In this subsection we will find the equation describing the time evolution of βi(t) , i.e. 
the average value of the friendship index for node vi . The following difference equa-
tion for �βi(t + 1) := βi(t + 1)− βi(t) follows from the analysis of Section “Prelimi-
nary analysis”:

(11)

E(�si(t + 1)) = (m+ p(m− 1))
di

2|E|

+ (m+ p(m− 2)θ)
di

2|E|
p(m− 1)+m

di

2|E|
(1− p)(m− 1)

+ (1+ p(m− 1)θ)

(

si

2|E|
−

di

2|E|
p(m− 1)

)

+ (1+ p(m− 2)θ2)
si − di

2|E|
p(m− 1)+

si

2|E|
(1− p)(m− 1)

= di
m

2|E|

(

m−
p(m− 1)

m

(

1+ pθ + p(m− 2)θ2
)

)

+ si
m

2|E|

(

1+
p(m− 1)

m

(

θ + p2(m− 2)θ2
)

)

.

(12)
dsi(t)

dt
= C1(p,m)

di(t)

t
+ C2(p,m)

si(t)

t
,

(13)C1(p,m) =
1

2

(

m−
p(m− 1)

m

(

1+ pθ + p(m− 2)θ2
)

)

,

(14)C2(p,m) =
1

2

(

1+
p(m− 1)

m

(

θ + p(m− 2)θ2
)

)

.

(15)si(t) = E(si(t)) = c1t
1
2 + c2t

C2(p,m),
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It follows from |E(t)| ∼ mt , di(t)/(di + 1) ∼ 1 and di(t)/(di + 1)2 ∼ 1/di that the differ-
ence equation (16) may be approximated by the following linear nonhomogeneous dif-
ferential equation of first order:

where C1(p,m) and C2(p,m) are defined in Eqs. (13).

(16)

E(�βi(t + 1)) =

(

si +m+ p(m− 1)

(di + 1)2
−

si

d2i

)

di

2|E|

+

(

si +m+ p(m− 2)θ

(di + 1)2
−

si

d2i

)

di

2|E|
p(m− 1)

+

(

si +m

(di + 1)2
−

si

d2i

)

di

2|E|
(1− p)(m− 1)

+

(

si + 1+ p(m− 1)θ

d2i
−

si

d2i

)

(

si

2|E|
−

di

2|E|
p(m− 1)

)

+

(

si + 1+ p(m− 2)θ2

d2i
−

si

d2i

)

si − di

2|E|
p(m− 1)

+

(

si + 1

d2i
−

si

d2i

)

si

2|E|
(1− p)(m− 1)

∼
m

2|E|
si

d2i

(

−1+
p(m− 1)

m
(θ + p(m− 2)θ2 +

di

(di + 1)2
)

)

+
mdi

2|E|(di + 1)2

(

m−
p(m− 1)

m

(

1+ pθ + p(m− 2)θ2
)

)

.

(17)
dβi(t)

dt
∼

βi

t

(

C2(p,m)− 1+
1

di(t)

)

+
C1(p,m)

tdi(t)
,

Fig. 13  Evolution of si in networks based on triadic closure for selected nodes vi , i = 10, 50, 100, 1000 , as 
t iterates up to 25000. Network in the figure a is modeled with m = 3 , p = 0.9 , while b is simulated with 
m = 5 , p = 0.75
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The solution of Eq. (17) can be found in “Appendix E”, where it is proved (see Eq. 
(41)) that the expected value of friendship index βi(t) follows

Thus, the FI dynamics of every single node follows the power law with exponent 
C2(p,m)− 1 , i.e. the decrease of FI over time for the triadic closure model is much 
slower than for the BA model.

Equation (18) depicts the dynamics of the expected value of βi(t) with the growth 
of the network built in accordance to the TC model. It should be mentioned that the 
equation describes the trajectory of the expected values of the FI, while in each separate 
simulation the path can deviate significantly from the theoretical curve of Eq. (18). How-
ever, if we average the paths obtained from a large number of simulations, we can get a 
trajectory that is located close to the curve predicted by Eq. (18). The curves for several 
nodes are shown in Fig. 14. The figure exhibits trajectories of the friendship index βi(t) 
for nodes vi , i = 10, 50, 100, 1000 , for a simulated network of size |V | =25,000. It can be 
seen that βi(t) are gradually decreasing to 0 with the growth of the network.

The analysis of Eq. (18) allows us to obtain the following conclusions regarding the 
dynamics of FI over time in the TC model: 

1.	 The curve depicting the expected value of βi(t) follows Eq. (18), and as t tends to ∞ , 
i.e. with the growth of the network, this value decreases to zero with the rate 
1
2

(

i
t

)
1
2
tC2(p,m)− 1

2 depending on the number of iterations t. The value of βi(t) tends to 

zero for all nodes i, as t → ∞;
2.	 For node vi that appears on iteration i, the expected initial value of βi(i) is 12 i

C2(p,m)− 1
2 . 

It means that initial FI values for new nodes tends to ∞ as t → ∞;

(18)β i(t) := E(βi(t)) ∼
1

2

(

i

t

)
1
2

tC2(p,m)− 1
2 + o(t−

1
2 ).

Fig. 14  Evolution of βi in networks based on triadic closure for selected nodes vi , i = 10, 50, 100, 1000 , as t 
iterates up to 25000. Network in Figure a is modeled with m = 3 , p = 0.9 , while b is simulated with m = 5 , 
p = 0.75
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3.	 For each node vj that appeared after the iteration i, i.e. j > i , the value of β j(t) will be 
higher than the value of β i(t) for node vi . The scattered plot of points (log i, log βi(n)) , 
i = 1, . . . , 5000 , obtained for simulated TC network of size n = 5000 with m = 4 , is 
shown on Fig. 15. It presents the empirical evidence of the fact that the earlier a node 
appeared, the lower its friendship index is, and vice versa.

4.	 Figure  16a, b show the theoretical trajectories of the friendship index for different 
nodes of a network built according to TC model with m = 3 , p = 0.9 over iterations. 
The starting points of each individual trajectory lies on the curve 0.25t0.2 . Each tra-
jectory is shown as a solid line, while the dotted line corresponds to those portions of 
the same curve where the corresponding node has not yet existed. The density of the 
values of βi(t) at moment t increases from 0 to 0.5 log t.

5.	 Solving the equation 12
(

i
t

)
1
2
tC2(p,m)− 1

2 = 1 , we find index 

 for which the value of β i∗(t) = 1 at iteration t. Thus, for every node vj that appeared 
earlier, i.e. j < i∗ , the inequality β j(t) < 1 holds, while for any node vl that appeared 
later, i.e. l > i∗ , the relation β l(t) > 1 holds. The share of nodes for which the 

i∗ = i∗(t) = 4t2(1−C2(p,m)) = 4t
p(m−1)

m

(

θ+p(m−2)θ2
)

,

Fig. 15  The scattered log-log plot of points (log i, logβi(n)) , where i is the iteration i = 1, . . . , 5000 in which 
node vi appears and βi(n) is its friendship index evaluated at iteration n = 5000 , after simulating TC network 
of size n = 5000

Fig. 16  Trajectories of βi(t) over t for nodes a i = 10, 500, 1000, 1500, . . . , 9000, 9500 , the size of network 
n = 104 , b i = 100, 5000, 10000, 15000, . . . , 90000, 95000 , the size of network n = 105
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expected value of the friendship index is less than 1 is equal to i
∗(t)
t = 4m1−2C2(p,m) . 

Therefore, with an increase in the number of iterations t, the fraction of such nodes 
decreases and tends to zero. On the other hand, the proportion of nodes for which 
the expected value of the friendship index is greater than 1 tends to 1, i.e. the friend-
ship paradox will affect almost all nodes as the network grows. This effect is clearly 
seen on Fig. 16a ( n = 104 ) and b ( n = 105 ), where the share of nodes with β i(n) < 1 
shrinks.

It should be noted that Eq. (18) estimates the expected value of βi(t) at iteration t, 
and does not represent information about how random variable βi(t) is distributed at 
moment t.

To figure out how the values βi(n) are distributed for a fixed i at moment n, we 
generated N = 1000 TC networks of the same size n = 5000 , and for each of 1000 
networks we calculate empirical values of the friendship index βi(n) for their nodes. 
Figure  17a shows the corresponding histograms obtained for three nodes i = 100 , 
i = 500 and i = 2500 . Simulations show that the distributions of βi(t) are heavy tailed.

We use the Kolmogorov–Smirnov test to compare 1000-length samples, obtained 
for nodes i = 1, . . . , 5000 , with log-normal probability distribution. The null hypoth-
esis is that the samples are drawn from the (reference) log-normal distribution.

We set the significance level of the K–S test at 0.05. Results of the Kolmogorov–
Smirnov test show that p-values are more than 0.05 for all i-samples, they increase 
with growth of i, e.g. p-value for i = 500 is equal to 0.12 and p-value for i = 2500 is 
equal to 0.31. We may conclude that the observed samples are sufficiently consistent 
with the null hypothesis, and we can not reject the null hypothesis. Figure 17b pre-
sents the density functions of the log-normal distribution with estimated parameters 
for corresponding nodes i = 100, 500, 2500.

To construct a histogram of FI for the TC network, we generate a network of 
size n = 5000 , and then we obtain values over each of intervals of length 0.25. The 

Fig. 17  a Empirical histograms for values of βi(n) , i = 100, 500, 2500 , obtained by simulating of 1000 TC 
networks of size 5000; b the density functions of log-normal distribution with parameters estimated for the 
corresponding samples of βi(n) , i = 100, 500, 2500 , obtained by simulating of 1000 TC networks of size 5000



Page 25 of 35Sidorov et al. Appl Netw Sci            (2021) 6:51 	

obtained histogram (Fig. 18a) and its log-log variant (Fig. 18b) show that the FI dis-
tribution in the simulated TC network has heavy tail and a huge variance. The results 
also indicate that the vast majority of nodes in the modeled TC networks have the 
friendship index greater than 1, which means that there is a significant presence of 
the friendship paradox.

Moreover, we carry out the K–S test to verify that the samples are drawn from the (ref-
erence) log-normal distribution (the null hypothesis). Results of the K–S test show that 
p-value is equal to 0.1331. Thus, the null hypothesis may not be rejected at significance 
level 0.05.

Similarly to networks generated with Barabási–Albert model, we verify our results by 
running experiments in which we create synthetic networks, based on triadic closure 
model. From them we obtain β distribution over all nodes in the network. Table 5 shows 
the averaged results obtained from 100 individual runs per each network with different 
parameters. The percentage of nodes with β exceeding 1 grows with the network size.

Fig. 18  Empirical histogram (a) and its log-log variant (b) for values of βi(n) , i = 1, . . . , 5000 , obtained by 
simulating TC network of size n = 5000 . All intervals of length 0.25

Table 5  Characteristics of friendship index distributions in synthetic networks generated with 
triadic closure model

|N| |E| β > 1, %

5,000 15,000 91.678

5,000 15,000 92.721

10,000 30,000 91.883

10,000 50,000 93.093

15,000 45,000 92.019

15,000 75,000 93.280

25,000 75,000 92.006

25,000 125,000 93.307

50,000 150,000 92.086

50,000 250,000 93.466
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The comparison of friendship index distribution in BA and TC networks
In this section we take a look at the friendship index distribution in networks created 
with Barabási–Albert and triadic closure models of the same sizes. We build histograms 
to observe the friendship index distribution in networks generated by BA and TC mod-
els with different model parameters (the size of network |V|, the number of attached 
links m (which results in the amount of edges |E|), the probability p (only in TC model)). 
This section presents empirical results indicating that friendship index distributions are 
heavy tailed for both models. Their FI distributions, which can be observed on the log-
log plot, are approximately linear on a part of the range. Network statistics are shown in 
Table 6. The power-law exponents γ are obtained fitting linear regression to logarithmi-
cally binned data points taken from the decreasing parts of histograms.

To construct a histogram for both Barabási–Albert and triadic closure network, we 
generated 100 networks with 50,000 nodes and 250,000 edges, corresponding BA and 
TC networks were created with parameter m = 5 . The obtained values were averaged 
over each of intervals of length 1. The obtained histogram and its log-log version are 
shown in Fig. 19a–d show that FI distributions in the modeled networks have heavy tails 
and huge variances. Moreover, the friendship index for the majority of nodes in the mod-
eled networks is greater than 1, which means that there is a friendship paradox in both 
networks. It should be noted that the exponent γ for TC network is less than the expo-
nent obtained for BA graph, which means that the TC networks are more heavy tailed 
than BA graph in the sense of FI distribution. We also constructed 100 networks with 
parameter m = 3 as seen in Fig. 20. There are no significant differences in the behaviour 
of the distribution for networks with different m parameter.

We also demonstrate how a single large simulated network with 335,000 nodes and 
1,005,000 edges behaves. Corresponding BA and TC networks were created with param-
eter m = 3 . The obtained histogram and its log-log version are shown in Fig.  21a–d, 
which show that FI distributions in the modeled networks have heavy tails and a huge 
variance (e.g. E(βi) = 13.16 , VAR(βi) = 439.8 for BA network).

It can be seen that the majority of nodes in both BA and TC simulated networks 
have friendship index greater than 1, which is a sign of the presence of friendship par-
adox. Moreover, all distributions of β have a distinguishable slope, however the length 
of the tail may differ for the networks of the same size. We may see that all β distribu-
tions follow the power law. For convenience, results for all networks are gathered in 

Table 6  Simulated networks based on Barabási–Albert and triadic closure model. γ is the power law 
exponent

Network |V| |E| β > 1, % γ

BA, m = 3 335,000 1,005,000 91.1 2.55

TC, m = 3 , p = 0.9 335,000 1,005,000 92.5 2.23

BA, m = 3 50,000 150,000 91.034 2.32

TC, m = 3 , p = 0.75 50,000 150,000 92.086 2.22

BA, m = 5 50,000 250,000 92.672 2.78

TC, m = 5 , p = 0.75 50,000 250,000 93.466 2.69
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Table 6. In addition, the experiments show that by changing the parameters m (for BA 
model) and m, p (for TC model), it is possible to adjust the FI distributions of the gen-
erated networks, although the general behaviour remains the same.

Fig. 19  Plots a and b are obtained by simulation of the Barabási–Albert model with m = 5 , while c, d—of 
the Triadic Closure model with m = 5 , p = 0.75

Fig. 20  Plots a and b are obtained by simulation of the Barabási–Albert model with m = 3 , and plots c and d 
are obtained by simulation of TC with m = 3, p = 0.75
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Conclusion
This paper studies the properties of the friendship index dynamic behavior for growth 
networks generated by the Barabási–Albert and the triadic closure models. The 
results were obtained using mean-field methods and rate equations. They show that 
there is an undoubted presence of the friendship paradox in such types of networks. 
The paper extends the analysis of paper (Sidorov et  al. 2021) in which the simplest 
version of BA model was examined (with one attached link to a new node at each 
iteration).

Several real networks were analyzed in the paper. It turned out that their FI distribu-
tions have heavy tails. The same picture is observed for networks generated from BA and 
TC models. We studied the distribution of the friendship index for an arbitrary vertex i 
of the network at iteration t: first, we analytically found the expected value of the friend-
ship index βi(t) at moment t; second, we have shown (using simulations) that the friend-
ship index of any node at iteration t is a log-normally distributed random variable. In 
addition, experiments have shown that the distributions of the friendship index in both 
types of networks are also close to the log-normal distribution, i.e. have fat tails.

However, in the case of the triadic closure model, the tails of the FI distributions 
are heavier, which makes this model closer to reproducing the properties of real net-
works. It is also interesting that for the analyzed real networks, the exponent of the 
power-law is between 2 and 3, so although the average value of the friendship index 
can be easily found, the standard deviation is too large. Thus, the paper reveals the 
scale-free property of real networks with respect to the FI values of their nodes.

Thus, this work shows that the use of such network growth mechanisms as PA or 
PA+TC leads to the appearance of the friendship paradox in the generated networks. 
It should be noted that for the formation of growth networks, there are many other 

Fig. 21  Plots a, b are obtained by simulation of the Barabási–Albert model with m = 3 , while c, d—of the 
Triadic Closure model with m = 3, p = 0.9 . Both networks are of size 335,000
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mechanisms, which describe well the phenomena arising in real ones. In this regard, 
it would be interesting to study the quantitative and qualitative features of the friend-
ship paradox in networks generated using these mechanisms.

Appendix A: The solution of Eq. (4)
The solution of Eq. (4) has the form si(t) = u(t)v(t) , where v(t) follows

and u(t) satisfies the differential equation

The solution of (19) is

Then the solution of (20) is

Therefore,

Note that at each moment t, di is a random value with a probability density function κi(x) 
s.t. ki(t) := E(di(t)) =

∫

xκi(x)dx = m
(

t
i

)
1
2 and 

∫

κi(x)dx = 1 . Then the expected value 
of si(t) is

Appendix B: The solution of Eq. (8)
The solution of (8) is β i(t) = u(t)v(t) , where v(t) follows the differential equation

and u(t) satisfies

(19)
dv(t)

dt
= v(t)

1

2t

(20)
du(t)

dt
v(t) = m

di(t)

2t
.

(21)v(t) = t
1
2 .

(22)u(t) = m

∫

di(t)

2t
3
2

dt + C .

si(t) = mt
1
2

(
∫

di(t)

2t
3
2

dt + C

)

.

(23)

si(t) = E(si(t)) = m

∫

t
1
2

(
∫

x

2t
3
2

dt + C

)

κi(x)dx

= mt
1
2

(
∫

(
∫

xκi(x)dx

)

1

2t
3
2

dt + C

(
∫

κi(x)dx

))

= m2t
1
2

(
∫

1

2i
1
2 t
dt + C

)

=
m2

2

(

t

i

)
1
2
(

log t + c(i)
)

.

(24)
dv(t)

dt
= −v(t)

(

1

2t
−

3di(t)

2t(di(t)+ 1)2

)

,
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The solution of (24) is

Then the solution of (25) is

Then

Note that at each iteration t, di(t) is a random value with a p.d.f. κi(x) s.t. 
ki(t) := E(di(t)) =

∫

xκi(x)dx =
(

t
i

)
1
2 and 

∫

κi(x)dx = 1 . Since 
∫

xκi(x)dx
(x+1)2

∼
∫

κi(x)dx
x ∼ 1

m

(

i
t

)
1
2 , it can be shown that the expected value of βi(t) asymp-

totically follows

Appendix C: The dynamics of local clustering coefficient for the triadic closure 
model
Let Si(t) denote the number of triads in which the node vi is one of the vertices at the 
iteration t. To find the values of the local clustering coefficients for nodes of a network 
constructed using the triadic closure model, we derive the equation characterizing the 
dynamics of the local clustering coefficient Ci(t) of node vi , defined by

over time.

(25)
du(t)

dt
v(t) = m

di(t)

2t(di(t)+ 1)2
.

(26)v(t) = t−
1
2 exp

(

3

2

∫

di(t)

t(di(t)+ 1)2
dt

)

.

(27)u(t) = m

∫

di(t)

2t
1
2 (di(t)+ 1)2

exp

(

−
3

2

∫

di(t)

t(di(t)+ 1)2
dt

)

dt + C .

(28)

βi(t) = u(t)v(t) = mt−
1
2 exp

(

3

2

∫

di(t)

t(di(t)+ 1)2
dt

)

×m

(

∫

di(t)

2t
1
2 (di(t)+ 1)2

exp

(

−
3

2

∫

di(t)

t(di(t)+ 1)2
dt

)

dt + C

)

∼ mt−
1
2

(

1+
3

2

∫

di(t)

t(di(t)+ 1)2
dt

)

×m

(

∫

di(t)

2t
1
2 (di(t)+ 1)2

(

1−
3

2

∫

di(t)

t(di(t)+ 1)2
dt

)

dt + C

)

.

(29)β i(t) := E(βi(t)) ∼
1

2

(

i

t

)
1
2

log t + o(t−
1
2 ).

θi(t) =
2Si(t)

di(t)(di(t)− 1)
,
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Note that at the time of its appearance at the iteration i the degree of node vi is m, 
while the expected number of triads, in which this new node is participated, will be 
Si(i) = (m− 1)p . Therefore, θ i(i) = 2p

m .
The change in the value of θi at iteration t + 1 may occur in three cases only:

•	 if the node vi is selected in step 2(a) then the expected number of newly formed 
triads is p(m− 1) , i.e. Si(t + 1) = Si(t)+ p(m− 1) , while the degree of node vi 
increases by one, i.e. di(t + 1) = di(t)+ 1 . Thus, with probability di

2|E(t)| the differ-
ence �θi(t + 1) = θi(t + 1)− θi(t) will be 

•	 if the node vi is selected in step 2(b1), then the number of triads Si(t) and the degree 
of node vi increase both by one and the difference �Ci(t + 1) will be 

 The probability of this event is 

 where |E(t)| denotes the number of edges in the network after iteration t.
•	 if the node vi is selected in step 2(b2), then the number of triads Si(t) remains the 

same, while di(t) increases by one. Thus, the difference �Ci(t + 1) will be 

 the probability of this event is 

Combining all three cases, performing simple algebraic transformations and using 
|E(t)| ∼ mt and di(t) ∼ m(t/i)

1
2 , we get the approximate differential equation

Then, taking the initial condition θi(i) = 2p
m  into account, we get its solution

Then the average value of the clustering coefficient at iteration t is

2(Si(t)+ p(m− 1))

(di(t)+ 1)di(t)
−

2Si(t)

di(t)(di(t)− 1)
;

2(Si(t)+ 1)

(di(t)+ 1)di(t)
−

2Si(t)

di(t)(di(t)− 1)
;

∑

l:(vl ,vi)∈E

dl

2|E(t)|
1

dl
(m− 1)p = (m− 1)p

di

2|E(t)|
,

2Si(t)

(di(t)+ 1)di(t)
−

2Si(t)

di(t)(di(t)− 1)
;

∑

l:(vl ,vi)∈E

dl

2|E(t)|
1

dl
(m− 1)(1− p) = (m− 1)(1− p)

di

2|E(t)|
.

dθi(t)

dt
= −

θi(t)

t
+

2p(m− 1)i
1
2

m2t
3
2

(30)θ i(t) ∼
2p(m− 1)

m2

(

i

t

)
1
2

+
2pi

m2t
.
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i.e. θ does not depend on t. However, it may be tuned to with the use of parameters p and 
m, i.e. θ = θ(p,m) . This facts were observed in paper (Holme and Kim 2002).

Appendix D: The solution of Eq. (12)
The solution of Eq. (12) can be written as si(t) = u(t)v(t) , where v(t) is the solution of

while u(t) follows the differential equation

The solution of (31) is

Then the solution of (32) is

Thus,

At every iteration t, di takes a random values according to a probability density function 
κi(x) satisfying ki(t) := E(di(t)) =

∫

xκi(x)dx = m
(

t
i

)
1
2 and 

∫

κi(x)dx = 1 . The expected 
value of si(t) can be found as the expectation over the probability density function κi(x) 
as follows:

where c1 , c2 do not depend on t.

θ = θ(t) :=
1

t

t
∑

i=1

θ i(t) ∼
2p(m− 1)

m2

1

t
3
2

t
∑

i=1

i
1
2 +

2p

m2t2

t
∑

i=1

i =
4pm− 1

3m2
+ o(t−1),

(31)
dv(t)

dt
= C2(p,m)v(t)

1

t

(32)
du(t)

dt
v(t) = C1(p,m)

di(t)

t
.

(33)v(t) = tC2(p,m).

(34)u(t) = C1(p,m)

∫

di(t)

t1+C2(p,m)
dt + C .

si(t) = tC2(p,m)

(

C1(p,m)

∫

di(t)

t1+C2(p,m)
dt + C

)

.

(35)

si(t) = E(si(t)) =
∫

tC2(p,m)

(

C1(p,m)

∫

x

t1+C2(p,m)
dt + C

)

κi(x)dx

= tC2(p,m)

(

C1(p,m)

∫
(
∫

xκi(x)dx

)

1

t1+C2(p,m)
dt + C

(
∫

κi(x)dx

))

= tC2(p,m)

(

C1(p,m)

∫

m

i
1
2 t

1
2+C2(p,m)

dt + C

)

= c1t
1
2 + c2t

C2(p,m),
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Appendix E: The solution of Eq. (17)
The solution of Eq. (17) can be be written as β i(t) = u(t)v(t) with v(t) defined as the solu-
tion of the differential equation

and u(t) satisfied the equation

The solution of (36) is

Then the solution of (37) is

Then

The value of di(t) is randomly distributed according to the p.d.f. κi(x) such that 
ki(t) := E(di(t)) =

∫

xκi(x)dx = m
(

t
i

)
1
2 and 

∫

κi(x)dx = 1 . The expected value of βi(t) 

is the expectation over the p.d.f. κi(x) . as follows: Since 
∫

κi(x)dx
x ∼ 1

m

(

i
t

)
1
2 , the expected 

value of βi(t) asymptotically follows

where c does not depend on t. It follows from the initial condition β i(t) = 1
2 i

C2(p,m)− 1
2 

that
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(36)
dv(t)

dt
= v(t)

(

C2(p,m)− 1

t
+

1

tdi(t)

)

,

(37)
du(t)

dt
v(t) =

C1(p,m)

tdi(t)
.

(38)v(t) = tC2(p,m)−1 exp

(
∫

1

tdi
dt

)

.

(39)u(t) = C1(p,m)

∫

1

tC2(p,m)di(t)
exp

(

−
∫

1

tdi(t)
dt

)

dt + C .

(40)

βi(t) = u(t)v(t) = C1(p,m)tC2(p,m)−1 exp

(
∫

1

tdi(t)
dt

)

×
(
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1
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1
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dt
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