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Introduction
In last years, the use of networks to manage and analyse experimental data in many 
fields has grown (Cannataro et al. 2010; Barabási 2011). For instance, in computational 
biology associations among biological molecules (such as genes, proteins, small lipids 
etc.), are usually modelled as graphs. Data collected from social networks are modelled 
using graph theory and their analysis may shed light into association patterns among 
users (Sapountzi and Psannis 2018; Abatangelo et al. 2009; Clark and Kalita 2014; Faisal 
et al. 2015; Cannataro et al. 2010)

Usually, data are modelled using a single network whose nodes represent entities and 
edges their relations. Then, the topological analysis of the networks, i.e. global or local 
structures (Cannataro et  al. 2010), finds context specific properties such as groups of 
related genes in biology or users in social networks (Liu et  al. 2018). More recently, 
some works demonstrated that the use of a single network may not be able to capture 
all the relationships among elements considered, therefore some complex models have 
been introduced such as heterogeneous networks (Milano et al. 2020) or dual networks 
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(Wu et al. 2016). A dual network is a pair of related graphs sharing the same node set, 
with two different edge sets. One network has unweighted edges, and it is called physical 
graph. The second one has weighted edges and it is called conceptual graph. For exam-
ple, in biology dual networks have been used to model interactions among genetic vari-
ants (Phillips 2008), where genetic interactions are modelled using the physical network 
and the quantitative effects of these interactions are modelled with the conceptual one.

An interesting problem in dual networks is the Densest Connected Subgraph (DCS) 
problem, that is finding a common subgraph between the two networks that has two 
properties: it is connected on the physical one and it is densest in the conceptual one. 
A DCS in a dual network may convey relevant information. For instance (Guzzi et al. 
2020), showed that DCS may suggest missing links in social networks, capture similar 
interests among authors in a co-authorships dual network, where physical network rep-
resents co-authors and the conceptual network is used to model topics shared.

The relevance of problem arises in many real life scenarios. For instance in Phillips 
(2008) authors extracted a DCS from dual networks to analyse interactions between 
genetic variants and their strength. Given two input graphs Gc(V ,Ec) (undirected and 
edge-weighted), and Gp(V ,Ep) (undirected and unweighted), the problem consists in 
finding a subset of nodes Is that induces a densest community in Gc and a connected sub-
graph in Gp . As proved in Wu et al. (2016), the DCS problem is NP-hard, since it may be 
reduced from the Set Cover problem (Karp 2009). Therefore there is the need for novel 
heuristics and computational approaches to solve it. Here we focus on a generalisation 
of this problem, since we search for a set of (overlapping) common subgraphs, that are 
connected in the physical network and densest in the conceptual network, i.e. top-k 
weighted overlapping densest connected subgraphs. The identification of top k-densest 
overlapping subgraphs in a network has been considered in Galbrun et al. (2016); Dondi 
et al. (2019); Hosseinzadeh (2020).

Our approach is based on a two step strategy: first a single alignment graph is built 
from the dual networks Guzzi and Milenković (2017); Milano et al. (2020), then we look 
for dense subgraphs in this network with an ad-hoc heuristic. Notice that these sub-
graphs correspond to dense subgraphs in the conceptual networks and connected sub-
graphs in the physical one, therefore they are solutions of the initial problem. Figure 1 
depicts the workflow of our approach.

Considering the state of the art, we should note that we allow more flexibility with 
respect to other works such as Wu et al. (2016). In this work authors do not consider 
overlapping subgraphs and their approach is limited to the exact correspondence of 
nodes between networks. On the other hand, with respect to other approaches for find-
ing densest subgraphs in a network (Balalau 2015; Galbrun et al. 2016; Dondi et al. 2019; 
Guzzi and Cannataro 2010), we consider weighted networks, an extension that can be 
useful in many contexts, in particular for biological and social networks.

We provide an implementation of our heuristic, and we show the effectiveness of our 
approach on synthetic datasets and on four real networks (a social network, two biologi-
cal networks, a co-authorship network). The experimental results confirm the effective-
ness of our approach.

The paper is structured as follows: “Related work” section discusses related works, 
“Definitions” section gives definitions and formally introduces the problem we are 
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interested into. “The proposed algorithm” section presents our heuristic; “Experiments” 
section discusses the case studies; finally “Conclusion” section concludes the paper.

Related work
Many complex systems cannot be efficiently modelled using a single network without 
losses of information. Therefore the use of dual networks is growing (Wu et al. 2016; Sun 
and Kardia 2010). These applications span a large number of fields as introduced before: 
from bioinformatics to social networks. In genetics, dual networks are used to describe 
and analyse interactions among genetic variants. They can discover the common effects 
among multiple genetic variants (Sun and Kardia 2010), using a protein–protein interac-
tion network that represents physical interactions and a weighted network that repre-
sents the relations between two genetic variants, usually measured by statistical tests.

A relevant problem in network analysis is that of discovering dense communities, as 
they represent strongly related nodes. The problem of finding communities in a network 
or a dual network is based on the specific model of dense or cohesive graph considered. 
Several models of cohesive subgraph have been considered in the literature and applied 
in different contexts. One of the first definition of a cohesive subgraph is a fully con-
nected subgraph, i.e. a clique. However, the determination of a clique of the maximum 
size, also referred to as the Maximum Clique Problem, is NP-hard (Hastad 1996), and it 
is difficult to approximate (Zuckerman 2006). Moreover, in real networks communities 
may have missing edges; therefore, the clique model is often too strict and may fail to 
find some important subgraphs. Consequently, many alternative definitions of cohesive 

Fig. 1  Workflow of the proposed approach. In the first step the input conceptual and physical networks are 
merged together using a network alignment approach; then Weighted-Top-k-Overlapping DCS is applied on 
the alignment graph. Each extracted subgraph induces a connected subgraph in the physical network and 
one of the top-k overlapping weighted densest subgraph in the conceptual one
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subgraphs that are not fully interconnected have been introduced, including s-club, 
s-plex and densest subgraph (Komusiewicz 2016; Dondi et al. 2019).

A densest subgraph is a subgraph with maximum density (where the density is the ratio 
between the number of edges and number of nodes of the subgraph) and the Densest-
Subgraph problem asks for a subgraph of maximum density in a given graph. The prob-
lem can be solved in polynomial time (Goldberg 1984; Kawase and Miyauchi 2018) and 
approximated within factor 12 (Asahiro et al. 2000; Charikar 2000). Notice that the Dens-
est-Subgraph problem can be extended also to edge-weighted networks.

Recently, Wu et al. (2016), proposed an algorithm for finding a densest connected sub-
graph in a dual network. The approach is based on a two-step strategy. In the first step, 
the algorithm prunes the dual network without eliminating the optimal solution. In the 
second step, two greedy approaches are developed to build a search strategy for finding a 
densest connected subgraph. Briefly, the first step finds the densest subgraph in the con-
ceptual network. The second step refines this subgraph to guarantee that it is connected 
in the physical network.

In this contribution we use an approach based on local network alignment (LNA) 
that aims to find (relatively) small regions of similarity among two or more input net-
works. Such regions may be overlapping or not, and they represent conserved topo-
logical among networks. For instance, in protein interaction networks these regions 
are related to conserved motifs or pattern of interactions (Guzzi and Milenković 2017). 
LNA algorithms are usually based on building an intermediate structure, defined as 
alignment graph, and on the subsequent mining of it (Milano et al. 2020). For instance, 
Ciriello et al. (2012) and its successor AlignMCL (Mina and Guzzi 2014) are based on 
the construction of alignment graphs (see related papers for complete details about the 
construction of the alignment graph). GLAlign (Global Local Aligner), is a new local net-
work alignment methodology (Milano et al. 2018) that mixes topology information from 
global alignment and biological information according to a linear combination schema, 
while the more recent L-HetNetAligner (Milano et al. 2020) extends the local alignment 
to heterogeneous networks.

While the literature of network mining has mainly focused on the problem of finding a 
single subgraph, recently the interest in finding more than a subgraph has emerged (Bal-
alau 2015; Galbrun et al. 2016; Dondi et al. 2019; Hosseinzadeh 2020; Cho et al. 2013). 
The proposed approaches usually allows overlapping between the computed dense sub-
graphs. Indeed, there can be nodes that are shared between interesting dense subgraphs, 
for example hubs. The proposed approaches differ in the way they deal with overlap-
ping. The problem defined in Balalau (2015) controls the overlap by limiting the Jaccard 
coefficient between each pair of subgraphs of the solution. The Top-k-Overlapping prob-
lem, introduced in Galbrun et al. (2016), includes a distance function in the the objec-
tive function. In this paper, we follow this last approach and we extend it to weighted 
networks.

Definitions
This section introduces the main concepts related to our problem.

Definition 1  Dual Network.
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A Dual Network (DN) G(V ,Ec,Ep) is a pair of networks: a conceptual weighted network 
Gc(V ,Ec) and a physical unweighted one Gp(V ,Ep).

Now, we introduce the definition of weighted density of a graph.

Definition 2  Density.

Given a weighted graph G(V, E, weight), let v ∈ V  be a node of G, and let

be the sum of the weights of the edges incident in v. The density of the weighted graph G 
is defined as

Given a graph (weighted or unweighted) G with a set V of nodes and a subset 
Z ⊆ V  , we denote by G[Z] the subgraph of G induced by Z. Given E′ ⊆ E , we denote 
by weight(E′) the sum of weights of edges in E′ . Given a dual network we denote by 
Gp[I] , Gc[I] , respectively, the subgraphs induced in the physical and conceptual net-
work, respectively, by the set I ⊆ V .

A densest common subgraph DCS, formally defined in the following, is a subset 
of nodes I that induces a connected subgraph in the conceptual network and a con-
nected subgraph in the physical network.

Definition 3  Densest Common Subgraph.

Given a dual network G(V ,Ec,Ep) , a densest common subgraph in G(V ,Ec,Ep) is a sub-
set of nodes I ⊆ V  such that Gp[I] is connected and the density of Gc[I] is maximum.

In this paper, we are interested in finding k ≥ 1 densest connected subgraphs. How-
ever, to avoid taking the same copy of a subgraph or subgraphs that are very similar, 
we consider the following distance functions introduced in Galbrun et al. (2016).

Definition 4  Let G(V ,Ec,Ep) be a dual network and let G[A], G[B], with A,B ⊆ V  , 
be two induced subgraphs of G. The distance between G[A] and G[B], denoted by 
d : 2V × 2V → R+ has value equal 2− |A∩B|2

|A||B|  if A  = B , else is equal to 0.

Notice that 2− |A∩B|2

|A||B|  decreases as the overlapping between A and B increases.
Now, we are able to introduce the problem we are interested into.

Problem 1  Weighted-Top-k-Overlapping DCS

Input: A dual network G(V ,Ec,Ep) , a parameter � > 0.

vol(v) =
∑

w:(v,w)∈E

weight(v,w)

ρ(G) =

∑

v∈V vol(v)

|V |
.
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Output: a set X = {G[X1], . . . ,G[Xk ]} of k connected subgraphs of G, with k ≥ 1 , such 
that the following objective function is maximised:

Weighted-Top-k-Overlapping DCS, for k ≥ 3 , is NP-hard, as it is NP-hard already on 
an unweighted graphs (Dondi et al. 2019). Notice that for k = 1 , then Weighted-Top-k-
Overlapping DCS is exactly the problem of finding a single weighted densest connected 
subgraph, hence it can be solved in polynomial time (Goldberg 1984).

Greedy algorithms for DCS

One of the ingredient of our method is a variant of a greedy algorithm for DCS, denoted 
by Greedy, which is an approximation algorithm for the problem of computing a con-
nected densest subgraph of a given graph. Given a weighted graph G, Greedy (Asahiro 
et  al. 2000; Charikar 2000) iteratively removes from G a vertex v having lowest vol(v) 
and stops when all the vertices of the graph have been removed. It follows that at each 
iteration i, with 1 ≤ i ≤ |V | , Greedy computes a subgraph Gi of G. The output of this 
algorithm is a densest of subgraphs G1, . . . ,G|V | . The algorithm has a time complexity 
O(|E| + |V | log |V |) on weighted graphs and achieves an approximation factor of 12 (Asa-
hiro et al. 2000; Charikar 2000).

We introduce here a variant of the Greedy algorithm, called V-Greedy. Given an input 
weighted graph G, V-Greedy, similarly to Greedy, at each iteration i, with 1 ≤ i ≤ |V | , 
removes a vertex v having lowest vol(v) and computes a subgraph Gi , with 1 ≤ i ≤ |V | . 
Then, among subgraphs G1, . . . ,G|V | , V-Greedy returns a subgraph Gi that maximises 
the value:

Essentially, when selecting the subgraph to return among G1, . . . ,G|V | , we add to the 
density the correction factor 2( ρ(Gi)

|Vi|
) . This factor is added to avoid returning a subgraph 

that is not well-connected in terms of edge connectivity, that is it contains a small cut. 
For example, consider a graph with two equal size cliques K1 and K2 having the same 
(large) weighted density and a single edge of large weight connecting them. Then the 
union of K1 and K2 is denser than both K1 and K2 , hence Greedy returns the union of K1 
and K2 . This may prevent us to find K1 , K2 as a solution of Weighted-Top-k-Overlapping 
DCS. In this example, when the density of K1 and K2 is close enough to the density of 
their union, V-Greedy will return one of K1 , K2.

The proposed algorithm
In this section we present our heuristic for Weighted-Top-k-Overlapping DCS in dual 
networks. The approach is based on two main steps: 

1.	 First, the input networks are integrated into a single weighted alignment graph pre-
serving the connectivity properties of the physical network

k
∑

i=1

ρ(Gc[Xi])+ �

k−1
∑

i=1

k
∑

j=i+1

d(G[Xi],G[Xj])

ρ(Gi)+ 2

(

ρ(Gi)

|Vi|

)

.
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2.	 Second, the obtained alignment graph is mined by using an ad-hoc heuristic for 
Weighted-Top-k-Overlapping DCS based on the V-Greedy algorithm

Building of the alignment graph

In the first step the algorithm receives in input: a weighted graph Gc(V ,Ec) (the con-
ceptual graph); an unweighted graph Gp(V ,Ep) (the physical graph); an initial set (seed 
nodes) of node pairs P, where each pair defines a correspondence between a node of Gc 
and a node of Gp ; a distance threshold δ that represents the maximum threshold distance 
that two nodes may have in the physical network. For example, when δ is set to one, only 
adjacent nodes in both networks are considered.

Given the input data, the algorithm starts by building the nodes of the alignment 
graph. The alignment graph contains a node for each pair in P. The edges and weights of 
the alignment graph are defined as follows:

•	 An edge {u, v} is defined in the alignment graph when the nodes corresponding to u 
and v are adjacent in Gp and in Gc ; the weight of {u, v} is equal to the weight of the 
edge connecting the nodes corresponding to u and v in Gc

•	 An edge {u, v} is defined in the alignment graph when u and v are adjacent in Gp and 
have distance lower than δ in Gc ; the weight of {u, v} is equal to the average of the 
weights on a shortest path connecting the nodes corresponding to u and v in Gc.

A heuristic for Weighted‑top‑k‑overlapping DCS

In the second phase of our algorithm, we solve Weighted-Top-k-Overlapping DCS on 
the alignment graph G computed in phase 1 via a heuristic. We present here our heuris-
tic for Weighted-Top-k-Overlapping DCS, called Iterative Weighted Dense Subgraphs 
(IWDS).

The heuristic starts with a set X = ∅ and consists of k iterations. At each iteration i, 
with 1 ≤ i ≤ k , given a set X = {G[X1], . . . ,G[Xi−1]} of subgraphs of G, IWDS computes 
a subgraph G[Xi] and adds it to X .

The first iteration of IWDS applies the V-Greedy algorithm (see “Greedy algorithms 
for DCS” section) on G and computes G[X1] . In iteration i, with 2 ≤ i ≤ k , IWDS applies 
one of the two following cases, depending on a parameter f, 0 < f ≤ 1 , and on the size of 
the set Ci−1 =

⋃i−1
j=1 Xj (the set of nodes already covered by the subgraphs in X).

Case 1. If |Ci−1| ≤ f |V | (that is at most f|V| nodes of G are covered by the subgraphs in 
X  ), IWDS applies the V-Greedy algorithm on a subgraph G′ pf G obtained by retaining α 
nodes ( α is a parameter) of Ci−1 having highest weighted degree in G and removing the 
other nodes of Ci−1 . G′[Xi] is a weighted connected dense subgraph in G′ , distinct from 
those in X .

Case 2. If |Ci−1| > f |V | (more than f|V| nodes of G are covered by the subgraphs in 
X  ), IWDS applies the V-Greedy algorithm on a subgraph G′′ of G obtained by remov-
ing (1− α) nodes (recall that α is a parameter of IWDS) of Ci−1 having lowest weighted 
degree in G. IWDS computes G′′[Xi] as a weighted connected dense subgraph in G′ , dis-
tinct from those in X .
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Complexity evaluation.
We denote by n (by m, respectively) the number of nodes (of edges, respectively) 

of the dual network. The first step requires the analysis of both the physical and the 
conceptual graph, and the construction of the novel alignment graph. This requires 
O(n2)(calculation-edge-weights) time. The calculation of edge weights requires the cal-
culation of a shortest path among all the node pairs in the physical graph using the Chan 
implementation (Chan 2012), therefore it requires O(nmp) time ( mp is the number of 
edges of the physical graph).

As for Step 2, IWDS makes k iterations. Each iteration applies V-Greedy on G and 
requires O(mn log n) time, as the Greedy algorithm (Charikar 2000). Iteration i, with 
2 ≤ i ≤ k , first computes the set of covered nodes in order to find those nodes that 
have to be removed (or retained). For this purpose, we sort the nodes in Cj−1 based on 
their weighted degree in O(n log n) time. Thus the overall time complexity of IWDS is 
O(kmn log n).

Experiments
In this section, we provide an experimental evaluation of IWDS on synthetic and real 
networks.1 The design of a strong evaluation scheme for our algorithm is not simple, 
since we have to face two main issues: 

1.	 Existing methods for computing the top k overlapping subgraphs (Galbrun et  al. 
2016) are defined for unweighted graphs and cannot be used on dual networks.

2.	 Existing network alignment algorithms do not aim to extract top k densest sub-
graphs.

Consequently, we cannot easily compare our approach with the existing state of the art 
methods, and we design an ad-hoc procedure for the evaluation of our method based 
on the following steps. First, we consider the performance of our approach on synthetic 
networks. In this way, we show that, in many of the cases we considered, IWDS can cor-
rectly recover top k weighted densest subgraphs. Then we apply our method to four real-
world dual networks.

The alignment algorithm described of “A heuristic for Weighted-top-k-overlapping 
DCS” section is implemented in Python 3.7 using the NetworkX package for managing 
networks (Hagberg et al. 2008). IWDS is implemented in MATLAB R2020a. We perform 
the experiments on MacBook-Pro (OS version 10.15.3) with processor 2.9  GHz Intel 
Core i5 and 8 GB 2133 MHz LPDDR3 of RAM, Intel Iris Graphics 550 1536 MB.

Synthetic networks

In the first part of our experimental evaluation, we analyse the performance of IWDS to 
find planted ground-truth subgraphs on synthetic datasets.

1  The source code and data used in our experiments are available at https://​github.​com/​mehdi​hosse​inzad​eh/-k-​overl​
apping-​dense​st-​conne​cted-​subgr​aphs.

https://github.com/mehdihosseinzadeh/-k-overlapping-densest-connected-subgraphs
https://github.com/mehdihosseinzadeh/-k-overlapping-densest-connected-subgraphs
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Datasets. We generate two noiseless synthetic datasets, consisting of k = 5 planted 
dense subgraphs (cliques). Synthetic1 contains five non-overlapping ground-truth sub-
graphs, while Synthetic3 contains five overlapping ground-truth subgraphs.

In Synthetic1, each planted dense subgraph contains 30 nodes and has edge weights 
randomly generated in the interval [0.8, 1]. In Synthetic3, each planted dense subgraph 
contains 20 nodes not shared with other planted subgraphs. The subgraphs are arranged 
in a cycle, 5 nodes of each subgraph are shared with the subgraph on one side and 5 
nodes are shared with the subgraph on the other side. Edge weights are randomly gener-
ated in the interval [0.8, 1].

These cliques are then connected to a background subgraph of 100 nodes. We consider 
three different ways to generate the background subgraph: Erdös–Renyi with param-
eter p = 0.1 , Erdös–Renyi with parameter p = 0.2 and Barabasi–Albert with parame-
ter equal to 10. Weights of the background graphs are randomly generated in interval 
[0,  0.5]. Then 50 edges connecting cliques and the background graph are randomly 
added (with weights randomly generated in interval [0, 0.5]).

Based on this approach, we generate four different sets of synthetic networks, called 
Synthetic1, Synthetic2, Synthetic3 and Synthetic4. Synthetic1 (for the non-overlapping 
case) and Synthetic3 (for the overlapping case) are generated as described above. Syn-
thetic2 and Synthetic4, respectively, are obtained by applying noise to the synthetic net-
works in Synthetic1, Synthetic3, respectively. The noise is added by varying 5%, 10% and 
15% of node relations of each network. A set of pairs of nodes are chosen randomly: 
if they belong to the same clique, the weight of the edge connecting the two nodes is 
changed to a random value in the interval [0, 0.5]; else an edge connecting the two nodes 
is (possibly) added (if not already in the network) and its weight is randomly assigned a 
value in the interval [0.8, 1].

Outcome. We present the results of our experimental evaluation, in particular, the 
average running time, density, distance and F1-score,2 varying the parameter α . We 
recall that F1-score is the average mean of precision and recall, and, as in Galbrun et al. 
(2016) we consider this measure to evaluate the accuracy of our method to detect the 
ground-truth subgraphs. Following Yang and Leskovec (2012), we consider the number 
of shared nodes between each ground-truth subgraph and each detected subgraph, so 
that we are able to define the best-matching of ground-truth subgraphs and detected 
subgraphs. Then, we compute the F1[t/d] measure as the average F1-score of the best-
matching ground-truth subgraph to each detected subgraph (truth to detected) and 
F1[d/t] measure as the average F1-score of the best-matching detected subgraph to each 
ground-truth subgraph (detected to truth). Notice that in most of the cases considered, 
the running time of IWDS increases with the increasing of α . Also, generally, the solu-
tions returned by IWDS for larger values of α are denser than for small values, while the 
solutions with small values of α have a higher value of distance (hence the subgraphs 
returned have a smaller overlapping).

2  Given the ground-truth and detected subgraphs, F1-score is calculated considering precision and recall, where preci-
sion is the fraction of the number of nodes in the ground-truth correctly identified by detected subgraphs divided by 
number of nodes in the detected subgraphs, whereas the recall is the fraction of the number nodes in the ground-truth 
correctly identified by the detected subgraphs divided by the number of nodes in the ground-truth.
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Tables  1 and  3 report average results of running time (in minutes), density, dis-
tance and F1 scores for the two noiseless datasets. Table 1 shows the experimental 
results for the noiseless Synthetic1 dataset, where ground-truth subgraphs are dis-
joint. In this case IWDS is able to detect the ground-truth subgraphs for all values 
of α , averaged over 300 examples. Table  2 shows the experimental results for the 
noiseless Synthetic3 dataset, where ground-truth subgraphs are overlapping. In this 
case the best performances are achieved for α = 0.75 , where F1[t/d] = 0.745, while 
F1[d/t]= 0.804. The experimental results show that F1[d/t] increases with α , in par-
ticular for lower values of α ( α ≤ 0.25 ) the performance of IWDS for this measure 
is poor. We observe that for values of α ≥ 0.5 , the F1[t/d] measure decreases as α 
increases.

Tables 3 and 4 show the performances of IWDS on the noisy datasets Synthetic2 
and Synthetic4. Recall that for these datasets, we consider noise values of 0.05, 0.10 
and 0.15. The results we present are averaged over 90 examples. As for the noiseless 
datasets, we vary the value of parameter α.

For Synthetic2, for noise value 0.05 and 0.10, we obtain near optimal solutions for 
all the cases considered. The performances of IWDS starts to degrade with noise 
equal to 0.15, in particular the values of F1[d/t] for α ≤ 0.25 . F1[t/d] is instead close 
to 1 (at least 0.93) for the values of α considered.

For Synthetic4, the added noise has a significant impact on the quality of com-
puted solutions, even for noise value equal to 0.05. While the noise increasing has a 
limited effect on IWDS for small value of α ( α ≤ 0.25 ), for higher values of α leads to 
a degrade in performance, in particular for F1[t/d].

Table 1  Performance of IWDS on non overlapping generated networks (called synthetic1) for k = 5 , 
varying α from 0.05 to 0.9, the running time (in minutes), the density and the distance are averaged 
over 300 examples

α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

Time 0.0188 0.0187 0.0194 0.0217 0.0259 0.0231

Density 65.28 65.28 65.28 65.28 65.28 65.28

Distance 20 20 20 20 20 20

F1[t/d] 1.00 1.00 1.00 1.00 1.00 1.00

F1[d/t] 1.00 1.00 1.00 1.00 1.00 1.00

Table 2  Performance of IWDS on overlapping generated networks (called synthetic3) for k = 5 , 
varying α from 0.05 to 0.9, the running time (in minutes), the density and the distance are averaged 
over 300 examples

α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

Time 0.0104 0.0128 0.0145 0.0170 0.0188 0.0209

Density 21.00 23.41 32.29 46.11 57.95 64.22

Distance 18.178 17.473 16.321 15.853 15.741 15.344

F1[t/d] 0.509 0.415 0.689 0.768 0.745 0.456

F1[d/t] 0.101 0.157 0.331 0.583 0.804 0.923
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Table 3  Performance of IWDS on non overlapping generated networks with added noise varying 
from 0.05 to 0.15 (called synthetic2) for k = 5 , varying α from 0.05 to 0.9, the running time (in 
minutes), the density and the distance are averaged over 90 examples

Noise α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

0.05

Time 0.0181 0.0181 0.0203 0.0214 0.0222 0.0236

Density 65.46 65.46 65.48 65.53 65.55 65.55

Distance 20 19.998 19.996 19.996 19.991 19.850

F1[t/d] 0.989 1.00 1.00 1.00 1.00 1.00

F1[d/t] 0.990 0.991 0.993 0.996 0.998 0.995

0.10

Time 0.0187 0.0179 0.0207 0.0199 0.0233 0.0238

Density 65.42 65.42 65.53 65.72 65.89 66.00

Distance 19.999 19.999 19.986 19.976 19.960 19.847

F1[t/d] 0.978 0.968 1.00 1.00 1.00 1.00

F1[d/t] 0.960 0.962 0.970 0.982 0.992 0.994

0.15

Time 0.0126 0.0131 0.0164 0.0194 0.0230 0.0241

Density 36.63 39.35 43.03 51.57 59.67 64.47

Distance 19.439 19.111 18.218 18.112 18.083 18.056

F1[t/d] 0.93 0.95 0.93 0.98 0.95 0.94

F1[d/t] 0.41 0.47 0.54 0.70 0.85 0.94

Table 4  Performance of IWDS on overlapping generated networks with added noise varying from 
0.05 to 0.15 (called synthetic4) for k = 5 , varying α from 0.05 to 0.9, the running time (in minutes), the 
density and the distance are averaged over 90 examples

Noise α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

0.05

Time 0.0090 0.0112 0.0149 0.0180 0.0203 0.0205

Density 21.34 24.89 32.09 45.92 57.31 63.50

Distance 18.361 17.506 15.823 15.550 15.220 15.024

F1[t/d] 0.649 0.660 0.563 0.692 0.631 0.527

F1[d/t] 0.131 0.228 0.332 0.589 0.806 0.927

0.10

Time 0.0098 0.0118 0.0137 0.0178 0.0195 0.0212

Density 21.95 25.54 32.72 46.35 58.43 65.25

Distance 18.275 17.260 15.761 15.229 14.876 13.847

F1[t/d] 0.648 0.568 0.567 0.595 0.548 0.463

F1[d/t] 0.131 0.225 0.330 0.581 0.807 0.936

0.15

Time 0.0092 0.0113 0.0149 0.0178 0.02 0.0218

Density 22.40 26.06 32.98 46.68 58.91 65.75

Distance 18.213 17.189 15.332 14.932 14.263 12.717

F1[t/d] 0.624 0.555 0.501 0.539 0.419 0.303

F1[d/t] 0.134 0.223 0.336 0.586 0.811 0.938
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Dual networks

We evaluate IWDS on four real-world dual network datasets:
Datasets. G-graphA. The G-graphA dataset is derived from the GoWalla social net-

work where users share their locations (expressed as GPS coordinates) by checking-in 
into the web site (Cho et al. 2011). Each node represents a user and each edge links two 
friends in the network. We obtained the physical network by considering friendship rela-
tion on the social network. We calculated the conceptual network by considering the 
distance among users. Then we run the first step of our algorithm and we obtained the 
alignment graph G-graphA, containing 2,241,339 interactions and 9878 nodes (we set δ
=4). In this case a DCS represents set of friends that share check-ins in near locations.

DBLP-graphA. The DBLP-graphA dataset is extracted from a computer science bib-
liography and represents interactions between authors. Nodes represent authors 
and edges represent connections between two authors if they have published at least 
one paper together. Each edge in the physical network connects two authors that co-
authored at least one paper. Edges in the conceptual network represent the similarity of 
research interests of the authors calculated on the basis of all their publications. After 
running the first step of the algorithm (using δ=4), we obtained an alignment graph 
DBLP-graphA dataset containing 553,699 interactions and 18,954 nodes. In this case a 
DCS represents a set of co-authors that share some strong common research interests 
and the use of DNs is mandatory, since physical network shows only co-authors that may 
not have many common interests and the conceptual network represents authors with 
common interest that may not be co-authors.

HS-graphA. HS-graphA is a biological dataset and is taken from the STRING data-
base (Szklarczyk et al. 2016). Each node represents a protein, and each edge takes into 
account the reliability of the interactions. We use two networks for modelling the data-
base: a conceptual network represents such reliability value; and a physical network 
stores the binary interactions. The HS-graphA dataset contains 5,879,727 interactions 
and 19,354 nodes (we set δ=4).

Protein-interaction We extracted from the STRING database a subnetwork of pro-
teins involved into the SARS-COV-2 infection (Szklarczyk et al. 2016). The physical net-
work contains interacting proteins, while the conceptual network contains the strength 
of the association among them. Protein-Interaction contains 192 nodes and 418 edges 
(Table 5).

Outcome
For these large size datasets, we set the value of k to 20, following the approach in Gal-

brun et al. (2016). Table 6 reports the running time of IWDS, and the density and dis-
tance of the solutions returned by IWDS. As for the synthetic datasets, we consider six 

Table 5  Properties of the alignment graphs obtained for each dataset

Graph Represented relation Nodes Edges

DBLP-graphA Co-authorship 18,954 553,699

G-graphA Social 9878 2,241,339

HS-graphA Protein interactions 19,354 5,879,727

Protein-interaction Protein interactions 192 418
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different values of α . As shown in Table 6, by increasing the value of α from 0.05 to 0.5, 
IWDS (except of one case, HS-graphA with α = 0.1 ) returns solutions that are denser, 
but with lower distance.

Table 6 shows also how the running time of IWDS is influenced by the size of the net-
work and by the value of α . We have put a bound of 20 h on the running time of IWDS 
and the method was not able to return a solution for HS-graphA for α ≥ 0.5 within this 
time. The running time is influenced in particular by the number of edges of the input 
network. DBLP-graphA and HS-graph-A have almost the same number of nodes, but 
HS-graph-A is much more denser than DBLP-graphA. IWDS for the former network is 
remarkably slower than for DBLP-graphA (1.986 slower for α = 0.05 , 6.218 slower for 
α = 0.25 ). The running time of IWDS is considerably influenced by the value of param-
eter α , since it increases as α increases. Indeed by increasing the value of α , less nodes 
are removed by Case 1 and Case 2 of IWDS, hence in iterations of IWDS V-Greedy is 
applied to larger subgraphs. This fact can be seen in particular for HS-graphA, for which 
IWDS failed to terminate within 20 h when α ≥ 0.5.

Biological evaluation of results

For biological data there is the possibility to evaluate the relevance of the results consid-
ering the relevance of the biological knowledge that results may convey.

Biological data are usually annotated with terms extracted from ontologies, e.g. 
Gene Ontology (Guzzi et  al. 2012). Consequently, experiments of analysis of bio-
logical data may evaluated in terms of the biological knowledge inferred from the 
analysis of data and in terms of the statistical relevance of the results themselves. 
For instance, given a DCS extracted from two biological networks, it is interesting to 
determine the biological meaning of the DCS and how this is relevant, i.e. how this 
DCS may convey biological relevance with respect to another random one. Usually, 

Table 6  Performance of IWDS on real-world network for k = 20 , varying α from 0.05 to 0.9. For each 
network, we report the running time in minutes, the density and the distance

Set α = 0.05 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

Alignment-graph

Time 0.055 0.058 0.062 0.065 0.068 0.068

Density 28.14 30.45 37.14 46.44 47.73 52.94

Distance 378.76 373.61 359.94 351.50 347.81 339.17

G-graphA

Time 89.84 98.72 184.87 336.72 426.56 486.68

Density 2863.99 4000.73 6345.67 10989.07 9297.13 10737.01

Distance 275.82 257.84 220.16 210.79 196.06 193.02

DBLP-graphA

Time 105.69 125.71 165.25 212.07 251.08 277.39

Density 39.61 52.39 74.12 91.13 97.25 98.78

Distance 307.72 231.25 213.04 204.37 198.54 196.96

HS-graphA

Time 209.88 749.06 1027.58 – – –

Density 1326.07 1153.68 1799.22

Distance 226.40 212.34 205.55
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subgraphs of biological networks may represent groups of interacting proteins shar-
ing some common functions or playing similar biological roles. Consequently, it is 
possible to evaluate the biological relevance of obtained results by considering the 
role of proteins. Such information are stored and organised into biological ontolo-
gies such as Gene Ontology (GO) (Harris et al. 2004). GO functional enrichment has 
been proposed to evaluate the significant presence of common roles or function in 
a solution represented as a list of genes/proteins. It has been shown that the use of 
semantic similarities (SS) (Guzzi et al. 2012) is a feasible and efficient way to quantify 
biological similarity among proteins. SS measures are able to quantify the functional 
similarity of pairs of proteins/genes, comparing the GO terms that annotate them, 
therefore proteins that share the biological role have high values of semantic simi-
larity. As a consequence, genes/proteins that are found in the same solution should 
have a semantic similarity significantly higher than random expectation. These con-
siderations have been used during the design of the evaluation of our results that we 
adapted from the evaluation scheme proposed in Mina and Guzzi (2014).

Given a DCS DCSk we calculate its internal semantic similarity SSDCSk as the average 
semantic similarity of all the nodes pairs of the DCS as follows:

We compare the DCS extracted from the biological network against random ones 
obtained by randomly sampling the input networks to prove their statistical significance. 
Given a DCS DCSi , we can test the null hypothesis: H0

1  : the average semantic similarity 
of the protein internals to the DCS SS(DCSi) is higher than by chance, where the back-
ground distribution can be estimated from the semantic similarity of random subgraphs 
RSi taken from the alignment graph SS(RSi) , using for instance 0.05 as significance level.

Consequently we design this test as described in the following algorithm:

•	 Let DCSi be a given DCS;
•	 Let SS(DCSi) be its internal semantic similarity
•	 Let Vs be the set of 100 random subgraph with same size Vs={RSj } j=0,..,99
•	 For Each RSj ∈ Vs calculate SSj(RSj) the internal semantic similarity of each random 

solution
•	 Compare SS(DCSi) and all the SSj(RSj) using a non parametric test
•	 Accept or Refuse the Hypothesis SS(DCSi) is significantly higher than SSj(RSj)

Consequently, for each graph in the solution we generate 100 random graphs of the same 
size, by sampling the obtained alignment graph. For each graph we calculated its internal 
semantic similarity using the Resnick measure (Resnik 1999). Results demonstrate that 

(1)SSDCSk =

∑

ni∈DCSk

∑

nj∈DCSk ,j �=i SSDCSk (ni, nj)

�SSDCSk��SSDCSk−1�

Table 7  Comparison of the average semantic similarity for the two biological networks considered

Semantic similarity

Random solutions 0.3± 0.1

DCS 0.6± 0.1
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our solution is biologically relevant and the relevance is higher than by chance as sum-
marised in Table 7.

Conclusion
DNs are used to model two kinds of relationships among elements in the same scenario. 
A DN is a pair of networks that have the same set of nodes. One network has unweighted 
edges (physical network), while the second one has weighted edges (conceptual net-
work). In this contribution, we introduced an approach that first integrates a physical 
and a conceptual network into an alignment graph. Then, we applied the Weighted-
Top-k-Overlapping DCS problem to the alignment graph to find k dense connected 
subgraphs. These subgraphs represent subsets of nodes that are strongly related in the 
conceptual network and that are connected in the physical one. We presented a heu-
ristic, called IWDS, for Weighted-Top-k-Overlapping DCS and an experimental evalu-
ation of IWDS. We first considered as a proof-of-concept the ability of our algorithm to 
retrieve known densest subgraphs in synthetic networks. Then we tested the approach 
on four real networks to demonstrate the effectiveness of our approach. Future work will 
consider a possible high performance implementation of our approach and the applica-
tion of the IWDS algorithm to other scenarios (e.g. financial or marketing datasets).
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