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Introduction
Antimicrobial resistance (AMR) poses one of the greatest risks to human health (Pres-
tinaci et al. 2015). Currently, around 700,000 people worldwide die from infections with 
resistant pathogens each year, and this number is estimated to rise to up to 10 Million 
by 2050 (Interagency Coordination Group on Antimicrobial Resistance 2019; O’Neill 
2016). Hospitals and other healthcare facilities act as key vectors for the spread of AMR 
through healthcare-associated infections (HAI) (Struelens 1998). Persistent colonisation 
of hospital patients and the networked nature of hospital processes underlying patient 
mobility will likely cause AMR to remain prevalent (Pastor-Satorras and Vespignani 
2001b). Several factors moreover exacerbate the spread of AMR in healthcare facilities, 
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including the selective pressures generated by increased antimicrobial usage, and the 
large pool of vulnerable patients, who are more susceptible to infections (Organiza-
tion 2002). The need for infection prevention and control (IPC) can therefore not be 
understated.

Understanding the transmission dynamics of AMR promises valuable insights to 
improve IPC strategies. Key to these measures will be the analysis of patient pathways 
capturing the movement of patients carrying AMR during their hospital stay. Like many 
real-world systems, healthcare facilities have complex structure, which when ignored 
can limit the insights into the underlying dynamic processes. In this study we focus on 
mapping the movement pathways of patients known to carry antimicrobial-resistant 
bacteria onto physical structures of the hospitals. Specifically, we focus on patients colo-
nised with Carbapenemase-producing Enterobacteriaceae (CPE). CPE is a particularly 
concerning form of AMR that confers resistance to carbapenems, broad-spectrum anti-
bacterials often used as last-line antibiotics. CPE infections have recently seen a global 
surge amongst HAIs (Bonomo et al. 2018; Logan and Weinstein 2017).

Networks provide a powerful formalism to analyse the movement of patients in hospi-
tals. Nodes typically represent physical locations within the hospital, such as wards, and 
edges represent the flow of patients between these locations, with edge weights encod-
ing the volume of patient flow from one location to another. To facilitate analysis, we 
can aggregate the movements of individual patients into probabilities of transitioning 
between hospital wards (Donker et al. 2012; Bean et al. 2017). Typically, patient trajec-
tories are broken down into individual transitions between wards: first, the number of 
transitions between each ward is summed across all patients and subsequently, for each 
ward the sum of all out-going transitions is normalised to one. The constructed network 
may then be interpreted as a first-order Markov model, where a random walker transi-
tions with a probability proportional to the observed outflow volume from the current 
node to others in the network (Salnikov et al. 2016).

This dynamical assumption, whilst useful because of its simplicity and ease of imple-
mentation, is however limited by the assumption that transitions between nodes are 
independent of prior nodes within the patient pathway. Previous studies have indeed 
shown that first-order Markovian dynamics are not sufficient to fully model network 
dynamics of disease propagation (May and Lloyd 2001; Pastor-Satorras and Vespignani 
2001a). Akin to shipping trajectories or passenger movement between airports, patient 
movement in hospitals tends to follow particular patterns dictated by medical or opera-
tional constraints. In particular, it is plausible that patient trajectories could bear ‘mem-
ory’, that is, a subsequent move depends on several or all previous locations visited, and 
not solely on the current location leading to transitive dependence in the data.

Introduced by Shannon (1948), higher-order memory models have shown relevance 
across a number of applications, and a wide range of real world movement data (Song 
et al. 2010; Kareiva and Shigesada 1983; Chierichetti et al. 2012; Singer et al. 2014; Gon-
zalez et al. 2008; Heath et al. 2008) including several epidemiological data sets (Balcan 
and Vespignani 2011; Poletto et  al. 2013). Ignoring such transitive dependencies and 
modelling patient movement via memory-less, first-order Markov models can distort 
both network topology and conclusions on the underlying process (Mucha et al. 2010). 
Despite the clear importance of transitive dependence, to date we only find one study 
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(Palla et al. 2017) of hospital patient movement accounting for these relationships, and 
none when looking at AMR across healthcare facilities. Hence, in this study we investi-
gate evidence for and implications of transitive dependencies in the movement patterns 
of hospital patients colonised with a CPE by including memory in our network models.

To model these effects, we use memory networks, which encode the memory of indi-
vidual trajectories into higher-order transitive relationships, and which have successfully 
been used to investigate transitive dependence in pathway data (Lambiotte et al. 2019). To 
provide some intuition behind memory networks, consider a simple example of a small 
network of a hospital with five wards where the patients can follow one of two possible 
routes between the wards, and the two routes share one common node (Fig. 1a). A first-
order (memory-less) network model assuming full transitivity (Fig.  1b) would wrongly 
suggest that a patient starting at v1 could transition to v5 with some probability, when in 
fact, only patients starting at v2 can reach v5 . In a memory network (Fig. 1c) these transi-
tive dependencies are captured by abstracting away from a network of physical nodes to 
a higher-order networks of state nodes representing the possible dynamical states of the 
system (i.e., the sequence of hospital wards visited up to a given memory) (Edler and Bohlin 
2017). For a memory network, the order k, determines the number of previous pathway 
steps to consider in the state network, acting to parameterise ‘memory’. Such memory is 

- Patient Pathways - First-order Network

- Memory Network
Physical Network

State Network

a

c

b

Fig. 1 Illustration of transitive dependence encoded into memory network. a Two sets of typical patient 
pathways, largely independent, but passing through the same ward as an intermediate point in their 
pathways. b First-order representation of a without any memory (c) Memory network representation a, 
whereby a physical node network maps to state nodes, which encode transitive dependence of the patient 
pathways and constrain a random walkers movement
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directly incorporated into the state network though each state node representing a path-
way of length k − 1 present in the trajectories. This state network can be thought of as an 
additional layer of information still bound to the physical network since each state node is 
assigned to a physical node. The state network thus acts to constrain how a random walker 
transitions between physical nodes. These higher-order network abstractions lend them-
selves to learning tasks that can pinpoint key properties underlying the dynamical process. 
In the case of HAIs, this can offer insight into more accurate patterns in the movement of 
infected patients otherwise lost in a network model that assumes full transitivity.

Below we present the analysis of patients pathways confirmed to be colonised with CPE. 
We begin by presenting our data and a description of the hospital network. We then pre-
sent evidence for memory within patient pathways by contrasting models constructed with 
and without memory. Next, we construct a lumped state memory network, which cap-
tures transitive dependence and removes redundancy. We carry out multiscale community 
detection on this network, and present the resultant communities, highlighting specific 
wards and specialities that are important across different regions of the network. Finally, 
from a clinical point of view, we discuss how these results can aid infection prevention and 
control to identify hospital structures that are relevant for disease transmission and thus to 
focus intervention strategies.

Results
Data

Our analysis is based on anonymised electronic health records of patients from a large 
1000-bed Trust of London teaching hospitals. Specifically, we used ward-level movement 
patterns of 967 patients who tested positive for CPE over a period of two years between 
2018 and 2020. We focused on the subset of 526 patients who moved between at least two 
wards during their hospital stay for a total of 1958 transitions between 96 hospital wards.

Formally, the hospital Trust is structured around 17 specialities and 19 buildings, the 
latter belonging to three hospital sites (Fig. 2). Hospital site 3 acts as a Tertiary site with 
only speciality wards. Whilst sites and buildings are constrained by geographical factors, 
specialities are defined by medical procedures and thus may overlap across sites and build-
ings. In fact, a number of specialities span all five hospital sites (Critical Care, Elderly Care, 
Medicine, Private, and Surgery). Geographical structures constrain patient movement to 
some extent: patients with certain co-morbidities and therapeutic requirements are likely 
to be constrained to a single or several specialities supporting those needs, whereas other 
patients can move within buildings, or between wards placed closely for logistics and ease 
of transfer.

From patient pathways to network models

We consider the trajectories of p patients. Each patient pathway as a trajectory Tα and the 
set of α = 1, . . . , p trajectories is T =

{
T1,T2,T3, . . . ,Tp

}
 . Each Tα consists of a time-

ordered set representing discrete movements between nodes,

(1)Tα =
{
vi → vj → . . . → vk

}
,
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where each node refers to one of N hospital wards N =
{
ν1, ν2, ν3, . . . , νN

}
 . Since these 

nodes represent physical locations, we will refer to them as physical nodes to avoid con-
fusion with state nodes, which we introduce next.

In order to understand the aggregate dynamics of all patients, whilst preserving 
memory effects in T  , we represent the trajectories as a memory network as proposed 
by Rosvall et al. (2014). This way, we maintain information about physical nodes N  
whilst instilling transitive dependence in the connectivity patterns of an underly-
ing state-network, Mk = (Ek ,Sk) . Here Ek is the set of edges that link the set of state 
nodes Sk that capture higher-order memory of order k (Edler and Bohlin 2017).

A memory network of order k = 1 , M1 , represents a system with zero memory, 
where the movement of a random walker only depends on its current location. In this 
special case, the state network M1 = (E1,S1) is equivalent to an aggregated physical 
network, and the set of states directly maps to the set of physical nodes, i.e., S1 = N  . 
The edge weights wij conforming the set E in M1 represent the frequency of transi-
tions between physical nodes νi and νj across the set of trajectories T  . Given wij , we 
can write the transition probability matrix P1 for M1 as

In memory networks of higher-order, where k > 1 , state nodes represent pathways of 
length k − 1 , and are no longer equivalent to the physical nodes Sk  = N  . This represen-
tation allows us to introduce the memory dependence in T  , capturing multi-step pat-
terns of flow via the state nodes of the network (Salnikov et al. 2016).

(2)pij = P(i → j) =
wij∑
j wij

.

Emergency Medicine

Surgery

Site 3

Site 1

Site 2

Cancer
Haematology

Renal

Cardiology

Endoscopy
Obstetrics

Gynaecology

Medicine

Elderly care
Paediatric

Private

Critical Care

Respiratory
Neurology
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Fig. 2 Sankey diagram of Trust Structure traversed by CPE patients. Broken down by hospital site, and 
buildings to wards, then also broken down by speciality into wards
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In particular, for the second-order memory network M2 , a state node represents 
a directed pathway of length one sj =

−→
ij  . For two states nodes sj =

−→
ij  and sℓ =

−→
jℓ to 

be connected, a path of length two, ( νi → νj → νℓ ), must occur in the set of trajecto-
ries T  . Similarly for higher-order models, edges between state nodes are weighted wsjsl 
and capture the number of occurrences that a transition between state nodes sj and sl 
was observed in T  . Transition probabilities Pk of Mk for any order can be derived from 
Equation 3 by altering the state node set S to represent pathways of length k − 1 , so

Each state node can be mapped to a physical node (Fig. 1a), using an |Sk | × N  indicator 
matrix D, the elements of which, Dsν ∈

{
0, 1

}
 , indicate the final physical node of a path-

way s.
We first constructed a first-order memory network M1 that contains 96 state nodes 

with a one-to-one mapping to the 96 wards (physical nodes). M1 consists of four weakly 
connected components, one of which contains the majority of state nodes (87 out of 96) 
(Additional file 1: Fig. S1). We next constructed a second-order memory network M2 
that contains 384 state nodes, in 18 weakly connected components. Similarly, M2 con-
sists of a single weakly component that contains the majority of state nodes (329 of 384). 
Structurally, M1 has a higher connectivity with a clustering coefficient of 0.287 and a 
diameter of 6, whereas M2 is more sparse with a clustering coefficient of 0.003 and a 
larger diameter of 31, resembling a series of connected line graphs (Additional file 1: Fig. 
S1).

Patient trajectories break first‑order dynamics

Using random walks to reveal and probe the structure of networks has long been a foun-
dational tool in network science (Masuda et  al. 2017). A random walk is a stochastic 
process which consists of a succession of random steps with no memory of its past loca-
tions; however, in a system where transitive dependence plays a important role, a purely 
random walk becomes inaccurate and potentially misleading. Higher-order memory 
networks can capture deviations from first-order transitive assumptions by constrain-
ing where a random walker can next move depending on its previous location(s). For 
pathway models without transitive dependence, a random walker should be no more 
constrained when moving from a first-order memory network, M1 , to a second-order 
memory network M2 (Rosvall et  al. 2014). However, pathways exhibiting transitive 
dependence will constrain a random walker comparatively more in the second-order 
memory network. Here, we use the entropy rate of the random-walk to measure the 
uncertainty of moving between two state nodes (Shannon 1948; Schaub et al. 2012):

where π denotes the stationary distribution across M , and p(i → j) are the transition 
probabilities. A higher entropy rate reflects a higher uncertainty in the transitions of 
a random walker (Schaub et  al. 2012). If a large amount of memory is important, we 
expect a decrease in the uncertainty of the random walker when accounting for the 

(3)psisj = P(si → sj) =
sij∑
j sij

.

(4)H(St+1|St) =
∑

i,j

π(i)p(i → j) log p(i → j),
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higher-order effects, since a random walker becomes more constrained. On the other 
hand, if memory plays little role, and does not constrain the transitions of the random 
walker, we would expect little change in entropy when accounting for memory.

We constructed memory networks Mk of order k = 1, 2, 3, 4 (description of the num-
ber of state nodes, edges and pathways for each Mk is detailed in Fig. 3a). Computing 
the entropy for each Mk we find increasing restriction of the random walk (reduced 
entropy) for larger k (Fig. 3b). In particular, we observe a large decrease in entropy from 
2.70 to 0.57 when we move from first-order memory to second-order memory. Patient 
pathways with little to no memory effect would not exhibit any large change in entropy 
when moving from M1 to M2 and thus our results suggest that there exist patient path-
ways which break first-order Markovian transitive assumptions and highlight the impor-
tance of capturing memory.

Now we must determine the optimal order k for a given analysis. For small data sets, it 
is difficult to statistically validate whether memory networks with higher-order are rel-
evant, given that the parameter space and complexity increases exponentially (Scholtes 
2017). A common workaround is to use cross-validation, a model validation technique 
borrowed from machine learning (Singer et al. 2014). In cross-validation, data is parti-
tioned and performance is determined as an average across partitions to reduce over-
fitting and selection bias (Arlot and Celisse 2010; Cawley and Talbot 2010). To perform 
cross-validation in the framework of a memory network we compute the rank orders of 
wards using a training set of patient pathways and then compare with the rank order of 
wards generated from visitation probabilities of a withheld partition of patient pathways. 
Similar to Rosvall et al. (2014), we used a generalised PageRank for higher-order models 
where the visitation probabilities of state nodes were summed for each physical node 
(see methods section: “Higher-order PageRank” section). The rank orders between train 
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and test sets were compared with Kendall–Tau rank correlation (Kendall 1938) and the 
results were averaged over a fivefold cross-validation split. We found that M2 was more 
predictive of the node ranking of physical nodes than M1 (0.60 to 0.49) (Fig. 3b). Moreo-
ver, across all folds the ranked correlation was more significant in M2 than M1 (Addi-
tional file 1: Table S1). This increased performance in M2 again suggests that a patient’s 
current and previous location both affect future movement, and that accounting for this 
memory effect yields more accurate approximations of patient movement.

Whilst further higher-order memory effects may exist, we were unable to detect any 
increased predictive power beyond the second-order (Fig.  3b). We note that this may 
be due to limitations of our data; as we increase the order k, we must discard additional 
patient pathways with fewer than k transitions between wards. This is evident in Fig. 3a 
that shows a decreasing number of pathways as we increase the order; and whilst the 
number of state nodes and edges initially increases from the first-order to the second-
order, as you may expect by increasing model complexity, due to the decreasing number 
of pathways we instead observe a decrease in the number of state nodes beyond the sec-
ond-order. Herein, to retain enough patient pathways for reliable insights, we thus shall 
focus on the second-order memory network.

We then compared the PageRank of physical nodes (wards) between M1 and M2 
(Fig.  3c). Whilst we found the PageRank of wards in M1 and M2 to be correlated 
( σ = 0.81 , p val<0.01), there were a number of key deviations. In particular, we find three 
renal wards (Renal 1, 2 & 3) with a relatively higher ranking in M2 , indicating that CPE 
patients frequently visit these wards. These results are reassuring, given that patients 
undergoing renal therapies at our institution were previously noted to have an increased 
risk of CPE acquisition (Otter et al. 2020), though whether this is unique to our institu-
tion or a more specific trait of this patient group is to be determined. The higher ranking 
of these Renal wards in M2 highlights the importance of using a constrained state node 
network to understand the clinical movement of these patients. Conversely, Medicine 
13 was the highest ranked ward in M1 , but was found to have a relatively lower rank 
in M2 . Medicine 13 is an acute medical admissions unit, and as such acts as the entry/
re-entry point for many patients to the hospital, rather than a transition ward or a ward 
which offers care, and whilst it plays a starting role in many patient pathways, it is sel-
dom observed at any other point in a patients trajectory through the hospital.

Investigating memory effects with a discrete diffusive process

One way we can study the effect of memory is through the direct observation of its influ-
ence on a diffusion process starting at various points in the network (Lambiotte et al. 
2019). Figure 4a, b displays the evolution of a discrete-time diffusive process for M1 and 
M2 , each encoded by their respective transition matrix Pk , when injecting an impulse 
at a single ward (Medicine 13). At time t = 0 , the diffusive process is entirely contained 
within the state node(s) corresponding to Medicine 13 (beyond the first-order, where 
physical nodes can have several state nodes, we share initial probability over states based 
on the frequency of pathways in T  that sj =

−→
ij  represented). For times t > 0 we com-

pute the probabilities of being on a given ward at time t through powers of the transition 
matrix Pt

k.
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After a single discrete step t = 1 we find there is little effect of memory with the 
total number of wards reachable being similar for M1 and M2 (12 wards vs 9 wards, 
respectively). However, as we extend the diffusive process to t = 2 and t = 3 we find 
that the number of reachable wards from Medicine 13 increases rapidly for M1 (36 
wards at t = 2 , then 71 wards at t = 3 ) whereas we do not see any change in M2 (9 
wards at t = 2 , and 9 wards at t = 3 ). In fact, for M1 a random walk initialised at 
Medicine 13 can reach 71 out of the 79 wards within the largest weakly connected 
component in T  after just 3 steps. This level of transitivity is not present in T  , and 
its absence is directly observable by looking at the restriction of flow evident in M2 
(Fig.  4a, b). This difference comes from patients not starting at Medicine 13, but 
passing through its neighbours influencing the 2-step network transitivity.

Interestingly, M2 constrained walkers such that no backtracking to Medicine 13 is 
possible over the first 3 discrete transitions, in contrast to M1 , where backtracking 
to Medicine 13 is possible for t > 1 . In fact, using M1 there is a relatively large prob-
ability to revisit Medicine 13 after 2 or 3 steps ( p2med13 = 0.18 and p3med13 = 0.24 ). 
Given that Medicine 13 is commonly an entry point/readmission point where 
patients go when waiting for diagnosis, we would expect a minimal backtracking 
effect in patient movement across short time frames since they move into subse-
quent specialities for treatment once a diagnosis is known. Hence, including mem-
ory through M2 better captures true patient flow.
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Forward reachability is varyingly constrained by memory

We expanded the above framework to examine reachability across the entire network 
by performing the analysis for every possible starting node. For each ward, we compute 
the set of reachable wards after t time-steps and in Fig. 4c we display the median size of 
reachable sets for all wards under M1 and M2 . Similar to the analysis of Medicine 13 in 
Fig. 4a, b, we find that the median size of reachable sets is relatively similar between M1 
and M2 at t = 1 . However, as t increases we again observe divergence in the reachable 
set sizes due to the significantly larger set of reachable wards in the first-order model 
M1 . Indeed, after 3 time-steps only 5 wards are reachable on average under M2 as com-
pared to the 79 reachable wards under M1 . Hence M1 is inflating transitivity between 
wards and distorting the set of reachable wards for a patient through inherent ignorance 
of prior ward visits. We also observe that the variance of the reachable set of wards for 
M1 increases for t = 2, 3 , suggesting that the importance of memory is different depend-
ing on the ward at which the diffusive process was initialised.

To study this, we next break down wards by speciality and examine the importance 
of memory on the median set size of reachable wards. Figure 4d summarises the size of 
reachable sets averaged across wards within the same speciality. We notice that speci-
alities which are known to be well visited by CPE patients in this hospital setting (e.g., 
Critical Care, Renal) exhibit a comparatively larger reachability set size when compared 
to the aggregated view in Fig.  4c. In contrast, specialities such as Neurology or Can-
cer which are less common to CPE patients exhibit a relatively lower reachability. These 
different reachabilities between specialities likely result from two mechanisms: (1) the 
different roles specialities play within the network and their transitivity by CPE patient 
trajectories, and (2), that memory effects may vary in different areas of the network, i.e. 
the extent to which a previous ward determines a patients next move. Hence, it may be 
optimal to construct a ‘hybrid’ of M1 and M2 which incorporates many of the desirable 
memory effects in M2 , but simplifies parts of the model where greater transitivity is in 
fact present.

Reducing complexity using state node lumping

Given a large set of trajectories, the problem arises that state node networks Mk can 
become increasingly large and often duplicate or contain redundant information. In 
the case of patient trajectories, not all hospital pathways may exhibit memory effects 
in equal measure. Variable-length Markov models, pioneered by Rissanen (1983) allevi-
ate some of these issues by introducing a ‘lumping’ step in which ‘redundant’ states are 
merged, thus enabling models to capture variable lengths of memory and remove model 
redundancy (Jääskinen et al. 1983; Bühlmann and Wyner 1999). Remembering that in 
memory networks, state nodes are assigned to physical nodes, we will often find several 
state nodes that are connecting the same physical nodes just via different edges. There is 
no need for this repetition and therefore here we focused on lumping state nodes within 
the same physical node to form so called ‘meta-state nodes’ or ‘lumped nodes’ which also 
benefit from preserving the physical network structure (Lambiotte et al. 2019). For each 
lumped node, we reassemble all connections between two states nodes such that weight-
ing and connectivity are preserved (Edler and Bohlin 2017). In effect, ‘lumping’ nodes 
retains relevant and distinct patterns of transitive dependence in the original pathways; 
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however, for our purposes it also serves to ‘de-sparsify’ M2 , improving its practicality 
and making it useful for subsequent learning tasks that assume greater connectivity.

In our approach, we lump together state nodes based on the similarity of visitation 
probabilities computed from a discrete diffusive process encoded in the state transi-
tion matrix Pk over t-steps. Existing node lumping methodologies use a 1-step random 
walk to identify state nodes that have similar connectivity within the network (Edler and 
Bohlin 2017; Persson et al. 2016). Here, however, we extend this approach to t-steps to 
identify similarity across a greater network locality. Using an agglomerative clustering 
method on the discrete diffusive process, we can then identify state nodes with similar 
connectivity, and if both are members of the same physical node they can be lumped 
together (Hastie et al. 2009). Importantly, this agglomerative clustering is parameterised 
by a clustering rate r, which controls the total proportion of state nodes to lump (for a 
detailed explanation refer to methods section: State lumping on local connectivity).

To what extent should we lump state nodes together? At one extreme, we have the 
state node network Mk without any lumping and at the other extreme we have the phys-
ical node network where every state node has been lumped together within its respec-
tive physical node. We want to identify an optimal amount of lumping, comfortably 
between the two extremes, that retains transitive dependence but removes redundant or 
duplicated information. The resulting lumped network is denoted M̂k . In order to quan-
titatively determine the optimal lumping, we used ‘ground-truth’ community structures 
such as buildings, specialities, and hospital sites and compared these annotations with 
the results of community detection on the lumped network M̂k . Whilst these structures 
do not fully constrain patient movement and therefore cannot provide an exact ground 
truth, there does exist a correlation with patient movement. We hypothesised that the 
optimal lumping would be found at the elbow of a fitness curve generated from the abil-
ity to detect known hospital structures in community structures, thus providing a trade-
off between model accuracy and simplicity. Accordingly, we found that a clustering rate 
of r = 0.35 gave the optimal lumped model (Additional file 1: Fig. S3).

The lumped network M̂2 contains 171 state nodes across 7 weakly connected com-
ponents. Similar to the state node networks M1 and M2 , we found a large weakly con-
nected component that contained the majority of state nodes (156 out of 171) (Fig. 5). 

Fig. 5 From first-order network to second-order network and everything between. The first-order network 
M1 (left), the lumped second-order network M̂2 (middle), and the second-order state node network M2 
(right) ordered by scale of model complexity
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Aside from visually appearing to exist in a state between M1 and M2 , both its cluster-
ing coefficient (0.054) and network diameter (11) sat comfortably between M1 and M2 , 
serving to validate its balance of complexity, connectivity, and higher-order dependen-
cies. Note that unlike M2 , the lumped state network M̂2 no longer resembles a series 
of lines graphs, and hence provides a more practical structure over which to apply com-
munity detection.

Community detection reveals overlapping clusters of wards common to distinct pathways

By constraining a walkers movement within the connectivity patterns of Mk , for 
k > 1 , we can identify communities within Mk that conserve flow from a dynami-
cal perspective. Given that Mk is composed of state nodes, the memory-dependent 
structure C will provide network partitions that shed light into community structure. 
Here we use Markov Stability (MS), a quasi-hierarchical community detection algo-
rithm that identifies regions within a network in which a diffusive process becomes 
transiently constrained (Delvenne et  al. 2010). MS exploits diffusion dynamics over 
an underlying graph structure to reveal multi-scale community organisation and their 
stability across time scales (see methods: Dynamical community detection).

The quasi‑hierarchical community structure of the wards

Continuing with the lumped state network M̂2 , we apply MS and in Fig. 6 we show an 
apparent hierarchy of state node assignments to community partitions across Markov 
time t. We selected three points across Markov time ( t1,t2,t3 ) that exhibited robust 
community partitions (Additional file  1: Fig. S5). At longer time scales MS reveals 
coarser community partitions which show significant correspondence to hospital sites 
(Fig. 6). Specifically, at t3 each cluster in the 3-way partition strongly corresponds to 
one of the three hospital sites. If we extend to even longer t we identify a 2-way par-
tition where two hospitals are grouped almost exclusively into a single community 
(Additional file 1: Fig. S7). Notably, the hospital with wards grouped separately is the 
Tertiary site within the hospital trust which consists of speciality wards and appears 
to share fewer patients with the other two hospitals.

Moving towards shorter t within the MS analysis, which are expected to identify 
more granular structures of patient flow, we identity sub-structures largely contained 
within hospital sites, which overlap to a lesser extent between hospital sites (Fig. 6a). 
In some cases, these confer to buildings (we find 10 buildings that are over-repre-
sented in clusters at t1 ), in other cases these confer to specialities (we find 7 speciali-
ties over-represented in clusters at t1 ). Focusing initially on speciality, we find three 
specialities (Haematology, Cardiology, and Renal) that are over-represented within 
separate communities suggesting they are have a high degree of within special-
ity patient movement (Additional file 1: Fig. S8). However, as we increase t to reveal 
coarser partitions we see the more granular communities combine, bringing together 
previously distinct specialities such as Haematology or Renal into coarser partitions 
with other specialities, highlighting the zooming affect of MS as we change the t at 
which communities are observed. However, it is clear that the community structure is 
not entirely defined by specialities and the physical constraints imposed by buildings, 
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hospitals, and common movement patterns play a significant role and result in our 
observed communities (Fig. 6b).

Given that the majority of patients will move between specialities at some point dur-
ing their journey through the hospital, it is expected that communities would not corre-
spond exactly to ward specialities. Often this is attributable to patients seeking treatment 
for comorbidities, additional to their primary condition. The effect of such movements 
is a memory effect whereby patients will transition back to wards treating their main 
condition. In fact, several specialities primarily service these secondary conditions. An 
example is Medicine, a general class of ward that, as well as taking admissions also offers 
general treatment and support. Critical Care is another example with high expected 
memory effects, since it services patients from any ward if they deteriorate fast enough. 
Notably, we find that wards both in the Medicine and Critical Care specialities can be 
found within 10 different communities at t1 . Additionally, Surgery, another department 
that services multiple other wards, can be found in 9 different communities.
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Elderly Care
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Fig. 6 Hierarchical breakdown of Markov Stability communities for three chosen scales t1 , t2 and t3 (optimal 
partitions chosen for their robustness after a detailed Markov Stability analysis, see Additional file 1: Fig. S4) 
and the relations of: (left) coarse partitions to Hospital sites; and (right) granular partitions to a specialities and 
b buildings
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Overlapping community assignments

Although community detection generally is generally used to find ‘disjoint’ communi-
ties, multiple community membership is a well observed phenomenon, whereby a node 
may have multiple functions that it shares with different groups of nodes (Xie et  al. 
2013). Understanding that we are essentially clustering wards based on the movement 
patterns of patients, it is likely that different cohorts of CPE patients (e.g. with differ-
ent comorbidities) have overlapping pathways. For instance, different cohorts of patients 
still require a set of common services and hence visit an overlapping set of wards (e.g. 
for admission, surgery, critical care, or renal dialysis). This phenomenon is well cap-
tured by memory networks, standard methods of community detection applied across 
the state network are able to reveal overlapping communities of nodes on the physical 
network. Additionally, the notation of granularity introduced by MS adds an interesting 
dimension to this problem, whereby the degree to which wards overlap communities can 
depend on the point Markov time. We can thus identify hospital wards which persis-
tently overlap multiple communities across both granular and coarse time scales. These 
wards are of particular interest when developing Infection Prevention and Control strat-
egies as they can play the role of network bridges and potential transmission hotspots.

At the most granular time scales, we find 48 wards with multiple community assign-
ments (Additional file 1: Tables S2–S4). With increasing Markov time the total number 
of overlapping wards decreases; however, there exist several wards which are persistently 
overlap communities. We find 4 Renal wards and a single Elderly Care ward which have 
membership within each community of the 2-way coarse partition. Despite disappearing 
in the very coarser 2-way partition after t > 12 , Critical Care, Medicine, and Surgery, as 
well as a single Elderly care ward also overlapped between communities. Since the most 
coarse partitions strongly corresponded to non-specialist hospital, and specialist hospi-
tal sites, it is likely that Critical Care and the Elderly care wards still play a strong con-
nective role within connecting the two non-specialist hospital Sites 1&2.

Identifying the most central wards

In the previous section we identified nodes that were assigned to multiple communities, 
highlighting their critical role in the pathways of multiple cohorts of patients with differ-
ing patterns. We also used PageRank to identify the importance of wards in M1 and M2.

To allow for a more complete examination of ward importance, and to provide further 
investigation of M̂2 , we use Multiscale Centrality (MSC). MSC is a measure of central-
ity that enables us to identify nodes that are important in the network at different scales 
(Arnaudon et al. 2020). Following the same approach to compute centrality of the physi-
cal nodes, we compute MSC for each state node and then compute the sum of state node 
centralities across each physical node to generate a value of MSC for each ward.

Figure 7 shows the results of MSC computed for M̂2 . We find several wards that are 
central at all scales, implying that they are both highly connected locally (short time 
scales), and also important as global connectors/bridges (long time scales). Both Medi-
cine 13 and 14 appear as central at all time-scales; Medicine 13 and 14 are both admis-
sion and readmission points into the hospital, where patients will be first identified as 
positive for CPE, and where they will return if readmitted. Additionally, we find four 
renal wards are central at all scales; note that three of these renal wards (Renal 1, Renal 
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2, and Renal 3) were also ranked highly in our previous analysis of M1 and M2 with Pag-
erank. Conversely, we also find wards that vary considerably in their importance across 
time-scales (Fig. 7b).

Conclusions
Analysis of patient movement can give valuable insights to understand disease dynamics 
and inform Infection Prevention and Control. Here we examined the common assump-
tion of memoryless-ness in the movement of patients. To this end, we employed network 
analysis and compared networks with and without memory.

Models with memory have a substantially larger parameter space. We therefore 
constructed a simplified memory model based on a hybrid ‘lumped’ memory network, 
which retains the effect of memory in the patient trajectories but removes redundant 
or duplicate information. Such hybrid models are particularly useful for networks 
which exhibit different levels of memory depending on the localities. In this context, 
we extended previous work on lumping in memory networks in two ways: firstly, we 
defined a node feature vector that allows state nodes to be compared and lumped into 
meta nodes based on longer random walks; secondly, we proposed that lumping could 
be optimised by using prior knowledge with known communities which partially con-
strain patient pathways. This framework for constructing lumped memory networks 
is generalisable to both other hospital sites and other types of pathway data, where 
the underlying characteristics of the system predetermine many routes of movement. 
In the hospital context, patient trajectories are constrained by common pathways of 
patient treatment and care.

The lumped memory network formed the basis of subsequent investigation to 
detect communities of movement within our healthcare network. We used prior 
knowledge, including the hospital structure and specialities, to optimise the rates of 

Scale

S
ca

le
d 

M
S

C
 R

an
k

a

Medicine 13

Cardiac 1

Cardiac 2

Emergency 3

Endoscopy 1

Medicine 12

Medicine 17

Medicine 19

Medicine 4

Medicine 5

Private 1

Private 6

Surgery 11

Surgery 2

Surgery 3

Critical Care 4

Elderly Care 2

Elderly Care 3

Medicine 1

Medicine 14

Medicine 20

Medicine 21

Renal 2

Renal 3

Renal 4

Renal 5

Respiratory 1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
MSC Median short scale

M
S

C
 M

ed
ia

n 
lo

ng
 s

ca
le

MSC time−scale comaparisonb

10-2 102100

Renal 1

Medicine 8

Medicine 13
Renal 2

Elderly Care 3

Renal 1

Renal 4

Renal 3
Critical Care 4

Renal 5

Medicine 14

Medicine 1

Medicine 8
Respiratory 1

Elderly Care 2

Medicine 20
Medicine 21

Fig. 7 Ranking of nodes by their multiscale centralities (MSC) in M̂2 . a Multiscale centrality ward rankings 
across all scales; all wards are plotted (light grey lines) with highlighted wards in colour. A high value of the 
scaled MSC Rank means that the wards are important. b A comparison of the MSC ranking at short scales 
versus long scales. The annotated wards are those with large differences in their PageRank in M1 versus M2 . 
Note that at short scales, some nodes will have not been assigned a Multiscale centrality value and so share 
the bottom rank



Page 16 of 23Myall et al. Appl Netw Sci            (2021) 6:34 

lumping based on the Markov Stability graph clustering framework. As a result, we 
could highlight clusters of patient movement with higher-order memory and iden-
tify wards that appeared in multiple communities. The communities of patient move-
ment divided the hospital sites quasi-hierarchically into sub-communities of wards 
that share patient flow. We found correspondence between community structures and 
known structures, such as hospital buildings or specialities; yet the communities also 
result from common pathways specific to certain cohorts of patients amongst this 
hospital group.

The higher-order network framework was specifically applied to analyse a large data 
set of CPE patient pathways collected in three large London hospitals. The analysis 
showed that the movement of hospitalised patients colonised with CPE displays sub-
stantial memory, i.e., ward transitions depend on previously visited wards. The pres-
ence of memory was identified by comparing node rankings with differing degrees 
of memory, as well as the statistics of a diffusion process on the resulting network 
models. Notably, we found that including memory in the network model increased 
the centrality of wards that are known clinically to be commonly visited by CPE 
patients (e.g. Renal) and decreased the centrality of wards that are less clinically vis-
ited amongst CPE patients (e.g. Paediatric). We note that the effect of memory can 
also be studied by analysing differences in the distribution of standard node centrality 
statistics (Additional file 1: Fig. S11). Memory also greatly affected local reachability. 
For example, the memory-less first-order model wrongly implied that patients could 
reach almost any ward within three ward moves after first entering the hospital. Our 
analysis, on the other hand, shows that accounting for where patients had previously 
been, dramatically restricts the possible set of subsequently visited wards. Hence, 
ignoring pathway memory in hospital patients can affect the outputs of commonly 
used network analytics tools, and potentially misrepresent the importance of hospital 
wards.

Understanding the constraints of patient movement can aid IPC. We showed that the 
ranking of wards and the likelihood of infected patients visiting particular wards was 
more accurate in the memory network than the memory-less network. In particular, we 
found that by extending beyond 1st-order memory, wards known to be associated with 
CPE were ranked more highly. Pinpointing at-risk wards is critical to focus IPC efforts 
and prevent transmission. Identifying communities of patients with distinct move-
ment patterns, moreover, is valuable to cohort outbreaks within these communities and 
to prevent spread to other communities. Indeed, we found that the overlaps between 
communities revealed wards visited by almost all CPE patients (Renal wards) and wards 
visited commonly by the general patient population (Medicine, Surgery, and Critical 
Care wards). Such wards are prime targets of enhanced prevention efforts to reduce 
transmission.

Overall, our study highlights the role of memory in patient pathways. Most current 
analyses of patient pathways assume memoryless-ness as a first approximation. Here, 
we showed that ignoring memory may misidentify potential hubs of disease transmis-
sion. Our study gave some indication for memory beyond the second-order, however, 
we were limited in its detection due to the need of increasingly larger datasets. Future 
work incorporating higher-order effects may therefore give further insights into the 
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precise nature of memory in patient movement. Our analysis suggests that informing 
policy based on traditional memory-less networks can miss key characteristics of move-
ment patterns. For IPC this can mean missing transmission hubs and wrongly directing 
screening efforts to less critical locations, resulting in poor use of resources and lower 
efficacy. Our lumped memory network thus provides a framework for future patient-
pathway analyses aimed at improving containment of CPE, and may be generalised to 
inform infection prevention and control of other HAIs.

Methods
Higher‑order PageRank

PageRank is a measure of node importance or centrality within a network based on the 
incoming edges (Page et al. 1999). To obtain Higher-order PageRank we follow the deri-
vation presented by Rosvall et al. (2014). PageRank is essentially computing the visita-
tion probabilities to nodes over a network, determined by connectivity and weighting of 
those connections. In the context of a memory network, one can simply derive PageR-
ank over the underlying state network for a model of arbitrary order k, and project the 
visitation probabilities back onto the physical nodes.

Firstly, we define the probability of finding a random walker on a given state node s at 
time t + 1 as

where as before a state confers to a pathway of length k and transition probabilities are 
encoded by the transition matrix P.

Now, for any order k the higher-order generlisation of PageRank is simply the station-
ary solution to equation 5:

With π(sj) it is then trivial to return the physical node PageRank by summing over a 
physical nodes states:

State lumping on local connectivity

Given a large set of trajectories, the problem arises that state node networks Mk can 
become very large and often contain redundancies. Not all pathways exhibit full transi-
tive dependence, so it can often be desirable to reduce the model complexity by lump-
ing together redundant state nodes. Redundancy of state nodes can lead to over-fitting 
when a physical node contains a number of similar states. Hence, we focus on lumping 
states nodes within the same physical node, forming so called ‘meta state nodes’ which 
also benefit from preserving the physical network structure (Lambiotte et al. 2019). For 
each lump, we reassemble all connections between two states nodes such that transition 

(5)P(sj; t + 1) =
∑

si

P(si; t)p(si → sj),

(6)π(sj) =
∑

i

π(si)p(si → sj).

(7)π(k) =
∑

j

π(sj) =
∑

k

π(sj).
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probabilities and connectivity are preserved (Edler and Bohlin 2017). In effect, ‘lump-
ing’ state nodes together reduces the model complexity whilst retaining the transitive 
dependence of the original pathways.

In our approach, we lump together state nodes based on the similarity of visitation 
probabilities of the physical nodes. To do this we use the S × S state transition matrix 
P over k-steps and then sum the probabilities over the state nodes that compose each 
physical node. In the construction of P we add weighted self loops equivalent to a nodes 
total outflow weight wsisi =

∑
si
wsisj to derive P′ with Eq. 3. This self loop conserves local 

flow across P′ , emphasising local connectivity when we subsequently determine dis-
tances across X.

We define the state node to physical node transition matrix X as the visitation prob-
abilities of each state node to each physical node over k-steps, X = PkD , where P is the 
state node transition matrix and D is the S × N  state node to physical node indicator 
matrix. Each entry xij corresponds to the probability of transitioning from state node i to 
physical node j and thus provides a mapping from the higher order state node network 
to the physical node network. Here, we set k = 3 to incorporate a slightly larger range of 
local connectivity than previous works that use k = 1 (Edler and Bohlin 2017; Persson 
et al. 2016).

State nodes with similar local connectivity will exhibit similar probability distributions 
on the physical node network, therefore we can compute a similarity matrix between 
state nodes by computing the Wasserstein distance (Villani 2008) between vector rows 
of X which measures the distance for moving from one probability distribution to 
another. The similarity matrix was subsequently clustered using an agglomerative clus-
tering method for lumping state nodes within physical node (Hastie et al. 2009).

In order to control the degree to which state nodes are lumped we employed a cluster-
ing rate r, which sets the number of final lumped state nodes that should be constructed 
for each physical node after completion of the lumping procedure. For example, lets 
consider a scenario where we have two physical nodes, one of which is composed of 10 
state nodes and the second is composed of 20 state nodes. If we set the lumping rate 
r = 0.2 , then after lumping the first physical node would have 2 lumped nodes after the 
procedure whereas the second physical node would have 4 lumped nodes. Increasing the 
lumping rate to r = 0.8 would mean physical nodes retain more of their states after the 

Fig. 8 State Lumping Example for a single physical node ( ν1 ). Two possible lumpings M′ and M′′ are 
visualised here over the state nodes (grey nodes) with the physical node mapped over (dotted circles 
surrounding state nodes). Here each lump merges the two most similar state nodes based on feature vectors 
capturing local visitation probabilities of k = 2 network steps
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lumping, and for our example would result in those physical nodes having 8, and 16 final 
state nodes respectively.

Consider a simple illustrative lumping example in Fig. 8 which demonstrates the lump-
ing process for a single physical node (circle of red dashed lines, ν1 ) and its constituent 
state nodes (grey circles within the red dashed circle) for different values of k. For the 
case k = 1 (see M′ in middle of Fig. 8) only the nearest neighbours of each state node 
are considered and as such s1 and s2 will be lumped together first. The next lumping of 
state nodes is unclear given that both s3 and s4 have 1-step neighbors states in different 
physical node. However, as we increase k we explore more of the local network and at 
k = 2 , in this example, it becomes clear that s3 is more similar to s1 and s2 . Hence for the 
second lumping, s3 is merged with lumped meta node s1,2 instead of s4 (see M′′ in mid-
dle of Fig. 8).

Dynamical community detection

Dynamic community detection with Markovian assumptions can still be used to reveal 
structure in a memory network, simply by applying the same community detection algo-
rithms to the higher-order network structure. Mk , for k > 1 , acts to constrain a walkers 
movement over the physical nodes within its state network connectivity. Hence, if we look 
for regions across Mk that conserve flow from a dynamical perspective, projecting the 
resultant communities back onto the physical nodes reveals overlapping communities con-
strained by the transitivity of the state network.

One such example for such a dynamical approach to community detection is Markov 
stability (MS) (Delvenne et al. 2010), which is the focus for this study. MS exploits dif-
fusion dynamics over an underlying graph structure to reveal a multi-scale community 
organisation and has been show to be effective in a variety of applications in which mul-
tiple scales are expected to exist such as protein sub-structures (Peach et al. 2019a) or 
social behaviours (Peach et al. 2019b). Given a partition P of nodes into C non-overlap-
ping communities with a N × C community indicator matrix HP the time-dependent 
clustered autocovariance matrix in MS is given by,

where the elements of the matrix [R(t,HP)] correspond to the probability of a random 
walker starting at node i and ending up in community c at Markov time t minus the 
probability of that happening by chance.

For an optimal partition P , in which flow is trapped more than one would expect by 
random over t, we would expect a comparatively large Markov stability With the Markov 
stability as

We aim to maximise r(t,HP) over the space of possible partitions P at a given Markov 
time t,

(8)R(t,HP) = HT
P

[
� et(M−I) − ππT

]
HP ,

(9)r(t,HP) = trace R(t,HP).

(10)Pmax(t) = argmax
P

r(t,HP).
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Whilst the optimisation of Eq.  10 is NP-hard, in practice, heuristics algorithms have 
been developed which are computationally efficient. Here we use the Louvain algorithm 
which has has been demonstrated to offer robust solutions at reasonable cost (Blondel 
et al. 2008).

Identifying partitions of interest over Markov‑time

Given a set of partitions that are optimal at each Markov time we must still define which 
scales are representative or robust in respect to our system. In order to identify parti-
tions of interest over time we look towards two robustness measures. Firstly, we look at 
consistency of partitions for single points in time, and secondly, we look for stable parti-
tions across time.

To assess this consistency between P at Markov time t we can compute an informa-
tion-theoretical distance between two alternate partitions P and P ′ is employed:

where �(P) is the Shannon entropy, PC being the relative frequency of finding a node in 
community C in partition P.

Then to quantify consistency at Markov time t we compute the average variation of 
information of all solutions:

For the case that optimisations return near identical partitions 〈V (t)〉 will be small, 
which indicates robustness of the partition at t. Hence over t we search for partitions 
with low 〈V (t)〉.

Relevant partitions should also be remain consist across regions of Markov time. Such 
persistence is indicated both by a plateau in the number of communities over t and a low 
value or plateau of the cross-time variation of information:

Multi‑scale centralities

For identification of central nodes we use Multiscale Centrality, that enables us to iden-
tify nodes that are central at different scales within the network (Arnaudon et al. 2020). 
Multiscale centrality leverages the presence of ‘overshooting’ peaks that appear in dif-
fusion processes on the graphs. For a more detailed description of overshooting peaks, 
see (Peach et al. 2020). Central nodes are defined as a node, i that breaks the triangle 
inequality for a pair of nodes j, k,

where tij,τ is the Markov time at which an overshooting peak appears at node j given the 
diffusive process of an initial delta function at node i which is allowed to diffuse up to 
Markov time τ.

(11)VI(Pi(t),Pj(t)) =
2�(P ,P ′)−�(P)−�(P ′)

log(n)
,

(12)�V (t)� =
1

l − 1

∑

i �=j

VI(Pi(t),Pj(t)).

(13)VI(t, t ′) = VI(P̂(t), P̂(t ′)).

�ij,τ := t∗ij,τ + t∗ik ,τ − t∗jk ,τ ≤ 0,
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The diffusion process underlying Multiscale centrality acts as a scaling factor that 
allows us to identify nodes that are central at different scales of the network structure. 
For example, some nodes may be locally central (with high degree) or might be globally 
central (high closeness). Thus we produce a ranking of nodes as a function of Markov 
time τ of the diffusion process. For further details on this methodology, see Arnaudon 
et al. (2020).

For each state node we can compute the Multiscale centrality. In an identical man-
ner to Higher-order PageRank (see “Higher-order PageRank” section), we can then com-
pute a physical node centrality by summing the multiscale centrality over the constituent 
state nodes.
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