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Introduction
The accelerated industrialization and urbanization of many economically developing 
countries has led to major air pollution with severe impacts both for human health and 
the environment (Guan et al. 2014; Huang et al. 2014; Wang et al. 2017). This acute pol-
lution has intensified the frequency of severe haze events which create extremely poor 
visibility conditions and sharp increase in respiratory diseases (Helble et al. 2000). Such 
events are accompanied by elevated air quality indices (AQI) and particularly PM2.5 
levels, which express the density of particulate matter smaller than 2.5 micrometers in 
the air. Particle matter is either directly emitted into the atmosphere (primary PM) or 
formed through gas-to-particle conversion (secondary PM), while both types undergo 
chemical and physical transformations  (Seinfeld et  al. 1998; Zhang and Cao 2015). 
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Transport of pollutants occurs for various distances depending on meteorological con-
ditions, like wind direction and speed, but also on lifespan, deposition velocities, and 
altitude of the pollutants  (Wang et al. 2017). The significant relations between climate 
measurements such as temperature and precipitation levels as well as pollution across 
different areas have been extensively shown in literature proving their non-localized 
behavior  (Hatzopoulou et al. 2017; Gao et al. 2011; HU and YANG 2017; Zhang et al. 
2018; Du et al. 2020; Meng et al. 2017). The quantification of those interactions has been 
evaluated through different measures of similarity, such as cross-correlation (Yamasaki 
et al. 2008; Ludescher et al. 2013; Fan et al. 2017; Zhang et al. 2018; Du et al. 2020; Zhang 
et al. 2020; Steinhaeuser et al. 2010; Liu et al. 2018), event synchronization (Boers et al. 
2013, 2019) and causal inference (Runge et al. 2015, 2019), and as directed spatial net-
work with correlation magnitudes expressed as network weights.

The complexity in particle matter’s formation, transport and deposition mechanisms 
makes the design of appropriate pollution regulation policies challenging (Huang et al. 
2020). This study aims to gain further understanding of the pathways and timescales of 
the pollutant dispersal and deposition processes. To that end, we review a recently pro-
posed framework of time-evolving directed and weighted air pollution correlation net-
works in China. We analyze hourly PM2.5 concentration time series, revisiting results 
in China and contrasting them with California, with available data ranging from Janu-
ary 2014 to May 2020. Incorporating multi-year data and evaluating results from both a 
small low-magnitude (California) and a large high-magnitude area (China) allows us to 
comprehensively evaluate and quantify the spatio-temporal dynamics of PM2.5 diffusion 
patterns.

Severe haze events have been consistently occurring in China in large spatio-temporal 
coverage with PM2.5 levels exceeding 100 µg m−3 and sometimes reaching even over 800 
µg m−3 (An et al. 2019). Particularly during wintertime, air pollution aggravates due to 
excessive energy usage, wind movements (e.g. East Asian winter monsoon), and indus-
trial emissions  (Wang et  al. 2017), especially in the megacity clusters of the Yangtze 
River Delta, and the Beijing-Tianjin-Hebei (BTH) regions (Tang et al. 2016; Hagler et al. 
2006; Ming et al. 2017; Zhu et al. 2016). As for California, despite the district’s cleaner air 
compared to China’s heavily polluted atmosphere, relationships between mortality from 
respiratory causes and long-term exposure to PM2.5 have been proven through research 
studies (Woodruff et al. 2006; Ostro et al. 2007, 2006, 2007). The ambient particle chem-
istry, size distributions, and temporal patterns of exposure differ from those in other 
parts of the United States and Canada (Narsto et al. 2004). California’s climate and loca-
tion lead to intense seasonality in temperature and relative humidity particularly in the 
inland areas  (Hasheminassab et  al. 2014). Variability in meteorological conditions has 
been proven to influence with uncertain sensitivity the formation, accumulation, diffu-
sion and dilution of particle matter (Wang and Ogawa 2015; Aarnio et al. 2002; Tai et al. 
2010; Yang et al. 2008). Simultaneously, extreme wildfire events are common during the 
summer periods in California, affecting PM2.5 formation at different extents depending 
on the distance from wildfires, the altitude of emissions, wind direction, and vertical and 
horizontal mixing rates (Lee et al. 2016).

The diversity in size, climate and PM2.5 magnitude between the two study domains 
(China and California) allow us to comprehensively evaluate the dynamics of long-range 
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transport and local accumulation of PM2.5 . In this study, geographical locations com-
prise monitoring stations in California and cities in China. These are represented as 
network nodes and weighted links are assigned according to correlation values between 
pairs of nodes. On a temporal scale, we study the consistency of diffusion patterns across 
years as well as during the lockdown due to COVID-19 in China, where the levels of 
anthropogenic emissions decreased. To retrieve comprehensive information from a top-
ological perspective, network partition algorithms are used to determine the underlying 
organization and randomness of the interconnected nodes  (Albert and Barabási 2002; 
Newman et al. 2011). In the absence of ground truth clusters, aka network communities, 
modularity maximization has been extensively applied to detect communities (Khanfor 
et al. 2019; Fazlali et al. 2017; Alzahrani and Horadam 2016; Lancichinetti et al. 2008; 
Olmos et al. 2020; Kim et al. 2013; Surian et al. 2016) and different approaches for inde-
pendent matching of communities in dynamic networks have been developed (Hopcroft 
et  al. 2004; Asur et  al. 2009; Van Nguyen et  al. 2012; Tantipathananandh and Berger-
Wolf 2011; Greene et al. 2010; Sun et al. 2015). We apply the method in Ref. Greene et al. 
(2010) as a means to detect consistently correlated regions from network partitions over 
yearly data, analyzed at hourly resolution.

In the following sections, we present our data, illustrate our methodology of formulat-
ing air pollution networks and compare results in China and California, justifying the 
link formation method. We then proceed to explore the method’s sensitivity to the lock-
down imposed in China to contain the spread of COVID-19. We conclude with dynamic 
community detection and tracking to identify regions where pollution transport is 
persistent.

Data and theoretical background
Data

We analyze concentration data from outdoor monitoring stations across China and 
California from Jan. 2014 to May 2020. The California data-set is provided by the U.S. 
Environmental Protection Agency from 85 regulatory monitoring sites. Because of high 
instrumentation and maintenance costs, regulatory monitoring is only available at lim-
ited locations to examine the compliance to air quality standards (Bi et al. 2020). As for 
China, the Ministry of Environmental Protection has been releasing the real-time hourly 
air pollution data since 2013 from monitoring stations across 324 cities. We compare 
the spatio-temporal dynamics of PM2.5 by incorporating multi-year data from both low-
magnitude (California) and high-magnitude (China) PM2.5 concentration areas.

Figure 1 displays the probability density functions of PM2.5 concentrations across sea-
sons and spatial distribution of average PM2.5 concentrations for both regions. In China, 
seasonal PM2.5 concentrations are significantly higher in the winter and lower in the 
summer. This pattern is attributed to elevated anthropogenic emissions during winter 
from fossil fuel combustion and biomass burning for domestic heating as well as cold 
stagnant weather and temperature inversion favoring pollution dispersion  (Zhang and 
Cao 2015). In contrast, California’s PM2.5 distributions do not show an equally strong 
seasonal dependence. However, higher exceedances of 30 µg/m3 still happen during the 
winter months, primarily due to meteorological reasons and household wood burning. 
A key contributor to PM2.5 accumulation are the wildfires, occurring with high annual 
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frequency and strongly disrupting the atmosphere of the state. The number of wildfires 
is lower in the winter months than in the annual average (Bay Area Air Quality 2012), 
explaining the PM2.5 peaks during summer months in spite of human generated emis-
sions being down. Overall, in both regions, the seasonal distributions are consistent 
across all the evaluated years (2014–2020).

As for the spatial distribution in China, Fig.  1b reveals that cities in the north tend 
to have higher PM2.5 concentrations than the cities located in the south, as well as 
coastal regions’ concentrations are generally lower than in the inland regions. The high-
est annual average concentration is observed in the Beijing-Tianjin-Hebei (BTH) region 
which comprises the biggest urbanized megalopolis region in China, including the high-
est density of coal consumption and heavy industries (Zhang and Cao 2015). To add to 
the domestic, industrial and agricultural sources, PM2.5 pollution is also exacerbated by 
regional transported contributions from nearby provinces as well as secondary parti-
cle formulation. The stagnant climate of the area (weak winds and low boundary layer 
height) makes it even more susceptible to particle accumulation  (Huang et  al. 2018). 
Considering that the size of California is only a fraction of China and that PM2.5 is a 
regional pollutant, the average concentrations within the state are relatively uniform. 
The majority of sites have an average concentration around 10 µg/m3. Similar to China, 
inland monitoring stations present higher averages, especially those round Interstate 
Highway 5 (I-5) in the segment connecting the Bay Area with Los Angeles.

Cross‑correlation

Following an analysis framework proposed and applied for the study of environmental 
complex systems  (Yamasaki et  al. 2008; Ludescher et  al. 2013; Fan et  al. 2017; Zhang 
et al. 2018), we evaluate the dynamics and quantify the spreading and diffusion of PM2.5 
concentration patterns via correlation networks, where sites are considered as nodes 
and link weights express the similarity between the time series of sites. The Pearson cor-
relation coefficient is used as a measure of similarity. The cross-correlation function is 
applied to the fluctuation from average series of length T according to:

where PM2.5 concentration on site i is denoted by series Xi(t) , fXi(t) = Xi(t)− �Xi� is 
the fluctuation series with respect to average �Xi� = 1

T

∑T
t=1 Xi(t) , and δ ∈ [−δmax, δmax] 

represents the timelag. The corresponding time lag is identified as the one returning the 

(1)Ĉ
(δ)
i,j = �fXi(t) · fXj(t + δ)�

√

�[fXi(t)]2� ·
√

�[fXj(t + δ)]2�
,

a dcb

Fig. 1  Data Description. a, c Probability density functions of PM2.5 concentrations across seasons. b, d Spatial 
distribution of average PM2.5 concentrations from Jan. 2014 to May 2020 respectively for China and California
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maximum of the absolute value of the cross-correlation function δ∗i,j = argmaxδ(|Ĉ(δ)
i,j |) 

and the correlation between sites i and j as Ci,j = Ĉ
(δ∗)
i,j  . For δ∗ �= 0 , the correlation is 

defined as directional, with direction from i to j for δ∗ > 0 indicating that events in series 
i precede those of series j.

Network definition

As in our predecessor studies, the weighted adjacency matrix of the correlation network 
of week t, WC(t) is defined through the maximal absolute value of cross-correlation 
function (Method I). Links are not assigned to pairs of stations with correlation values 
below a noise-excluding threshold, �C . The critical threshold is identified by shuffling all 
the data within the period of evaluation (week t), and computed as the average of abso-
lute values of correlations from the permuted data. That way, correlations appearing less 
in the randomized version do not generate links.

The strength of the correlations can also be quantified by standardizing the correla-
tions Ci,j accounting for the significance among all generated Ĉ(δ)

i,j  for all the different 
time lags δ ∈ [−δmax, δmax] by computing the corresponding Z-score (Method II):

with µ
Ĉ
(δ)
i,j

 and σ
Ĉ
(δ)
i,j

 denoting respectively the mean and standard deviation of Ĉ(δ)
i,j  . As 

before, the derived weighted adjacency matrix WZ(t) is defined through a critical thresh-
old �Z which excludes random noise from the Z-scores.

To quantify the influence of a node to its surroundings, we use the weighted direc-
tional degree, as introduced in Zhang et al. (2018). For the network with weighted adja-
cency matrix WC

i,j  , the directional degree is defined as

where �ei,j the unit vector connecting nodes i and j defined as
�ei,j = 1√

�x2+�y2
(�x,�y) , with �x and �y the latitude and longitude differences 

between sites i and j respectively.

Dynamic community detection

Community detection algorithms aim to decompose a network into sets of sub-units 
comprising of highly inter-connected nodes  (Fortunato and Castellano 2007). A com-
mon measure of the quality of the resulted partitions is modularity, which quantifies the 
difference between the network’s real wiring diagram and a randomly wired diagram 
as derived under the degree preserving null model. We identify partitions in our net-
works by applying the Louvain algorithm for faster unfolding of communities, a multi-
level technique in which nodes are repeatedly moved to the community of a neighbor if 
modularity can be improved (Blondel et al. 2008). The results of the Louvain algorithm 
differ from run to run. In our case, across all of our networks, meaning for every week 

(2)Zi,j =
Ci,j − µ

Ĉ
(δ)
i,j

σ
Ĉ
(δ)
i,j

,

(3)�kCi =
N
∑

j=1,δ∗i,j>0

|WC
ij |�ei,j +

N
∑

j=1,δ∗i,j<0

|WC
ij |(−�ei,j)
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t we are evaluating, the communities generated are very stable. Variations in number of 
communities are minor and only express a merge or split of communities with not sig-
nificant jumps of nodes between communities. For each network, the algorithm is being 
run 100 times. For the minority of nodes that may switch communities across runs, we 
assign them to the community they appear in the most.

The dynamic nature of our air quality (AQ) networks leads to evolving communities 
with time. To track the changes in structure, we treat our networks as a time-series of 
static networks, called timeframes with weekly resolution, according to the method 
proposed by Greene et al. (2010). We aim to identify the set of dynamic communities 
D = {D1, . . . ,Dk} that are present across one or more time steps. Each dynamic com-
munity Di can be represented by a timeline of its constituent step communities, ordered 
by time, with at most one step community for each step t. The most recent observation 
in a timeline is referred to as the front Fi of Di . Several studies have focused on detecting 
the key events that occur in the life cycle of a community (Greene et al. 2010; Asur et al. 
2009; Bródka et al. 2013; Dakiche et al. 2019). Those include birth, death, growth, con-
traction, merging and splitting.

To map the communities detected by the Louvain algorithm at each timeframe to the 
existing set of dynamic communities D we deploy the heuristic threshold-based method 
introduced by Greene et al. Greene et al. (2010). This method allows for many-to-many 
mappings between communities across different time steps. To achieve the matching 
between the community grouping of week t with the fronts F1, . . . , Fk , the Jaccard coeffi-
cient for binary sets (Jaccard 1912) is utilized as a measure of similarity. For community 
a of timestep t, the coefficient is defined as J(Cta,Fi) = |Cta∩Fi|

|Cta∪Fi| . If the Jaccard coefficient 
exceeds a matching threshold θ ∈ [0, 1] , Cta is added to the timeline of Di . If no frontier is 
matched, a new dynamic community with Cta as first member is created. Between each 
timestep, after all communities have either been matched to existing dynamic communi-
ties or formulated new ones, the fronts of each dynamic community are updated. In our 
experiments, a range of threshold parameters θ ∈ [0.1, 0.5] is investigated. The index is 
extremely sensitive to small sample sizes and may give erroneous results, especially on 
data sets with missing observations. Our China dataset consists of 324 different cities 
(nodes) and we also have instances of missing data from random nodes at certain weeks. 
Greene et al. Greene et al. (2010) concluded that low values of θ lead to the most consist-
ent accuracy scores when validating the technique through comparison of the output to 
the ground truth communities of synthetic networks. Higher values naturally dictate a 
more conservative matching behaviour, leading to more short-lived communities with 
lower interpretability interest. Considering the absence of ground truth in our experi-
ment and the volatile spatial behaviour of our communities, a moderately low value of 
θ = 0.2 is reasonably balancing the trade-off between node assignment accuracy and the 
identification of the long-lived communities.

Method illustration

Correlation patterns of AQI have been studied in literature, primarily across sites in 
China, with time series being grouped and evaluated in seasons (winter, spring, summer, 
and fall) to account for the seasonal dependence of PM2.5 concentration  (Zhang et  al. 
2018; Du et al. 2020; Zhang et al. 2020; Liu et al. 2018). Instead of evaluating correlations 
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over an entire season, we note that a weekly time scale improves interpretability. A sea-
son includes multiple haze events occurring on different locations that develop and 
spread differently, making the causes behind the patterns observed very hard to distin-
guish. Additionally, transitions from clean to polluted air periods as well as wind circula-
tion in the North China Plain typically exhibit a periodic cycle of 4 to 7 days (An et al. 
2019; Guo et al. 2014). Thus to improve the understanding of the underlying dynamical 
networks, applying the analysis on a weekly basis, makes haze events and extreme phe-
nomena more easily traceable. As for the range of evaluated time lags [−δmax, δmax] , we 
chose to use δmax = 120 h, as PM2.5 life cycle ranges from 3 to 5 days.

In Fig. 2 we showcase the proposed framework for an example network of five cities in 
northeast China during the last week of 2017. The selection of this particular week is jus-
tified by a haze event occurring at the North China Plain and spreading southeast within 
a couple of days  (Huang et  al. 2020). In our example, Shijiazhuang, Hefei, Hangzhou, 
Shaoxing and Yiwu successively experienced at least a day-long of haze pollution. On 
December 29, Shijiazhuang reached PM2.5 concentration levels of over 450 µgm-3. Over 
the next two days, PM2.5 peaked at the rest of the cities, all exceeding concentrations 
of 230 µgm-3. The increases were abrupt, causing sharp peaks in the time-series raising 
the concentrations to four times the average up until that moment during the week. In 
our example, the majority of generated correlations are positive. Figure  2a showcases 
the highest positive correlation (Hangzhou-Shaoxing) and Z-score (Hefei-Yiwu) pairs. 
The contribution of individual pairs of points (timestamps) to the generated correlations 
among cities are illustrated, demonstrating the significance of haze events and their 
transport across space and time. We also display two more pairs, one of positive (Shiji-
azhuang-Yiwu) and one of negative correlation (Shijiazhuang-Hangzhou), that generated 
links only under the Method I.
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Fig. 2  Illustration of network definition methods during haze event in eastern China during December of 
2017. a Time series of PM2.5 concentrations colored by contribution to the generated correlation among 
pairs of cities. We showcase the highest positive correlation (Hangzhou–Shaoxing) and Z-score (Hefei–Yiwu) 
pairs and two pairs, one positive (Shijiazhuang–Yiwu) and one negative (Shijiazhuang–Hangzhou), that 
generated links only under Method I. b, d Network visualizations under Methods I and II respectively with 
nodes colored by out degree, links by weights and width representing the time lag. Method II returns less 
densely connected networks. In Shijiazhuang, PM accumulates gradually and is more auto-correlated. The 
generated correlations by Method I are not considered significant in Method II returning Z-scores lower 
than the critical threshold. c, e Distribution of directional degrees in the positive correlations networks under 
Methods I and II respectively illustrating the PM transport spreading southeast
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Networks are formulated under both methods as defined in the Data and Theoretical 
Background section. For the method of the maximal value of the cross-correlation func-
tion, all links receive absolute values above the critical correlation threshold ( �C = 0.21 ) 
and therefore are all included in the networks. When accounting for the significance 
of correlation among all evaluated time lags (Method II), Shijiazhuang is not assigned 
any links. In Shijiazhuang, PM accumulates gradually (indication of persistence) and is 
more auto-correlated. The generated correlations by Method I are not considered sig-
nificant in Method II, returning Z-scores lower than the critical threshold ( �Z = 3.19 ). 
In Fig. 2b, d the resulting networks are visualized where nodes are colored by out degree, 
links by weights and width representing the time lag. Method II returns less densely con-
nected networks, as not all links from Method I are considered significant. Figure 2c, 
e display the spatial distribution of directional degrees in the positive correlations net-
works. Accounting for the sequence of events as well as for the magnitude of weights, 
the directional degrees indicate from where PM2.5 patterns originate in this example and 
how they spread southeast. Method II does not detect transport between Shijiazhuang 
and the rest of the cities due to the low significance of the derived correlation.

Results
China

Intercity correlations attain peaks at different time lags. The availability of multi-year 
data allows us to study the patterns of those correlations and gain better insights on the 
transport of PM2.5 . As shown in Fig. 3a the PDF of correlations can be separated into 
distinct positive and negative parts.

When defining the weekly networks, we exclude the correlation pairs below the criti-
cal threshold computed for each particular week. The average correlation among pairs of 
cities from the perturbed data was calculated at �̄C = 0.27 . For the positive networks, 
the decay of the average absolute weights is, consistently across all seasons, following 
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Fig. 3  Comparison of Methods in China: the Z-score network definition method formulates less densely 
connected networks, detecting links from high correlation values achievable only within a short and 
significant interval of time lags. a, e Weights display similar bi-modal distributions. b, f Averages of positive 
and negative weights at distance r: cities in high proximity are more highly correlated while Z-scores are 
distance-independent. c, g Probability distribution function of time lag δ * in positive and negative networks 
following a characteristic 12 h periodicity. d, h Spatial distribution of positive directional weighted degree 
during the last week of 2017: Method II reveals nodes with sharp haze events and their direction of transport
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a power law, Ŵ (r)+ = K · ra , with exponent a = −0.166 and constant K = 0.718 . The 
distribution of distances r between positively correlated cities (not shown) is identical 
with the distribution of the actual distances between cities suggesting that positive cor-
relations appear at random between pairs of cities. Yet, when looking at the magnitude 
of the correlation, cities closer to each other have higher magnitude of positive weights. 
In contrast, the average absolute weights in the negative networks have a nearly constant 
behavior with distance. The fact that negative correlations are distance-independent 
suggests that their generation is attributed to phenomena like atmospheric circulation 
which can keep a haze event localized in one node and ventilate another. Whang and 
Zhang  Wang and Zhang (2020) studied the effects of atmospheric circulation on the 
interannual variation in wintertime PM2.5 concentrations over the BTH region in the 
period of 2013–2018. They identified synoptic circulation types to measure the ability 
of atmospheric circulation to accumulate, remove and transport air pollutants. The most 
frequently occurring type is followed by cold, clean and dry air mass transported by sur-
face northwesterly winds, unstable boundary layer and strong horizontal divergence, 
favoring the improvement in ambient air quality. In contrast, other types characterized 
by co-occurrence of stable boundary layer, frequent air stagnation, positive water vapor 
advection and deep near-surface horizontal convergence exacerbate air pollution. The 
connection of negative correlations in climate and environmental networks with atmos-
pheric waves and oscillations has been highlighted in several studies (Wang et al. 2013; 
Wallace and Gutzler 1981; Hoskins and Karoly 1981; Aguilera et al. 2020).

Figure  3c demonstrates the characteristic 12 h periodicity that time lags δ∗ display. 
Interestingly, positive network time lags peak at 0 h and every 12 h, while the negative 
network time lags distribution is lagging 6 h. This trend is related to PM2.5 daily cycle. 
The lowest and highest values are reached in the afternoon and night hours respec-
tively according to the daily variation of the boundary layer depth and anthropogenic 
emissions, with two moderate peaks, one in the morning between 7 am and 10 am, and 
another in the evening between 7 pm and 10 pm (Zhang and Cao 2015).

Considering how circulation patterns have been shown to affect local air pollution 
concentration differently, leading to the generation of negative correlations, we deem 
the positive correlations more suitable to interpret the transport of PM2.5 haze events. 
The directional weighted degrees of the positive correlations network �kC+ for the sam-
ple week used for method illustration are shown in Fig. 3d for the entire China. During 
the week of Dec. 25th–Dec. 31st, we observe strong weighted directional degrees mostly 
from east towards the west, showcasing the transport of particles from northwest cit-
ies to east and northeast China. The dispersion of PM2.5 is a complex phenomenon of 
multiple species and of different scales highly influenced by meteorological conditions. 
In China, and especially in the northern part, the climate is regulated by large scale syn-
optic weather patterns as well as localized circulations. During winter, zonal westerly 
circulation is common due to occurrence of the East Asian winter monsoon (An et al. 
2019) leading to the accumulation and removal in northeastern China.

The Z-score network definition (Method II) formulates less densely connected net-
works. The Z-scores, which are computed through standardization of the correlation 
function, share the same shape PDF PZ as the correlations’ PDF PC (Fig. 3e), but when 
calculating the corresponding noise threshold and formulating the weighted adjacency 
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matrix, the derived network is much less connected. The average Z-score among pairs 
of cities from the perturbed data was calculated at �̄Z = 3.25 . This method filters out 
from the networks the links whose correlation might be high but not significant. Pairs 
of cities which would receive a high absolute correlation value even if the optimal δ∗ had 
not been selected are not assigned a link. The average absolute weights in the positive 
Z-score networks are constant at distance r (Fig. 3f ). The more geographically close-by 
cities do not translate to higher weights in this alternative network definition. Time lags 
maintain the same periodicity characteristics as in the maximal value of cross-correla-
tion function method.

Based in our analysis with hourly data at a weekly scale and focusing in haze events, we 
conclude the Z-score approach overcomes the artificial correlations due to persistence 
and auto-correlations the time-series. These phenomena are frequent in environmen-
tal and climate related variables (Guez et al. 2014; Koscielny-Bunde et al. 1998). For the 
analysis of PM2.5 , aiming to understand and quantify its spreading, Method II through 
the standardization of weights depicts a less clear image as how patterns spread. This is 
seen when comparing Fig. 3d, h. However, it reveals and pinpoints cities and directions 
where PM2.5 pollution transports due to significant events. Such instances are sharp 
haze events creating peaks in the records that match and return a high correlation value 
only within a limited interval of δ ∈ [−δmax, δmax] resulting to high Z-scores. In contrast, 
Method I, accounting for the maximal value of the correlation function, fails to distin-
guish instances of highly correlated time series under long-range time lags. Therefore, 
the method is more susceptible to detecting links between nodes due to moderately high 
similarities of their time series attributed to the low-frequency of PM2.5 daily variation.

California

In California, PM2.5 concentration is more uniform and of lower magnitude due to the 
region’s smaller size and clearer atmosphere. In general, PM2.5 levels rise and fall within 
72 h for all locations throughout the state, with California’s haze events being primar-
ily caused by wildfires which produce time-series with distinctive peaks. For that, the 
Z-score method is considered more insightful. Overall, we observe a consistency of pat-
terns across both regions. The Z-score distribution (Fig. 4a) displays the same shape as 
in China. On average the proportion of negative Z-scores in California is 21.31% while in 
China is 33.49%. The average absolute weights in the Z-score networks remain constant 
at distance r (Fig. 4b) and the time lag periodicity is sharing the same behavior although 
not as evident due to the smaller number of available stations in California (Fig. 4c).

We evaluate a wildfire event during December 2017 triggered by the dry and long-last-
ing offshore Santa Ana winds. Those winds blow out of Southern California’s dry vegeta-
tion grown at eastern deserts and mountains (Cao and Fovell 2016). The fires broke out 
on the week of Dec. 4th, causing traffic disruptions, school closures, hazardous air con-
ditions, and massive power outages. During the same period, the powerful Santa Ana 
wind event of the season occurred with winds peaking in the mountains surrounding 
Los Angeles.

Before and going into the Santa Ana phase (Dec. 1st–Dec. 3rd) wind flows were strong 
northern over the California coast while Southern California’s were weak and of vary-
ing directions (Shi et al. 2019). Over the next week (Dec. 4th–Dec. 10th), eastern winds 
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originating from the mountains reached over lower elevation lands (Fig. 4d). Instances 
of offshore winds exceeding 30 m/s were recorded in the National Climatic Data Center 
(NCDC). At the same time, wildfires broke out in Thomas (Ventura/Santa Barbara), 
Creek and Rye (Los Angeles) and Lilac (San Diego). The Thomas fire, affecting mainly 
the Ventura (VEN) and Santa Barbara (SB) counties (Fig. 4d), grew to 281,893 acres and 
set the record for California’s largest modern wildfire at the time, leading to significant 
air pollutant transport. The multiple nuclei of severe haze pollution due to fire induced 
emissions accompanied by the drastically changing wind flows lead to major turbulence 
in the weighted directed degrees during that week (Fig. 4e). In the Ventura county, PM2.5 
was diffused along the coast, with the smoke flume from the central west of the county 
flowing westward along with the wind, while smoke from the Los Angeles side was 
pushed further southeast.

Eventually, during the week of Dec. 11th wind flows returned to northern. Transport 
within the Ventura county weakened while PM2.5 from inland Los Angeles was diffusing 
southeast (Fig. 4f ). Overall in the state of California, the strong and highly varying winds 
both in direction and magnitude help ventilate and spread PM2.5 , and therefore generat-
ing large weights in the Z networks. The weighted directional degrees allow us to evalu-
ate spatial influence of those weights and identify the patterns that are significant for the 
transport of PM2.5 between regions under complex meteorological and environmental 
conditions.
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Fig. 4  Framework implementation in California, suggesting universality of PM transport patterns. a Bi-modal 
distribution of Z-scores, b distance independent Z-scores, c 12 h periodicity of time-lags. Wind and PM2.5 
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Lockdown effect

The availability of data until May 2020 allows us to evaluate the sensitivity of our frame-
work to the lockdown imposed due to the outbreak of COVID-19. We are comparing 
the positive distributions of the Z networks during the lockdown period (Jan 23rd–Mar 
28th) of 2020 versus networks from the same dates in 2014 to 2019. This comparison 
helps us draw conclusions under similar meteorological conditions (same dates across 
different years) but with significantly reduced emissions from human mobility because 
the lockdown. Figure  5a depicts the variation of daily PM2.5 concentration with and 
without the implementation of quarantine measures indicating the impact of human 
mobility to air quality. During that downward trend, the PM2.5 distribution followed a 
log-normal with parameters µ = 3.39 and σ = 0.774 from a log-normal with µ = 3.75 
and σ = 0.812 during the 2014–2019 years (Fig. 5b). This corresponds to a mean con-
centration of 39 µg/m3 with standard deviation of 371 µg/m3 , versus 59 µg/m3 and stand-
ard deviation of 873 µg/m3 in the years without lockdown. Formulating the Z-networks 
during the with and without lockdown periods we observe that the reduction in human 
mobility led to a drop in the magnitude of the Z weights. This is attributed to the ear-
lier dissipation of haze events due to substantial pollution mitigation. As a result, the 
diffusion of PM2.5 was also mitigated, with significant links of large weights being less 
frequently generated.

Community detection in dynamic networks

To determine regions with systematic pollution transport behavior, the Louvain algo-
rithm of network community detection was applied to identify partitions in the dynamic 
AQ networks formulated under the Z-score method. We apply the method in China 
where more monitoring stations are available and pollution haze events are attributed 
to less unpredictable and variable events such as the California wildfires. This study 
emphasizes on long-lived and persistent dynamic communities that appear for sev-
eral consecutive weeks and persist across our years of evaluation. With θ = 0.2 as the 
threshold for the Jaccard coefficient, we identify matching communities. Four dynamic 
communites (DC) prevailed as the most persistent and are displayed in Fig. 6a, with the 
intensity of the nodes color-coded according to the frequency of occurrence in their 
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matched communities. The DC around the areas of Shanghai and south Jiangsu (red) has 
its core cities around the Yangtze River including Changzhou, Nanjing and Wuxi. The 
DC in the province of Shandong (green) contains in high matching frequency Weifang, 
Zibo and Zaozhuang. The northeastern DC (yellow) spreads along multiple provinces 
with among others Heibei,Beijing, Tianjin and Liaoning, including as core cities Fushun 
and Shenyang. As for the southeastern community (blue), the most dominant cities like 
Zhuzhou, Loudi and Chenzhou are more in-lands with the community similarly spread-
ing over several provinces including Hunan, Jiangxi and Guangdong.

The southeastern community (blue) appears to be the least persistent of the four 
according to Fig. 6b showcasing the evolution of size for each community. We relate that 
with the low mean PM2.5 concentrations of those regions as shown in Fig. 1. Figure 6c 
puts on display all of the key events in the Data and Theoretical Background section 
for the four representative communities. Communities are color-coded in alignment 
with Fig. 6a and in the case of merged communities the color used corresponds to the 
community with the highest node participation rate. All four dynamic communities are 
present on week 4 of 2017 with yellow and green merged together. Next week, the two 
communities split and only the former remains while the latter disappears. On week 6, 
the green community reappears exhibiting intermittent behaviour, as it remained unob-
served for one timestep. In week 7, green and red fuse together (merging), a state that 
remains stable during week 8 as well.
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Fig. 6  Dynamic Community Detection in China. a Spatial mapping of dynamic communities: The four 
dynamic communities align geographically with megacities and large industrial complexes. b Frequency 
of occurrence and size evolution of dynamic communities: The southeastern community (blue) is the least 
persistent due to the lower PM concentrations in that region. c Methodology illustration during five weeks of 
2017, displaying the key events of community evolution tracking. d Dynamic communities’ core nodes may 
sufficiently reproduce the key spatiotemporal patterns of the analysis
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We identify the core nodes of the four dynamic communities as the nodes appearing 
in more than half of the timestamps (weeks) the DC appears. That translates to 21, 23, 
17 and 18 nodes for the red, green, blue and yellow dynamic communities respectively. 
As shown in Fig. 6d, evaluating the networks only using the core nodes is sufficient to 
reproduce the key temporal and spatial patterns of our analysis. This allows us to reduce 
the complexity of our networks by sampling 79 out of the 324 nodes of the original data-
set. It also offers potentials as a pre-processing method for AQ forecasting as well as 
informing the re-positioning of stations to monitor areas with no records. As for the 
intra-community pollution transport patterns, yellow and blue DCs have longer time-
lags due to the larger spatial span of their core nodes, as opposed to the more spatially 
clustered red and green DCs. The absence of longer time-lags within communities is due 
to the absence of inter-community links.

Conclusions
Our work has shown that the development of directed and weighted air pollution cor-
relation networks exploiting hourly PM2.5 concentration time series with weekly length 
enables to track haze events and evaluate their diffusion patterns. Shortening the time 
resolution of the framework provides us with a more interpretable way to understand 
the dynamics of PM2.5 transport. We managed to interpret different type of haze events 
in both our areas of study, reveal periodicities of pollution transport and relate events to 
meteorology. In this study, we tested the framework’s sensitivity in China and Califor-
nia. Despite the differences in size, climate and pollution severity, both study regions, 
share the same probability distribution functions of correlations, with distinct positive 
and negative parts, allowing us to conclude that the observed patterns are universal. 
Positive correlations relate to the transport of haze events. Instead, the negatives can 
be attributed to phenomena like atmospheric circulation and waves synchronizing low 
magnitude winds at one node allowing for the PM2.5 to accumulate and remain localized, 
as strong winds ventilate the other node. Additionally, time lags maintain the same 12 h 
periodicity, with the peaks of time lags from positive correlation networks preceding the 
peaks from negative correlation networks by 6 h. We attribute this behavior to the PM2.5 
daily cycle, having two moderate peaks, one in the morning between 7 am and 10 am 
and another in the evening between 7 pm and 10 pm, according to the daily variation of 
the boundary layer depth and anthropogenic emissions.

We deem that the Z-score method, based on standardization of the correlation func-
tion, is more insightful than the maximal value of the correlation function when it comes 
to analyzing haze events with sharp peaks. It overcomes the artificial correlations due to 
persistence and auto-correlations within the time-series records. As shown in Fig. 2, it 
distinguishes significant events generated only by high correlated series in a short, and 
therefore significant, time range. In that way, it generates less densely connected net-
works, filtering out links whose correlation might be high but not significant. However, 
in cases where PM2.5 accumulates gradually under stagnant conditions, the maximal 
value of the correlation method can provide useful interpretations. The framework is 
implemented to understand the dispersion of a severe haze event at the North China 
Plain, spreading southeast within a few days. Additionally, we evaluated a wildfire event 
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in California during December 2017, which was combined with the long-lasting off-
shore Santa Ana winds. In an effort to understand how transportation related emissions 
affect the PM2.5 transport, we observe that the reduction in human mobility due to the 
imposed lockdown for the limitation of COVID-19 led to a drop in the magnitude of the 
positive Z weights, supporting the expectation that pollution mitigation can lead to ear-
lier dissipation of haze events.

We extend the Z-score network analysis framework via the Louvain method of com-
munity detection in China. Results demonstrated distinct communities presenting con-
sistent air pollution transport patterns and high interconnections between their cities 
across all years of evaluation. In more detail, four communities prevail as the most per-
sistent grouping the provinces of Shangha–Jiangsu, Shandong, Heibei–Beijing–Tian-
jin–Liaoning, and Hunan–Jiangxi–Guangdong. The four dynamic communities align 
geographically with the BTH, Yangtze River Delta, and the Pearl River Delta which cor-
respond to the regions in China with the highest concentrated populations attracted 
from the river basins and constitute the nuclei of the highest industrial output. Inter-
estingly, identifying the core nodes of the four communities, we showed that they are 
sufficient to reproduce the key temporal and spatial patterns of the analysis. Apart from 
significantly reducing the complexity of the original networks, this offers potential as a 
pre-processing method for AQ forecasting and prediction of extreme pollution events as 
well as informing the re-positioning of stations to monitor areas with no records. Over-
all, the network partitioning allows to disentangle spatial patterns, identifying regions 
where pollution transport is more persistent.
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