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Introduction
Spreading broadly refers to the notion of an entity propagating through a networked sys-
tem, typically fueled by a dynamical process (Pastor-Satorras et al. 2015). Spreading pro-
cesses are a powerful set of tools for modelling a wide-range of real-world phenomena, 
including the dissemination of (dis)information on social media (Vosoughi et al. 2018), 
the propagation of a pathogen within a population (Colizza et al. 2006), cyber attacks 
on computer networks (Cohen et al. 2003) and delays in transportation systems (Preci-
ado et al. 2014). Node degree (Wasserman et al. 1994), betweenness centrality (Freeman 
1977) and eigenvector centrality (Bonacich 1972) are all examples of topological metrics 
used to approximate the role of individual nodes in the context of spreading processes, 
a problem that yet remains open in the extant literature (Radicchi and Castellano 2016; 
Erkol et al. 2018).

The problem is further complicated by the scarcity of reliable ground truth. Datasets 
providing an individual-level description of a spreading process within a population are 
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few (Groendyke et al. 2011; Chinazzi et al. 2020), with aggregated reports being more 
common (Stack et al. 2013). Even when working with real-world networks, researchers 
often resort to simulations for what concerns the spreading dynamics itself (Mishra et al. 
2016; Davis et al. 2020); and when information describing the network structure is also 
incomplete, the interplay between the two problems further amplifies the difficulty of 
the task (Gomez-Rodriguez et al. 2012).

A bountiful, yet underexploited, source of reliable data, describing both complete net-
work structures and the fine-grained evolution of real spreading processes on them, can 
be found within the field of project management (Ellinas et al. 2016; Vanhoucke 2013; 
Santolini et al. 2020). Projects are described by schedules, time-ordered lists of intercon-
nected activities that can be naturally modelled as directed acyclic graphs (DAGs) (Valls 
and Lino 2001).

Spreading can be used to describe performance fluctuations on project networks: 
activities completed behind or ahead of schedule can impact other activities downstream 
and initiate a spreading process (Ellinas et al. 2015; Guo et al. 2019). Project schedules 
record both planned and real starting dates for all activities, therefore providing a com-
plete record of the performance fluctuation dynamic.

Real-world projects often perform poorly in terms of both time and cost, a fact that 
holds true across different countries, companies, and industries (Evrard and Nieto-Rod-
riguez 2004; Budzier 2011). As an example, studies have shown that, in the construction 
sector, almost nine out of ten projects are subject to cost overruns, for an average over-
run cost estimated to be as high as 45% (Flyvbjerg et al. 2003; Flyvbjerg 2007).

Large failures in projects often start as localised phenomena, with the performance of 
a single activity eventually impacting the performance of the entire project. Cases have 
been documented where an initial disruption located in a single activity ended up affect-
ing almost a third of the entire project (Sosa 2014), or increasing its final cost by 20 to 
40% (Terwiesch and Loch 1999). In this respect, the networked structure of the schedule 
has been shown to play an important role (Ellinas 2019; Mihm et al. 2003).

Methodologically, most of the efforts aimed at modelling project performance through 
their associated networks have centered on cascade models (Wang et  al. 2018), for 
example by focusing on how small-scale delays can trigger project-wide cascades (Ellinas 
2019), [19], or by studying the role of indirect interactions between activities (Ellinas 
2018). With the present study, we contribute to this line of work by developing a meas-
ure that draws a direct connection between topology and performance at the activity 
level, and then validate it using real performance data.

Our contribution is twofold. First, building on prior work by Estrada (2010) and by Ye 
and colleagues (Ye et al. 2013), we introduce a novel measure called reachability-heter-
ogeneity (RH), which quantifies heterogeneity on DAGs. The RH is defined both at the 
global (how heterogeneous is a network) and local level (how much a node contributes 
to the heterogeneity).

Heterogeneity plays an important role in determining how vulnerable a network is 
with respect to spreading processes (Moreno et al. 2002). If all nodes have equal spread-
ing power, then the network is maximally robust, not presenting any weak spots to either 
targeted attacks or random failures (Xiao et al. 2018). Numerous studies quantify heter-
ogeneity by examining the distribution of some node-level measure [examples including 
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degree (Sun et al. 2016), memory (Karsai et al. 2014; Sun et al. 2015), activity potential 
(Perra et al. 2012; Liu et al. 2014), attractiveness (Pozzana et al. 2017), burstiness (Ubaldi 
et al. 2017) and modularity (Nadini et al. 2018)], and examine the relationship between 
such heterogeneity and the spreading dynamics.

The novelty of our contribution consists in leveraging a topological feature that is 
intrinsically related to the spreading process: the number of descendants and of ances-
tors. Due to the absence of cycles, the size of the ancestry trees plays an especially 
important role in DAGs; and, to the best of our knowledge, there is no study examining 
the relevance of its heterogeneity in spreading processes. Our analysis qualitatively veri-
fies that the global RH score is a good indicator of the heterogeneity of the ancestry and 
descendancy distributions.

Our second contribution consists in the introduction of a dataset describing the net-
works of activities that make up four real-world, complex projects; these data provide 
a reliable ground truth for benchmarking spreading processes. We experimentally vali-
date the accuracy of RH against performance records from the projects’ activities. Our 
results show that best-performing nodes tend to score low in RH, making our metric a 
good tool for their identification. Furthermore, we compare the local RH to seven other 
node metrics by computing the mutual information between them and the activity per-
formance; RH reports the highest (or, in one case, second- or third-highest, depending 
on the performance metric considered) mutual information values among all candidates. 
Given the context agnostic nature of RH, our results signify the role that the network 
structure has with respect to overall project performance, and indicate that the RH 
score gives computational embodiment to the notion that a network is maximally robust 
against spreading when all nodes contribute equally to it.

Data and methods
Project data

We use data from four complex engineering projects, where ‘complex’ refers to the non-
triviality of underlying dependencies (Baccarini 1996; Jacobs and Swink 2011; Ellinas 
et al. 2016). For each project, we use the schedule to generate the respective activity net-
work (Valls and Lino 2001). The project schedule consists of a list of activities and in a 
list of dependencies between them. For each activity, the schedule contains the planned 
and actual start and end date. Target dates for an activity correspond to its start and end 
date as initially planned. Actual dates, as the name suggests, correspond to the dates 
when the activity was actually initiated and completed.

The schedule naturally lends itself to be represented as a network, with activities tak-
ing the role of nodes and dependencies representing directed links among them (from 
now on, we will use the terms ‘node’ and ‘activity’ interchangeably). A link from node i 
to node j means that activity i must first be completed before activity j can start. At this 
stage, we remove from the network all isolated nodes, since they are not capable of con-
tributing to any sort of spreading in a meaningful way. Notice that activity networks are 
DAGs, as cyclic dependencies between activities are not allowed.

The four projects analysed here detail the construction of different kinds of infra-
structure: a highway (HW), a data centre (DC), a wind farm (WF) and a power net-
work (PN). The number of activities and dependencies for each project ranges from 
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less than two hundred to more than a thousand (Table 1). Activity networks do not 
necessarily consist of a single component: projects may have a modular structure, 
being composed of independent sections. The number of weakly connected compo-
nents for each network, and the size of the largest one, are also reported in Table 1. 
We verify that all four networks are acyclic, as expected.

Figure 1 shows the reverse cumulative distribution of the number of ancestors and 
descendants for each project network, divided by the network’s size. The four data-
sets present significant differences between each other, with the most peaked (HW) 
having no ancestry or descendancy larger than 0.1, while WF and PN have numer-
ous nodes with either descendancy or ancestry ranging between 0.2 and 0.5 of the 
entire network. In all cases the distribution of descendants has the longest tail of the 

Table 1  For each of the four activity networks we report the number of activities (nodes), 
dependencies (directed links) and weakly connected components, and the size of the largest weakly 
connected component

Project Activities Dependencies WCCs LWCC​

Highway (HW) 682 666 113 100

Data centre (DC) 1185 1510 111 440

Wind farm (WF) 266 425 1 266

Power network (PN) 129 138 10 62

Fig. 1  Reverse cumulative frequency distribution of the fraction of descendants (blue) and ancestors 
(orange) over the total number of nodes. The distributions vary widely in terms of largest ancestry and 
descendancy fraction (from less than 0.1 for HW, to more than 0.7 for WF), showing different degrees of 
heterogeneity
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two, although in the case of WF this is caused by the presence of a single node with 
a large number of descendants (more than 0.7 of all nodes). Overall, the four data-
sets show very different degrees of heterogeneity in their ancestry and descendancy 
distributions.

Activity performance

Performance indicators for each activity can be constructed by comparing its target 
with the actual start and end dates. Here we focus on a particular form of perfor-
mance, the Start Delay i.e., the difference between the target and the actual start date. 
The advantage of this metric is that it allows us to focus on performance fluctuations 
that occurred upstream of an activity, separating them from fluctuations that might 
occur while the activity is being carried out. A possible alternative performance indi-
cator would be represented by the End Delay, i.e., the delay in the end date of an activ-
ity; this second measure would account for fluctuations that occur while the activity is 
taking place too, as well as for those that took place upstream.

Suppose, for example, that the completion of activity j is dependent on the comple-
tion of activity i, and the two activities are taking place at the same time. If a delay 
happens in i after the start of j, the same delay might end up propagating to j as well, 
delaying its completion; therefore the End Delay would capture such propagation, 
while the Start Delay would not. However, a significant downside of the End Delay is 
that it also accounts for the emergence of performance fluctuations within the activity 
itself (endogenous fluctuations), i.e., fluctuations that would have occurred even if the 
activity had taken place in isolation, and that are, hence, independent of the network 
topology.

A third type of performance metric is represented by the Duration Difference, the dif-
ference between the actual and target duration of an activity. A significant limitation that 
this metric shares with the End Delay is that it does not allow to disentangle effects due 
to upstream activities from others native to the activity itself. Indeed, a delay occurring 
within an activity (and therefore increasing its duration) might very well be due to it not 
taking place at the originally planned time, for example when the required resources are 
not available in compliance with a revise schedule, causing an activity to be kept on hold.

Therefore, while all three performance metrics have their own advantages and limi-
tations, the Start Delay is the only one that can effectively separate inherited from 
endogenous fluctuations, a highly desirable feature when studying the phenomenon 
from a spreading perspective. For this reason we choose to focus on the Start Delay 
as our main performance metric, while still including End Delay and Duration Differ-
ence in one of our experiments for increased robustness.

In Fig.  2, we plot the distribution of Start Delay values, measured in days. Most 
recorded values are negative, indicating that an activity has started ahead of schedule. 
Only in WF values larger than a few (positive) units appear. In all cases, the distribu-
tion peaks at zero, corresponding to activities having started as planned, and frequen-
cies range over several orders of magnitude, warranting the use of a logarithmic scale 
on the y-axis. HW and DC show a distinct left tail, with the frequency of activities 
decreasing as the Start Delay decreases.
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Reachability‑heterogeneity measure

To quantify the heterogeneity of a project network, we start from Estrada’s hetero-
geneity measure (Estrada 2010), and particularly its extension to directed graphs (Ye 
et al. 2013):

Above, kini  and kouti  represent the in- and out-degree of node i respectively, N is the set of 
all edges in the network G, and the summation is taken over the set of all G’s (directed) 
edges E.

Since activity networks are DAGs, a performance fluctuation in node i can only 
propagate to its descendants. In turn, node i can only be affected by performance 
fluctuations occurring in its ancestors. By descendant of i, we mean any node j such 
that a directed path from i to j exists; by ancestor of i, we mean any node j such that a 
directed path from j to i exists. i is a descendant of j if and only if j is an ancestor of i.

In assessing the heterogeneity of an activity network with respect to performance 
fluctuation spreading, we make use of the more cogent notion of ancestor (descend-
ant) instead of predecessor (successor). The contribution of a pair to the overall score 
is a function of the difference between the number of ancestors and descendants of 
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Fig. 2  Frequency distribution of Start Delay (in days) for different activities. All distributions are starkly peaked 
around zero, with values close to the peak surpassing their further counterparts by orders of magnitude 
(hence the need for the logarithmic scale). HW and DC show a left tail, and WF is the only dataset recording 
delays larger than a few units
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the two nodes involved, rather than of their in- and out-degree, accounting for the 
impact of ancestors and descendants to the overall spreading process.

In formulae, we replace the in- and out-degree from Eq. 1 with the number of ances-
tors and descendants of the two nodes respectively, and we extend the summation to all 
pair of connected nodes, leading to the following definition:

In Eq. 2, di and ai represent the number of descendants and ancestors of node i, and C is 
the set of all ordered pairs of connected nodes. This metric is a global network property 
that allows comparison between different topologies and quantification of their hetero-
geneity with respect to the size of nodal ancestry lineages. In comparison, the measure 
in Eq. 1 focuses exclusively on the immediate neighbourhood of the node.

In order to provide more actionable information, we introduce an additional version of 
the measure above, defined at the level of single nodes, in order to allow targeted inter-
ventions by project experts. Our aim in doing so is to answer the question: if a single 
node could be removed in order to make the topology less vulnerable, which one would 
be the best choice? The answer can simply be computed by taking the difference between 
the network scores before and after the removal:

We call this measure Reachability-Heterogeneity (RH).

Results
We first calculate the RH score for all nodes on all the four projects, as well as the four 
global RH scores, which are reported in Table 2. The global score provides a good char-
acterisation of the shape of the ancestry and descendancy distributions shown in Fig. 1, 
with the highest RH value (WF) being assigned to the distribution with the longest tail, 
and the other three following in order.

The distributions of node-level RH scores for all four projects are shown in Fig. 3. All 
distributions show frequency values spanning over various orders of magnitude and a 
rather clearly identifiable peak, always close, but not always corresponding, to the zero 
value. HW, DC and PN bear some degree of similarity in shape, with a single-sided flat 
tail in the higher values, but differ in magnitude. Interestingly, WF, which is the only pro-
ject to report significant positive delays (Fig. 2), is also the only project with a significant 
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(3)RHlocal(i) = RHglobal(G)− RHglobal(G\{i})

Table 2  Global RH scores for the four activity networks

The comparison with Fig. 1 shows a correspondence between higher score values and longer tail in the ancestry tree size 
distribution

Project Global RH

Highway (HW) 0.238

Data centre (DC) 0.332

Wind farm (WF) 0.680

Power network (PN) 0.514
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left tail in the RH score distribution; it is worth remarking that the RH score is based on 
the network structure alone, and does not account for performance data.

To assess the effectiveness of RH in quantifying node vulnerability, we first use activ-
ity performance to build our ground truth. Specifically, we use the Start Delay indicator, 
as described in the Methods section. To mitigate the noise, we group the nodes in bins 
of equal width.1 Within every bin, we calculate the Start Delay of each node and a num-
ber of summarising statistics, namely: mean, median, 50% and 68% Confidence Intervals 
(CIs).

The results for each project are reported in Fig. 4, in the form of boxplots; the popula-
tion and cut boundaries for each box are reported in Table 3. In general, the Start Delay 
value increases for greater RH,2 showing that this newly introduced measure can pro-
vide a good indicator of activity performance. It is worth reminding that the Start Delay 
accounts for delays inherited from ancestors, signifying the relationship between perfor-
mance and spreading (see the Data section for further discussion).

In particular, for the HW data the trend is especially evident in the mean and the lower 
end of the CIs. The upper end of the CIs seems to be capped at zero, as almost all Start 

Fig. 3  Distribution of local RH scores for the four activity networks. All four distributions have a clear peak, 
close to but not always coinciding with the zero value, with frequency values spanning over several orders 
of magnitude. WF is the only network exhibiting a left tail in the RH distribution, and comparison with Fig. 2 
shows that it is also the only project that, among the four, reported delays significantly larger than zero

1  We use the OptBinnig Python package to choose the number of bins: http://gnpalencia.org/optbinning/.
2  Notice that by ‘delay’ we indicate here a quantity that can assume both negative and positive values, therefore an 
increased delay can describe an activity starting “less early”.
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Fig. 4  For each activity of each project, we report Start Delay (in days) and RH score (at the node level). Data 
are binned uniformly along the RH dimension to mitigate noise. A trend emerges in all four datasets with 
higher RH values corresponding to longer delays, i.e., worse performance. As it is particularly evident from DC 
and PN, a significant contribution to this phenomenon comes for the outliers in the Start Delay distribution, 
the best-performing activities, that tend to score low in RH. Bin cuts and bin populations for all datasets are 
reported in Table 3

Table 3  Binning details for Fig. 4

The first and last bins cut values correspond to the minimum and maximum local RH score for the dataset. For the 
population and outliers rows, values in the nth column correspond to the bin delimited by the (n − 1)th and nth cuts. By 
lower outliers we designate values lower than the 16th percentile (i.e., falling below the lower bin whisker shown in the 
figure)

Highway

Bin cuts − 7.87e−04 − 2.2e−05 3.61e−04 7.44e−04 0.001127 0.00151 0.00687

Bin population – 40 327 207 64 24 20

Lower outliers – 4 53 32 11 3 2

Data Centre

Bin cuts − 0.004317 0.001119 0.002931 0.004743 0.006555 0.03192

Bin population – 948 186 23 18 10

Lower outliers – 138 12 1 1 0

Wind farm

Bin cuts − 0.011488 0.002938 0.004047 0.005157 0.010705

Bin population – 128 70 40 28

Lower outliers – 20 10 5 5

Power network

Bin cuts − 0.002214 0.000612 0.003438 0.006264 0.009089 0.054302

Bin population – 7 43 23 26 30

Lower outliers – 1 4 2 1 1
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Delay values are negative (see Fig.  2). The trend is clearer for lower RH values,which 
then flattens towards the tail.

For the DC data, the trend is stronger in the mean. The clear separation between the 
mean value and the centre of the distribution confirms that Start Delay distributions 
within each bin are long-tailed, with longer tails in correspondence of lower RH values. 
Again, all Start Delay values are negative.

The WF data are the noisiest, possibly due to the smaller size of the dataset, leading to 
wider bins. Despite the noise, a trend, not captured by the median, can instead be seen 
in the CIs and mean.

Finally, in PN the same scenario as in DC is repeated, with the mean capturing a trend 
otherwise overlooked by the CIs, further reaffirming that low RH scores correspond to 
a greater presence of outliers from the (left) tail of the Start Delay distribution, the best-
performing activities. Due to the extremely peaked shape of the performance distribu-
tion (Fig. 2), the small size of the CIs was indeed to be expected.

As a further step towards validating the effectiveness of the local RH score, we bench-
mark it against seven other node metrics: in-degree, out-degree, betweenness centrality, 
closeness centrality, reverse closeness (i.e., closeness centrality computed on the network 
with edges’ direction reversed), number of descendants and of ancestors. For greater 
robustness, we use all the three performance quantifiers discussed in the Data section 
(Start Delay, End Delay and Duration Difference) as our target variables. For each of the 
eight metrics considered, we compute the mutual information between it and the target 
variable.3

For each of the four networks, and for each of the performance indicators, we proceed 
by computing a two-dimensional frequency matrix with the considered node metric as 
one dimension and the indicator as the other. For the purpose of computing frequen-
cies, we group data in a number of uniform bins equal to the square root of the number 
of nodes, rounded down (the same number of bins is used along both dimensions). The 
mutual information is then computed through the frequency matrix.4 The results, dis-
played in Table 4, are strongly consistent across the three performance indicators: the 
local RH always ranks first for all projects except DC, where it ranks in the top three 
(second when using End Delay and Duration Difference, third for Start Delay). Over-
all, the relative ranking of the eight nodes metrics remains largely consistent across the 
three performance metrics.

Discussion
Project performance can be understood by focusing on how fluctuations spread within 
the project’s underlying activity network. We leverage the context agnostic nature of 
the approach to develop a new heterogeneity measure (RH) based on the heterogene-
ity measure introduced by Estrada for undirected networks in Estrada (2010). One of 
the main advantages of Estrada’s measure is the ability to compare networks regardless 
of their topology, and of their degree distribution in particular. This feature, which is 

3  Notice that the notion of target variable has a purely methodological significance in this context: mutual information is 
symmetric with respect to the ‘candidate’ and ‘target’ distributions.
4  More specifically, the mutual information is computed through the marginal and joint probability distributions for the 
two variables, as derived from the frequency matrix.
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retained in the RH, is particularly desirable when the measure is applied to real-world 
networks that could in principle take any shape (within their DAG-ness constraints), as 
in the present study. Furthermore, the importance of a network’s heterogeneity in the 
context of spreading processes makes a measure such as Estrada’s, or its extension, a nat-
ural candidate for dealing with the problem at hand, namely the analysis of delay propa-
gation when considered as a spreading phenomenon.

Due to their being naturally embedded with a partial ordering, activity networks can 
be represented as DAGs, a feature which makes it possible, when defining heterogeneity, 
to shift the focus from first-degree neighbours only to the entirety of a node’s ancestry 
and descendance trees. It is important to notice the particular significance of ancestry in 
the context of spreading, as the phenomenon at hand (in our case, performance fluctua-
tion) can only propagate downstream; in other fields of applications, ancestry might not 
play an equally important part. As shown in the Methods section, from a mathemati-
cal perspective, the change from first-degree neighbours to ancestors and descendants 
is a rather straightforward matter when the extension of Estrada’s measure to directed 
graphs is taken as a starting point (Ye et al. 2013).

Table 4  Comparison between the local RH score and seven other node metrics

For every candidate, the three table reports its mutual information score computed with Start Delay, End Delay, and 
Duration Difference as a target variable respectively, and its rank in brackets (the highest ranking score is shown in bold). 
Local RH ranks first on all datasets minus DC, where it ranks third (Start Delay) or second (End Delay, Duration Difference)

Node metric Highway Data centre Wind farm Power network

Start Delay

In-degree 0.287 (8) 0.134 (7) 0.285 (8) 0.045 (8)

Out-degree 0.304 (7) 0.117 (8) 0.293 (7) 0.047 (7)

Betweenness 0.920 (4) 0.250 (6) 0.667 (3) 0.092 (6)

Closeness 1.209 (2) 0.507 (1) 0.653 (4) 0.106 (5)

Rev. Closeness 0.975 (3) 0.353 (4) 0.689 (2) 0.123 (4)

Descendants 0.686 (6) 0.274 (5) 0.561 (6) 0.148 (3)

Ancestors 0.812 (5) 0.382 (2) 0.586 (5) 0.149 (2)

Local RH 1.709 (1) 0.354 (3) 0.821 (1) 0.208 (1)
End Delay

In-degree 0.260 (7) 0.140 (8) 0.237 (8) 0.104 (8)

Out-degree 0.253 (8) 0.174 (7) 0.308 (7) 0.135 (7)

Betweenness 0.828 (4) 0.371 (6) 0.733 (3) 0.159 (6)

Closeness 1.104 (2) 0.730 (1) 0.720 (4) 0.211 (5)

Rev. Closeness 0.893 (3) 0.576 (3) 0.753 (2) 0.213 (4)

Descendants 0.609 (6) 0.488 (5) 0.660 (5) 0.219 (3)

Ancestors 0.706 (5) 0.533 (4) 0.650 (6) 0.255 (2)

Local RH 1.641 (1) 0.629 (2) 0.915 (1) 0.416 (1)
Duration Difference

In-degree 0.222 (7) 0.135 (8) 0.289 (8) 0.080 (8)

Out-degree 0.206 (8) 0.167 (7) 0.335 (7) 0.088 (7)

Betweenness 0.663 (4) 0.393 (6) 0.563 (5) 0.107 (6)

Closeness 0.895 (2) 0.772 (1) 0.661 (2) 0.157 (3)

Rev. Closeness 0.726 (3) 0.622 (3) 0.642 (4) 0.156 (4)

Descendants 0.480 (6) 0.505 (5) 0.511 (6) 0.154 (3)

Ancestors 0.519 (5) 0.559 (4) 0.643 (3) 0.196 (2)

Local RH 1.282 (1) 0.648 (2) 0.830 (1) 0.315 (1)



Page 12 of 15Pozzana et al. Appl Netw Sci            (2021) 6:25 

The very fact that the measure can be used to compare networks of any topology also 
allows to define a local equivalent to the global RH score, as the same network can be 
measured before and after the removal of any node, and the two measurements com-
pared. Thus the contribution of individual nodes is obtained “by subtraction”. One signif-
icant drawback of this approach is that the ancestry trees have to be recalculated every 
time a node is removed, making the endeavour a computationally expensive one. Here 
we did not venture into a study of the computational complexity of the calculation, nor 
of possible ways to reduce it, and the question remains open for potential future work.

We used data from four different projects (a highway, a data centre, a wind farm, and 
a power network respectively) for the experimental part of our analysis. The size of the 
datasets varies between schedules, from 1185 for DC to 129 for PN. The networks also 
have very different component structure, as summarised in Table 1.

In all four cases, frequencies of ancestry size, descendancy size, and performance, take 
values ranging over various orders of magnitude. The global RH score (Table 2) appears 
to be particularly effective in quantifying the heterogeneity of the descendancy and 
ancestry distributions (Fig. 1), with longer-tailed distributions (i.e., more heterogeneous) 
corresponding to higher RH values.

The distribution of the local RH scores (displayed in Fig. 3) shows, for all networks, 
a peak in the proximity of the zero value and a single-sided tail (left-sided for WF, 
right-sided for the other three datasets) dominated by a small number of outliers fall-
ing well outside the centre. It is interesting to notice that WF is also the only project to 
report delays significantly larger than zero. A systematic investigation of the nature of 
this correspondence, as well as of the relationship between global RH and ancestry (and 
descendancy) size distribution discussed in the previous paragraph, is beyond the scope 
of this paper, and might provide the object of future works.

Our experimental results on the four datasets show that a general trend exists, accord-
ing to which lower RH scores correspond to better performance (Fig. 4). Looking at these 
results in detail, the cases of DC and PN are particularly interesting, with the mean of 
the binned data showing a clear trend that the median fails to capture. A similar behav-
iour is apparent in the other datasets too, though not as pronounced. This is due due to 
the trend being driven by outliers, i.e., best-performing activities, located in the left tail 
of the Start Delay distribution; these are activities that take smaller RH values and hence 
amplify the difference between mean and median values within each bin. Such a feature 
might prove convenient, considering that a likely purpose of the RH measure is to iden-
tify cases of extremely high performance, although the opposite (identifying the poorly 
performing nodes) might also be the case in some instances. Details on the population 
of each bin, and on the number of outliers within each bin, are provided in Table 3.

The use of the Start Delay as a performance measure allows us to draw a direct con-
nection between performance and vulnerability to spreading, since it accounts for delays 
inherited from upstream nodes (as discussed in the Data section). Three out of four pro-
jects (excluding WF) follow a similar Start Delay distribution, with a peak around zero 
and a tail in the negative values (corresponding to better-performing nodes).

As reported in Table 4, we run a comparison between the local RH score and seven 
other node metrics (in- and out-degree, betweenness centrality, closeness and reverse 
closeness centrality, number of descendants and of ancestors). The purpose of the 
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comparison is to quantify which of the candidate metrics carry the most information on 
node performance; for greater robustness, the same analysis is carried out using Start 
Delay, End Delay, and Duration Difference as a performance quantifier. To avoid making 
any assumption on the form of the dependency, we use mutual information, which is a 
non-parametric measure, capable of accounting for non-linear relationships.

The results are well consistent across the three performance proxies. With the sole 
exception of DC, where it ranks third or second (depending on the performance indica-
tor considered), the local RH carries the highest mutual information of all the metrics. 
No other candidate shows the same consistency across datasets; closeness centrality for 
example, arguably the second-best candidate overall, does always rank first and second 
on DC and HW respectively, but ranks fourth on WF and fifth on PN by both Start and 
End Delay. In- and out-degree are always the two worst performing metrics, reinforc-
ing the point that an effective performance measure must look beyond the first-degree 
neighbourhood, in agreement with the existing literature (Lawyer 2015).

The use of real-world data in our experiments limits our ability to enquire on what 
network features make the local RH a good proxy for performance, especially when 
compared to other node metrics. Such features could be better investigated by repeating 
the analyses presented here on simulated networks. Simulated networks, however, lack 
ground-truth performance data, an essential component of our experimental setup. A 
possible compromise could consist in using benchmarks obtained by randomising real-
world datasets, although, it must be noted, care must be taken to maintain the DAG 
structure of the network. In any case, a deeper look into the nature of the relationship 
between RH and performance, both from an analytical perspective and via further 
experiments, is likely to provide significant insight towards the study of this metric, and 
might be the object of future studies.

Conclusions
In the present work, we tackle the question of quantifying and mitigating spreading phe-
nomena from a topological perspective, focusing on how fluctuations in the completion 
time of certain activities can impact the performance of complex projects. Our contribu-
tion is twofold: first, we introduce a novel vulnerability measure that focuses on ancestry 
tree size, a quantity that plays a big role in spreading process across DAGs; second we 
apply this measure to an important but currently underrepresented domain - the deliv-
ery of complex projects - where we use ground truth data to test our proposed measure.

Using these data, we assess the effectiveness of RH in quantifying performance fluc-
tuations of activities within projects. We show that higher values in RH correspond to 
worse performance, indicating its appropriateness in accounting for the propensity of 
such fluctuations to propagate. In addition, we compare RH with seven other node met-
rics, and show that RH carries the most amount of information about the activity per-
formance on three out of four projects, strengthening its utility in identifying vulnerable 
nodes.

As well as introducing a new tool for the study of spreading processes on networks, 
and on directed acyclic graphs in particular, we hope that our work will stimulate the 
interest of the community in project management as a domain of application for net-
work science.
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