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Introduction
Complex networks are critical to many applications such as those in the social, cyber, 
and bio domains. We commonly have access to partially observed data. The challenge is 
to discover enough of the complex network so that we can perform a learning task well. 
The network discovery step is especially critical in the case where the learning task has 
the characteristics of the “needle in a haystack” problem. If the discovery process is not 
carefully tuned, the noise introduced, almost always, overwhelms the signal. This pre-
sents an optimization problem: how should we grow an incomplete network to achieve 
a learning objective on the network, while at the same time minimize the cost of observ-
ing new data?

In this work, we view the network discovery problem from a decision-theoretic lens, 
where notions of utility and resource cost are naturally defined and jointly leveraged in 
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a sequential, closed-loop manner. In particular, we will leverage Reinforcement Learn-
ing (RL) and its mathematical formalism, Markov Decision Processes (MDP): a general 
decision-theoretic model that allows us to treat network discovery as an interactive, 
sequential learning and planning problem. MDP approaches have been successfully used 
in many other application settings (Mnih et al. 2015; Heess et al. 2017; Silver et al. 2017). 
However, the use of decision-theoretic approaches in the context of discovery of com-
plex networks is novel and presents very interesting research opportunities. In particu-
lar, it requires learning effective models of reward that can capture properties of network 
structure at various topological scales and learning contexts. The network science com-
munity has defined many such topological and task quality metrics; but, to-date, they 
have not been leveraged in the context of guiding the process of network discovery. We 
consider the task of selective harvesting on graphs (Murai et al. 2017), where the learn-
ing objective is to maximize the collection of nodes of a particular type, under budget 
constraints. We make the following contributions:

•	 We introduce a deep RL framework for task-driven discovery of incomplete net-
works. This formulation allows us to train models of environment dynamics and 
reward offline.

•	 We show that, for a variety of complex learning scenarios, the added feature of 
learning from closely related scenarios leads to substantial performance improve-
ments relative to existing online discovery methods.

•	 We show that network embedding can play an important role in the convergence 
properties of the RL algorithm. It does so by imposing structure on the network 
state space and prioritizing navigation over this space.

•	 Among a class of embedding algorithms, we identify Pagerank (PPR) as a suitable 
network embedding algorithm for the selective harvesting task. Our combined 
approach of PPR embedding and offline planning achieves substantial reductions 
in training time.

•	 Leveraging several evaluation metrics, we delineate learning regimes where 
embedding alone stops being effective and planning is required.

•	 Our approach is able to generalize well to unseen real network topologies and new 
downstream tasks. Specifically, we show that policies discovered by training on 
synthetically generated networks translate well to detection of anomalous nodes 
in real-world networks.

Related work
Our learning task falls under the category of finding the largest number of a particular 
type of node under budget constraints. The node type can be specified by node attrib-
utes (for example, males on a social network), or they can be determined by node’s 
participation in a particular class of behavior (for example, accounts that belong to 
dense bipartite subgraphs in a communication network). Unlike the problem setting 
in Wang et al. (2013), we do not assume access to the full topology of the network and 
therefore have to perform the learning task with partial information.
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Discovering incomplete networks with limited resources has received a lot of attention 
in recent literature. The primary learning objective in these works is to increase the vis-
ibility of the network topology by increasing the number of discovered nodes (LaRock 
et al. 2018, 2020; Soundarajan et al. 2015, 2016), increasing the number of discovered 
nodes of a given type (Murai et  al. 2017), or increasing network coverage (Avrachen-
kov et  al. 2014). Our problem setting is the closest to Murai et  al. (2017). However, 
while Murai et  al. (2017) leverages supervised learning to infer discovery heuristics, 
our approach leverages an MDP formulation of RL to estimate offline models of net-
work discovery strategies (a.k.a. policy) and node utility (a.k.a. reward) that are network 
state-aware. More specifically, our approach explicitly connects the utility of a discov-
ery choice to the network state when that choice was made. We will illustrate in later 
sections that learning state-dependent discovery strategies, allows our approach to stay 
robust in learning scenarios where nodes of interest are sparsely observed. In LaRock 
et  al. (2018, 2020), they frame their network discovery task as an MDP, but they only 
consider online training of their policy. The online-only training, we will show, suffers 
from tunnel vision and is not able to generalize well.

Reinforcement learning for tasks on complex networks is a relatively new perspective. 
Work in Ho et al. (2015) and Goindani and Neville (2019) leverages RL to engineer diffu-
sion processes in networks assumed to be fully observed, while authors in Mofrad et al. 
(2019) focus on the problem of graph partitioning. You et al. (2018) leverage RL to gen-
erate novel molecular graphs with desired domain-specified properties. There are con-
nections to our problem setting. The graph generation is approached as an MDP, in a 
similar fashion to our network discovery problem, by iteratively expanding a seed graph 
via defined actions. There are, however, some important differences with our work. Their 
definition of reward and environment dynamics is tailored to the biochemical domain 
and molecular design application, which is characterized by a comparatively small state 
space and fixed-sized action space.

In our problem setting, the agent deals with a much larger network space and a larger 
and variable-sized action space. To address this increased complexity, we introduce a 
network embedding step that enables a more efficient navigation of the decision space. 
Our notion of reward is also more general, in that we do not utilize domain-specific 
properties to guide the learning process. Since we cannot rely on added information pro-
vided by the domain-specific properties (e.g., biochemistry), we had to carefully model 
ways of introducing topological diversity in our policy training data. Others (Dai et al. 
2017; Mittal et al. 2019) have leveraged deep RL techniques to learn a class of greedy 
optimization heuristics on fully observed networks. We summarize key differences 
between our method and related methods in Table 1.

Problem definition
We start with the assumption that a network contains a target subnetwork representing 
a set of relevant nodes. The decision-making agent can initially observe only part of the 
original network G0 = (N0,E0) , where some of its nodes have their relevance status C0 
revealed; 0 representing non-target nodes and 1 representing target nodes.

The agent has a pre-specified way by which it can interact with the partially observed 
network: at each step, it is allowed to query the label of one selected observed node 
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whose label is unknown. We call this type of node a boundary node. The environment 
responds by revealing the label of the queried node as well as its neighboring nodes 
(but not their labels). An immediate reward is given if the selected (i.e., queried) node 
is a target node. The agent’s overall objective is then to strategically grow the original 
network over a sequence of steps, so that it can discover as many relevant nodes as 
possible under the query budget constraints. This problem may be stated as a Markov 
Decision Process (MDP). An MDP is defined by the tuple 〈S ,A,T , r, γ 〉:

•	 State space: Let {Mi} be a set of random graph models, each defining a set of net-
work instances {Gi} defined over a set of nodes V. We define the state space as 
S =

⋃

Mi {st = Gi
t} , the set of partially-observed network instances Gi

t = {V i
t ,E

i
t} 

discovered at intermediate time-steps t, where V i
t ⊆ V  and Ei

t ⊆ E . Each v ∈ V i
t  

has a label C(v) ∈ { 0, 1,*} , representing non-target, target and unobserved node 
states, respectively. Ei

t is the set of edges induced by V i
t  . The state space includes 

the initial state Gi
0 that contains at least one target node, as well as the terminal 

state which is the fully observed network instance Gi.
•	 Action space: For each network instance Gi , we define the action space as 

A = {At} , where At = {a = v} is the set of boundary nodes v,   observed at time-
step t : {v ∈ Vt ,C(v) = ∗}.

•	 Transition function: T (st , at , st+1) = P(st+1|st , at) encodes the transition prob-
ability from state st to st+1 given that action at was taken. Let v be the selected 
node by action at . Then st+1 = st ∪ C(v) ∪ Nv ∪ ENv , where Nv are the neighbors 
of node v and ENv are all the edges incident to Nv . For each network instance Gi , 
the transition function is deterministic: T (st , at , st+1) = 1.

•	 Reward function: r(st , at) returns the reward gained by executing action at in state 
st and is defined as: r(st , at) = 1 if C(at) = 1 . The total cumulative, action-specific 
reward, also referenced as the action-value function Q, is defined as, 

Table 1  Comparison of NAC features with related methods

Method State space Action 
space

Observability Learning 
goal

Learning 
framework

Policy 
training

State 
embedding

NOL 
(LaRock 
et al. 
2018)

Large Dynamic Partial Vertex 
property

MDP Online No

D3TS (Murai 
et al. 
2017)

Large Dynamic Partial Vertex 
property

Supervised Online No

GCPN (You 
et al. 
2018)

Small Fixed Full Graph 
property

MDP Offline on 
given 
dataset

No

NAC Large Dynamic Partial Vertex 
property

MDP Offline and 
online on 
designed 
dataset

Yes
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 with γ ∈ [0, 1] representing a discount factor that captures the utility of exploring 
future graph states and h is the horizon length. Figure 1 gives a simple illustration of 
how this cumulative reward is computed over a network topology. In the next sec-
tion, we describe in detail our deep reinforcement learning algorithm.

Network actor critic (NAC) algorithm
Our network discovery algorithm has two main components as illustrated in Fig. 2. 
The first component, “Compress State Space”, is concerned with effective ways of 
representing the large network state space so that policy learning can happen effi-
ciently relative to our selective harvesting task. The second component, “Plan”, uti-
lizes the reinforcement learning framework and offline training to learn task-driven 
discovery strategies. We discuss both components in detail in the rest of this section.

(1)Q(s, a) =

[

h
∑

t=0

γ t rt+1|s, a

]

,

Fig. 1  Illustration of estimation of cumulative reward of current state s = s0 over a horizon of 
length h = 3 , and discount factor γ = 0.5 . The current state s is comprised of 3 types of nodes: 
unknown (grey), target-nodes (red), non-target nodes (black); red nodes represent the node 
type we would like to discover. The figure shows an instantiation of policy π , starting at state 
s, corresponding to a path of length h = 3 . We calculate the cumulative discounted reward 
of state s based on taking action a1 at t = 0 and following the highlighted path as follows: 
Q(s, a1) = γ t ∗ rt+1 + γ t+1 ∗ rt+2 + γ t+2 ∗ rt+3 = 1 ∗ 0+ 1/2 ∗ 0+ 1/4 ∗ 1 = 1/4

Fig. 2  Schematic approach of NAC algorithm. In the first component, NAC uses a network embedding and 
truncation step to avoid an explosion in the state-action space as the network grows. The truncation block 
ensures a constant size input into the learned policy. In the second component, NAC uses reinforcement 
learning to learn a policy offline
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Compression of network state space

Training an effective network discovery agent implies exploration over an extremely 
large network space. However, not all observations contribute to learning better dis-
covery policies. In fact, for the task of selective harvesting, we can identify three rep-
resentative, higher-level abstractions of the network states illustrated in Fig. 3.

In the first canonical case, discovery starts within the region of interest, where 
many of the relevant nodes we need to discover are nearby. In networks whose states 
are similar to this canonical case, the optimal discovery agent would follow localized 
paths and primarily exploit rather then explore new regions. In the second canonical 
case, discovery starts outside the region of interest and the agent has to now explore 
longer, deeper paths in order to reach the target region. Finally, there is a hybrid 
canonical case, where discovery can start in the boundary of the target region and the 
agent has to more carefully decide when to exploit and when to explore.

In order to map network states into canonical representations, we consider vari-
ous network embedding approaches. Specifically, we look at popular walk-based 
algorithms (Grover and Leskovec 2016; Taher 2003; Murai et  al. 2017) and matrix-
factorization algorithms (Pearson 1901; Torres et al. 2020; Belkin and Niyogi 2003). 
The embedding step learns a new similarity function between nodes in a network. 
Since our downstream task is selective harvesting from a seed node, we reorder the 
rows of the original adjacency matrix based on the new learned distance from the 
seed node, with closer nodes being ranked higher. The reordering step makes sure the 
discovery algorithm observes a prioritized set of boundary nodes. For additional effi-
ciency gains, we truncate the reordered adjacency matrix and only retain the network 
defined by the top k nodes. k, is a hyperparameter, which the user selects; it defines 
the supporting network for computing potential discovery trajectories and long-term 
reward. For training our algorithm, we found k = 256 to perform well after incremen-
tally lowering its value from the number of nodes in the network. In practice, larger 
values of k can be utilized during training, but they incur a higher computational 
costs at no substantial increase in algorithmic performance.

In “Role of network embedding” section, we present a detailed evaluation of various 
embedding algorithms and identify the role that they play in supporting the planning 
component of NAC. Among the embedding algorithms we study, we identify per-
sonalized Pagerank (PPR) (Taher 2003) as performing the best in supporting policy 

Fig. 3  Representative high level abstractions of network states for selective harvesting task
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learning for selective harvesting. For the rest of the paper, we assume that the plan-
ning agent only sees the compressed state representation, that is, the state that has 
gone through the sequence e of operations: embed, re-order and truncate: st = e(st).

Offline learning and policy optimization

In our setting, learning of discovery strategies happens offline over a training set of pos-
sible discovery paths. “NAC performance results” section describes how we generate 
these paths.

Each path τh represents an alternating sequence of discovered subnetworks and actions 
{�s0, a0�, �s1, a1�, . . . , �ah, sh�} , taken over h steps. Since in this setting we have access to 
the ground-truth node labels, we can map each discovery path to the corresponding 
cumulative reward value using Eq. 1. An illustration is given in Fig. 1.

Given the sampled trajectories, one of our learning objectives becomes to approximate 
the action-value function by minimizing the loss LQ(φ),

We formulate this objective by taking the input tuples of discovered subnetworks 
st , boundary nodes at and corresponding cumulative reward values Qt , such that 
�xt = (st , at), yt = Qt�.

The approximated reward function Qφ is subsequently used to estimate the policy 
function πθ (s) = P(a|s) , which defines the probability of selecting action a at state s. This 
is achieved by training a convolutional neural network with the network embedding as 
input and a softmax probability as output over the action space. Actions are selected 
via an argmax over the output probabilities. The parameters of the convolutional neural 
network are updated via gradient ascent and its objective function is defined in Eq. 5.

We estimate the advantage of choosing one node versus another at state st,

This advantage is used to scale the policy gradient estimator, typically defined as, 
ĝt = Êt

[

Ât∇θ log πθ

]

 , where Êt [·] is the empirical average over a finite batch of samples. 

We utilize a proximal policy optimization (PPO) method (Schulman et al. 2017) in order 
to compute this gradient. PPO methods are widely utilized for policy network optimiza-
tion and have been demonstrated to achieve state of the art performance on graph tasks 
(You et al. 2018). The objective function utilized is defined in Eq. 4,

Here, ǫ is used to bound the objective function and help with convergence. The function 
clip(·) keeps the ratio πθ

πθold
 within [1− ǫ, 1+ ǫ] (Pascanu et al. 2013). Note that when the 

estimated expectation in Eq. 4 is expanded πθ
πθold

 becomes πθ (s,a)
πθold (s,a)

 , where πθ (s, a) is the 

probability of the current policy selecting action a when in state s; and πθold(s,a) is proba-
bility of the previous policy selecting the same action a when in state s.

(2)LQ(φ) = ||yt − Qφ(xt)||
2
2.

(3)Ât = Qφ(st , at)−
∑

a∈A

Qφ(st , a).

(4)LCLIPt (θ) = Êt

[

min

(

πθ

πθold

Ât , clip

(

πθ

πθold

, 1− ǫ, 1+ ǫ

)

Ât

)]

.
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During offline training, we modify the objective in Eq.  4 to encourage exploration 
and reduce the number of required training epochs to converge to a solution. For Eq. 5, 
S(πθ (st)) denotes the entropy of policy πθ over actions a in state st . c is a fixed constant 
that captures the weight of the entropy term,

Both learning objectives (2) and (5) are jointly optimized via an actor critic training 
framework. This framework is detailed further below in the description of the Network 
Actor Critic (NAC) algorithm. To help with training times, multiple instantiations of 
agents are run in parallel. Collected {st , at ,Qt} values are gathered from each agent and 
are stored in a buffer β which is used to compute the losses for the value function and 
policy networks after a fixed number of iterations T.

Training and network details

The NAC algorithm is updated differently during offline training versus online evalu-
ation. During offline training, the Adam optimizer (Kingma and Ba 2014) is used to 
update network parameters θ and φ for the policy and value function networks. In offline 
training, eight agents are run in parallel, carrying out the anomaly discovery task each 
on a unique network realization generated using one of the network models outlined in 
Table 2. Each network model is chosen with equal probability and their parameters are 
drawn uniformly at random from the parameter ranges defined in Table 2. Each inde-
pendent agent contributes data to a common buffer, later used for learning the param-
eters of the value and policy functions. The use of multiple agents helps generate more 
training data faster. More agents will lead to further reductions of training time.

Hyper-parameter searches were performed in a grid search manner for both offline 
and online values. During offline training, the hyper parameters used are: T = 32 , h = 4 , 
c = 0.2 , ǫ = 0.1 , γ = 0.1 , and learning rate � = 1e−4 . With the exception of h, these 

(5)LCLIP+S
t (θ) = LCLIPt (θ)+ cS(πθ (st)).
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parameters generally did not affect the overall final performance of the network, but did 
alter the convergence rate. We found that going beyond h = 5 reduced overall perfor-
mance of the learned policy. For online evaluation, we used a single agent and param-
eters T = 1 , h = 1 , γ = 1 , c = 0.0 , and � = 1e−3 . The change in hyper-parameters, 
specifically removing the exploration components, reflects moving from the training 
setting which benefits from sufficient exploration of the search space, to a fully greedy 
online policy that favors exploitation. The policy and value function networks are both 
comprised of 3 convolutional layers with 64 hidden channels and a final fully connected 
layer. The value function is regressed using the loss function described in Eq. 2, while the 
policy network is trained using the objective function described in Eq. 5.

NAC performance results
We evaluate our algorithm against several learning scenarios for both synthetic and real-
istic datasets. The NAC agent always starts the exploration from a seed subnetwork that 
contains 1 target node. Next we describe our datasets and baselines used for comparison.

Datasets

Synthetic datasets

We generate synthetic graphs by modeling background networks (i.e., networks that do 
not contain any target nodes), and foreground networks (i.e., networks that only contains 
target nodes). There are edges that connect the foreground and background nodes to 
each other.1

We use two models to generate samples of background networks. Stochastic Block 
Model (SBM) (Holland et  al. 1983) is a commonly used random graph model, which 
allows us to model community structure as dense subgraphs sparsely connected with the 
rest of the network. Lancichinetti–Fortunato–Radicchi (LFR) model (Lancichinetti et al. 
2008) is another frequently used random graph model, which allows us to simulate net-
work samples with skewed degree distributions and skewed community sizes, and there-
fore is able to capture more realistic and complex properties of real networks. We use 
the Erdős–Renyi (ER) model (Holland et al. 1983) to simulate the foreground network. 
ER is a random graph model where nodes are connected with equal probability pf  . This 

Table 2  Detailed list of parameter values used for synthetic networks

Number of nodes is represented by N = 4000 . SBM parameters are: k represents the number of communities, pi the edge 
probability for within-community i, r the across-community edge probability, such that pi > r . LFR parameters are: τ1, τ2 
skewness parameters for degree and cluster size distributions respectively, 〈d〉 represents the average network degree, 
dmin, dmax represent the min and max values of degree distribution, minc and maxc represent the sizes of smallest and 
largest clusters, and finally nf , kf , pf  represent the size of the foreground subnetwork, number of foreground subnetworks 
and its edge probability, respectively

Model Type Parameters

SBM Background k = [1, 10], pi = [0.01, 0.4], r = [0.005, 0.25], i = 1 . . . k

LFR Background τ1 = [3, 2], τ2 = (1, 1.9],µ = [0.1, 0.4], �d� = [32, 256] , 
dmax = [256, 2048], minc = [256, 1000], maxc = [512, 2000]

ER Foreground nf = {30, 40, 80}, kf = {1, 2, 4}, pf = [0.5, 1]

1  In this section, we use the terms foreground and target (sub)networks interchangeably.
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allows us to control the density of the foreground networks. Table 2 lists the parameter 
choices for all the aforementioned models.

In order to create a background plus foreground network sample, we select a subset of 
the nodes from the background network that will represent the target nodes. We then 
simulate an ER subnetwork on these nodes and replace their background induced sub-
network with the ER subnetwork, while maintaing the edges from the target nodes to 
the rest of the background nodes.

Real datasets

We analyzed two Facebook datasets (Rozemberczki et  al. 2018) representing pages of 
different categories as nodes and mutual likes as edges. For both cases, we study the dis-
covery of a target set of nodes, where we control how we generate and embed them in 
the background network. In particular, we embed a synthetic foreground subnetwork 
consisting of a denser (anomalous) ER graph with size nf = 80 and density pf = 0.003 . 
We also consider the Livejournal dataset (Murai et  al. 2017). This dataset represents 
an online social network with users representing nodes, and their self-declared friend-
ships representing edges. For each user, there is also information on the groups they 
have joined. Similar to Murai et al. (2017), we use one of the listed groups as the target 
class. The Livejournal dataset represents a departure from the two Facebook datasets, 
both in terms of its much larger size, but also because the target class does not repre-
sent an anomaly. Table 3 describes a few topological characteristics of the real networks 
described here, as well as details on their target classes.

Baselines

We evaluate NAC by comparing its performance to two top-performing online network 
discovery approaches. The Network Online Learning (NOL) (LaRock et al. 2018, 2020) 
algorithm learns an online regression function that maximizes discovery of previously 
unobserved nodes for a given number of queries. We modify the objective of NOL to 
match our problem setting by requiring the discovery of previously unobserved nodes 
of a particular type. A second baseline we consider is the Diversity Dynamic Thompson 
Sampling ( D3TS ) (Murai et al. 2017) approach. D3TS is a stochastic multi-armed bandit 
approach that leverages different node classifiers and Thompson sampling to diversify 
the selection of a boundary node. We also compare to a simple fixed node selection heu-
ristic referenced in Murai et  al. (2017) called Maximum Observed Degree (MOD). At 
every decision step, MOD selects the node with the highest number of observed neigh-
bors that have the desired target label. Finally, we compare to the heuristic that at each 
step selects the node with the highest PPR network-embedding score.

Table 3  Characteristics of the real networks and corresponding target classes

Name # Nodes # Edges Target type Target size

Facebook politician 5908 41,729 Synthetic 80

Facebook TV shows 3892 17,262 Synthetic 80

Livejournal ≈ 4000 k ≈ 35,000 k Real ≈ 1400
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Learning scenarios

In the first learning scenario, the goal is to detect a set of distributed anomalous nodes. 
They are represented by two cliques, each containing 40 nodes, that are 2 to 3 hops away 
from each other. The training instances are networks generated by the SBM model, while 
the test cases are network instances generated by the LFR model. In this scenario, the 
discovery agent has to figure out (1) how to value longer exploration paths over the cost 
of including nodes not in target set, and (2) how to adjust to topological differences 
between training and testing instances. In Fig. 4a, we consider a test case where detacta-
bility of the two cliques with complete network information is relatively easy (average 
background density around the cliques is comparatively low). We observe that all the 
methods are able to find the first clique, yet all the baselines struggle once they enter 
the region where no clique nodes are present. The baselines eventually find some of the 
second clique’s nodes, but they are unable to fully retrieve the entire second clique. NAC 
is able to leverage estimation of long-term reward and access to the offline policy to fully 
recover both cliques. Furthermore, NAC is able to generalize to the more complex LFR 
topology.

In Fig. 4b, we consider a much harder case. The foreground networks are two disjoint 
denser subnetworks, 2–3 hops away, each with density 0.2 in a background of density 
0.05. Even though these foreground networks are denser than the background network, 
they are still much sparser than the cliques embedded in the first learning scenario. In 
fact, their relative density parameters are close to the undetectability bound (Nadakuditi 
and Newman 2012). In this case, neither of the baselines learns how to recover the sec-
ond foreground network. NAC goes through a longer exploration phase, but eventually 
learns how to grow the network to identify the second foreground network.

In Fig. 5, we illustrate how our model trained on synthetic background networks gen-
eralizes to realistic background topologies. For this scenario, we trained with instances 
from both the LFR and SBM models. We observe that NAC generalizes very well to the 
Facebook network topologies and is able to fully discover the target nodes (Fig. 5a, b). 
Note the substantial performance improvement when we compare to the other network 
discovery baselines. The Livejournal network in Fig. 5c presents a much more complex 

Fig. 4  NAC discovers two anomalous, non adjacent cliques in a and two dense subnetworks in b. 
Confidence intervals are generated by testing NAC’s performance on 200 background network instances 
generated using 5 different models from Table 2. We move the location of the two foreground subnetworks 
around, but maintain their relative distance of 2–3 hops
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discovery challenge both in terms of the size and realism the network (see Table 3 for 
details). In particular, the target network is not synthetically generated as was the case 
with the Facebook networks, and we do not know the underlying process that generated 
this target network. Note that NAC is able to overcome the most competitive baseline 
D3TS at about iteration 900, when it has seen a bit more than a third of the target nodes 
(600 nodes). After this point, NAC is able to recover the remaining target nodes at a sub-
stantially faster rate than all the baselines.

Role of network embedding
In this section, we systematically explore the role of the embedding algorithm in sup-
porting better network discovery for selective harvesting. We consider two broad classes 
of embedding methods: walk-based methods (Grover and Leskovec 2016; Murai et  al. 
2017; Taher 2003), and matrix factorization methods (Pearson 1901; Torres et al. 2020; 
Belkin and Niyogi 2003).

As introduced earlier, Maximum Observed Degree (MOD) (Murai et  al. 2017) is a 
heuristic embedding which ranks nodes by the number of edges shared with a target 
node. Personalized Page Rank (PPR) (Taher 2003) is a random-walk method which ranks 
nodes by their estimated random-walk distance to an observed target nodes. We used 
a damping parameter α = 0.8 . Node2vec (Grover and Leskovec 2016) is a deep-walk 
based method which attempts to learn a neighborhood preserving representation for 
each node in a given network instance. We used the following Node2vec parameters: 
number of random walks = 5, length of each random walk = 40, and embedding dimen-
sion = 64. We ranked embedded nodes by estimating the Euclidean distance between 
each node and the observed target nodes. For Principal Component Analysis (PCA) 
(Pearson 1901), we compute the eigen-decomposition of the input adjacency matrix. We 
estimate the node ranking by looking at the average Euclidean distance between a node 
and observed target nodes.

Laplace Eigenmap Embedding (Eigenmap) (Belkin and Niyogi 2003) is a low-dimen-
sional graph representation based on spectral properties of the Laplacian matrix of a 
graph. In this embedding, we represent vertices using the eigenvector corresponding to 
the second smallest eigenvalue. Rank is estimated by looking at the absolute value of the 

Fig. 5  NAC outperforms competitive online methods on real networks. For the Facebook networks (a, b), 
confidence bounds are estimated using 200 instantiations of the foreground network using 5 different 
parameter choices from Table 2 and varying the location where in the Facebook network we plant the 
foreground instance. For the Livejournal network (c), we pick 200 hundred different nodes in the foreground 
network, where the agent can start the exploration.
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dot product of embedding vectors as described in Torres et al. (2020). The embedding 
dimension was set to 64.

Laplace Eigenmap Embedding (Eigenmap) (Torres et  al. 2020) is a low-dimensional 
graph representation based on geometric properties of the Laplacian matrix of a graph. 
Unlike eigenmap, GLEE represents vertices using the eigenvector corresponding to the 
largest eigenvalue. Ranking is estimated in the same way as Eigenmap. The embedding 
dimension was set to 64.

Embedding evaluation metrics

Our evaluation of the embedding algorithm is in the context of its support to NAC’s 
policy learning component. An effective RL agent for selective harvesting would benefit 
from state approximations that reflect canonical states for this task (illustrated in Fig. 3). 
This may imply differing embedding objectives than if we analyze network embedding 
algorithms as standalone solutions. To this effect, we consider the following metrics for 
evaluating the role of the embedding algorithm.

Consistent embedding

Ideally, we would like the embedding algorithm to place probed and unprobed target 
nodes near each other. This property implies that NAC will have a higher chance of visit-
ing target nodes earlier than background nodes. To capture the consistency property of 
the embedding algorithm e(·) , we measure, at every discovery step t, the accuracy of the 
embedding algorithm in recovering the top k target nodes:

Compressability of state‑action space

In an ideal RL setting, the highest reward value Q(s, a) for a given action space will be 
highly concentrated over the best action option. We can conceptualize this scenario 
using a Gaussian distribution with mean represented by the reward value of the best 
action and minimal variance. We favor node embeddings that concentrate favorable 
actions—e.g., tightly clustering target nodes in the border set.

This entropy minimization concept is illustrated by Fig.  7. In  7a the entropy for 
Q(s = Gt , a = u) is higher than Fig. 7b causing the policy π(a = u|s = Gt) to have higher 
variance and lower probability of successfully selecting the “best” node.

To measure how the embedding algorithm supports this entropy minimization princi-
ple, we look at the variance over node rankings in the embedding space for each target 
cluster and compute the entropy as follows,

where Bt is the set of target nodes in the border set at time step t.

Robustness to increasing signal complexity

A good embedding algorithm allows the discovery agent to stay robust as the 
strength of the signal deteriorates and its complexity increases. We consider two 

(6)Accuracyt(e(Gt)) =
#top k target nodes identified by embedding

#true target nodes
.

(7)HBt (e) = 0.5[1+ log(2πVar[e(Bt)])],
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parameters: the strength of background class and the strength of target class and 
vary them to explore both regions of high and low signal-to-noise ratio (SNR). To 
capture robustness, we examine sensitivity to target and background model parame-
ters of Area Under the Curve (AUC), the aggregated accuracy metric over discovery 
time-steps t,

Learning convergence time

A useful embedding algorithm reduces the number of episodes required to learn 
effective discovery policies. The embedding algorithm does this by mapping network 
states to fewer canonical representations that aid policy learning. Here we estimate 
improvements in NAC’s convergence rates without and with access to the embed-
ding steps. Results are shown in Fig. 6.

(8)AUC =
∑

t

Accuracy(e(Gt)).

Fig. 6  NAC convergence behaviour with and without embedding. In a we see the impact of the large state 
space on the convergence rate when the agent does not use an embedding of the network state. Given the 
size of the state space, there is low probability that the agent will observe the same state multiple times, and 
therefore learning is much slower and less generalizable. In contrast, we observe in b, c how the convergence 
rate increases as the quality of the state embedding increases with respect to the target task

Fig. 7  Illustration of how quality of node embedding affects the quality of policy and reward functions; a 
highly uncertain reward and policy functions, b highly concentrated reward and policy functions. Ideally, our 
policy is distributed around the best action with minimal variance, so b is preferred



Page 15 of 20Morales et al. Appl Netw Sci            (2021) 6:24 	

Data generation for embedding analysis

We consider the following learning setting for our embedding analysis: the tar-
get class is a set of disjoint dense subgraphs within a background network. A vari-
ety of background and anomaly (target) densities are tested. For each learning step, 
the incomplete graph is embedded and a ranking for all observed nodes is computed 
and scored. An optimal policy is defined as navigating each step of the selective-har-
vesting task in the minimal number of steps. We utilize ground truth to navigate the 
graph optimally. For illustration, in the setting of two anomalous subnetworks with 40 
nodes each, separated by 2-hops, a perfect traversal is 81 steps long.

In our experiments, we consider the following parameters: each anomalous sub-
network has 40 vertices, and the background network consists of 2000 vertices. We 
use stochastic block model to generate background instances at various densities. 
Each background instance contains two communities with intra-community edge 
probability p1 = p2 = 0.25 and inter-community edge probabilities r in the range 
{0.01, 0.025, 0.05, 0.075, 0.1} . We use the ER model to generate anomalous subnet-
wors with edge probabilities pt in the range {0.25, 0.5, 0.75, 1} . For each unique set of 
parameters, we generate 10 graph instances leading to a total of 200 graph instances.

Empirical analysis of embedding algorithms

We summarize our empirical evaluation of a few embedding algorithms.
Consistent embedding is analyzed in Fig. 8. Within the two target subnetworks, we 

observe that walk-based methods, PPR and MOD, do a fairly good job in prioritizing 
target nodes for subsequent selection. PPR is much more robust as the strength of 
the anomalous subnetwork weakens relative to the background network. Node2vec, 
by contrast, struggles in the same regions, though it seems to do slightly better once 
the agent discovers the second subnetwork. It is possible that increasing the dimen-
sionality of the feature vectors would lead to improved performance, however this 
method is computationally intensive as we consider embeddings over many learning 
iterations and many graph instances. Overall, across all the embeddings, we observe a 
strong drop in performance when transitioning between exploitation and exploration 
regimes. We observe similar embedding sensitivity to decreasing levels of SNR. These 
observations highlight the role of offline policy learning in recognizing and adapting 
to changing discovery regimes and sparse task-related signals.

Compressability of state-action space is illustrated in Fig.  9. Similar to the accu-
racy metric, PPR and MOD appear to do the best job of quickly collapsing to a set of 
node positions as enough target nodes are collected. Again, node2vec appears to be 
a poor choice, but does exhibit some compressability in the higher SNR cases. The 
graph (a.k.a. matrix) factorization approaches appear to follow the expected trend of 
degrading in performance with a reduction of SNR.

Robustness to increasing signal complexity is demonstrated by Fig.  10, which rep-
resents the integrated accuracy over the entire selective harvesting task. The same 
trends discussed in the accuracy section are illustrated here. This figure delineates, 
at an aggregate level, the network topology characteristics where simple embedding 
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heuristics are sufficient to support effective selective harvesting (lighter color regions) 
and those topology characteristics where offline planning is required.

Learning convergence time is analyzed in Fig.  6, which shows the performance of 
each embedding paired with policy learning after N episodes of training. We demon-
strate in Fig. 6a that without embedding, the convergence time is likely to be very long 
and requires a high capacity network. We show representative embeddings from the 
walk-based and factorization appraoches in Fig. 6b, c; and observe that they converge 
in a consistent way to their entropy and accuracy scores. We illustrate this by analyz-
ing the test case described in Fig. 4a, but the behavior is consistent for all the differ-
ent test cases considered. Overall we observe that embedding quality directly impacts 

Fig. 8  Accuracy index versus time step for all tested embeddings and configurations. The results are 
arranged from top to bottom by the embedding type: PPR, MOD, GLEE, Laplacian, PCA, and Node2Vec. The 
anomaly density value for each plot represents the edge density of the anomaly or target subnetwork and P 
represents the density of the background network. The anomalies get sparser from left to right, causing the 
discovery task to increase in complexity and in general for the performance of each embedding to diminish. 
On the other hand, for a fixed anomaly density value, decreasing the background density P makes the 
discovery task easier. We observe that PPR, MOD, GLEE, and Laplacian embedding all perform well on the task 
and PPR maintaining the best performance. Note that the sharp dips in the plots correspond to regions when 
the agent has to travel from the first anomalous subnetwork to the second and there are no target nodes in 
the boundary set
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convergence time and ultimately the ability of the discovery algorithm to achieve the 
downstream task objective with budget and resource constraints.

Across the various evaluation metrics and learning regimes, we consistently observe 
PPR outperforming other embedding algorithms in best augmenting discovery policy 
learning for selective harvesting. The success of PPR across the various evaluation 
metrics could be explained by the shared characteristics between the selective har-
vesting task and the PPR algorithm. Both algorithms rely on the concept of explor-
ing local, relatively dense neighborhoods from a seed node. The same rationale can 
explain the relative success of the MOD heuristic, though MOD does not have the 
randomness feature that allows PPR to handle sparser distributions of target nodes. 
The rest of the embedding approaches lack the seed-centric embedding property and 
therefore never match the overall performance of PPR. Our hypothesis, however, is 
that consideration of alternative downstream tasks, might imply a different ranking of 
suitable embedding methods.

Fig. 9  Entropy versus time step for all tested embeddings and configurations. Here we see that MOD, PPR, 
LAPLACE, and GLEE are able to compress the action space, which is indicated by the sharp drops in entropy 
before the entire anomaly has been discovered ( < 40 steps). This is especially pronounced in the easier 
cases, e.g. denser anomalies, illustrated in the leftmost plots for each embedding. Sharp increases in entropy 
values correspond to the agent moving from one anomalous subnetwork to the other and it is faced with 
intermediate boundary sets with no target nodes
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Conclusions and future work
We introduced NAC, a deep RL framework for task-driven discovery of incomplete 
networks. NAC learns offline models of reward and network-discovery policies based 
on synthetically generated training data. NAC is able to learn effective strategies for 
the task of selective harvesting, especially for learning scenarios where the target class 
is relatively small and difficult to discriminate. We show that NAC strategies transfer 
well to unseen and more complex network topologies including real networks. We 
analyze various network embedding algorithms as mechanisms for supporting fast 
navigation through the large network state space. Across several metrics of evalua-
tion, we identify personalized Pagerank as a robust network embedding strategy that 
best supports planning for the task of selective harvesting. We leave analysis of alter-
native downstream tasks and their respective suitable network embedding for future 
work.

Our approach opens up many interesting venues for future research. The effec-
tiveness and convergence of our algorithm relies on being trained on sufficiently 
representative training data. It is valuable to further explore and quantify the limits 
of transferability of synthetically generated training sets. Our current framework is 
flexible enough to incorporate additional discovery strategies generated from other 
methods, as part of the offline training process. This feature can lead to more efficient 
discovery strategies, but we leave that careful analysis for future work. Additionally, 
for convenience and processing speed, we chose to encode our policy with a standard 
convolutional neural network. Understanding the impact of utilizing alternative neu-
ral network designs, such as graph convolutional networks, is an interesting future 
research direction. Finally, the NAC framework is general enough to support discov-
ery for other network learning tasks. It is valuable to explore how a different learning 
objective changes the training, convergence, and generalizibility requirements.

Fig. 10  AUC versus background and anomaly density for all tested embeddings. In general, we observe that 
PPR performs best in all scenarios presented in “Data generation for embedding analysis” section
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