
Selective network discovery via deep
reinforcement learning on embedded spaces
Peter Morales1*  , Rajmonda Sulo Caceres1 and Tina Eliassi‑Rad2 

Introduction
Complex networks are critical to many applications such as those in the social, cyber,
and bio domains. We commonly have access to partially observed data. The challenge is
to discover enough of the complex network so that we can perform a learning task well.
The network discovery step is especially critical in the case where the learning task has
the characteristics of the “needle in a haystack” problem. If the discovery process is not
carefully tuned, the noise introduced, almost always, overwhelms the signal. This pre-
sents an optimization problem: how should we grow an incomplete network to achieve
a learning objective on the network, while at the same time minimize the cost of observ-
ing new data?

In this work, we view the network discovery problem from a decision-theoretic lens,
where notions of utility and resource cost are naturally defined and jointly leveraged in

Abstract 

Complex networks are often either too large for full exploration, partially accessible, or
partially observed. Downstream learning tasks on these incomplete networks can pro‑
duce low quality results. In addition, reducing the incompleteness of the network can
be costly and nontrivial. As a result, network discovery algorithms optimized for specific
downstream learning tasks given resource collection constraints are of great interest.
In this paper, we formulate the task-specific network discovery problem as a sequential
decision-making problem. Our downstream task is selective harvesting, the optimal
collection of vertices with a particular attribute. We propose a framework, called net‑
work actor critic (NAC), which learns a policy and notion of future reward in an offline
setting via a deep reinforcement learning algorithm. The NAC paradigm utilizes a task-
specific network embedding to reduce the state space complexity. A detailed com‑
parative analysis of popular network embeddings is presented with respect to their
role in supporting offline planning. Furthermore, a quantitative study is presented on
various synthetic and real benchmarks using NAC and several baselines. We show that
offline models of reward and network discovery policies lead to significantly improved
performance when compared to competitive online discovery algorithms. Finally, we
outline learning regimes where planning is critical in addressing sparse and changing
reward signals.

Keywords:  Incomplete networks, Reinforcement learning, Network embedding

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Morales et al. Appl Netw Sci (2021) 6:24
https://doi.org/10.1007/s41109-021-00365-8 Applied Network Science

*Correspondence:
pmorales@mit.edu
1 MIT Lincoln Laboratory,
Lexington, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-4924-0892
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-021-00365-8&domain=pdf

Page 2 of 20Morales et al. Appl Netw Sci (2021) 6:24

a sequential, closed-loop manner. In particular, we will leverage Reinforcement Learn-
ing (RL) and its mathematical formalism, Markov Decision Processes (MDP): a general
decision-theoretic model that allows us to treat network discovery as an interactive,
sequential learning and planning problem. MDP approaches have been successfully used
in many other application settings (Mnih et al. 2015; Heess et al. 2017; Silver et al. 2017).
However, the use of decision-theoretic approaches in the context of discovery of com-
plex networks is novel and presents very interesting research opportunities. In particu-
lar, it requires learning effective models of reward that can capture properties of network
structure at various topological scales and learning contexts. The network science com-
munity has defined many such topological and task quality metrics; but, to-date, they
have not been leveraged in the context of guiding the process of network discovery. We
consider the task of selective harvesting on graphs (Murai et al. 2017), where the learn-
ing objective is to maximize the collection of nodes of a particular type, under budget
constraints. We make the following contributions:

•	 We introduce a deep RL framework for task-driven discovery of incomplete net-
works. This formulation allows us to train models of environment dynamics and
reward offline.

•	 We show that, for a variety of complex learning scenarios, the added feature of
learning from closely related scenarios leads to substantial performance improve-
ments relative to existing online discovery methods.

•	 We show that network embedding can play an important role in the convergence
properties of the RL algorithm. It does so by imposing structure on the network
state space and prioritizing navigation over this space.

•	 Among a class of embedding algorithms, we identify Pagerank (PPR) as a suitable
network embedding algorithm for the selective harvesting task. Our combined
approach of PPR embedding and offline planning achieves substantial reductions
in training time.

•	 Leveraging several evaluation metrics, we delineate learning regimes where
embedding alone stops being effective and planning is required.

•	 Our approach is able to generalize well to unseen real network topologies and new
downstream tasks. Specifically, we show that policies discovered by training on
synthetically generated networks translate well to detection of anomalous nodes
in real-world networks.

Related work
Our learning task falls under the category of finding the largest number of a particular
type of node under budget constraints. The node type can be specified by node attrib-
utes (for example, males on a social network), or they can be determined by node’s
participation in a particular class of behavior (for example, accounts that belong to
dense bipartite subgraphs in a communication network). Unlike the problem setting
in Wang et al. (2013), we do not assume access to the full topology of the network and
therefore have to perform the learning task with partial information.

Page 3 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

Discovering incomplete networks with limited resources has received a lot of attention
in recent literature. The primary learning objective in these works is to increase the vis-
ibility of the network topology by increasing the number of discovered nodes (LaRock
et al. 2018, 2020; Soundarajan et al. 2015, 2016), increasing the number of discovered
nodes of a given type (Murai et al. 2017), or increasing network coverage (Avrachen-
kov et al. 2014). Our problem setting is the closest to Murai et al. (2017). However,
while Murai et al. (2017) leverages supervised learning to infer discovery heuristics,
our approach leverages an MDP formulation of RL to estimate offline models of net-
work discovery strategies (a.k.a. policy) and node utility (a.k.a. reward) that are network
state-aware. More specifically, our approach explicitly connects the utility of a discov-
ery choice to the network state when that choice was made. We will illustrate in later
sections that learning state-dependent discovery strategies, allows our approach to stay
robust in learning scenarios where nodes of interest are sparsely observed. In LaRock
et al. (2018, 2020), they frame their network discovery task as an MDP, but they only
consider online training of their policy. The online-only training, we will show, suffers
from tunnel vision and is not able to generalize well.

Reinforcement learning for tasks on complex networks is a relatively new perspective.
Work in Ho et al. (2015) and Goindani and Neville (2019) leverages RL to engineer diffu-
sion processes in networks assumed to be fully observed, while authors in Mofrad et al.
(2019) focus on the problem of graph partitioning. You et al. (2018) leverage RL to gen-
erate novel molecular graphs with desired domain-specified properties. There are con-
nections to our problem setting. The graph generation is approached as an MDP, in a
similar fashion to our network discovery problem, by iteratively expanding a seed graph
via defined actions. There are, however, some important differences with our work. Their
definition of reward and environment dynamics is tailored to the biochemical domain
and molecular design application, which is characterized by a comparatively small state
space and fixed-sized action space.

In our problem setting, the agent deals with a much larger network space and a larger
and variable-sized action space. To address this increased complexity, we introduce a
network embedding step that enables a more efficient navigation of the decision space.
Our notion of reward is also more general, in that we do not utilize domain-specific
properties to guide the learning process. Since we cannot rely on added information pro-
vided by the domain-specific properties (e.g., biochemistry), we had to carefully model
ways of introducing topological diversity in our policy training data. Others (Dai et al.
2017; Mittal et al. 2019) have leveraged deep RL techniques to learn a class of greedy
optimization heuristics on fully observed networks. We summarize key differences
between our method and related methods in Table 1.

Problem definition
We start with the assumption that a network contains a target subnetwork representing
a set of relevant nodes. The decision-making agent can initially observe only part of the
original network G0 = (N0,E0) , where some of its nodes have their relevance status C0
revealed; 0 representing non-target nodes and 1 representing target nodes.

The agent has a pre-specified way by which it can interact with the partially observed
network: at each step, it is allowed to query the label of one selected observed node

Page 4 of 20Morales et al. Appl Netw Sci (2021) 6:24

whose label is unknown. We call this type of node a boundary node. The environment
responds by revealing the label of the queried node as well as its neighboring nodes
(but not their labels). An immediate reward is given if the selected (i.e., queried) node
is a target node. The agent’s overall objective is then to strategically grow the original
network over a sequence of steps, so that it can discover as many relevant nodes as
possible under the query budget constraints. This problem may be stated as a Markov
Decision Process (MDP). An MDP is defined by the tuple 〈S ,A,T , r, γ 〉:

•	 State space: Let {Mi} be a set of random graph models, each defining a set of net-
work instances {Gi} defined over a set of nodes V. We define the state space as
S =

⋃

Mi {st = Gi
t} , the set of partially-observed network instances Gi

t = {V i
t ,E

i
t}

discovered at intermediate time-steps t, where V i
t ⊆ V and Ei

t ⊆ E . Each v ∈ V i
t

has a label C(v) ∈ { 0, 1,*} , representing non-target, target and unobserved node
states, respectively. Ei

t is the set of edges induced by V i
t  . The state space includes

the initial state Gi
0 that contains at least one target node, as well as the terminal

state which is the fully observed network instance Gi.
•	 Action space: For each network instance Gi , we define the action space as

A = {At} , where At = {a = v} is the set of boundary nodes v, observed at time-
step t : {v ∈ Vt ,C(v) = ∗}.

•	 Transition function: T (st , at , st+1) = P(st+1|st , at) encodes the transition prob-
ability from state st to st+1 given that action at was taken. Let v be the selected
node by action at . Then st+1 = st ∪ C(v) ∪ Nv ∪ ENv , where Nv are the neighbors
of node v and ENv are all the edges incident to Nv . For each network instance Gi ,
the transition function is deterministic: T (st , at , st+1) = 1.

•	 Reward function: r(st , at) returns the reward gained by executing action at in state
st and is defined as: r(st , at) = 1 if C(at) = 1 . The total cumulative, action-specific
reward, also referenced as the action-value function Q, is defined as,

Table 1  Comparison of NAC features with related methods

Method State space Action
space

Observability Learning
goal

Learning
framework

Policy
training

State
embedding

NOL
(LaRock
et al.
2018)

Large Dynamic Partial Vertex
property

MDP Online No

D3TS (Murai
et al.
2017)

Large Dynamic Partial Vertex
property

Supervised Online No

GCPN (You
et al.
2018)

Small Fixed Full Graph
property

MDP Offline on
given
dataset

No

NAC Large Dynamic Partial Vertex
property

MDP Offline and
online on
designed
dataset

Yes

Page 5 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

 with γ ∈ [0, 1] representing a discount factor that captures the utility of exploring
future graph states and h is the horizon length. Figure 1 gives a simple illustration of
how this cumulative reward is computed over a network topology. In the next sec-
tion, we describe in detail our deep reinforcement learning algorithm.

Network actor critic (NAC) algorithm
Our network discovery algorithm has two main components as illustrated in Fig. 2.
The first component, “Compress State Space”, is concerned with effective ways of
representing the large network state space so that policy learning can happen effi-
ciently relative to our selective harvesting task. The second component, “Plan”, uti-
lizes the reinforcement learning framework and offline training to learn task-driven
discovery strategies. We discuss both components in detail in the rest of this section.

(1)Q(s, a) =

[

h
∑

t=0

γ t rt+1|s, a

]

,

Fig. 1  Illustration of estimation of cumulative reward of current state s = s0 over a horizon of
length h = 3 , and discount factor γ = 0.5 . The current state s is comprised of 3 types of nodes:
unknown (grey), target-nodes (red), non-target nodes (black); red nodes represent the node
type we would like to discover. The figure shows an instantiation of policy π , starting at state
s, corresponding to a path of length h = 3 . We calculate the cumulative discounted reward
of state s based on taking action a1 at t = 0 and following the highlighted path as follows:
Q(s, a1) = γ t ∗ rt+1 + γ t+1 ∗ rt+2 + γ t+2 ∗ rt+3 = 1 ∗ 0+ 1/2 ∗ 0+ 1/4 ∗ 1 = 1/4

Fig. 2  Schematic approach of NAC algorithm. In the first component, NAC uses a network embedding and
truncation step to avoid an explosion in the state-action space as the network grows. The truncation block
ensures a constant size input into the learned policy. In the second component, NAC uses reinforcement
learning to learn a policy offline

Page 6 of 20Morales et al. Appl Netw Sci (2021) 6:24

Compression of network state space

Training an effective network discovery agent implies exploration over an extremely
large network space. However, not all observations contribute to learning better dis-
covery policies. In fact, for the task of selective harvesting, we can identify three rep-
resentative, higher-level abstractions of the network states illustrated in Fig. 3.

In the first canonical case, discovery starts within the region of interest, where
many of the relevant nodes we need to discover are nearby. In networks whose states
are similar to this canonical case, the optimal discovery agent would follow localized
paths and primarily exploit rather then explore new regions. In the second canonical
case, discovery starts outside the region of interest and the agent has to now explore
longer, deeper paths in order to reach the target region. Finally, there is a hybrid
canonical case, where discovery can start in the boundary of the target region and the
agent has to more carefully decide when to exploit and when to explore.

In order to map network states into canonical representations, we consider vari-
ous network embedding approaches. Specifically, we look at popular walk-based
algorithms (Grover and Leskovec 2016; Taher 2003; Murai et al. 2017) and matrix-
factorization algorithms (Pearson 1901; Torres et al. 2020; Belkin and Niyogi 2003).
The embedding step learns a new similarity function between nodes in a network.
Since our downstream task is selective harvesting from a seed node, we reorder the
rows of the original adjacency matrix based on the new learned distance from the
seed node, with closer nodes being ranked higher. The reordering step makes sure the
discovery algorithm observes a prioritized set of boundary nodes. For additional effi-
ciency gains, we truncate the reordered adjacency matrix and only retain the network
defined by the top k nodes. k, is a hyperparameter, which the user selects; it defines
the supporting network for computing potential discovery trajectories and long-term
reward. For training our algorithm, we found k = 256 to perform well after incremen-
tally lowering its value from the number of nodes in the network. In practice, larger
values of k can be utilized during training, but they incur a higher computational
costs at no substantial increase in algorithmic performance.

In “Role of network embedding” section, we present a detailed evaluation of various
embedding algorithms and identify the role that they play in supporting the planning
component of NAC. Among the embedding algorithms we study, we identify per-
sonalized Pagerank (PPR) (Taher 2003) as performing the best in supporting policy

Fig. 3  Representative high level abstractions of network states for selective harvesting task

Page 7 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

learning for selective harvesting. For the rest of the paper, we assume that the plan-
ning agent only sees the compressed state representation, that is, the state that has
gone through the sequence e of operations: embed, re-order and truncate: st = e(st).

Offline learning and policy optimization

In our setting, learning of discovery strategies happens offline over a training set of pos-
sible discovery paths. “NAC performance results” section describes how we generate
these paths.

Each path τh represents an alternating sequence of discovered subnetworks and actions
{�s0, a0�, �s1, a1�, . . . , �ah, sh�} , taken over h steps. Since in this setting we have access to
the ground-truth node labels, we can map each discovery path to the corresponding
cumulative reward value using Eq. 1. An illustration is given in Fig. 1.

Given the sampled trajectories, one of our learning objectives becomes to approximate
the action-value function by minimizing the loss LQ(φ),

We formulate this objective by taking the input tuples of discovered subnetworks
st , boundary nodes at and corresponding cumulative reward values Qt , such that
�xt = (st , at), yt = Qt�.

The approximated reward function Qφ is subsequently used to estimate the policy
function πθ (s) = P(a|s) , which defines the probability of selecting action a at state s. This
is achieved by training a convolutional neural network with the network embedding as
input and a softmax probability as output over the action space. Actions are selected
via an argmax over the output probabilities. The parameters of the convolutional neural
network are updated via gradient ascent and its objective function is defined in Eq. 5.

We estimate the advantage of choosing one node versus another at state st,

This advantage is used to scale the policy gradient estimator, typically defined as,
ĝt = Êt

[

Ât∇θ log πθ

]

 , where Êt [·] is the empirical average over a finite batch of samples.

We utilize a proximal policy optimization (PPO) method (Schulman et al. 2017) in order
to compute this gradient. PPO methods are widely utilized for policy network optimiza-
tion and have been demonstrated to achieve state of the art performance on graph tasks
(You et al. 2018). The objective function utilized is defined in Eq. 4,

Here, ǫ is used to bound the objective function and help with convergence. The function
clip(·) keeps the ratio πθ

πθold
 within [1− ǫ, 1+ ǫ] (Pascanu et al. 2013). Note that when the

estimated expectation in Eq. 4 is expanded πθ
πθold

 becomes πθ (s,a)
πθold (s,a)

 , where πθ (s, a) is the

probability of the current policy selecting action a when in state s; and πθold(s,a) is proba-
bility of the previous policy selecting the same action a when in state s.

(2)LQ(φ) = ||yt − Qφ(xt)||
2
2.

(3)Ât = Qφ(st , at)−
∑

a∈A

Qφ(st , a).

(4)LCLIPt (θ) = Êt

[

min

(

πθ

πθold

Ât , clip

(

πθ

πθold

, 1− ǫ, 1+ ǫ

)

Ât

)]

.

Page 8 of 20Morales et al. Appl Netw Sci (2021) 6:24

During offline training, we modify the objective in Eq. 4 to encourage exploration
and reduce the number of required training epochs to converge to a solution. For Eq. 5,
S(πθ (st)) denotes the entropy of policy πθ over actions a in state st . c is a fixed constant
that captures the weight of the entropy term,

Both learning objectives (2) and (5) are jointly optimized via an actor critic training
framework. This framework is detailed further below in the description of the Network
Actor Critic (NAC) algorithm. To help with training times, multiple instantiations of
agents are run in parallel. Collected {st , at ,Qt} values are gathered from each agent and
are stored in a buffer β which is used to compute the losses for the value function and
policy networks after a fixed number of iterations T.

Training and network details

The NAC algorithm is updated differently during offline training versus online evalu-
ation. During offline training, the Adam optimizer (Kingma and Ba 2014) is used to
update network parameters θ and φ for the policy and value function networks. In offline
training, eight agents are run in parallel, carrying out the anomaly discovery task each
on a unique network realization generated using one of the network models outlined in
Table 2. Each network model is chosen with equal probability and their parameters are
drawn uniformly at random from the parameter ranges defined in Table 2. Each inde-
pendent agent contributes data to a common buffer, later used for learning the param-
eters of the value and policy functions. The use of multiple agents helps generate more
training data faster. More agents will lead to further reductions of training time.

Hyper-parameter searches were performed in a grid search manner for both offline
and online values. During offline training, the hyper parameters used are: T = 32 , h = 4 ,
c = 0.2 , ǫ = 0.1 , γ = 0.1 , and learning rate � = 1e−4 . With the exception of h, these

(5)LCLIP+S
t (θ) = LCLIPt (θ)+ cS(πθ (st)).

Page 9 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

parameters generally did not affect the overall final performance of the network, but did
alter the convergence rate. We found that going beyond h = 5 reduced overall perfor-
mance of the learned policy. For online evaluation, we used a single agent and param-
eters T = 1 , h = 1 , γ = 1 , c = 0.0 , and � = 1e−3 . The change in hyper-parameters,
specifically removing the exploration components, reflects moving from the training
setting which benefits from sufficient exploration of the search space, to a fully greedy
online policy that favors exploitation. The policy and value function networks are both
comprised of 3 convolutional layers with 64 hidden channels and a final fully connected
layer. The value function is regressed using the loss function described in Eq. 2, while the
policy network is trained using the objective function described in Eq. 5.

NAC performance results
We evaluate our algorithm against several learning scenarios for both synthetic and real-
istic datasets. The NAC agent always starts the exploration from a seed subnetwork that
contains 1 target node. Next we describe our datasets and baselines used for comparison.

Datasets

Synthetic datasets

We generate synthetic graphs by modeling background networks (i.e., networks that do
not contain any target nodes), and foreground networks (i.e., networks that only contains
target nodes). There are edges that connect the foreground and background nodes to
each other.1

We use two models to generate samples of background networks. Stochastic Block
Model (SBM) (Holland et al. 1983) is a commonly used random graph model, which
allows us to model community structure as dense subgraphs sparsely connected with the
rest of the network. Lancichinetti–Fortunato–Radicchi (LFR) model (Lancichinetti et al.
2008) is another frequently used random graph model, which allows us to simulate net-
work samples with skewed degree distributions and skewed community sizes, and there-
fore is able to capture more realistic and complex properties of real networks. We use
the Erdős–Renyi (ER) model (Holland et al. 1983) to simulate the foreground network.
ER is a random graph model where nodes are connected with equal probability pf  . This

Table 2  Detailed list of parameter values used for synthetic networks

Number of nodes is represented by N = 4000 . SBM parameters are: k represents the number of communities, pi the edge
probability for within-community i, r the across-community edge probability, such that pi > r . LFR parameters are: τ1, τ2
skewness parameters for degree and cluster size distributions respectively, 〈d〉 represents the average network degree,
dmin, dmax represent the min and max values of degree distribution, minc and maxc represent the sizes of smallest and
largest clusters, and finally nf , kf , pf represent the size of the foreground subnetwork, number of foreground subnetworks
and its edge probability, respectively

Model Type Parameters

SBM Background k = [1, 10], pi = [0.01, 0.4], r = [0.005, 0.25], i = 1 . . . k

LFR Background τ1 = [3, 2], τ2 = (1, 1.9],µ = [0.1, 0.4], �d� = [32, 256] ,
dmax = [256, 2048], minc = [256, 1000], maxc = [512, 2000]

ER Foreground nf = {30, 40, 80}, kf = {1, 2, 4}, pf = [0.5, 1]

1  In this section, we use the terms foreground and target (sub)networks interchangeably.

Page 10 of 20Morales et al. Appl Netw Sci (2021) 6:24

allows us to control the density of the foreground networks. Table 2 lists the parameter
choices for all the aforementioned models.

In order to create a background plus foreground network sample, we select a subset of
the nodes from the background network that will represent the target nodes. We then
simulate an ER subnetwork on these nodes and replace their background induced sub-
network with the ER subnetwork, while maintaing the edges from the target nodes to
the rest of the background nodes.

Real datasets

We analyzed two Facebook datasets (Rozemberczki et al. 2018) representing pages of
different categories as nodes and mutual likes as edges. For both cases, we study the dis-
covery of a target set of nodes, where we control how we generate and embed them in
the background network. In particular, we embed a synthetic foreground subnetwork
consisting of a denser (anomalous) ER graph with size nf = 80 and density pf = 0.003 .
We also consider the Livejournal dataset (Murai et al. 2017). This dataset represents
an online social network with users representing nodes, and their self-declared friend-
ships representing edges. For each user, there is also information on the groups they
have joined. Similar to Murai et al. (2017), we use one of the listed groups as the target
class. The Livejournal dataset represents a departure from the two Facebook datasets,
both in terms of its much larger size, but also because the target class does not repre-
sent an anomaly. Table 3 describes a few topological characteristics of the real networks
described here, as well as details on their target classes.

Baselines

We evaluate NAC by comparing its performance to two top-performing online network
discovery approaches. The Network Online Learning (NOL) (LaRock et al. 2018, 2020)
algorithm learns an online regression function that maximizes discovery of previously
unobserved nodes for a given number of queries. We modify the objective of NOL to
match our problem setting by requiring the discovery of previously unobserved nodes
of a particular type. A second baseline we consider is the Diversity Dynamic Thompson
Sampling ( D3TS ) (Murai et al. 2017) approach. D3TS is a stochastic multi-armed bandit
approach that leverages different node classifiers and Thompson sampling to diversify
the selection of a boundary node. We also compare to a simple fixed node selection heu-
ristic referenced in Murai et al. (2017) called Maximum Observed Degree (MOD). At
every decision step, MOD selects the node with the highest number of observed neigh-
bors that have the desired target label. Finally, we compare to the heuristic that at each
step selects the node with the highest PPR network-embedding score.

Table 3  Characteristics of the real networks and corresponding target classes

Name # Nodes # Edges Target type Target size

Facebook politician 5908 41,729 Synthetic 80

Facebook TV shows 3892 17,262 Synthetic 80

Livejournal ≈ 4000 k ≈ 35,000 k Real ≈ 1400

Page 11 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

Learning scenarios

In the first learning scenario, the goal is to detect a set of distributed anomalous nodes.
They are represented by two cliques, each containing 40 nodes, that are 2 to 3 hops away
from each other. The training instances are networks generated by the SBM model, while
the test cases are network instances generated by the LFR model. In this scenario, the
discovery agent has to figure out (1) how to value longer exploration paths over the cost
of including nodes not in target set, and (2) how to adjust to topological differences
between training and testing instances. In Fig. 4a, we consider a test case where detacta-
bility of the two cliques with complete network information is relatively easy (average
background density around the cliques is comparatively low). We observe that all the
methods are able to find the first clique, yet all the baselines struggle once they enter
the region where no clique nodes are present. The baselines eventually find some of the
second clique’s nodes, but they are unable to fully retrieve the entire second clique. NAC
is able to leverage estimation of long-term reward and access to the offline policy to fully
recover both cliques. Furthermore, NAC is able to generalize to the more complex LFR
topology.

In Fig. 4b, we consider a much harder case. The foreground networks are two disjoint
denser subnetworks, 2–3 hops away, each with density 0.2 in a background of density
0.05. Even though these foreground networks are denser than the background network,
they are still much sparser than the cliques embedded in the first learning scenario. In
fact, their relative density parameters are close to the undetectability bound (Nadakuditi
and Newman 2012). In this case, neither of the baselines learns how to recover the sec-
ond foreground network. NAC goes through a longer exploration phase, but eventually
learns how to grow the network to identify the second foreground network.

In Fig. 5, we illustrate how our model trained on synthetic background networks gen-
eralizes to realistic background topologies. For this scenario, we trained with instances
from both the LFR and SBM models. We observe that NAC generalizes very well to the
Facebook network topologies and is able to fully discover the target nodes (Fig. 5a, b).
Note the substantial performance improvement when we compare to the other network
discovery baselines. The Livejournal network in Fig. 5c presents a much more complex

Fig. 4  NAC discovers two anomalous, non adjacent cliques in a and two dense subnetworks in b.
Confidence intervals are generated by testing NAC’s performance on 200 background network instances
generated using 5 different models from Table 2. We move the location of the two foreground subnetworks
around, but maintain their relative distance of 2–3 hops

Page 12 of 20Morales et al. Appl Netw Sci (2021) 6:24

discovery challenge both in terms of the size and realism the network (see Table 3 for
details). In particular, the target network is not synthetically generated as was the case
with the Facebook networks, and we do not know the underlying process that generated
this target network. Note that NAC is able to overcome the most competitive baseline
D3TS at about iteration 900, when it has seen a bit more than a third of the target nodes
(600 nodes). After this point, NAC is able to recover the remaining target nodes at a sub-
stantially faster rate than all the baselines.

Role of network embedding
In this section, we systematically explore the role of the embedding algorithm in sup-
porting better network discovery for selective harvesting. We consider two broad classes
of embedding methods: walk-based methods (Grover and Leskovec 2016; Murai et al.
2017; Taher 2003), and matrix factorization methods (Pearson 1901; Torres et al. 2020;
Belkin and Niyogi 2003).

As introduced earlier, Maximum Observed Degree (MOD) (Murai et al. 2017) is a
heuristic embedding which ranks nodes by the number of edges shared with a target
node. Personalized Page Rank (PPR) (Taher 2003) is a random-walk method which ranks
nodes by their estimated random-walk distance to an observed target nodes. We used
a damping parameter α = 0.8 . Node2vec (Grover and Leskovec 2016) is a deep-walk
based method which attempts to learn a neighborhood preserving representation for
each node in a given network instance. We used the following Node2vec parameters:
number of random walks = 5, length of each random walk = 40, and embedding dimen-
sion = 64. We ranked embedded nodes by estimating the Euclidean distance between
each node and the observed target nodes. For Principal Component Analysis (PCA)
(Pearson 1901), we compute the eigen-decomposition of the input adjacency matrix. We
estimate the node ranking by looking at the average Euclidean distance between a node
and observed target nodes.

Laplace Eigenmap Embedding (Eigenmap) (Belkin and Niyogi 2003) is a low-dimen-
sional graph representation based on spectral properties of the Laplacian matrix of a
graph. In this embedding, we represent vertices using the eigenvector corresponding to
the second smallest eigenvalue. Rank is estimated by looking at the absolute value of the

Fig. 5  NAC outperforms competitive online methods on real networks. For the Facebook networks (a, b),
confidence bounds are estimated using 200 instantiations of the foreground network using 5 different
parameter choices from Table 2 and varying the location where in the Facebook network we plant the
foreground instance. For the Livejournal network (c), we pick 200 hundred different nodes in the foreground
network, where the agent can start the exploration.

Page 13 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

dot product of embedding vectors as described in Torres et al. (2020). The embedding
dimension was set to 64.

Laplace Eigenmap Embedding (Eigenmap) (Torres et al. 2020) is a low-dimensional
graph representation based on geometric properties of the Laplacian matrix of a graph.
Unlike eigenmap, GLEE represents vertices using the eigenvector corresponding to the
largest eigenvalue. Ranking is estimated in the same way as Eigenmap. The embedding
dimension was set to 64.

Embedding evaluation metrics

Our evaluation of the embedding algorithm is in the context of its support to NAC’s
policy learning component. An effective RL agent for selective harvesting would benefit
from state approximations that reflect canonical states for this task (illustrated in Fig. 3).
This may imply differing embedding objectives than if we analyze network embedding
algorithms as standalone solutions. To this effect, we consider the following metrics for
evaluating the role of the embedding algorithm.

Consistent embedding

Ideally, we would like the embedding algorithm to place probed and unprobed target
nodes near each other. This property implies that NAC will have a higher chance of visit-
ing target nodes earlier than background nodes. To capture the consistency property of
the embedding algorithm e(·) , we measure, at every discovery step t, the accuracy of the
embedding algorithm in recovering the top k target nodes:

Compressability of state‑action space

In an ideal RL setting, the highest reward value Q(s, a) for a given action space will be
highly concentrated over the best action option. We can conceptualize this scenario
using a Gaussian distribution with mean represented by the reward value of the best
action and minimal variance. We favor node embeddings that concentrate favorable
actions—e.g., tightly clustering target nodes in the border set.

This entropy minimization concept is illustrated by Fig. 7. In 7a the entropy for
Q(s = Gt , a = u) is higher than Fig. 7b causing the policy π(a = u|s = Gt) to have higher
variance and lower probability of successfully selecting the “best” node.

To measure how the embedding algorithm supports this entropy minimization princi-
ple, we look at the variance over node rankings in the embedding space for each target
cluster and compute the entropy as follows,

where Bt is the set of target nodes in the border set at time step t.

Robustness to increasing signal complexity

A good embedding algorithm allows the discovery agent to stay robust as the
strength of the signal deteriorates and its complexity increases. We consider two

(6)Accuracyt(e(Gt)) =
#top k target nodes identified by embedding

#true target nodes
.

(7)HBt (e) = 0.5[1+ log(2πVar[e(Bt)])],

Page 14 of 20Morales et al. Appl Netw Sci (2021) 6:24

parameters: the strength of background class and the strength of target class and
vary them to explore both regions of high and low signal-to-noise ratio (SNR). To
capture robustness, we examine sensitivity to target and background model parame-
ters of Area Under the Curve (AUC), the aggregated accuracy metric over discovery
time-steps t,

Learning convergence time

A useful embedding algorithm reduces the number of episodes required to learn
effective discovery policies. The embedding algorithm does this by mapping network
states to fewer canonical representations that aid policy learning. Here we estimate
improvements in NAC’s convergence rates without and with access to the embed-
ding steps. Results are shown in Fig. 6.

(8)AUC =
∑

t

Accuracy(e(Gt)).

Fig. 6  NAC convergence behaviour with and without embedding. In a we see the impact of the large state
space on the convergence rate when the agent does not use an embedding of the network state. Given the
size of the state space, there is low probability that the agent will observe the same state multiple times, and
therefore learning is much slower and less generalizable. In contrast, we observe in b, c how the convergence
rate increases as the quality of the state embedding increases with respect to the target task

Fig. 7  Illustration of how quality of node embedding affects the quality of policy and reward functions; a
highly uncertain reward and policy functions, b highly concentrated reward and policy functions. Ideally, our
policy is distributed around the best action with minimal variance, so b is preferred

Page 15 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

Data generation for embedding analysis

We consider the following learning setting for our embedding analysis: the tar-
get class is a set of disjoint dense subgraphs within a background network. A vari-
ety of background and anomaly (target) densities are tested. For each learning step,
the incomplete graph is embedded and a ranking for all observed nodes is computed
and scored. An optimal policy is defined as navigating each step of the selective-har-
vesting task in the minimal number of steps. We utilize ground truth to navigate the
graph optimally. For illustration, in the setting of two anomalous subnetworks with 40
nodes each, separated by 2-hops, a perfect traversal is 81 steps long.

In our experiments, we consider the following parameters: each anomalous sub-
network has 40 vertices, and the background network consists of 2000 vertices. We
use stochastic block model to generate background instances at various densities.
Each background instance contains two communities with intra-community edge
probability p1 = p2 = 0.25 and inter-community edge probabilities r in the range
{0.01, 0.025, 0.05, 0.075, 0.1} . We use the ER model to generate anomalous subnet-
wors with edge probabilities pt in the range {0.25, 0.5, 0.75, 1} . For each unique set of
parameters, we generate 10 graph instances leading to a total of 200 graph instances.

Empirical analysis of embedding algorithms

We summarize our empirical evaluation of a few embedding algorithms.
Consistent embedding is analyzed in Fig. 8. Within the two target subnetworks, we

observe that walk-based methods, PPR and MOD, do a fairly good job in prioritizing
target nodes for subsequent selection. PPR is much more robust as the strength of
the anomalous subnetwork weakens relative to the background network. Node2vec,
by contrast, struggles in the same regions, though it seems to do slightly better once
the agent discovers the second subnetwork. It is possible that increasing the dimen-
sionality of the feature vectors would lead to improved performance, however this
method is computationally intensive as we consider embeddings over many learning
iterations and many graph instances. Overall, across all the embeddings, we observe a
strong drop in performance when transitioning between exploitation and exploration
regimes. We observe similar embedding sensitivity to decreasing levels of SNR. These
observations highlight the role of offline policy learning in recognizing and adapting
to changing discovery regimes and sparse task-related signals.

Compressability of state-action space is illustrated in Fig. 9. Similar to the accu-
racy metric, PPR and MOD appear to do the best job of quickly collapsing to a set of
node positions as enough target nodes are collected. Again, node2vec appears to be
a poor choice, but does exhibit some compressability in the higher SNR cases. The
graph (a.k.a. matrix) factorization approaches appear to follow the expected trend of
degrading in performance with a reduction of SNR.

Robustness to increasing signal complexity is demonstrated by Fig. 10, which rep-
resents the integrated accuracy over the entire selective harvesting task. The same
trends discussed in the accuracy section are illustrated here. This figure delineates,
at an aggregate level, the network topology characteristics where simple embedding

Page 16 of 20Morales et al. Appl Netw Sci (2021) 6:24

heuristics are sufficient to support effective selective harvesting (lighter color regions)
and those topology characteristics where offline planning is required.

Learning convergence time is analyzed in Fig. 6, which shows the performance of
each embedding paired with policy learning after N episodes of training. We demon-
strate in Fig. 6a that without embedding, the convergence time is likely to be very long
and requires a high capacity network. We show representative embeddings from the
walk-based and factorization appraoches in Fig. 6b, c; and observe that they converge
in a consistent way to their entropy and accuracy scores. We illustrate this by analyz-
ing the test case described in Fig. 4a, but the behavior is consistent for all the differ-
ent test cases considered. Overall we observe that embedding quality directly impacts

Fig. 8  Accuracy index versus time step for all tested embeddings and configurations. The results are
arranged from top to bottom by the embedding type: PPR, MOD, GLEE, Laplacian, PCA, and Node2Vec. The
anomaly density value for each plot represents the edge density of the anomaly or target subnetwork and P
represents the density of the background network. The anomalies get sparser from left to right, causing the
discovery task to increase in complexity and in general for the performance of each embedding to diminish.
On the other hand, for a fixed anomaly density value, decreasing the background density P makes the
discovery task easier. We observe that PPR, MOD, GLEE, and Laplacian embedding all perform well on the task
and PPR maintaining the best performance. Note that the sharp dips in the plots correspond to regions when
the agent has to travel from the first anomalous subnetwork to the second and there are no target nodes in
the boundary set

Page 17 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

convergence time and ultimately the ability of the discovery algorithm to achieve the
downstream task objective with budget and resource constraints.

Across the various evaluation metrics and learning regimes, we consistently observe
PPR outperforming other embedding algorithms in best augmenting discovery policy
learning for selective harvesting. The success of PPR across the various evaluation
metrics could be explained by the shared characteristics between the selective har-
vesting task and the PPR algorithm. Both algorithms rely on the concept of explor-
ing local, relatively dense neighborhoods from a seed node. The same rationale can
explain the relative success of the MOD heuristic, though MOD does not have the
randomness feature that allows PPR to handle sparser distributions of target nodes.
The rest of the embedding approaches lack the seed-centric embedding property and
therefore never match the overall performance of PPR. Our hypothesis, however, is
that consideration of alternative downstream tasks, might imply a different ranking of
suitable embedding methods.

Fig. 9  Entropy versus time step for all tested embeddings and configurations. Here we see that MOD, PPR,
LAPLACE, and GLEE are able to compress the action space, which is indicated by the sharp drops in entropy
before the entire anomaly has been discovered ( < 40 steps). This is especially pronounced in the easier
cases, e.g. denser anomalies, illustrated in the leftmost plots for each embedding. Sharp increases in entropy
values correspond to the agent moving from one anomalous subnetwork to the other and it is faced with
intermediate boundary sets with no target nodes

Page 18 of 20Morales et al. Appl Netw Sci (2021) 6:24

Conclusions and future work
We introduced NAC, a deep RL framework for task-driven discovery of incomplete
networks. NAC learns offline models of reward and network-discovery policies based
on synthetically generated training data. NAC is able to learn effective strategies for
the task of selective harvesting, especially for learning scenarios where the target class
is relatively small and difficult to discriminate. We show that NAC strategies transfer
well to unseen and more complex network topologies including real networks. We
analyze various network embedding algorithms as mechanisms for supporting fast
navigation through the large network state space. Across several metrics of evalua-
tion, we identify personalized Pagerank as a robust network embedding strategy that
best supports planning for the task of selective harvesting. We leave analysis of alter-
native downstream tasks and their respective suitable network embedding for future
work.

Our approach opens up many interesting venues for future research. The effec-
tiveness and convergence of our algorithm relies on being trained on sufficiently
representative training data. It is valuable to further explore and quantify the limits
of transferability of synthetically generated training sets. Our current framework is
flexible enough to incorporate additional discovery strategies generated from other
methods, as part of the offline training process. This feature can lead to more efficient
discovery strategies, but we leave that careful analysis for future work. Additionally,
for convenience and processing speed, we chose to encode our policy with a standard
convolutional neural network. Understanding the impact of utilizing alternative neu-
ral network designs, such as graph convolutional networks, is an interesting future
research direction. Finally, the NAC framework is general enough to support discov-
ery for other network learning tasks. It is valuable to explore how a different learning
objective changes the training, convergence, and generalizibility requirements.

Fig. 10  AUC versus background and anomaly density for all tested embeddings. In general, we observe that
PPR performs best in all scenarios presented in “Data generation for embedding analysis” section

Page 19 of 20Morales et al. Appl Netw Sci (2021) 6:24 	

Acknowledgements
We thank Timothy LaRock and Timothy Sakharov for help with the NOL and embedding experiments, respectively. We
also thank Ayan Chatterjee, Eric “Nick” Generous, and Kendra “V” Lange for feedback on this manuscript.

Authors’ contributions
Peter Morales (PM), Rajmonda S. Caceres (RSC) and Tina Eliassi-Rad (TER) jointly formulated the research direction. PM
and RSC jointly designed methodology, experimental setup as well as wrote the manuscript. PM implemented and ran
all experiments presented. PM, RSC, TER provided analysis and interpretation of experimental results. TER provided revi‑
sions of the manuscript.

Funding
This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this mate‑
rial are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and
Engineering. Distribution Statement A. Approved for public release. Distribution is unlimited.

Availability of data and materials
Data utilized for synthetic experiments are generated using the NetworkX library and the parameters outlined in Table 2.
Real datasets utilized are publicly available and are referenced in “Datasets” section. Experiment code will be shared upon
request. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors of this paper are unaware of any existing competing interests.

Author details
1 MIT Lincoln Laboratory, Lexington, USA. 2 Northeastern University, Boston, USA.

Received: 24 October 2020 Accepted: 19 February 2021

References
Avrachenkov K, Basu P, Neglia G, Ribeiro B, Towsley D (2014) Pay few, influence most: online myopic network covering. In:

IEEE conference on computer communications workshops, pp 813–818
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput

15:1373–1396
Dai H, Khalil EB, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. In: Pro‑

ceedings of the 31st international conference on neural information processing systems, pp 6351–6361
Goindani M, Neville J (2019) Social reinforcement learning to combat fake news spread. UAI
Grover A, Leskovec J (2016) node2vec scalable feature learning for networks. In: 22nd ACM SIGKDD international confer‑

ence on knowledge discovery and data mining
Heess N, Dhruva TB, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami SMA, Riedmiller MA, Silver D

(2017) Emergence of locomotion behaviours in rich environments. CoRR arXiv​:1707.02286​
Ho C, Kochenderfer MJ, Mehta V, Caceres RS (2015) Control of epidemics on graphs. In: 54th IEEE conference on decision

and control, pp 4202–4207
Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: first steps. Soc Netw 5(2):109–137
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: 3rd international conference on learning

representations
Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev

E 78:046110
LaRock T, Sakharov T, Bhadra S, Eliassi-Rad T (2018) Reducing network incompleteness through online learning a feasibil‑

ity study. In: The 14th international workshop on mining and learning with graphs
LaRock T, Sakharov T, Bhadra S, Eliassi-Rad T (2020) Understanding the limitations of network online learning. Appl Netw

Sci 5(1):60
Mittal A, Dhawan A, Medya S, Ranu S, Singh AK (2019) Learning heuristics over large graphs via deep reinforcement

learning. CoRR arXiv​:1903.03332​
Mnih V, Kavukcuoglu DS, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen

S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control
through deep reinforcement learning. Nature 518:529–533

Mofrad MH, Melhem R, Hammoud M (2019) Partitioning graphs for the cloud using reinforcement learning. CoRR arXiv​
:1907.06768​

Murai F, Rennó D, Ribeiro B, Pappa GL, Towsley DF, Gile K (2017) Selective harvesting over networks. Data Min Knowl Disc
32(1):187–217

Nadakuditi RR, Newman MEJ (2012) Graph spectra and the detectability of community structure in networks. CoRR arXiv​
:1205.1813

Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: International conference
on machine learning, pp III-1310–III-1318

Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572

http://arxiv.org/abs/abs/1707.02286
http://arxiv.org/abs/abs/1903.03332
http://arxiv.org/abs/abs/1907.06768
http://arxiv.org/abs/abs/1907.06768
http://arxiv.org/abs/abs/1205.1813
http://arxiv.org/abs/abs/1205.1813

Page 20 of 20Morales et al. Appl Netw Sci (2021) 6:24

Rozemberczki B, Davies R, Sarkar R, Sutton CA (2018) GEMSEC: graph embedding with self clustering. CoRR arXiv​
:1802.03997​

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. CoRR arXiv​
:1707.06347​

Silver D, Schrittwieser J, Simonyan K, Ioannis A, Ioannis HA, Arthur G, Arthur HT, Baker L, Lai M, Bolton A, Chen Y, Lillicrap
T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowl‑
edge. Nature 550:354–359

Soundarajan S, Eliassi-Rad T, Gallagher B, Pinar A (2015) MaxOutProbe an algorithm for increasing the size of partially
observed networks. CoRR arXiv​:1511.06463​

Soundarajan S, Eliassi-Rad T, Gallagher B, Pinar A (2016) MaxReach reducing network incompleteness through node
probes. In: ASONAM, pp 152–157

Taher H (2003) Haveliwala: topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans
Knowl Data Eng 15(4):784–796

Torres L, Chan KS, Eliassi-Rad T (2020) GLEE: geometric Laplacian eigenmap embedding. J Complex Netw 8(2):cnaa007
Wang X, Garnett R, Schneider J (2013) Active search on graphs. In: Proceedings of the 19th ACM SIGKDD international

conference on knowledge discovery and data mining
You J, Liu B, Ying R, Pande V, Leskovec J (2018) Graph convolutional policy network for goal-directed molecular graph

generation. In: Proceedings of the 32nd international conference on neural information processing systems, pp
6412–6422

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/abs/1802.03997
http://arxiv.org/abs/abs/1802.03997
http://arxiv.org/abs/abs/1707.06347
http://arxiv.org/abs/abs/1707.06347
http://arxiv.org/abs/abs/1511.06463

	Selective network discovery via deep reinforcement learning on embedded spaces
	Abstract
	Introduction
	Related work
	Problem definition
	Network actor critic (NAC) algorithm
	Compression of network state space
	Offline learning and policy optimization
	Training and network details

	NAC performance results
	Datasets
	Synthetic datasets
	Real datasets

	Baselines
	Learning scenarios

	Role of network embedding
	Embedding evaluation metrics
	Consistent embedding
	Compressability of state-action space
	Robustness to increasing signal complexity
	Learning convergence time

	Data generation for embedding analysis
	Empirical analysis of embedding algorithms

	Conclusions and future work
	Acknowledgements
	References

