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Introduction
COVID-19 is the latest addition to the long list of pandemics that scarred human his-
tory during the last millennium (Coronavirus 2020). COVID-19 has followed a similar 
course like the plague, flu and Ebola and claimed nearly 1.34 million lives globally as of 
November 2020, while its severity continues to burgeon in the US, UK, Brazil and parts 
of Asia (Coronavirus 2020; Mortality 2020). In the absence of any credible vaccination 
treatment (Adhikari et al. 2020), social distancing and lockdown measures emerged as 
the modus operandi to negate the surge in infection numbers. However, the projected 
slump in the world economy has compelled the policymakers in the developing nations 
to consider easing the mobility restrictions.

The primary concern of the health officials regarding this lockdown relaxation is the 
increased social interaction leading to a possible spike in infected counts which the 
healthcare facilities of even the most developed nations may be ill-equipped to com-
bat  (Coronavirus 2020). Such fears are a throwback to April 2020 when the national 
media reported a shortfall in intensive care unit beds and rising fatalities in the wake of 
the projected wave of COVID-19 cases (Coronavirus 2020). Recently, as many as 14 US 
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states have been compelled to reconsider their decision to ease lockdown restrictions, 
as the infection numbers soared and threatened to overwhelm the available healthcare 
resource  (Weeks 2020). The present state of affairs necessitates the design of dynamic 
lockdown policies that incorporate the economic and epidemiological ramifications of 
future pandemics and, more importantly, the healthcare resource budget of a region.

Related works

Susceptible‑exposed‑infected‑death (SEIRD) epidemic model

SEIRD (see “Data” section) has been used to model the effects of immunity, demog-
raphy as well as social distancing on the spread of COVID-19. Gharakhanlou applied 
SEIRD to create an agent-based simulation to show the effects of social contact and pro-
pose potential mitigation measures to contain the spread of COVID-19 in Urmia city, 
Iran (Gharakhanlou and Hooshangi 2020). Ghanam et al. present a bayesian method to 
estimate the parameters for the SEIRD model and quantify the impact of government 
intervention measures on infection spread (Ghanam et al. 2020). Lattanzio et al. studied 
the interrelationship of lockdown and mobility in Lombardy and London as well as the 
ill-effects of flouting social distancing regulations (Lattanzio and Palumbo 2020). Keep-
ing in mind, the debate over whether the recovered individual can be reinfected, Malkov 
et al. utilized SEIRD to study the effects of mitigation measures on reinfection and no-
reinfection scenarios  (Malkov 2019). Piccolomini et  al. adapted the SEIRD with time-
varying transmission rates to model restrictions imposed by the government to combat 
COVID-19 (Loli Piccolomini and Zama 2020; Piccolomini and Zama 2020).

Machine learning approaches

The lack of prior knowledge on COVID-19 leaves the policymakers ill-equipped to 
design mitigation strategies. Epidemiologists, health experts and computer scientists 
have joined forces to identify the socioeconomic factors and their implications on conta-
gion as well as economic downturn (Adhikari et al. 2020)—this includes using machine 
learning (ML) to build prediction models on epidemiological and clinical data. Given 
existing clinical data, prediction models  (Wynants 2020) and therapeutic approaches 
can help identify vulnerable groups (Alimadadi et al. 2020; Randhawa et al. 2020). Epide-
miologists are trying to identify spread dynamics of COVID-19. Holmdahl and Buckee 
(2020) analyzed the pros and cons of forecasting models that make predictions through 
curve fitting or mechanistic models, while supervised and unsupervised ML is helping 
trace the trends in infection dynamics  (Wang et al. 2020). Khan et al. used regression 
tree analysis, cluster analysis and principal component analysis on Worldometer infec-
tion count data to gauge the variability and effect of testing in the prediction of con-
firmed cases (Khan et al. 2020). Also, Roy et al. performed regression analysis to identify 
pre-lockdown factors that affect the post-lockdown pandemic numbers (Roy and Ghosh 
2020).

Issues in vaccine production and supply

There is a mistrust brewing over the efficacy of the vaccines. The public at large is scepti-
cal about the “rush” to put out the vaccine before adequate bouts of clinical testing (Mis-
trust 2020). Many believe that the undue optimism in releasing the vaccine can have 
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adverse health ramifications. Moreover, governments continue to plan to expedite this 
process by parallelizing the steps of research and trials as well as industrial-scale manu-
facture of vaccines (Testimony 2020). Third, vaccines must be affordable and accessible 
by all irrespective of the social or economic strata they belong to. This poses a policy-
making problem to guarantee the equity of resource allocation. There are several aspects 
to vaccine allocation from the standpoint of policymaking per se. There is an economic 
angle associated with the distribution of vaccines. Given that the vaccines will be stored 
at warehouses, it becomes crucial to minimize the economic overhead of transporting 
vaccines to the affected zones. Finally, there are political and market forces that may 
obtrude the vaccines from reaching the worst-hit states, making fairness a key factor for 
regulations.

Other epidemiological factors, such as population density, number of susceptible 
individuals and the infected ratio, play a role in the dynamics of infection spread (Far-
man et al. 2018). Population density governs the “contact with susceptible individuals” 
resulting in contagion (Tarwater and Martin 2001; Rocklöv and Sjödin 2020). Also, the 
spread and sustenance of an epidemic is contingent on whether there is an adequate 
number of susceptible hosts in the total population (Principles 2020). Finally, since the 
spread of infection depends on contact between a susceptible host and infected indi-
vidual  (Korolev 2020), high percentage of infected people in the total population (i.e., 
infected ratio) leads to contacts contributing to the spread of the outbreak. Thus, the 
policymaker also needs to factor in some or all of these aspects in determining the vac-
cine distribution policies across regions. Most importantly, in absence of adequate clini-
cal trials, the allocation strategies must take into consideration the innate uncertainty in 
the extent of immunity such vaccination can achieve (Lurie et al. 2020).

Contributions. In this work, we conceive a dynamic pandemic lockdown strategy that 
factors in public health infrastructure of a geographical region. The proposed approach 
built upon reinforcement learning (RL) allows agents to take decisions to maximize 
reward, while adapting to a complex and uncertain environment (Tuyls and Weiss 2012; 
Pecka and Svoboda 2014). We create an agent-based simulation environment running 
the ordinary differential equation-based SEIRD epidemic model  (Hethcote 2000) (dis-
cussed in “Scenario” section). A geographic region, modeled as an agent, is classified 
into zones, and each zone has a healthcare budget commensurate with its gross domes-
tic product (GDP). Each agent (or zone) periodically invokes the RL model to select a 
discrete lockdown level based on two different models (1) average velocity of the individ-
uals in that zone and (2) contact index: a measure of the average contact of individuals 
within a borough independent of the demographic factors like population density, both 
of which affect the rate of human contact. Both these models showcase the generaliz-
ability of our proposed framework which can readily be extended to other factors that 
may affect the contact rates of infected individuals with the susceptible population. We 
employ the queueing model to ensure that the number of hospitalizations is constrained 
by its available healthcare resource budget.

We design a simulation environment using the Python Simpy library  (Matloff 2008) 
that operates on the real demographic and epidemiological data from the 5 boroughs 
of New York City, namely Manhattan, Bronx, Brooklyn, Queens and Staten Island. We 
introduce a realistic model that employs real mobility traces and epidemic status of 
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individuals in each zone to determine inter-zone mobility. Moreover, we formulate a KL 
divergence minimization problem to learn the epidemiological parameters that yield 
the daily infected curve. The healthcare budget of each borough comprises a quanta of 
hospital facilities, each modeled, as per single server queueing theory, as a server with 
an inflow and outflow of patients. Our experiments show that despite the heterogeneity 
in infection dynamics, each borough effectively modulates its mobility to curb infection 
spread and consequent hospitalization. We also demonstrate how several simulation 
parameters can help regulate the overall cost associated with the time-varying dynamic 
lockdown strategy.

Materials and methods
Let us discuss the data used and the components of the proposed approach.

Data

•	 We consider 5 towns, called boroughs, in New York City (NYC), viz. Bronx, Brook-
lyn, Manhattan, Queens and Staten Island. We obtain the borough data, such as 
Gross Domestic Product (GDP), population density, etc., from Wikipedia  (Neigh-
borhoods 2020). COVID infection and deaths are taken from The City (Coronavirus 
2020) based on records of Department of Health and Mental Hygiene. We use NYC 
Health records (Nyc health 2020) that show daily infected from March-August 2020 
from New York Department of Health.

•	 We source the mobility data of NYC traffic from NYCOpenData  (Nycopendata 
2020)—a repository for fields ranging from city government, education, environ-
ment, health to public safety, recreation, social services and transportation. The 
stated data (spanning a period from 2014 to 2019), collected by the Department of 
Transportation of New York Metropolitan Transportation Council (NYMTC), has 
the following fields: ID, road name, source and destination intersecting street name, 
compass direction, date and time. We calculate the transition matrix (see “Inter-zone 
mobility model” section) that captures the probability of travelling within and across 
boroughs.

SEIRD epidemic model

We adapt the susceptible-exposed-infected-recovered-death (SEIRD) model (see 
Fig.  1a)  (Hethcote 2000). The susceptible (S) class comprises individuals who are not 
exposed to the infection. Once exposed to infected individuals, they may transfer to the 
exposed (E) category, and this transition is controlled by a value β (that is not necessarily 
a probability). The E class are asymptomatic or untested individuals, who transition to 
the (tested) infected (I) with probability σ . The individuals in I transition to another state 
with a probability γ , either recovered (R) or dying ( D ) with probabilities 1− α and α.
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Ordinary differential equations

Ordinary Differential Equations (ODE) model estimates the state transitions 
S → E → I → R → D by solving the following set of ordinary differential equa-
tions (Korolev 2020). We implement the ODE model on Python Odeint library (Ahnert 
and Mulansky 2011).

Here β is the contact rate, N is the total population, σ is the incubation period, γ is the 
duration of infection and α is the fatality rate. In Eq. 1, β = p× C , where p is the infec-
tion probability and C is the individual contact rate. Since, contact rate C can vary for 
different zones, we represent it as a product of a constant terms (density ρ ) and a vari-
able term (contact index k), i.e. C = ρ × k . We assume that the social contact and inter-
action among individuals at a zone follows the collision among ideal gas molecules in 
a homogeneous mixture. We can also calculate C =

√
2πd2ρv , where d is the collision 

diameter, πd2 is the cross-sectional area, ρ is the population density and v is the mean 
velocity (Hu et al. 2013). The COVID-19 specific epidemic parameters for ODE used in 
our experiments are discussed at the beginning of “Results” section.

Scenario

We create an agent-based simulation environment using the Python Simpy library (Mat-
loff 2008), where each zone (termed borough) is an agent with a predefined initial popu-
lation of susceptible, exposed, infected, recovered and dead individuals. Each zone also 

(1)
dS(t)

dt
= −

βS(t)I(t)

N

(2)
dE(t)

dt
=

βS(t)I(t)

N
− σE(t)

(3)
dI(t)

dt
= σE(t)− γ I(t)

(4)
dR(t)

dt
= (1− α)γ I(t)

(5)
dD(t)

dt
= αγ I(t)

Fig. 1  System model: a state transitions in the susceptible, exposed, infected, recovered, death (SEIRD) 
model with the associated parameters; b a closed loop of reinforcement learning and SEIRD that controls 
human contact and infection of a zone
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has an initial lockdown level li (where 1 ≤ i ≤ χ ); the higher the lockdown level, the 
lower is the mobility (measured in terms of the average velocity v of individuals) in a 
zone. Specifically, the assumption is that the average velocity of individuals at a particu-
lar zone is proportional to their distance covered, which in turn correlates with higher 
overall social contact, mixing and contagion. The new infected count I is determined by 
periodically (i.e., after interval η ) invoking the ODE SEIRD model (discussed in “Ordi-
nary differential equations” section). Since higher mobility leads to greater contact and 
contagion, each zone invokes the reinforcement Q-learning module (see “Reward func-
tion” section) to learn and determine an updated v. The objective is to maximize mobil-
ity, while ensuring that the number of hospitalizations is within the healthcare resource 
budget of the zone. We assume that the healthcare resource budget of borough b (is 
commensurate with the number of hospital beds and) is measured in terms of its overall 
GDP using the equation below:

Here GDPbi is the GDP of borough bi and bG is the baseline hospital bed count. This 
formulation ensures that the number of beds allotted to each borough is proportional 
with its GDP. Finally, we measure the number of hospitalizations as a fraction, say k, of 
the newly infected population. Finally, Fig. 1b shows that the proposed system is a closed 
loop of reinforcement learning and SEIRD models controlling the mobility and infection 
of a zone.

Inter‑zone mobility model

Given a region with a set of geographical sub-regions (or zones) B, the frequency matrix 
F ∈ M|B|×|B|(R) is created from the human mobility traces, where fi,j ∈ F  denotes 
the number of trips made from zone bj ∈ B to bi ∈ B . We generate a transition matrix 
A ∈ M|B|×|B| performing column normalization of F. Each element of the matrix ai,j ∈ A 
is the probability of making a trip from bj to bi . The frequency (and transition matrix) 
captures the overall mobility trends within and across zones of any given region. A pre-
assigned number of people migrate from one region to another based on the following 
inter-zone mobility procedure employing the transition matrix A.

(6)|Hbi | =
GDPbi − µ(GDP)∑

bj∈B GDPbj
× bG
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Description. Procedure 1 is invoked periodically by each borough b of population Nb , 
where h = ⌈ζ ∗ Nb⌉ people move, where migration rate ζ ranges between 0 and 1. For a 
moving person, the destination borough dest ∈ B is chosen based on a multinomial dis-
tribution on the b-th column of transition matrix A, i.e., A∗,b . Similarly, state of the alive 
person st is proportional to the fraction of people within that state, i.e. nb(st)

Nb−nb(dead)
 . Fol-

lowing this, the algorithm decrements the number of people in b with state st, nb(st) , 
and increments ndest(st) to reflect migration from borough b to dest.

Minimization of Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence measures the difference between one probabil-
ity distribution from another reference probability distribution (Kullback and Leibler 
1951). Given two probability distributions P and Q, it is measured as:

Given N, σ , α , p, ρ and γ , we learn the two parameters v and E(t = 0) to generate a ref-
erence curve that fits actual infected curve If  having the least KL divergence from the 
actual (or reference) daily infected curve for a given region Ia . The fitting optimization 
problem is formulated as:

Modeling hospitalization queue

A borough b ∈ B has a healthcare capacity Hb . We model a hospitalization facility 
h ∈ Hb as a single server with patient arrival rate a and treatment (or service) rate r. 
As per single-server queueing model, a waiting line or a queue is formed when a 
server has more than 1 person in the system. Let ph(i) be the probability that there 
are i people in the system of server h; then probability of a queue forming in front of 
facility h is given by phqueue = 1− ph0 − ph1 . We assume that the arrival-to-service ratio 
δ = min(1, ar ) , making ph0 = 1− δ and ph1 = ph0 × δ as per single-server queueing 
model. At any given time t, we estimate the mean probability of queue as 
pqueue =

∑
h p

h
queue

|Hb|  . Once hospitalized, a patient may transitions to dead (D) or recov-
ered (R) categories with hospital fatality rates αh and 1− αh , respectively.

(7)DKL(P||Q) =
n∑

i=1

P(xi)× (log P(xi)− logQ(xi))

(8)min
v,E(t=0)

DKL(Ia||If (N , σ ,α, p, ρ, γ ))



Page 8 of 15Roy et al. Appl Netw Sci             (2021) 6:2 

Reinforcement Q‑learning model (RL)

Q-learning  (Watkins and Dayan 1992), invoked every W hours, allows agents (i.e., 
zones) to take decisions to maximize reward while adapting to an uncertain envi-
ronment. Given a set of possible actions A = {a1, a2, · · · , } , each agent maintains a 
Q-table that records the past rewards the agent has received for an action. Thus, the 
Q-table, Q, is a matrix R|A|×|A| . We modulate the exploration vs exploitation factor 
allowing the RL model to pick a random action with a probability ep. Note that ep 
undergoes a decay by a factor dc ( e, d ∈ [0, 1] ) after each run of the model. Next, we 
discuss the action space and reward.

Action space

The rows and columns of Q represent current action and next action, respectively. In 
addition to the χ lockdown levels l1, l2, · · · , lχ (explained in “Scenario” section), the 
probability of queue pqueue is discretized into ω levels w1,w2, · · · ,wω ranging from 
low to high. This makes the search space A a set of combinations of lockdown lev-
els and pqueue levels, i.e., A = {(l1,w1), (l1,w2), · · · , (lχ ,wω)} . It is noteworthy that 
the RL model of each zone can only control the lockdown level l (i.e., velocity). Con-
sequently, a zone can transition from current action a = (ly,wj) to another state 
a = (lz ,wj) , where 1 ≤ y, z ≤ χ , and the new pqueue will be determined by the number 
of new infections spawned by the change in lockdown level.

Reward function

Recall from our discussion in “Ordinary differential equations” section, the rate of 
human contact is controlled by the contact rate C =

√
2πd2ρv = ρk . Since C is a func-

tion of both average velocity v and contact index k, we devise the two reward function 
that incentivizes conflicting goals of (1) high human contact based on either C or k and 
(2) low hospital occupancy (i.e., low pqueue ). It is calculated as:

Here, the first term is the permitted velocity v ∈ V  (or contact index k ∈ K  ) of a borough 
normalized by the maximum velocity max(V) (or contact index max(K) ) and the second 
term penalizes high hospital occupancy of a zone. Later in Fig.  3b, we show that the 
e−pqueue drops with the increase in pqueue.

Pearson correlation coefficient

It captures the linear relationship between two variables. The values of 1 and −1  repre-
sent high positive and negative correlations, while 0 represents uncorrelated variables. 
Given two distributions X and Y, it is cov(X ,Y )

σX×σY
 , where σX and cov(X, Y) are standard devia-

tion and covariance  (Benesty et al. 2009).

Overhead of lockdown

It is imperative to recognize that imposing time-varying lockdown is cost-intensive, as 
the news of the updated lockdown level must be disseminated among the public through 

(9)R =
v

max(V)
× e−pqueueor

k

max(K)
× e−pqueue
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electronic and print media. Moreover, since lockdown affects every aspect of human 
life, temporal lockdowns can have wide-ranging social and economic implications. We 
assume that the cost of lockdown is directly proportional to the number of transitions 
in lockdown levels li . This cost can be controlled by regulating two parameters: (1) lock-
down window, τ – duration (in hours) before the RL model is invoked and li is re-evalu-
ated and (2) lockdown threshold, α – real value between 0 and 1, such that RL model is 
invoked by a borough only if |pqueue(t)− pqueue(t − 1)| > α.

Table 1  Default parameter values

Parameter Notation Value

Number of iterations – 100

Simulation duration T 180 days

Number of boroughs |B| 5

Number of lockdown levels χ 6

Interval for invoking ODE η 12 hours

SEIRD parameters(Korolev 2020) σ , γ ,α 0.25, 0.1, 0.05

Interval and initial number of new infection ζ , k 30 days, 200

Migration rate ζ 0.01

Treatment rate r 0.0029

Hospital fatality rate αh 0.2

SEIRD infection probability p 0.01

Collision diameter d 1 m

RL probability of random action ep 0.75

RL decay factor dc 0.99

RL transition window W 5.5 days

Number of probability of queue levels ω 3

Levels in probability of queue w1,w2,w3 0− 0.33 , 
0.33− 0.66 , 
0.66− 1.0

Fig. 2  Mobility: a the transition (or mobility) matrix based on NYC traffic data (Nycopendata 2020), and b the 
migration matrix produced by employing the inter-zone mobility model
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Results
The simulation environment is implemented in Python. The demographic, epidemio-
logical and human mobility data sources for NYC boroughs are discussed in “Data” 
section. We define the following 4 lockdown levels in terms of contact index: l1, l2, l3, l4 
with contact index k = 4.4 × 10−6, 1.7× 10−5, 3.1× 10−5 and 4.4 × 10−5 , respectively. 
The results section has been organized into three broad headings: (1) inter-zone mobil-
ity model, (2) relationship among contact index (or velocity), healthcare capacity and 
reward and (3) dynamics among contact index, infection and hospital capacity in bor-
oughs. All the parameters (and their default values) are summarized in Table 1.

Inter‑zone mobility model

The migration of people across boroughs are dictated by the inter-zone mobility 
model (refer “Inter-zone mobility model” section) to mimic the transition matrix. 
We generate this migration matrix where each element (i,  j) is the number of trips 
made from source borough j to i normalized by the column sum. Figure 2 shows the 
migration matrix (right) where each element has the same color (i.e., mobility prob-
abilities) as the corresponding element from the transition matrix.

Relationship among contact index (or velocity), healthcare capacity and reward

We first apply KL divergence minimization (explained in “Minimization of Kullback–
Leibler divergence” section) to learn three SEIRD parameters (average velocity v, frac-
tion of initial exposed population E(t = 0) and infection duration γ ) for each borough 
based on COVID-19 daily confirmed cases (discussed in “Data” section). (The values of 
all other parameters used in the ODE model (Eq. 1 - 5) have been taken from Korolev 
(2020).)

Figure 3a shows the fit line (shown in solid red line) obtained by solving the optimi-
zation on the post-lockdown daily infected numbers (solid black line); the correspond-
ing parameters are v = 0.1 km/h and E(t = 0) = 1.82× 10−4× total population (N). In 
Fig. 3b, we apply the same fitting to obtain an equivalent contact index k = 4.63× 10−06 . 
For either case, we show the surge in the projected daily infected numbers for lower 
lockdown levels (i.e., higher velocities and corresponding contact index levels) shown 
in different colors. This shows that the proposed approach is fairly generalizable, as the 
roles of k and v are interchangeable in the RL reward function.

Fig. 3  The effects of a average velocity v and b contact index k on the daily infected numbers; c rewards for 
different probability of queue ( pqueue ) and contact index k 
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Reward function

We analyze the variation in the reinforcement Q-learning reward (Eq.  9) for different 
input parameter values of hospital capacity (measured in terms of probability of a hospi-
tal queue pqueue ) and the lockdown levels (estimated by velocity v and contact index k) in 
each borough. Figure 3c shows that the reward function balances the trade-off between 
k and pqueue . Evidently, the reward is low if any of the two conditions hold true: k is low 
or pqueue is high.

Dynamics among velocity, infection and hospital capacity in boroughs

We study how high contact (or k) affects infected number, which in turn affects hospital 
capacity. Figure 4a shows that the mean total infected and death numbers across bor-
oughs increase with velocity. Both the mean infected and death numbers exhibit a fairly 
high deviation from the mean, suggesting that there is a high variation in dynamics of 
infection spread across NYC boroughs. Figure 4b–f shows the time-varying number of 
hospitalizations for each borough is understandably correlated with the probability of 
queue pqueue.

Fig. 4  Dynamics among contact, infection and hospital capacity in NYC boroughs: a change in 
mean infected and death numbers across boroughs with contact indices k; b–f Change in number of 
hospitalization and probability of queue over time, for each borough

Fig. 5  Adaptive mobility with Q-learning: a Variation in contact index with pqueue ; b range of mean Pearson 
correlation coefficient (with 95% confidence) for the 5 boroughs
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Adaptive mobility with reinforcement Q‑learning

We study how boroughs invoke the RL model (discussed in “Reward function” section) 
to adapt its contact index (i.e., k) with changing hospital queue pqueue . Given 4 equi-
spaced contact index levels k ranging between 4.4 × 10−6 to 4.4 × 10−5 . Figure 5a shows 
the overall change in k with the dynamics of pqueue . The phase changes in pqueue and 
the corresponding phase changes in k are denoted by red and green curves, respectively. 
Evidently, the RL model is able to adapt mobility to keep the infection counts (and the 
associated hospitalizations) under check (with mean absolute difference between the 
levels of k ( lk ) and pqueue on a scale of 0 to 1 

∑
t |0.33× lk(t)− pqueue(t)| = 0.63 . Next, 

we record the mean correlation between 4 levels of k and −pqueue across 100 iterations. 
Figure  5b shows that the range of mean correlation coefficient (with 95% confidence) 
varies from 0.1 to 0.35, suggesting that mobility restrictions are indeed higher when the 
number of hospitalization rises.

Fig. 6  Cost and criteria for lockdown duration: variation in contact index for the increase in the a lockdown 
transition window τ and b threshold α

Fig. 7  Probability of queues for identical zones, only varying in healthcare resource budget (measured in 
terms of GDP)
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Cost and criteria for lockdown duration

We discuss in “Overhead of lockdown” section that the duration of lockdown can be 
controlled by regulating the lockdown transition window τ and threshold α . In Fig. 6a we 
show how the cost of lockdown (measured in terms of the number of transitions) in con-
tact indices (k) decrease with τ = κ ×W + W

2  hours, where κ = 2, 4, 6, 8, 10 . Figure 6b 
shows that the decrease in α has a similar effect on transitions in k, increasing the overall 
cost of enforcing lockdown.

Conclusions
We present an approach for dynamic time-varying lockdown strategy based on the 
healthcare budget and epidemic spread of a geographical region. This approach models 
each zone as an agent that applies reinforcement learning (RL) to periodically select a 
lockdown level that maximizes mobility, while constraining the number of hospitaliza-
tions to its healthcare resource budget. Through extensive simulation experiments on 
the real demographic and epidemiological data from the 5 boroughs of New York City, 
we demonstrate the efficacy of the approach. Each borough not only adapts to chang-
ing infection numbers by regulating its lockdown level, but also efficiently manages the 
overall cost associated with the time-varying dynamic lockdown strategy.

We are currently exploring how the RL model can employ epidemic model param-
eters, apart from mobility, that can realistically model infection spread via social contact. 
Second, here we assumed GDP as a measure of the healthcare resource available to a 
zone. To understand, how GDP affects the probability of hospital queue, we carry out a 
preliminary analysis where we create 5 zones that are identical in all respect, except have 
GDP 100, 200, · · · , 500 units, respectively. Figure  7 shows that regions with high GDP 
have a lower overall probability of queue. Taking a cue from this result, we shall devise 
collaborative strategies where neighboring zones with disparate healthcare budgets can 
pool their resources to avoid patient waiting times. This will require us to include addi-
tional considerations such as the distance between two zones as well as the quality of 
healthcare facility available to each zone based on some standard zone-level health index 
measures. Finally, we considered healthcare budget of a zone exclusively with respect 
to COVID-19 patients. This assumption may not always hold over long periods of time, 
making it imperative to include the effect of patients with other conditions into the RL 
model who may compete for the shared hospital resources.
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