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Abstract 

Background:  The dense social contact networks and high mobility in congested 
urban areas facilitate the rapid transmission of infectious diseases. Typical mechanis-
tic epidemiological models are either based on uniform mixing with ad-hoc contact 
processes or need real-time or archived population mobility data to simulate the social 
networks. However, the rapid and global transmission of the novel coronavirus (SARS-
CoV-2) has led to unprecedented lockdowns at global and regional scales, leaving the 
archived datasets to limited use.

Findings:  While it is often hypothesized that population density is a significant driver 
in disease propagation, the disparate disease trajectories and infection rates exhibited 
by the different cities with comparable densities require a high-resolution description 
of the disease and its drivers. In this study, we explore the impact of creation of con-
tainment zones on travel patterns within the city. Further, we use a dynamical network-
based infectious disease model to understand the key drivers of disease spread at 
sub-kilometer scales demonstrated in the city of Ahmedabad, India, which has been 
classified as a SARS-CoV-2 hotspot. We find that in addition to the contact network 
and population density, road connectivity patterns and ease of transit are strongly 
correlated with the rate of transmission of the disease. Given the limited access to 
real-time traffic data during lockdowns, we generate road connectivity networks using 
open-source imageries and travel patterns from open-source surveys and government 
reports. Within the proposed framework, we then analyze the relative merits of social 
distancing, enforced lockdowns, and enhanced testing and quarantining mitigating 
the disease spread.

Scope:  Our results suggest that the declaration of micro-containment zones within 
the city with high road network density combined with enhanced testing can help in 
containing the outbreaks until clinical interventions become available.

Keywords:  Transportation network, SARS CoV2, Social networks, Transportation 
gravity models
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Introduction
Modern history is witness to several infectious disease pandemics which have shaped 
our knowledge of their epidemiology, transmission, and management (Shearer et  al. 
2020). In the past 200 years, at least four strains of influenza, seven waves of cholera, 
tuberculosis, and the human immunodeficiency virus (HIV) have accounted for the 
deaths of nearly 100 million people (Cobey 2020; Egedesø et  al. 2020). Mathematical 
modelling of infectious diseases allows us to predict an epidemic accurately, recognize 
uncertainties, and quantify situations to identify possible worst-case situations that can 
guide public health planning and decision making (Longini 1988; Grassly and Fraser 
2008).

Classically, mathematical models of infectious diseases were dependent on the clas-
sification of individuals on their epidemiological status based on their potential ability to 
host and transmit a pathogen: Susceptible, Infectious, and Recovered [SIR] (Keeling et al. 
2001; Keeling and Danon 2009; Anderson and May 1991). The SIR model is the most 
fundamental epidemiological model that relies on calculating the proportional burden 
of each of these three classes, and the transitions between them. In the context of an 
epidemic, assuming no births or deaths in a population, the only two possible transitions 
are infection (movement from susceptible to infected) and recovery (movement from 
infected to remission). For the sake of simplicity, it can be assumed that the susceptibil-
ity is proportional to the prevalence of infection or the disease burden in the commu-
nity, and recoveries occur at a constant rate (Begon et al. 2002). Estimating transmission 
and recovery, the epidemic progresses exponentially until the growth rate slows and the 
epidemic curve plateaus; following which eventually over time the epidemic cannot be 
sustained and is eradicated (Keeling et al. 2001). A failing of the traditional SIR model is 
its inability to account for spatial aspects of disease spread. The 2001 dynamics of foot 
and mouth disease in the United Kingdom were demonstrated by explicit individualised 
modelling as transmission between farms that would not have been possible by tradi-
tional SIR models alone. Such models pointed at localised depletion of susceptible con-
tacts as the mechanism for the slowing of the epidemic (Keeling et al. 2001; Ferguson 
et al. 2001). The HIV pandemic is characterised by a chronic infective state. The trans-
mission of such a sexually transmitted infection is dependent on the host immune sta-
tus, the infected individual’s viral load, and multiple social aspects like sexual practices 
of interactions between multiple structured risk groups within the population. In such 
a situation, the variability in infectious state predicts the progression of the epidemic 
and stochasticity merits more complex modelling (Wearing et al. 2005). Similarly, pan-
demics of influenza or flu-like illnesses can be accounted for by age and risk-structured 
models, which are explained by distinct risk groups for infection and fatality (age, health 
care workers, comorbid conditions), and the inherent nature of people to preferentially 
socialise with others of a similar age—a principle known as assortativity (Keeling and 
Danon 2009; Lloyd-Smith et al. 2003). More complex modelling focuses on the individ-
ual as a unit of the population describing individual interactions of each person in a pop-
ulation, in contrast to estimating the proportions of people with a certain disease status. 
The shift from a population-based model to an individual-based model is a powerful tool 
that helps to account for complex biologically and socially relevant interactions (Riley 
2007; Ferguson et al. 2006).



Page 3 of 19Patil et al. Appl Netw Sci             (2021) 6:4 	

Reliability of projections from individual based epidemiological model critically 
depends upon the realistic estimates of human mobility, which is often simulated using 
suite of agent-based simulations, network science approaches, and data science meth-
ods (Eubank et  al. 2004; Salathé et  al. 2010; Zhang et  al. 2017). For example, Eubank 
et  al. (2004) demonstrated the applicability of highly resolved agent based simula-
tion tools that combine census and land use data with parameterized models to simu-
late the progression of infectious disease in realistic urban social networks (Eubank 
et al. 2004). Balcan et al. (2009) analyzed mobility data from various countries around 
the world and integrated in a worldwide structured meta-population mechanistic epi-
demic model to understand the role of infection due to multi-scale dynamic processes 
(Balcan et al. 2009). Ajelli et al. (2010) noted a good agreement between highly detailed 
agent-based modeling approaches and spatially structured mechanistic meta-population 
models. However, researchers note that while mobility networks used in meta-popula-
tion models provide an accurate description of spreading phenomenon, detailed esti-
mates of the impact at finer scales is hampered by the the low level of detail contained 
in such modeling schemes. On other hand, while agent-based modeling approaches are 
highly detailed, gathering high confidence detailed datasets, specifically in heterogene-
ous regions across the world, is a challenge (Ajelli et al. 2010). In the context of vector 
borne epidemics such as Zika virus (ZIKV) epidemic, researchers have integrated the 
high spatial and temporal resolution real-world demographic, mobility, socioeconomic 
and climatic condition datasets to estimate the profiles of ZIKV infections (Zhang et al. 
2017). In other studies, researchers have combined the state-space models such as pop-
ulation based Suspected (S), Exposed (E), Infected (I), and Recovered/Removed (R) or 
SEIR models in combination with Google Trend datasets to understand the evolution 
of Flu trends in the United States (Dukic et al. 2012).When the SARS-CoV-2 epidemic 
spread across the Globe in early 2020, mathematical, statistical and machine learning 
based models gained prominence to find out how to slow and or stop the spread (Gil-
bert et al. 2020; Chinazzi et al. 2020; Kraemer et al. 2020; Vespignani 2020). Moreover, 
researchers referred to the ongoing efforts to model the spread of SARS-CoV2 as “war 
time”research where scientists have to deal with limited data, multiple assumptions and 
changing landscapes (Vespignani 2020). We note that despite the structural, mathemati-
cal and procedural differences which exist in the wide spectrum of epidemic models, 
realistic representation of human mobility patterns, and social interactions play a key 
role in governing model performance to understand the disease progression.

To model human mobility, travel demand models and activity based models are typi-
cally used. While travel demand models focus on estimating aggregate road usage in long 
run using aggregated zonal statistics often obtained from census and household sur-
veys. More recent methods try to learn about human behavior in urban areas by using 
data collected from location-aware technologies including telecommunication activity 
datasets and Global Position System data archives (Jiang et al. 2016).We note that while 
massive and passive cellphone data can effectively generate complete urban mobility 
patterns (Hasan et al. 2013), these datasets are typically non-open source given privacy 
and security concerns. In absence of high resolution activity data, simplified models of 
human mobility such as gravity models are often used to understand the spreading of 
viruses and the evolution of epidemics (Ajelli et al. 2010; Mari et al. 2012; Li et al. 2011).
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The novel Coronavirus (2019-nCoV) first identified in Wuhan, China has spread to 213 
countries as of August 2020 with more than 24 Million confirmed cases reported world-
wide (Dong et  al. 2020). While much still needs to be learnt about the virus, its clinical 
characteristics, extent of inter-human transmission , and the spectrum of clinical disease, 
it is established that transmission of SARS-CoV-2 occurred to great extent through super-
spreading events (Perlman 2020). While accurate forecasting of spread as well as number 
of deaths and recoveries require ample historical data, contact networks, and identifica-
tion of zeroth case in different regions in addition to the clinical parameters (Petropoulos 
and Makridakis 2020). While multiple modeling groups across the globes have proactively 
focused on modeling the spread at global and regional scales (Chinazzi et  al. 2020; Ves-
pignani 2020; Clark et al. 2020), studies at urban and city scales are limited (Minetto 2020; 
Tuite et al. 2020; Ribeiro 2020; Hâncean et al. 2020; Perc et al. 2020). Given the diversity 
in socioeconomic factors, spread characteristics, demographics, healthcare facilities, man-
agement of 2019-nCoV needs to involve local negotiations. Moreover, while stringent 
lockdowns and travel restrictions were imposed by many nations, compliance with such 
preventive measures varies considerably from one to another region (Wright 2020; Briscese 
2020; Painter 2020). As a consequence, regions and cities with similar population densities 
and comparable socioeconomic indicators exhibited large disparities in the trajectory of the 
report SARS-CoV-2 cases.

In the present study, our objectives are two-folds. First, we attempt to understand the 
response of travel patterns in the city to partial lockdowns or creation of containment 
zones—zones which are declared as no travel zones due to widespread detected cases in a 
particular area. Using network science based node prioritization approaches adapted from 
(Bhatia et al. 2015)and travel demand models from (Ganin et al. 2017), we model the emer-
gence of congestion zones within the city as a result of enforcement of containtment meas-
ures. We note that while creation of the containment zones are typically done to contain 
the spread of SARS-CoV-2, emergence of the congestion zones as a consequence of traffic 
rerouting could facilitate the disease spread.

Second, we attempt to understand the relationship between drivers of intra-city mobility 
and SARS-CoV-2 spread trajectory in different parts of the city. We use generalized sto-
chastic SEIRS infectious disease dynamic model that allow us to model the effect of social 
contact network structures, heterogeneities, and interventions, such as social distancing, 
testing, contact tracing, and isolation on the spread trajectory of the disease. We hypoth-
esize that in addition to the population density, ease of transit within smaller regions, 
which in turn is facilitated by the shorter transit/trip times, can result in accelerated spread 
of the SARS-CoV-2. We simulate the mobility patterns in different regions of the city of 
Ahmedabad which have disparate road network distribution and land use patterns but 
comparable population sizes. We select the period of nationwide lockdown as the temporal 
window for analysis. Since non-essential inter-district and interstate travel was prohibited 
during the period of lockdown, we simulate the travel patterns confined within the regions 
to mimic the population mobility for essential services.
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Region of study and data
We use Ahmedabad Municipal Corporation(AMC) as the study region (Fig.  1). 
Ahmedabad city has a population of 5.6 million (Census 2011), making it the fifth-high-
est populous city in India. Ahmedabad city witnessed a sudden increase in the patient 
count since the appearance of the first SARS-CoV2 case on March 19, 2020, and has 
been classified as one of the hotspot cities (Srivastava 2020). The flowchart of the meth-
odology is shown in (Fig. 2). The Road data in the form of a shapefile is extracted from an 
open street map (OSM) data sets to generate a transportation network. India’s latest cen-
sus data is from the year 2011, which may not provide an accurate result due to the dura-
tion gap. To address this, we considered the modeled population data of the year 2020 
provided by the Worldpop with a spatial resolution of 30 arc-second (approximately 
100m) (Tatem 2017). To understand the city’s traffic pattern, we use the Traffic Demand 
Analysis report, publicly available at (Corporation 2010). The SARS-CoV-2 patient time 
series data with location is collected from COVID India Tracker- an open-source reposi-
tory that compiles the patient data from various government sources in near-real time 
(Group 2020).

Methods and materials
Geo‑spatial boundary and population assignment

To assess commute patterns within the city, we rely on OpenstreetMap datasets and 
modeled population data obtained from Worldpop (Tatem 2017). We converted the 
road network into an undirected network graph, translating the road’s geometries into 
nodes and links. The attributes extracted from the data are the nodes’ location, length of 
links, categories of links, and the links’ end coordinates. The travel time of the road sec-
tion is a crucial parameter to understand the behavior of traffic (Zheng et al. 2018). We 
calculate travel time considering the category (which guides speed limit) and length of a 
road section.

To define the transportation network boundary, we use the AMC boundary geospa-
tial data and extracted the modeled population data for the same (Fig. 3a). To include 
the incoming and outgoing traffic from the city’s outskirts, we generated a buffer 
radius of 1 km. We considered the incoming traffic on the boundary intersections of 

Fig. 1  Study area of Ahmedabad Municipal Corporation (AMC), located in the central region of Gujarat 
in western India. Ahmedabad is selected as area of study given its distinction as financial hub of Gujarat, 
disparate socioeconomic distribution and high population density
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the city network (Fig. 3c). Then the whole boundary of the city is split into a unique 
region of the Voronoi cell (Fig. 3d). we assigned the population to each voronoi pol-
ygon centered at intersections (Eq.  1). Each polygon population data is then trans-
ferred to their respective road intersections.

Fig. 2  Overview of the modeling framework. The proposed methodology consists from top to bottom: 
Pre-processing incorporating the data collection and classification; Population assignment (Assignment 
of the population to each intersection); Traffic demand forecast and network analysis; Scenario generation 
analysis (Targeted disruption); and Epidemic spread modeling
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where:

•	 Pi = Population in each Voronoi polygon
•	 Pt = Modeled population
•	 Ci = Cell of Voronoi polygon
•	 Ct = Cell of modeled population

We also incorporate the land use (Fig. 3b) into the analysis to create real traffic conges-
tion scenarios for post-lock down situations in the city. The assumption is made that 
around 1/4th of the population will commute from residential to commercial for daily 
work, making the industrial and commercial area more crowded than residential area. 
The re-allocation of population assignment help us identify the highly congested pockets 
in the city more realistically in absence of detailed data.

Traffic demand forecasting model

We built a gravity-based transportation model to generate a commuter pattern that ena-
bles travel demand forecast while taking the population and household travel survey 
data into account. The gravity model is a classical trip distribution model widely used 

(1)Pi = � Pt ×
Area (Ci ∩ Ct)

AreaCt

Fig. 3  a Modeled population data extracted at 30 arc-second, b Land use distribution describing diverse 
arrangement of land use in the city, c Bound polygon to consider incoming and outgoing traffic and d 
Assignment of number of population served by intersection in a unique Voronoi polygons. Red colour is 
resemblance of high population, where as green colour is for low population
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for trip distribution in an urban context (Casey 1955). The alternative approach to model 
the trip distribution are the queuing model (Shortle et  al. 2018), growth factor model 
(Easa 1993), and activity-based model using human mobility patterns (Gonzalez et  al. 
2008). We discounted these alternative approaches as these models require extensive 
datasets, and it is difficult to get the data, especially in a lockdown scenario as the lock-
down traffic patterns are completely different when compared to original traffic mobility.

We calculated the trip for road section based on the number of trips attracted to or 
leaving from specific zones. These trips are distributed by the linking of origin and desti-
nation, thus forming an Origin-Destination matrix. The allocation of these trips is done 
by considering the shortest possible route. We used the Djikstra algorithm (Dijkstra 
1959) to find the shortest commuter distance (Eq.2)

where

•	 Tij = the number of trips produced in the zone i and attracted to zone j
•	 VS = the set of road intersections in the region S
•	 Pi = the population of the ith road intersection
•	 Cij = the minimum time required to go from ith road intersection to jth road inter-

section.
•	 a = adjustable parameter to be fixed after model calibration

While deploying the gravity model, a fundamental assumption is “balancing” the trips 
generated and attracted. Here, balancing means that in a study area (an intersection), in 
our case, the total trips produced are equal to the total trips attracted to that intersec-
tion. The parameter used in the gravity model has been calibrated using the Household 
travel survey data in the study conducted by the Gujarat Industrial Development Board 
(GIDB) (Corporation 2010)

Network analysis

To identify the high priority intersections and road segments within the transporta-
tion network of Ahmedabad, we use network centrality measures. These centrality 
provides a vital and widely used measure to analyze the network as it helps deter-
mine the most critical nodes in the network (Bhatia et  al. 2015). In the context of 
road networks, betweenness centrality measures the extent to which an intersection 
lies on paths between other road segments. Intersections with the high betweenness 
may have considerable influence within a network by virtue of information/traffic flux 
that flows through to span across the network along the shortest path. Road networks 
include commuters’ flow along its edges and assuming that people tend to optimize 
their commute path by taking the shortest route. We calculated betweenness central-
ity for each intersection in the network and ranked according to this centrality value 
(Eq.3). The ranks demonstrate the intersection’s vulnerability in the network and 
demarcate the tendency for high connection with other intersections and can be con-
sidered as a measure for the potential for the intersection to develop into congestion 

(2)Tij = Pi ×
exp (−aCij)Pj

∑

(i,j)∈(VS×VS)
Pj exp (−aCij)
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points. We assigned the trip count calculated from the gravity model to each road 
section (links) and ranked them based on the possible transition. This provides the 
section with the highest vulnerability in terms of increased traffic flow.

where

•	 σuw = the number of shortest paths between u and w
•	 σuw(v) = the number of shortest paths between u and w that passes v

Scaling of disease spread

The primary factor influencing the disease spread is the population density (Tarwa-
ter and Martin 2001). The scaling of disease spread is computed with the population 
density and it helps to understand the nature of spread in an urban environment. 
This criterion holds when we do the extrapolation over the small region and there is 
uniformity in the community, which assumes that the social interaction is uniform 
(explained in supplementary for Interaction coefficient). However, this presumption 
falls apart on the city scale as the vast diversity in living conditions and connectivity 
contrast observed in different regions. To account for the disparate behavior, here we 
have considered the people’s interaction in a region is more if the population density 
is high and at the same time connectivity inside the region is competently developed. 
Based on the criteria mentioned above, we calculated the scaling factor to remove 
few limitations on the population density based extrapolation.The scaling factor for a 
regionS with respect to another region S0 , κ(S, S0) is defined in (Eq. 4).

•	 NS = Population of region S
•	 A(S) = Area of region S
•	 F(S)2 = Interaction Coefficient

Here the F (S) is the independent interaction coefficient of the region and it is calcu-
lated using (Eq. 5).

where

•	 VS = the set of road intersections in the region S
•	 Pi = Working population at the ith road intersection

(3)Cb(v) =
∑

u∈v

∑

w∈v/u

σuw(v)

σuw

(4)κ(S, S0) =
NS logNS

NS0 logNS0

×
A(S0)

A(S)
×

F(S0)
2

F(S)2

(5)F(S) =
∑

(i,j)∈(VS×VS)

exp (−Cij)PiPj

N 2
S
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•	 Cij = the minimum time required to go from ith road intersection to jth road inter-
section in hours.

The route that gives the minimum time, Cij is calculated based on the assumed travel speed 
for disparate categories of roads. The complete calculation can be done using the transport 
network mentioned in the previous subsection. The value of F(S) is always less than 1 and 
the square of this value gives the interaction coefficient for the region S. The exact details 
for this construction are given in the supplementary section for interaction coefficient.

In the case of an isolated population, though population density in the region 
decreases at the same time, interaction time between the road intersection will increase, 
leading to an increase in the interaction coefficient (Eq.  5). This will produce the low 
scaling of disease spread as the isolated population area will be large and compare to the 
base region of the same number of population (Eq. 4).

The scaling factor we have defined in the Eq. 4 is a relative quantity between region S 
and So . To provide a single value that can be used to directly quantify multiple regions 
and to allow direct comparison between them, we use a base region for all calculations. 
The base region is the identity region I, which is not physically present but an imaginary 
construct such that NI logNI

A(I)F(I)2
= 1 . Using this identity region as the base, for any two 

regions S1 and S2 (Equation 6)

For notation purpose, we define κ(S) = κ(S, I) =
NSlogNS

A(S)F(S)2

It is to be noted that the interaction factor is inversely proportional to the scaling 
factor. This is because the interaction factor does not consider the area of the region, 
which is separately considered in the calculation. The construction of the scaling factor 
is explained in a supplementary section for scaling factor.

SEIR PLUS model

SEIR PLUS epidemic spread model is applied to scaled-up data to predict the trajec-
tory of spread. The SEIR model is a standard compartment based model. We used the 
dynamic form of the model in this study, which is used on stochastic dynamic networks 
(McGee 2017). The equations governing the state of the nodes is explained in (Eq.7). The 
conceptual framework of of compartment based SEIR PLUS model is shown in (Fig. 4).

For testing purposes and quarantining, the above equations can be modified by adding 
some more compartments to account for quarantining and testing. The details are dis-
cussed in a supplementary section.

(6)κ(S1, S2) =
κ(S1, I)

κ(S2, I)

(7)

Pr(Xi = S → E) =

[

p
βI

N
+ (1− p)

βσj∈CG(i)δXj=I

|CG(i)|

]

δXi=S

Pr(Xi = E → I) =σδXi=E

Pr(Xi = I → R) =γ δXi=I

Pr(Xi = I → F) =µIδXi=I

Pr(Xi = R → S) =ηδXi=R
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The clinical parameters

Parameters such as the rate of transmission, rate of progression, recovery rate, mor-
tality rate depend on the cause of the epidemic. We obtained these parameters from 
the clinical data (Godio et al. 2020; Bagal et al. 2020). At the same time, there is also a 
dependency on the recovery rate when a positive person is detected early on or late.

We presumed that these parameters are independent of other factors related to 
social interaction and lockdown effects. A range was determined using available clini-
cal data for such parameters, and fixed values from this range were used throughout. 
The values used for simulation are mentioned in Table 1.

Setting up the Scenarios

The interventions brought by the Government brings changes in the interaction of 
people compared to daily life. At the same time, a person detected positive will reduce 
the interaction with the rest of the population. To model the disparate scenarios, we 
use Erdős-Réyni graphs with different probabilities for edge creation. These probabili-
ties are seen in the form α/NS for a region S.

Tuning of parameters

The tunable parameters are the testing rates at different periods. Also, the SEIR model 
requires the number of initially infected people.

Calibration of epidemic spread model

We now detail the steps followed during the calibration cycle:

•	 Pick a single sub-region, say S15 , and run the SEIR plus model with some arbitrary 
plausible values for the initial infected parameter, graph α values, and testing rates.

Fig. 4  SEIRS plus compartment based model—the framework depicts the transition between disparate 
states

Table 1  Values of parameters used for simulations

Clinical Parameter β σ γ βD σD φI φE ψE ψI

Values Used 0.187 5/26 1/15 0.155 5/26 0.4 0.8 0.04 1
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•	 Using the fitting between the observed data for infection and the resuts of the 
SEIR model to fine-tune the values to be used for testing rates and initial infected 
rates.

•	 At the same time, change the α parameters but keep them same across all regions.
•	 Check the output for all 10000 population subregions. Do further tuning of α values 

for the different garphs and also fine tune the testing parameters and initial infected 
for each region. It must be kept in mind that the initial infected are set only for 5000 
population subregions and scaled values are used for 10,000 population subregions.

•	 Find a optimal way such that all plots fit with the observed values for all 5000 and 
10,000 population subregions

Results
Generated gravity-based transportation model has two indicators: Betweenness Cen-
trality rank (BC rank) of a road intersections (Fig. 5a) and probable trip count of each 
road section(Fig. 5b). These indicators help to identify densely connected pockets in the 
city. Through plotting these results, We have demarcated the possible traffic congestion 
pockets in the city. These results show the city pockets vulnerable to spread in post-
lockdown scenarios. Our analysis shows that Ahmedabad’s central region has a high BC 
rank, demonstrating the priority intersection that can be vulnerable to disruption due to 
heavy traffic. The road segments with the high trip count are located in the city’s central 
and eastern parts, where population density is high. Also, it was seen that the first cases 
of COVID -19 were observed in this part of the city, making the transportation model 
useful while considering drive through testing.

We simulated targeted disruption in the road network to analyze the system’s response, 
which resembles the often seen situations in the SARS-CoV-2 spread. Due to many cases 
in a particular region, the region might get quarantined or declared a containment zone. 
The containment zones make up the proper condition in network science that is termed 
as targeted disruption. The city network is witnessing the interruption in the traffic flow 
with the declaration of these containment zones as no travel zones. To analyze the dis-
ruption, we removed one of the city’s containment zones. The possible rerouting shows 

Fig. 5  Maps of Ahmedabad city depicting the distribution of a Betweenness Centrality ranks across the road 
intersections. (red color nodes indicates high BC rank) b traffic congestion across the road links (red color 
road sections indicates higher congestion)
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that this triggers the new potential vulnerable region to traffic congestion and spread 
through our re-calibrated indicators (Fig. 6).

The prediction of disease spread is difficult in the diverse living conditions and connec-
tivity. In that case, we hypothesize that the scaling factor derived from the transporta-
tion network model provides a better alternative to population density as it considers the 
population density and the interaction between the community by road intersections. 
The travel time plays a crucial role in determining the scaling factor. To understand the 
importance of travel time, we have considered two regions with the same populations 
(Fig. 7a). The travel time changes with the number of intersections in the region. A lesser 
number of intersections in a region would translate to longer transit times, on an aver-
age, in an urban setting. This eventually leads to a decrease in the interaction coefficient 
and an increase in the scaling factor. Using this concept, the population density is cal-
culated from population data (Fig. 7b) and the scaling factor through interaction coef-
ficient (Fig. 7c) is calculated. Subsequently, we check the hypothesis by determining the 
Kendall–Tau Coefficient generated between the cumulative ward wise infected cases and 
the scaling factor and population density, respectively (Fig. 7d). This analysis validates 
our hypothesis and shows that the scaling factor provides a better correlation compared 
to the population density alone (Fig. 8a, b).

Once the hypothesis is tested, the calibrated clinical parameters are used to validate 
the prediction of the infected population for the regions. The epidemic SEIR plus model 
implemented on sub-regions with disparate ranges of population such as 5000, 10,000 

Fig. 6  a The road network without disruption (normal condition), b Zoomed in map of road network 
without disruption, c Targeted disruption of road network to generate the lockdown scenario by removing 
containment zone and (SARS-CoV-2 spread situation) d Zoomed in map of targeted disruption
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and 20,000 is used to validate the model parameter values (Fig.   9a–c). This approach 
allows us to account for the variation that comes up with different issues of testing and 
variation in actual testings when only average testing rates are known. For region 1 
with a 20,000 population, the SEIR plus model predicted the infected population shows 
a good agreement with the observed data. Region-1 shows the R2 , Relative Root Mean 

Fig. 7  a Region of interest in the study area for epidemic spread model with same population, b population 
distribution in the city, c interaction coefficient distribution in the city depicting interaction ward wise and d 
SARS-CoV-2 Patient Distribution indicating the spread of disease in disparate regions

Fig. 8  Ahmedabad city is divided into wards for administration purpose. a Shows the Kendall Tau Correlation 
of scaling factor and population density of wards with the number of cases b shows the p-value obtained for 
the correlation. From the plot, it is clear that scaling factor is highly correlated with the number of cases and 
that too with a very high confidence
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Square Error (RRMSE) and Relative Mean Absolute Error (RMAE) value as 0.9602, 0.688 
and 0.558 respectively (Fig.  9d). The same approach we have implemented in region 2, 
region 3, and region 4, respectively (Fig.   10). We evaluate the prediction performance 
for the above-mentioned region and is shown in (Table 2). The value of R2 is smaller in 
region 4 as the data for SARS-CoV-2 infected cases in the region was less than in other 
regions.

The SARS-CoV-2 spread has led governments to think of different interventions 
to reduce the spread by implementing various lockdown policies. These policies 
can change the trajectory of disease spread. To account this into action, we have also 

Fig. 9  Region 1, shown in Fig. 7a has a population of 20000. Subregions of population 5000 and 10000 are 
selected from Region 1 where 5000 population subregion is inside the 10,000 population region: a Shows 
the total cases in 5000 population subregion. The training data of this subregion was used to tune the model 
parameters for Region 1, b shows the total cases in 10,000 population subregion. The training data of this 
subregion was used to do finer tuning of the model parameters for Region 1, c shows the total cases in 
Region 1. The training data was used to validate that the model is predicting properly. d Shows the prediction 
of infected cases and newly detected cases. The testing data was collected at a later date and used to check 
how well the model predictions match

Fig. 10  The three figures show the model prediction and the total cases in Region 2, 3 and 4 shown in 
Fig. 7a. All regions have approximately the same population of 20000. a Region 2 b Region 3 c Region 4. This 
figure shows that even though the population is the same, the spread trajectories and uncertainty bounds 
can be very different in each region
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simulated the disparate policies in our model by selecting social distancing and relaxa-
tion combinations.

The first policy considered is that if the government implements the lockdown relaxa-
tion by the last week of May 2020, unlock with the strict social distancing till mid-June 
2020 and then staged back to a normal state in 50 days. The result shows that we can 
expect a sudden spike of cases in the initial days after lockdown relaxation. However, 
it gradually decreases in the upcoming months, but it shows the second wave of cases 
forming from September 2020 (Fig. 11a).

The second policy we consider is that the lockdown reduced by May 2020 end, unlock 
with the strict social distancing followed for 15 days and then staged back to nor-
mal state by mid-July 2020 in a staggered manner. The model result demonstrates an 
increased infected case count in the initial days after lockdown relaxation and shows the 
fluctuation in the infected cases in September and October 2020 (Fig. 11b).

Lastly, the third policy simulated is that the lockdown reduced by May end, unlock 
with the strict social distancing followed for one month, and then staged back to a nor-
mal state. The result demarcates that there is a rise in cases in the initial few days, but 
after that, from the month of July-2020, it can drop down very low (Fig. 11c).

Discussion
The prediction of disease spread at the city scale is often complex due to diverse regional 
factors and data limitations. The road networks are the prime sources of intracity move-
ments. This movement pattern can lead us towards the possible spreading of disease as 
most of the infectious diseases spread through social interactions. During these scenarios, 
prediction of disease spread through network-based epidemic spread models can be very 

Table 2  Error matrix of prediction depiction the model performance on region of interests

Regions (20000 population) R
2 RRMSE RMAE

1 0.96 0.68 0.55

2 0.68 0.73 0.47

3 0.87 0.41 0.30

4 0.15 0.71 0.64

Fig. 11  Time series data of patient count based on different lock down policies a Lock down relaxation by 
last week of May, unlock with the strict social distancing till mid June and then staged back to normal state in 
50 days, b Lock down reduced by May end, unlock with the strict social distancing followed for 15 days and 
then staged back to normal state by mid July in staggered manner, c Lock down reduced by May end, unlock 
with the strict social distancing followed for 1 month and then staged back to normal state
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helpful. This study has presented the unique approach to model the disease spread through 
transportation networks. The result of this analysis allows several meaningful inferences, 
which can make a high impact on the prediction of disease spread. First, this approach can 
be implemented in any congested city to determine the interaction between the popula-
tion and lead to model disease spread. Most of the data considered during the modeling 
are open source or readily available. Second, framework also provides the flexibility of 
understanding disparate scenarios such as containment zone restriction. The third infer-
ence gained from the analysis is that the different lockdown policies are highly influenced 
social interaction and can be analyzed through the network-based epidemic spread mod-
eling. Through this models policymakers can choose the best possible way to contain the 
spread. Although the interaction will vary from city to city based on local conditions, we 
anticipate that the overall patterns will be similar for comparable population densities and 
road networks. We further note that the quality, quantity and frequency of epidemiological 
datasets play an important role in establishing the correlations that we have observed in 
this study. While the proposed framework can be generalized to other cities, future efforts 
in this direction can greatly benefit from real-time mobility data obtained from cellphone 
activity or GPS data, and high-resolution clinical and epidemiological data with relatively 
longer duration of record.
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