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Introduction
The spread of the novel SARS-CoV-2 virus has posed a new challenge to the scientific 
community and society at large on mitigating the spread of a viral infection. The lack 
of vaccines or therapies for the virus calls for non-pharmaceutical intervention in the 
course of disease spread. As a result, the immediate response from most of the world was 
to limit the contact among people in the population by requiring them to stay at home. 
The person-level effect of these measures is to maintain physical distance with everyone 
except co-habiting family members and reduce social interactions. The expected effect 
of this distancing is the reduction in the spread of the virus, widely referred to as “flat-
tening the curve”. While the real-time data shows a reduction in the rate of spread in sit-
uations where social distancing was strictly followed (Hopkins 2020), analysis to predict 
the exact effect of the mitigation measures will be useful to understand the possibility of 
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a second wave of infection and choose an optimal strategy to minimize the effect of the 
pandemic while minimizing the economic impact of the restrictions. Different epide-
miological modeling approaches modeled this reduced contact as modified parameters 
of the rate of spread of the infection. Most of these epidemiological models are compart-
mental models that assume a fraction of the population as either susceptible (S), infected 
(I), or recovered/dead (R) and model the rate of change of these continuous variables 
(S, I, and R) assuming full mixing among individuals (Gaubert et al. 2020; Chen et al. 
2020; Toda 2020). There are also network-based epidemiological models that represent 
human–human interactions as edges and model the spread of the disease from individ-
ual to individual by infecting a fraction of the network neighbors of an infected node 
(Block 2020; Chinazzi 2020; Kraemer 2020; Gutin, et  al. 2020; Aleta, et  al. 2020). The 
fraction infected is varied as the population starts to follow social distancing measures.

Here, we present a network SIR model where the individual-to-individual spread of the 
disease is simulated compared to the traditional SIR models that study the S, I, R frac-
tions of the whole population. Each individual-to-individual interaction is represented 
as an edge between two nodes (individuals) in an interaction network. In this model, the 
effect of lockdown or social distancing leads to a modification in the network structure. 
We construct a network for a given population size so that it comprises of two different 
kinds of edges, one that is deleted in lockdown and other that continues to exist during 
lockdown. These two kinds of edges denote the two different kinds of interactions we 
have in our daily lives. The edges that are preserved during lockdown denote interac-
tions with family members and essential service providers and the edges that are deleted 
during lockdown denote other “non-essential” interactions like workplace interactions, 
socializing at events and club meetings, etc. We find that this way to simulate the social 
distancing in the population gives promising results in terms of reduction of the spread 
of the virus. We then explore different periods of lockdown with different strategies of 
phasing out of the lockdown and find interesting insight on the possibility of a second 
wave as a result.

Methods
Construction of the network

We construct networks of 10,000 nodes. Each node corresponds to a person and an edge 
between nodes corresponds to a non-zero probability of disease transmission between 
the two persons. Each person is assumed to be a part of a family. The network nodes 
do not include anyone under the age of 18 on the assumption that the disease has little 
effect on children. Family sizes range from 1 (with frequency of 30%), 2 (with frequency 
of 35%), 3 (18%) to 4 (17% frequency); this data was obtained and approximated from 
(O’neill and Chen 2020). Each family is a clique in the network. We assume that 70% of 
the population is made up by working individuals. We approximate this number from 
official sources ensuring that they are a good pre-pandemic estimate for early 2020 (EPR 
2020a, b). We assume that 20% of the working population are essential workers. We con-
struct a scale-free network (Barabási and Albert 1999) with a minimum degree of 2 and 
degree distribution P(k) ~ k−3 among the non-essential working population. We assume 
that the network among the essential working population is random (Erdős 1960) with 
average degree 25. Additionally, there are edges that represent interaction between the 
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population and essential workers. This network covers the interactions that happen due 
to essential activities like grocery shopping, healthcare, etc. This is a random network 
with the probability of an edge to an essential worker set to 0.2. Finally, some edges are 
added to the network to cover social interaction outside of families and workplaces in 
the population. This is a random network with average degree of ~ 1.3 (Table 1).

Dynamics of the spread

Each 10,000-node network is initialized with 5 infected nodes, selected randomly, and 
the rest of the nodes are susceptible. Each infected node can infect its neighbors (i.e. 
nodes that are connected to the infected node by an edge) with a certain transmission 
probability. The transmission probability depends on whether the infected person is 
symptomatic or asymptomatic. Since symptomatic people are likely to visit the doctor, 
and then they isolate themselves at a hospital or at home, we assume that their transmis-
sion probability to essential workers (i.e. health workers) is 0.05 and their transmission 
probability to the general population is 0.005. We assume the transmission probabil-
ity for asymptomatic infected persons is 0.05. Additionally, we assume that 80% of the 
infected nodes are asymptomatic while the other 20% are symptomatic. From the data 
on Covid-19 death rates, we assume a 5% mortality among the infected nodes. These 
5% form a subset of the symptomatic patients. After the other 95% recover, 85% become 
immune to the disease while the remaining 10% become susceptible again. The number 
of days it takes for a person to recover from the infection varies from 1 to 35 days, fol-
lowing a normal distribution with a mean of 17 days and standard deviation of 4.8 days. 
Similarly, the number of days after which a patient loses their life to the disease var-
ies from 5 to 24 days according to a normal distribution centered at 14 days and stand-
ard deviation of 3.2 days. In the unmitigated situation, an infected node can spread the 
infection to any of its neighbors. During a lockdown (i.e. period when the population is 
following social distancing and stay-at-home order), only certain edges of the network 
are retained for the spread of the disease. These edges correspond to family interactions, 
interactions among essential workers, and interactions between the population and 
essential workers. We run this simulation for many graphs, and for each graph, we run 
the spread process multiple times. In total, we take an average over 50 runs and report 
the results (Table 2).

Table 1  Table of parameters used for the construction of the network

Most of these parameters are an estimation from various sources to reflect the US population pre-pandemic. The network 
size of 10,000, while clearly more representative of a small town than of a country, allows computationally efficient 
simulation and rich outcomes of the disease spread. The parameters can be changed in the code (see “Methods” section)

Parameter Value

n (network size—number of nodes) 10,000

Employment-to-population ratio 70%

Employees in the essential services 20%

λ (exponent of the scale-free degree distribution) 3

Average degree of essential services network 25

Population-to-essential worker edge probability 0.2

Average degree of additional social interactions 1.3
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Reproduction number of the disease

The reproduction number is a measure of the expected number of cases directly gener-
ated by one infected case. The basic reproduction number is this measure in a popula-
tion where everyone is susceptible, and the effective reproduction number (Rt) is for a 
population where some fraction of the population is immune. In this network modeling, 
we calculate the reproduction number by counting the number of people an infected 
person spreads during the time they were sick. For example, consider node A who gets 
infected on day 1 and node infects 2 persons on day 2, 1 person on day 3, 2 persons 
on day 4. Node A recovers on day 5 and cannot infect any more persons. So, node A 
infected 5 persons in total and hence the reproduction number for node A is 5. To 
calculate the disease’s effective reproduction number for day 1, we find the reproduc-
tion number for each node that got infected on day 1 and take the average. Hence, the 
reproduction number of a day is the average reproduction number for every person that 
caught the infection on that day.

The code for the network generation, spread of the disease, and calculation of the 
reproduction number of the disease, is freely available on GitHub: https​://githu​b.com/
parul​m/sprea​d_lockd​own.

Results
Network model

The constructed network is a combination of scale-free and random networks with mul-
tiple cliques of sizes 1–4. Hence, in the resulting network most of the nodes have a low 
degree (< 10) but there also are some hubs (with degree > 100). As illustration we show a 
100-node network constructed by this method (Fig. 1). This sample network has average 
degree of ~ 5 with maximum degree of 21. It has 10 connected components, the largest 
of which contains 86 nodes.

The centrality measures of a network generated using this method vary as a result of 
the randomness and stochasticity in the generation process, however the network still 
has some common features. The degree distribution of the network shows two peaks, 

Table 2  Table of parameters specific to the disease and the nature of its spread

These parameters reflect an intuitive estimation at the time of model construction with the intention to study general 
trends. The values of these parameters can be changed in the code (see “Methods” section)

Parameter Value

Initial number of infections 5

Symptomatic-to-essential transmission 0.05

Symptomatic-to-population transmission 0.005

Asymptomatic-to-all transmission 0.05

Ratio of symptomatic cases 20%

Probability of mortality 5%

Probability of immunity 85%

Mean of recovery period 17 days

Mean time to death 14 days

https://github.com/parulm/spread_lockdown
https://github.com/parulm/spread_lockdown
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one at low degrees (6–7) and the other centered around 25, the average degree of the 
essential workplace network; it also has a significantly long tail, see Fig. 2. The average 

Fig. 1  Illustration of the result of the network generation method on a population of 100 individuals. The 
edges represent interactions within families, workplaces, and social interaction. The red color edges are the 
ones that are preserved in the lockdown while the black color edges are deleted. The 4-cliques with red 
edges, as well as a fraction of 3-cliques with red edges represent families. Node size denotes the degree of 
the node with isolated nodes having the smallest size; this illustrates that the network contains high-degree 
hubs. The nodes that have a thick border denote the people who are working. Nodes in green color denote 
essential workers. The cluster of green nodes shows a high interaction among essential workers

Fig. 2  The degree distribution of a network generated with 10,000 nodes shows two peaks representing 
the combination of workplace interactions. The first peak at k ~ 6 is due to the scale-free network of 
non-essential workplace interactions and the second peak at k ~ 25 is coming from the random network of 
essential workplace interaction. The high-degree tail represents the hubs, i.e., the individuals who have many 
interactions, who could therefore act as super-spreaders if infected
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degree of a 10,000-node network is ~ 10 and the maximum degree is 184. The network 
has nearly 50 connected components, the largest of which contains 9950 nodes.

Simulations of spread

In the absence of mitigation measures, the disease either dies off (in 73% of the simu-
lations) or spreads in the population. In the simulations where the epidemic takes off, 
the effective reproduction number starts at a high value (larger than 4), as expected 
from the theory of epidemic spreading (see Fig. 3). In this case, the disease completes its 
course in ~ 80 days, infecting almost everyone. The peak of infection is around day 30, 
when ~ 45% of the population is infected at the same time. This disease time course leads 
to ~ 400 deaths, with very few deaths after day 80. The reproduction number peaks at ~ 7 
around day 3 and goes to below 1 around day 20. Nearly 60% of the population becomes 
immune to the disease but over 30% of the population remains susceptible. Since herd 
immunity needs that at least 70%-80% of the population be immune (D’Souza and 
Dowdy 2020), the remaining susceptible population could be affected by a second wave 
of the disease sparked from outside of the network. In conclusion, letting the disease run 
its course unmitigated is not expected to benefit society in any way. We note that the 
number of deaths is only valid if the assumption of a constant death rate (of 5%) holds. It 
is likely that after day 10, when the hospitals start getting overwhelmed, the patients do 
not get all the medical attention they need, thus the death rate may increase.

Lockdown is fixed to 3 months

If a lockdown is implemented for 3 months, which is longer than the natural duration 
of the unmitigated outbreak, we find that it almost completely avoids the possibility of 
a second outbreak. We evaluate 90 day lockdown periods with different starting times: 
day 5 (when ~ 1% of the population is infected), day 10 (when ~ 6% of the population is 
infected), and day 15 (when ~ 20% of the population is infected). All these cases lead to 

Fig. 3  Unmitigated spread of the disease in the network model. The plot shows for each time step the 
number of nodes in the network that are infected in red color and the number of nodes that are dead in 
black color. The reproduction number is shown in blue with the scale shown on the right y-axis. The x-axis 
gives the timesteps. The shaded area around the line plots is marked by the standard deviation obtained by 
running the simulation ~ 1000 times. The disease completes its course in ~ 80 days, infecting about 70% of 
the population
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more than 150 deaths, with the number of deaths being higher if the lockdown starts 
later. Shown in Fig. 4a, when the lockdown is from day 5 to day 95, the infection peaks 
at ~ 20% of the population. In nearly 1% of the simulations, there is a second wave of 
infection which peaks at less than 5% of the population infected around the same time. 
This wave of infection peaks nearly 50 days after the end of the lockdown. After 240 days, 
this scenario leads to a total of 150 deaths which is 1.5% of the population. Shown in 
Fig. 4b, when the lockdown is from day 10 to day 100, the infection peaks to a little over 
20% of the population. This scenario leads to nearly 0.7% of the simulations showing a 
small second wave of infection that affect a very small fraction of the population. After 
240 days, this scenario leads to a total of 155 deaths. Figure 4c shows the scenario when 
lockdown is from day 15 to day 105. Nearly 100% of the simulations in this case lead to 
only the first wave of infection which peaks to ~ 25% of the population. After 240 days, 
this leads to ~ 175 deaths.

A high peak of infection implies that the medical facilities will be overwhelmed, which 
is likely to cause a surge in the number of deaths. While these simulations show that a 
90-day lockdown is beneficial for mitigating a widespread effect of the pandemic, they 
also show that the earlier a lockdown starts, the less the number of deaths and the less 
pressure on medical facilities. It is also interesting to note that an earlier lockdown leads 
to a slightly higher possibility of a second wave of infection since a smaller fraction of 
the population becomes immune. However, despite two waves of infection, the number 
of deaths is still less if the lockdown starts earlier. In all of these cases, the reproduction 
number peaks at ~ 6 around day 3–4, denoting the high infection spread in the follow-
ing few days and it goes to below 1 around day 20. These results show that a 90-day 
lockdown starting the earliest possible would be the most efficient way to mitigate the 
effects of the disease through social distancing measures. However, due to the adverse 
economic effects of a lockdown, it is useful to find equally effective strategies that are 
shorter than a 90-day period. Hence, we next explore the effect of a 60-day lockdown.

Lockdown is fixed to 2 months

When the lockdown is fixed to 60 days and the starting time is varied, we find that a 
second wave of infection becomes more likely than in the 90-day lockdown case. Like 
the 90-day lockdown case, we explore 60-day lockdown for starting times of day 5 (infec-
tion at 1%), day 10 (infection at 6%) and day 15 (infection at 20%). The simulation of the 

Fig. 4  Simulation of the 90-day lockdown cases. a Lockdown is from day 5 to day 95. b Lockdown is from 
day 10 to day 100. c Lockdown is from day 15 to day 105. A 90-day lockdown prevents a second wave of 
infection. Comparing panels A and C, we note that a later lockdown leads to a higher peak and more deaths. 
In all the cases, the peak in the number of infections is foreshadowed by a peak in the reproduction number
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lockdown from day 5 to day 65 shows that there is a second wave of infection in ~ 40% 
of the cases (Fig. 5a) and only one wave of infection in 24% of the cases (Fig. 5b); the 
remaining 36% of cases show no spread. The first wave of the infection in response to a 
day 5 to day 65 lockdown peaks around day 20 and infects nearly 20% of the population 
at the same time – this can be seen in both Fig. 5a, b. On day 65, when the lockdown is 
lifted, around ~ 1% of the population is infected. As shown in Fig. 5a, the second wave of 
infection peaks around day 110 and it is highly varying across simulations. On average, 
the peak of this wave infects another 10% of the population at the same time. Simula-
tions with two waves of infection lead to a total of ~ 300 deaths which is 3% of the popu-
lation. Simulations with only one wave of infection lead to a total of ~ 150 deaths. On 
average, the day 5 to day 65 lockdown scenario leads to ~ 250 deaths after 240 days.

We next explore the case when the lockdown is from day 10 to day 70. This results 
in ~ 33% of simulations showing a second wave of infection (Fig.  6a), ~ 39% of simula-
tions show only one wave of infection (Fig. 6b) and the remaining 28% of the simulations 

Fig. 5  Simulation of the 60-day lockdown from day 5 to day 65. a Representation of the ~ 40% of simulation 
results where there is a second wave of infection when the lockdown is from day 5 to day 65. The effective 
reproduction number increases dramatically after the end of the lockdown, foreshadowing the second peak 
of the infection. b Representation of the ~ 24% simulation results where there is no second wave of infection 
for the lockdown period of day 5 to day 65. The effective reproduction number stays below 1 after the 
lockdown is lifted

Fig. 6  Simulation of the 60-day lockdown from day 10 to day 70. a Representation of the ~ 33% of 
simulations that have a second wave of infection for the day 10 to day 70 lockdown. Similar to the day 5 to 
day 65 lockdown scenario, there is a dramatic peak in the reproduction number after the lockdown is lifted 
on day 70, foreshadowing a second wave of infection. b Representation of the ~ 39% of simulations that have 
only one wave of infection for the day 10 to day 70 lockdown
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show no spread. The second wave of infection peaks around day 110 and infects another 
10% of the population at the same time. Two waves of infection lead to ~ 310 deaths and 
only one wave of infection leads to ~ 155 deaths. On average, the day 10 to day 70 lock-
down scenario leads to ~ 220 deaths after 240 days. The day 15 to day 75 lockdown sce-
nario leads to two waves of infection in ~ 16% of the simulations (Fig. 7a), only one wave 
of infection in ~ 58% of the simulations (Fig. 7b) and no spread in the remaining 26% of 
the simulations. In this case, the second wave of infection peaks around day 120 and 
infects another ~ 7% of the population at the same time. Two waves of infections lead 
to ~ 300 deaths and only one wave of infection leads to ~ 180 deaths. On average, the day 
15 to day 75 lockdown scenario leads to 200 deaths.

In all these results, there is at least one peak for the effective reproduction number and 
this first peak is ~ 6 around day 3–4. In the results that show a second wave of infection, 
Rt goes to below 1 during the lockdown but increases again after the end of lockdown; it 
peaks ~ 20 days before the peak in the number of infectious people. From these simula-
tions, we can see that the probability of a second wave of infection is lower if the lock-
down starts later. However, the first wave of the infections gets increasingly worse if the 
lockdown starts later. It makes sense to start the lockdown earlier to minimize the effects 
of the first wave of infection, but we need other mechanisms to lower the effect of the 
second wave of infection. This can be done in various ways. For example, impose a sec-
ond lockdown in response to the second wave of infection and so on until a consequent 
wave of infection is too small to affect the population adversely. Alternately, instead of 
lifting the lockdown after a fixed time-period, the lockdown can be lifted when the num-
ber of infected cases goes below a fixed threshold. If the number of cases crosses this 
threshold again, the lockdown is imposed again. In the next section, we consider another 
similar scenario where after the end of the first lockdown, the population resumes nor-
mal life gradually.

Phasing out of the lockdown

Here, we consider a slow phasing out of the lockdown. That is, facilities reopen slowly 
after the end of the lockdown and the population strictly adhere to social distancing, 

Fig. 7  Simulation of the 60-day lockdown from day 15 to day 75. a Representation of the ~ 16% of 
simulations that have two waves of infection for the day 15 to day 75 lockdown. The peak in the reproduction 
number after day 75 foreshadows a second wave of infection. Comparing with Figs. 5 and 6, we note that 
the second wave of infection is less intense when the lockdown starts later. b Representation of the ~ 58% of 
simulations that have only one wave of infection for the day 15 to day 75 lockdown
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wearing masks and washing hands, etc. We implement this by restoring the network to 
its original state, that is, including all edges but reducing the transmission probability 
after the lockdown ends. The transmission probability then gradually increases to the 
original transmission probability in the window between the end of the lockdown and 
the day normalcy is resumed. We assume that the lockdown starts on day 5 and ends on 
day 65 and we consider three rates of increase in the transmission probability following 
the end of the lockdown.

In the first case, shown in Fig. 8a, b, the network follows a linearly increasing trans-
mission probability from 0.01 on day 65 to 0.05 on day 80. This results in ~ 20% of the 
simulations having a second wave of infection, shown in Fig. 8a. This second wave peaks 
around day 125 and infects nearly 10% of the population at the same time. The plot in 
this case (Fig. 8a) is very similar to the plot in Fig. 5a. However, the benefit of the gradual 
decrease of mitigation is reflected in much lower likelihood of the existence of a second 
wave (20%) compared to the likelihood when we resume to normalcy right after the end 
of the lockdown (40%). This case leads to an average of ~ 300 deaths. Figure 8b shows the 
simulation results when there is only one wave of infection; this case leads to an average 
of ~ 150 deaths. The gradual resumption to normalcy on day 80 results in a lower over-
all death count at ~ 200 compared to the ~ 250 with sudden resumption of the original 
transmission rate (Fig. 5a, b).

In the case shown in Fig.  9a, the lockdown is from day 5 to day 65 and we resume 
to complete normalcy on day 95. The network follows a linearly increasing transmis-
sion rate from day 65 to day 95; on day 95, the transmission rate reaches the normal 
5%. This case results in ~ 6% of simulations with a second wave of infection shown in 
Fig. 9a. These simulations result in an average of ~ 300 deaths on average. The majority of 
the simulations have only one wave of infection and result in an average of ~ 150 deaths, 
shown in Fig. 9b. This scenario results in ~ 160 deaths overall.

We also try the case where lockdown is from day 5 to day 65 and we resume to unre-
stricted interaction on day 110 (Fig. 10). In this case, the probability of a second wave of 
infection is ~ 3%—this case is shown in Fig. 10a. These simulations result in an average 

Fig. 8  Simulation of the case of a 15-day phasing out of the lockdown. A. Representation of the ~ 19% of 
simulation results that have a second wave of infection if the lockdown is from day 5 to day 65 and complete 
normalcy resumes on day 80. The effective reproduction number starts to increase during the phasing out 
of the mitigation measures. B. Representation of the ~ 43% of simulation results that have only one wave of 
infection if the lockdown is from day 5 to day 65 and complete normalcy resumes on day 80. Comparing 
with Fig. 5, we note that a gradual phasing-out of the lockdown reduces the chances of a second wave of 
infection
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of ~ 300 deaths. The majority of the simulations, shown in Fig. 10b have only one wave of 
infection and result in an average of ~ 150 deaths. Overall, this scenario results in ~ 150 
deaths. Similar to the case presented in the previous subsection, the effective reproduc-
tion number for all of these cases has at least one peak with value ~ 6 occurring around 
day 3–4 and has another peak for the results that show a second wave of infection. The 
Rt peak is around 20  days before the peak of the second wave of infection. With the 
much lower probability of a second wave of infection and fewer deaths, we can conclude 
that a 60-day lockdown with an extended period of gradual decrease of mitigation would 
be the best approach.

Discussion
We showed that a simple network model results in insightful modeling of the spread 
of an infectious disease like Covid-19 under social distancing conditions. The net-
work generation method is based on parsimonious assumptions on the nature of 

Fig. 9  Simulation of the case of phasing out of lockdown for 30 days. a Representation of the ~ 6% of 
simulation results that have a second wave of infection for the lockdown from day 5 to day 65 and complete 
normalcy resumes on day 95. b Representation of the ~ 57% of simulation results that have only one wave 
of infection for the lockdown from day 5 to day 65 and complete normalcy resumes on day 95. An increase 
in the duration of the phasing out period from 15 (see Fig. 8) to 30 leads to a significant reduction in the 
probability of a second wave of infection

Fig. 10  Simulation of the case of phasing out of lockdown for 45 days. a Representation of the ~ 3% of 
simulation results that have a second wave of infection for the lockdown from day 5 to day 65 and complete 
normalcy resumes on day 110. b Representation of the ~ 59% of simulation results that have only one wave 
of infection for the lockdown from day 5 to day 65 and complete normalcy resumes on day 110. The 45-day 
phasing-out period after the lockdown is lifted makes a second wave of infection very unlikely
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everyday interaction and combine different walks of human interaction. We combine 
existing network models such as random graphs and scale-free networks, to construct 
an image of the real-world interaction network. The variable parameters in our net-
work generation method allow for modeling different kinds of communities. As more 
information about the transmission of Covid-19 becomes available, the network can 
be adjusted to focus on the interactions that are most conducive of transmission. 
For example, recent results highlight the importance of transmission in hospitals 
(Hâncean et al. 2020). Interactions with and among health care workers are included 
in our network’s essential workplace interactions; these interactions could be consid-
ered separately to highlight their importance.

We also employ a simple disease spread mechanism in a network. Avoiding the 
complexity of more detailed spread processes that involve a latent period and pre-
symptomatic phase, we employ few parameters to incorporate the most salient 
features of Covid-19 spread. As more precise information becomes available, the 
parameters can be tuned and the assumptions can be made more precise.

Our results show the trends of the probability of a second wave of infection and 
number of deaths for different lockdown situations. We explore different time-peri-
ods for lockdown starting with what is intuitively the safest option – a long lockdown 
window. We then explore shorter lockdown windows which give a moderately high 
probability for a second wave of infection. We explore different periods of gradual 
decrease of mitigation measures and find that a 60-day lockdown window paired with 
a 30-day or more of gradual increase of transmission leads to a very low probability of 
a second wave of infection and hence a lower death rate. Various modifications of this 
phasing out period could form promising directions for future work. For example, we 
can emulate the phasing out period by selectively adding edges to the sparser lock-
down network instead of a varying transmission rate.

We also present the reproduction number of the disease calculated by case count-
ing of the infection spread in the disease. There are various methods for estimating 
Rt based on data-fitting and Monte Carlo simulations (Ma 2018; Inglesby 2020; Liu 
2018; Aleta et  al. 2020). For example, one can fit the number of infectious individ-
uals to a Poisson distribution and then use Markov Chain Monte Carlo to obtain a 
distribution of Rt (Aleta et al. 2020). The estimates on the basic reproduction num-
ber of Covid-19 (prior to mitigation) are in the range 4 to 8; the estimated effective 
reproduction number reduces to ~ 1 or less than 1 after 30 days of lockdown (Inglesby 
2020; Aleta, et al. 2020; Rt COVID-19 2020; Gunzler and Sehgal 2020). In (Gunzler 
and Sehgal 2020), for example, they show that in the District of Columbia the value 
of Rt on March 17 was 8.19 and on April 1 it was 1.00. Thus, our simulation results 
for the basic and effective reproduction numbers are consistent with the literature. 
Our results show that the peak in the reproduction number foreshadows the peak in 
the number of infected nodes (see Figs. 3, 4, 5, 6, 7, 8, 9, 10). Given the foreshadow-
ing of the infection peak by the Rt peak, an adaptive mitigation strategy may be use-
ful, namely monitoring the rise in the effective reproduction number and accordingly 
implementing social distancing regulations for the population.
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