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Introduction
Graphs are the most natural way to model many real-world networks. The links 
between nodes in a network are often occasional, that is why deterministic graphs 
are often irrelevant for network modeling. Random graphs, in which the link pres-
ence is a random variable, appear in the 20  th century with the simplest model 
proposed by Erdős and Rényi (see Erdős and Rényi 1960; Bollobás 2001; Alon and 
Spencer 2004). In this model, the edges between vertices appear independently with 
equal probability. However, this model fails to describe some important properties of 
many real networks, such as the community structure. Many models have been pro-
posed to overcome this and other problems: the Barabási–Albert model (see Albert 
and Barabási 2002, 1999; Fronczak et  al. 2003), random geometric graphs (see Gil-
bert 1961; Penrose 2003), hyperbolic geometric graphs (see Barthélemy 2011; Kri-
oukov et al. 2010). Perhaps random geometric graphs are the simplest natural model 
where the edge appearance depends only on the Euclidean distance between given 
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nodes. These graphs resemble real social, technological and biological networks in 
many aspects. Also, they might be useful in statistics and machine learning tasks: the 
correlations between observations in a data set can be represented by links between 
corresponding close vertices. Moreover, analyzing the graph in this situation can help 
to determine the presence of the underlying geometry and, therefore, the possibility 
of embedding into some geometric space. A reader can find these and other applica-
tions in Preciado and Jadbabaie (2009), Haenggi et al. (2009), Pottie and Kaiser (2000), 
Nekovee (2007), Xiao and Yeh (2011), Higham et al. (2008), Arias-Castro et al. (2015).

Let us define the model of the graphs that interest us and introduce a notation sys-
tem. We follow the article Devroye et al. (2011) and define a random geometric graph 
G(n, p, d) as follows. Let X1, . . . ,Xn be independent random vectors uniformly distrib-
uted on the (d − 1)-dimensional sphere Sd−1

⊂ R
d . Two distinct vertices i ∈ [n] and 

j ∈ [n] are adjacent if and only if �Xi,Xj� ≥ tp,d ; here tp,d is defined in such a manner 
that P(�Xi,Xj� ≥ tp,d) = p.

As for fixed d, many properties of random geometric graphs (connectivity, large 
components, number of small subgraphs) have been revealed at the end of the 20 th 
century. We refer to Penrose (2003) for an intensive study of random geometric 
graphs; among other papers on this topic we can highlight papers Arias-Castro et al. 
(2015), Penrose (1999), Appel and Russo (2002), McDiarmid (2003), Müller (2008), 
McDiarmid and Müller (2011). However, the lack of results regarding the high-
dimensional case d → ∞ looks quite surprising. This becomes even more remarkable 
with the growing number of features in data sets and, hence, possible application of 
high-dimensional random geometric graphs in machine learning problems.

As far as we are concerned, the first paper treating the case d → ∞ is the article of 
Devroye et al. (2011). The authors studied the clique number in the asymptotic case 
when n → ∞, d ≫ log n , and p is fixed (hereinafter f (n) ≫ g(n) (or f (n) ≪ g(n)) 
means limn→∞

f (n)
g(n) = ∞ (respectively, limn→∞

f (n)
g(n) = 0)). As it was proven in Dev-

roye et al. (2011), in this dense regime, the clique number of the random geometric 
graph G(n, p, d) is close to that of the Erdős–Rényi graph G(n, p).

Another extremely important paper is the work of Bubeck et al. (2016). The authors 
considered the thermodynamic regime when a node has a constant number of neigh-
bours on average; their paper focuses mainly on the difference between random geo-
metric and Erdős–Rényi graphs. They have obtained a ‘negative’ result: for d ≪ log3 n , 
the graph G(n, c/n, d) (here c is a constant) is ‘different’ from the Erdős–Rényi graph 
G(n,  c/n) in the sense that the total variation distance between two random mod-
els converges to 1 as n → ∞ . Also, the authors made a conjecture about a ‘positive’ 
result: for d ≫ log3 n , the graphs G(n, p, d) and G(n, p) are close. In order to obtain 
the ‘negative’ result, they proved that in the case d ≪ log3 n the average number of 
triangles in G(n,  c/n,  d) grows at least as a polylogarithmic function of n, which is 
different from the expected number of triangles in G(n, c/n). The difference between 
these regimes seems quite interesting, and that is why we concentrate on the case 
when d is a power of log n.

Our main interest is the investigation of cliques in the asymptotic case when n → ∞ 
and d ≫ log n . Since the dense regime (when p is fixed) is well studied in Devroye et al. 
(2011), we will focus on the sparse regime when p = p(n) = o(1) as n → ∞ . Also, we 
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assume that p(n) does not go to 0 ‘extremely fast’ (for instance, as e−n ). This, of course, 
includes the regime considered in Bubeck et al. (2016).

The main contribution of the present paper consists of three results in the sparse 
regime. The first one, presented in the next section in Theorem  4, states that almost 
surely the clique number of G(n, p, d) is at most 3 under the condition d ≫ log1+ǫ n . The 

second one shows that the expected number of triangles grows as 
(

n
3

)

p3 in the case 

d ≫ log3 n . This result is given in Theorem 5. Finally, in Theorem 7 we will present new 
lower and upper bounds on the expected number of triangles in the case 
log2 n ≪ d ≪ log3 n . This lower bound improves the result of Bubeck et al. (2016) since 
it grows faster than any polylogarithmic function (recall that the lower bound from 
Bubeck et al. (2016) is polylogarithmic in n).

The latter result clearly shows that for d ≪ log3 n , random geometric graphs have 
a greater tendency to form clusters than it was discovered in the paper (Bubeck et al. 
2016). We will present some numerical results showing that this is true even for rela-
tively small n. Hence, the number of triangles can be used as a tool to determine if a 
given graph has some hidden geometry.

This paper is an extended version of the Complex Networks conference paper 
Avrachenkov and Bobu (2019). Compared to the short paper, we present here absolutely 
new numerical results and more specifically discuss the application of the present work 
to real-life tasks of machine learning. Also, we have improved Theorems 4 and 5 and 
give full proofs of the results mentioned in Avrachenkov and Bobu (2019).

Related works
Let us describe the related works (Devroye et al. 2011) and (Bubeck et al. 2016) in more 
detail. We start with the results of Devroye et al. (2011). Although this paper is devoted 
to the dense regime, the following two theorems do not require the condition p = const 
and turn out to be useful in our situation. Let us denote by Nk(n, p, d) the number of 
cliques of size k in G(n, p, d). The results below establish lower and upper bounds on 
E[Nk(n, p, d)].

Theorem 1  (Devroye et al. 2011) Introduce

Let δn ∈ (0, 2/3] , and fix k ≥ 3 . Assume

Define α > 0 as

Then

p̃ = p̃(p) = 1−�(2tp,d
√

d + 1).

d >

8(k + 1)2 log 1
p̃

δ
2
n

(

k log
4

p̃
+ log

k − 1

2

)

.

α
2
= 1+

√

8k

d
log

4

p̃
.
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where �̃k(d, p) = �





αtp,d
√
d + δn

�

1−
2(k+1)2 log(1/p̃)

d



 . Here �(·) denotes the CDF of the standard 

normal distribution.

Theorem 2  (Devroye et al. 2011) Let k ≥ 2 be a positive integer, let δn > 0 , and define

Assume

Furthermore, for p < 1/2 , define β = 2
√

log(4/p̂) and for β

√

k/d < 1 , let 
α =

√

1− β

√

k/d . Then for any 0 < δn < αtp,d
√
d , we have

The following result of Bubeck et  al. (2016) gives a lower bound on the expected 
number of triangles and significantly improves Theorem 1 if only d ≪ log3 n.

Theorem  3  (Bubeck et  al. 2016) There exists a universal constant C > 0 such that 
whenever p < 1/4 we have that

Note that if p = θ(n)/n with some function θ(n) ≪ n1−ǫ and d ≪ log3 n , the expected 
number of triangles grows as a polylogarithmic function. This is totally different from 
the Erdős–Rényi graph G(n, θ(n)/n) where the average number of triangles grows as 
θ
3
(n) with n → ∞ . This result will be further improved by our Theorem 7.

Results
Clique number in the sparse regime

Theorems 1 and 2 allow us to say that for constant p and d ≫ log7 n , the clique num-
ber of a random geometric graph grows similarly to that of an Erdős–Rényi graph, 
which is 2 log1/p n− 2 log1/p log1/p n+ O(1) . We will show that in the sparse regime, 
under some conditions on p and d, there is no clique of size 4 in G(n, p, d) a. s. Let us 
also remark that the condition d ≫ log7 n is necessary only for the dense regime, as 
Theorems 1 and 2 do not impose any restrictions on d.

E[Nk(n, p, d)] ≥
4

5

(

n
k

)

(

1− �̃k(d, p)
)

(

k
2

)

,

p̂ = p̂(p) = 1−�(tp,d
√

d).

d ≥

8(k + 1)2 log 1
p̂

δ
2
n

(

k log
4

p̂
+ log

k − 1

2

)

.

E[Nk(n, p, d)] ≤ e1/
√
2

(

n
k

)

(

1−�(αtp,d
√

d − δn)

)

(

k
2

)

.

E[N3(n, p, d)] ≥ p3
�

n
3

�






1+ C

�

log 1
p

�3/2

√
d






.
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To apply Theorems 1 and 2, we need a lemma that establishes the growth rate of 
tp,d , which is crucial for asymptotic analysis in the sparse regime. Since p is the nor-
malized surface area of a spherical cap of angle arccos tp,d (an example for a circle is 
given in Fig. 1 below), we learn from convex geometry that (see Brieden et al. 2001):

The following more explicit bound on tp,d has been derived in Bubeck et al. (2016).

Lemma 1  There exists a universal constant C > 0 such that for all 0 < p ≤ 1/2 , we 
have that

Before we present our main result on the clique number, let us prove a lemma that 
will be useful later.

Lemma 2  Let d ≥ log1+ǫ n for some fixed ǫ > 0 and p ≥ 1/nm for some fixed m. Then 
for any γ > 0 , there exists n0 such that for n ≥ n0

Proof  First of all, let us notice that tp,d ≥ 0 , that is why

(1)
1

6tp,d
√
d
(1− t2p,d)

d−1
2 ≤ p ≤

1

2tp,d
√
d
(1− t2p,d)

d−1
2 .

min

(

C−1
(1/2− p)

√

log(1/p)

d
;
1

2

)

≤ tp,d ≤ C

√

log(1/p)

d
.

e
−t2p,dd/2

tp,d
√
d

≤ pnγ .

e
−t2p,dd/2 = e

−t2p,d(d−1)/2
e
−t2p,d/2 ≤ e

−t2p,d(d−1)/2
,

Fig. 1  A spherical cap of height 1− t
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therefore, it is sufficient to derive a bound on e−t2p,d(d−1)/2 . We next show that this quan-
tity might be approximated by 1

tp,d
√
d
(1− t2p,d)

d−1
2  . Indeed,

and since tp,d → 0 , we can approximate the logarithm by Taylor series with 
k = ⌈1/ǫ⌉ + 1 terms:

That implies:

The first term in the sum under the exponent function gives exactly what we needed. 
Therefore, it can be expressed as follows:

The first term in the right-hand side product, accordingly to (1), is at most proportional 
to p:

Further, as we learn from Lemma 1, there exists such a constant C > 0 that

for large enough n. The right-hand side converges to 0 as n → ∞ since 1− ǫk < 0 due to 
the choice of parameter k. That allows us to bound the second term by a constant larger 
than 1, for instance:

Let us consider the last term of (2). As in the above argumentation,

But exp
(

Cmk log1−ǫi n
)

 grows slower than nγ /k for any γ > 0 , which means that for 

large n the third term of (2) is at most nγ:

1

tp,d
√
d
(1− t2p,d)

d−1
2 =

1

tp,d
√
d
exp

{

d − 1

2
log(1− t2p,d)

}

,

log(1− t2p,d) = −t2p,d −

k
∑

i=2

t2ip,d

i
+ O

(

t2k+2
p,d

)

.

1

tp,d
√
d
(1− t2p,d)

d−1
2 =

1

tp,d
√
d
exp

{

−
d − 1

2

(

t2p,d +

k
∑

i=2

t2ip,d

i
+ O

(

t2k+2
p,d

)

)}

.

(2)

e
−t2p,d(d−1)/2

tp,d
√
d

=
1

tp,d
√
d
(1− t2p,d)

d−1
2 exp

(

d − 1

2
O
(

t2k+2
p,d

)

) k
∏

i=2

exp

(

(d − 1)t2ip,d

2i

)

.

1

tp,d
√
d
(1− t2p,d)

d−1
2 ≤ 6p.

t2k+2
p,d

d − 1

2
≤ C

logk+1
(1/p)

dk
≤ Cmk+1 logk+1 n

logk+ǫk n
= Cmk+1 log1−ǫk n

exp

(

d − 1

2
O
(

t2k+2
p,d

)

)

≤ 2.

t2ip,d
d − 1

2i
≤ Cmi logi n

logi+ǫi n
= Cmi log1−ǫi n.
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A final combination of these three bounds finishes the proof:

� �

Now we can present our result that states that G(n, p, d) does not contain cliques of 
size 4 almost surely. Let us remind that Nk(n, p, d) denotes the number of k-cliques in 
G(n, p, d).

Theorem 4  Suppose that k ≥ 4, n−m
≤ p ≤ n−2/3−γ with some m > 0 and γ > 0 and 

d ≫ log1+ǫ n with some ǫ > 0 . Then

Proof  First, let us check that the conditions of Theorem 2 are satisfied with the param-
eters of our case. It is known that

Thus, in our case

Therefore, since tp,d
√
d → ∞,

Here we have used the result of Lemma 2. Considering d ≫ log1+ǫ n , we obtain that 
β → 0 as n → ∞ , that is why for sufficiently large n,

Now we need to select an appropriate parameter δn . Since α =

√

1− β

√

k/d → 1 as 
n → ∞ , we can take δn = log1/2−ǫ/2 n for sufficiently large n.

k
∏

i=2

exp

(

(d − 1)t2ip,d

2i

)

≤

(

nγ /k
)k−1

≤
nγ

12
.

1

tp,d
√
d
exp

{

d − 1

2
log(1− t2p,d)

}

≤ 12p ·
nγ

12
≤ pnγ .

P[Nk(n, p, d) ≥ 1] → 0, n → ∞.

(3)�(x) = 1+ e−x2/2

(

−
1

√
2πx

+ O

(

1

x3

))

as x → ∞.

p̂ = 1−�(tp,d
√

d) =
e−(tp,d

√
d)2/2

tp,d
√
2πd

(1+ o(1))

β = 2

�

log
4

p̂
= 2

�

�

�

�

�− log



4
e
−t2p,dd/2

tp,d
√
2πd

(1+ o(1))





= 2

�

(tp,d
√

d)2/2+ log(tp,d
√

2πd)− log 4 + o(1)

=

√

2

�

(tp,d
√

d)2(1+ o(1)) ≤ 2tp,d
√

d ≤

≤ 2C
�

log(1/p) ≤ 2C
√
m
�

log n.

β

√

k

d
< 1.
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It is only left to check the condition

Indeed, as far as k is constant, for n large enough

But d grows faster than log1+ǫ n , and condition (4) is then satisfied. Thus, it is now pos-
sible to apply the bound from Theorem 2.

According to the asymptotic representation of �(x) and Lemma 2, for sufficiently large 
n,

with some universal constant C� > 0 . Since β ≤ 2C
√
m
√

log n and tp,d ≤ C

√

log(1/p)
d

 , 
we have

The second exponent can be bounded similarly:

Therefore, for sufficiently large n,

(4)d >

8(k + 1)2 log 1
p̃

δ
2
n

(

k log
4

p̃
+ log

k − 1

2

)

.

8(k + 1)2 log 1
p̂

δ
2
n

(

k log
4

p̂
+ log

k − 1

2

)

≤

32k(k + 1)2 log2 1
p̂

log1−ǫ n

≤
32m2k(k + 1)2 log2 n

log1−ǫ n

≤ 32m2k(k + 1)2 log1+ǫ n.

1−�(αtp,d
√

d − δn) ≤
C�

tp,d
√
d
e−(αtp,d

√
d−δn)

2
/2

≤
C�

tp,d
√
d
e
−α

2t2p,dd/2eαtp,d
√
dδne−δ

2
n

C�

tp,d
√
d
e
−

(

1−β

√
k/d

)

t2p,dd/2eαtp,d
√
dδn

≤ C�pn
γ /4e

β

√
kdt2p,d/2eαtp,d

√
dδn ,

exp
(

β

√

kdt2p,d/2
)

≤ exp
(

C
√

km
√

log n t2p,d

√

d
)

≤ exp

(

C3
√

km
log(1/p)

√
d

)

≤

≤ exp

(

√

kC3m3/2 log3/2 n

log1/2+ǫ/2 n

)

= exp
(√

kC3m3/2 log1−ǫ/2 n
)

.

exp
(

αtp,d
√

dδn

)

≤ exp
(

tp,d
√

dδn

)

≤ exp
(

C
√
m log1/2 n log1/2−ǫ/2 n

)

= exp
(

C
√
m log1−ǫ/2 n

)

.
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Finally, we get that

Let us notice that 
(

n
k

)

≤
nk

k!
 . It is easy to verify that k −

(

2
3 + γ

)

k(k−1)
2 < 0 for k ≥ 4 

and γ > 0 . Then for k ≥ 4,

It only remains to mention that

The theorem is proved.
� �

Number of triangles in the sparse regime: d ≫ log3 n

As noted in the previous section, in the sparse regime, G(n,  p,  d) does not contain 
any complete subgraph larger than a triangle. The natural question arises, how many 
triangles are in G(n, p, d). The next two results give some idea of the expected num-
ber of triangles. The first result refers to the case d ≫ log3 n ; in this case, the aver-
age number of triangles grows as the function θ(n) that determines the probability 
p(n) = θ(n)/n.

Our first goal is to obtain a more accurate analogue of Lemma 2.

Lemma 3  Assume p ≥ n−m for some m > 0 and d ≫ log2 n . Then the following ine-
quality holds true:

Proof  From (1) we learn that

Let us write the Taylor series of (1− t2p,d)
d/2:

e
β

√
K/dt2p,dd/2eαtp,d

√
dδn ≤ exp

(

(C
√
m+

√

kC3m3/2
) log1−ǫ/2 n

)

< nγ /4.

1−�(αtp,d
√

d − δn) ≤ C�pn
γ /2

≤ C�n
−2/3−γ nγ /2 = C�n

−2/3−γ /2.

ENk ≤ e1/
√
2

(

n
k

)

(

1−�(αtp,d
√

d − δn)

)

(

k
2

)

≤
C

(

k
2

)

�

k!
e1/

√
2nkn−(2/3+γ )

k(k−1)
2 → 0, n → ∞.

P(Nk ≥ 1) ≤ ENk → 0, n → ∞.

(5)e
−t2p,dd/2

p
≤ tp,d

√

d ≤
12e

−t2p,dd/2

p
.

2(1− t2p,d)
d/2

p
√

1− t2p,d

=

2(1− t2p,d)
(d−1)/2

p
≤ tp,d

√

d ≤

6(1− t2p,d)
(d−1)/2

p
=

6(1− t2p,d)
d/2

p
√

1− t2p,d

.
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Lemma 1 and the condition d ≫ log2 n guarantee that t4p,dd → 0 as n → ∞ . This means 
that for any δ > 0 and sufficiently large n, the quantity exp

(

O(dt4p,d)
)

 can be bounded as 

follows:

The same statement holds true for 1/
√

1− t2p,d :

Therefore, taking δ < 1− 1/
√
2,

Thus, inequality (5) is proved. � �

Theorem  5  Let us suppose that d ≫ log3 n and p = θ(n)/n with nm ≤ θ(n) ≪ n for 
some m > 0 . Then for any 0 < ǫ < 1 and sufficiently large n, the expected number of tri-
angles can be bounded as follows:

Proof  The idea of the proof is quite similar to that of Theorem 4, but it uses both The-
orems 1 and 2. Besides, we need more accurate asymptotic analysis, as now a rough 
bound of Lemma 2 is not sufficient for the application of Theorems 1 and 2. We are 
going to use more precise Lemma 3.

Upper bound As previously, we first need to verify the conditions of Theorem 2. It is 
obvious that still

Take δn =
log(1+ε/4)

C
√
m
√

log n
 . Then Theorem 2 holds true for

But the right-hand side does not grow faster than log3 n due to the choice of δn and the 
argumentation similar to that of Theorem 4. Consequently, the above condition is satis-
fied if only d ≫ log3 n , and now we can apply Theorem 2.

(1− t2p,d)
d/2

= exp

(

d

2
ln
(

1− t2p,d

)

)

= exp

(

−
d

2

(

t2p,d + O(t4p,d)
)

)

= exp

(

−
d

2
t2p,d

)

exp
(

O(dt4p,d)
)

.

1− δ ≤ exp
(

O(dt4p,d)
)

≤ 1+ δ.

1− δ ≤
1

√

1− t2p,d

≤ 1+ δ.

e
−t2p,dd/2

p
≤

2(1− δ)
2e

−t2p,dd/2

p
≤ tp,d

√

d ≤
6(1+ δ)

2e
−t2p,dd/2

p
≤

12e
−t2p,dd/2

p
.

2

15(2π)3/2
(1− ǫ)θ

3
(n) ≤ E[N3(n, p, d)] ≤

288

(2π)3/2
e1/

√
2
(1+ ǫ)θ(n)3.

β

√

3

d
< 1.

d ≥

384 log 1
p̂
log 4

p̂

δ
2
n

.
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Let us rewrite the bound from this theorem for k = 3:

Of course, the most important term here is 1−�(αtp,d
√
d − δn) . Similar to the proof of 

the previous theorem one can get (with the asymptotic representation (3)) that

From (5) we learn that

Further, since d ≫ log3 n and β < 2C
√
m
√

log n (see the proof of Theorem 4), for suf-
ficiently large n,

The second exponent is just a constant for the chosen δn (here we use the fact that α < 1):

Putting all together and taking into account that 
(

n
3

)

≤
n3

6 ,

Lower bound Now we are going to use Theorem  1. First, we need to determine the 
asymptotic behavior of the function p̃:

As one can easily see,

EN3 ≤ e1/
√
2

(

n
3

)

(

1−�(αtp,d
√

d − δn)

)3
.

1−�(αtp,d
√

d − δn) ≤
e
−t2p,dd/2

tp,d
√
2πd

e
β

√
3dt2p,d/2eαtp,d

√
dδn .

e
−t2p,dd/2

tp,d
√
d

≤ 12p.

exp
(

β

√

3dt2p,d

)

≤ exp

(

2
√
3C3√m

√

log n log(1/p)
√
d

)

≤ exp

(

2
√
3C3m3/2 log3/2 n

√
d

)

= 1+ o(1), n → ∞.

exp
(

αtp,d
√

dδn

)

≤ exp
(

tp,d
√

dδn

)

≤ exp
(√

Cmδn log
1/2 n

)

= elog(1+ǫ/2)
= 1+ ǫ/2.

E[N3(n, p, d)] ≤ e1/
√
2

(

n
3

)

(

1−�(αtp,d
√

d − δn)

)3

≤
288

(2π)3/2
e1/

√
2
(1+ ǫ/2)(1+ o(1))n3p3

=
288

(2π)3/2
e1/

√
2
(1+ ǫ)θ(n)3.

p̃ = 1−�(2tp,d
√

d + 1) =
e
−2t2p,d

√
d

2tp,d
√
2πd

(1+ o(1)).

log
1

p̃
= log

(

2
√

2πd tp,de
t2p,dd

(1+ o(1))
)

= t2p,dd + log
(

2
√

2πd tp,d

)

= 2 log n(1+ o(1)).
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Then β = �(

√

log n) and β

√

3/d → 0 with n → ∞ . This implies that 
α =

√

1− β

√

k/d → 1 as n → ∞ . Let us take δn =
log(1+ǫ)

2αC
√
m
√

log n
 . Similar to the previ-

ous case, the condition

is satisfied if d ≫ log3 n.

Let us remind that the bound of Theorem 1 is written as follows:

where �̃3(d, p) = �





αtp,d
√
d + δn

�

1−
32 log(1/p̃)

d



.

Since tp,d
√
d → ∞ and α → 1 as n → ∞,

Here we used a simple inequality 1/(1− x) < 1+ 2x for 0 < x < 1/2 and the fact that 
4(K+1)2 log(1/p̃)

d
= O(1/ log2 n) → 0 as n → ∞ . By the same reason,

Hence,

Consequently,

The inequality (5) guarantees that

d ≥

384 log 1
p̃
log 4

p̃

δ
2
n

E[N3(n, p, d)] ≥
4

5

(

n
3

)

(

1− �̃3(d, p)
)

(

3
2

)

,

1− �̃3(d, p) =
1

tp,d
√
2πd

exp

{

−
(αtp,d

√
d + δn)

2

1−
32 log(1/p̃)

d

}

(1+ o(1))

≥
1

tp,d
√
2πd

exp

{

−(αtp,d
√

d + δn)
2

(

1+
64 log(1/p̃)

d

)}

(1+ o(1)).

(αtp,d
√

d + δn)
2 4(K + 1)2 log(1/p̃)

d
= O

(

1

log n

)

.

exp

{

−(αtp,d
√

d + δn)
2 4(K + 1)2 log(1/p̃)

d

}

= 1+ o(1), n → ∞.

1− �̃3(d, p) =
1

tp,d
√
2πd

exp
{

−(αtp,d
√

d + δn)
2
}

(1+ o(1))

=
1

tp,d
√
2πd

exp
{

−(α
2t2p,dd + 2αtp,dδn

√

d + δ
2
n)

}

(1+ o(1))

=
1

tp,d
√
2πd

exp

{

−

(

1+

√

8K

d
log

4

p̃

)

t2p,dd − 2αtp,dδn
√

d − δ
2
n

}

(1+ o(1)).

e
−t2p,d d

tp,d
√
d
≥ p.
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Further, similarly to the previous case,

Finally, it is easy to check that δ2n → 0 and 
√

8K
d

log 4
p̃
t2p,dd → 0 under the condition 

d ≫ log3 n . That is why

That leads us to the final bound:

� �

Number of triangles in the sparse regime: d ≪ log3 n

So far, the presented results more likely confirm the similarity of random geometric 
graphs and Erdős–Rényi graphs. However, from Bubeck et  al. (2016) one can learn that 
these graphs are completely different in the sparse regime if d ≪ log3 n . This can be easily 
deduced from the result of Theorem 3. It states that the expected number of triangles of a 
random geometric graph grows significantly faster (as a polylogarithmic function of n) than 
one of the corresponding Erdős–Rényi graph. It turns out that the bound of Theorem 3 can 
be improved.

In order to make this improvement, we present some results from convex geometry. First 
of all, it is known that the surface area Ad of (d − 1)-dimensional sphere Sd−1 can be calcu-
lated as follows (see Blumenson 1960):

Now we need a result providing the expression for the surface area of the intersection 
of two spherical caps in Rd . Let us denote by Ad(θ1, θ2, θν) the surface area of the inter-
section of two spherical caps of angles θ1 and θ2 with the angle θν between axes defining 
these caps. The paper (Lee and Kim 2014) gives the exact formula for this quantity in 
terms of the regularized incomplete beta function.

Theorem 6  (Lee and Kim 2011) Let us suppose that θν ∈ [0,π/2) and θ1, θ2 ∈ [0, θν] . 
Then

exp(−2αtp,d
√

dδn) ≥ exp(− log(1+ ǫ/4)) = 1/(1+ ǫ/4) ≥ 1− ǫ/2.

1− �̃3(d, p) ≥
p

√
2π

(1− ǫ/2)(1+ o(1)) ≥
p

√
2π

(1− ǫ).

EN3(n, p, d) ≥
4

5

(

n
3

)

(

1− �̃3(d, p)
)3

≥
2

15(2π)3/2
(1− ǫ)n3p3

=
2

15(2π)3/2
(1− ǫ)θ

3
(n).

Ad =
2πd/2

Ŵ(d/2)
.
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where θmin is defined as follows

and Ix(a, b) stands for the regularized incomplete beta function, that is

Theorem  7  Let d ≫ log2 n, and assume p = θ(n)/n with nm ≤ θ(n) ≪ n for some 
m > 0 . Then there exist constants Cl > 0 and Cu > 0 such that

Proof  Notation and a general plan of the proof Let us make some preparations. 
Denote by Ei,j the event {�Xi,Xj� ≥ tp,d} and by Ei,j(x) the event {�Xi,Xj� = x} . In what 
follows, we condition on the zero probability event Ei,j(x) . It should be understood as 
conditioning on the event {x − ǫ ≤ �Xi,Xj� ≤ x + ǫ} with ǫ → 0 . Using this notation, we 
can rewrite

where fd(x) is the density of a coordinate of a uniform random point on Sd−1 (see 
Bubeck et al. 2016), that is

Using the fact that

we can present fd(x) as follows:

Here Cf (d) denotes some function of d with 1/100 ≤ Cf (d) ≤
√
2.

Ad(θ1, θ2, θν) =
π
(n−1)/2

Ŵ

(

n− 1

2

)

{
∫

θ2

θmin

sind−2
φ I

1−
(

tan θmin
tan φ

)2

(

n− 1

2
,
1

2

)

dφ

+

∫

θ1

θν−θmin

sind−2
φ I

1−
(

tan(θν−θmin)
tan φ

)2

(

n− 1

2
,
1

2

)

dφ

}

:= J θmin,θ2
n + J θν−θmin,θ1

n ,

θmin = arctan

(

cos θ1

cos θ2 sin θν
−

1

tan θν

)

,

Ix(a, b) =
B(x, a, b)

B(a, b)
=

∫ x
0 ta−1

(1− t)b−1dt
∫ 1
0 ta−1

(1− t)b−1dt
.

Clθ
3
(n)t2p,de

t3p,dd
(1+ o(1)) ≤ E[N3(n, p, d)] ≤ Cuθ

3
(n)e

t3p,dd
(1+ o(1)).

(6)

P(E1,2E1,3E2,3) =

∫ 1

tp,d

P
(

E2,3E1,3|E1,2(x)
)

fd(x)

=

∫ 2tp,d

tp,d

P
(

E2,3E1,3|E1,2(x)
)

fd(x)dx +

∫ 1

2tp,d

P
(

E2,3E1,3|E1,2(x)
)

fd(x)
)

dx

:= T1 + T2,

fd(x) =
Ŵ(d/2)

Ŵ((d − 1)/2)
√
π

(1− x2)(d−3)/2, x ∈ [−1, 1].

(7)Ŵ(d)
√

d/100 ≤ Ŵ(d + 1/2) ≤ 2
√

dŴ(d),

(8)fd(x) = Cf (d)
√

d(1− x2)(d−3)/2, x ∈ [−1, 1].
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Here is a general outline of the proof. We treat the terms T1 and T2 separately and start 
with T1 . The probability P

(

E2,3E1,3|E1,2(x)
)

 can be expressed with the normalized surface 
area of the intersection of two spherical caps. First, we need to bound this quantity. After 
that, using the representation (8), we will calculate T1 in terms of the CDF of the stand-
ard normal distribution and will estimate its asymptotic behavior. As for T2 , it will be 
enough to show that T2 = o(T1) as n → ∞.

Estimation of term T1 . As was mentioned above, we start with T1 . It will be more hand-
ful to write it in the following form:

Conditioning on E1,2(αtp,d) , the probability P
(

E2,3E1,3|E1,2(αtp,d)
)

 is just the normalized 
surface area of the intersection of two caps of angle arccos(tp,d) (and arccos(αtp,d) is the 
angle between the axes of these caps).

where J a,bd  is defined in Theorem 6, and

Because both caps are of the same angle, the parts in the right-hand side of (9) are equal. 
Therefore, recalling the definition of J

θmin,arccos(tp,d)

d ,

Let us make a change of variables: sin2 φ = z . Using this change and the expression for 
θmin , we obtain

Considering the definition of a regularized beta function and the formula 
Ŵ(d + 1) = dŴ(d) , we have

T1 =

∫ 2tp,d

tp,d

P
(

E2,3E1,3|E1,2(x)
)

fd(x)dx =

= tp,d

∫ 2

1
P
(

E2,3E1,3|E1,2(αtp,d)
)

fd(αtp,d)dα.

(9)

p̃(α) := P
(

E2,3E1,3|E1,2(αtp,d)
)

=

=
Ad(arccos(tp,d), arccos(tp,d), arccos(αtp,d))

Ad
=

=

Ŵ

(

d
2

)

2πd/2

(

J
θmin,arccos(tp,d)

d + J
arccos(αtp,d)−θmin,arccos(tp,d)

d

)

,

θmin = arctan

(

1

sin(arccos(αtp,d))
−

1

tan(arccos(αtp,d))

)

= arctan

(√

1− αtp,d

1+ αtp,d

)

.

p̃(α) =
Ŵ

(

d
2

)

π
d/2

J
θmin,arccos(tp,d)

d

=

Ŵ

(

d
2

)

π
(d−1)/2

π
d/2

Ŵ

(

d−1
2

)

∫ arccos(tp,d)

θmin

sind−2
φ I

1−
(

tan θmin
tan φ

)2

(

d − 2

2
,
1

2

)

dφ.

p̃(α) =
Ŵ

(

d
2

)

π
(d−1)/2

2πd/2
Ŵ

(

d−1
2

)

∫ 1−t2p,d

1−αtp,d
2

z(d−3)/2
(1− z)−1/2I

1−
1−αtp,d
1+αtp,d

·
1−z
z

(

d − 2

2
,
1

2

)

dz.
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Next, we need a simple double bound on the incomplete beta function Iu(a, 1/2):

which can be established by estimation of (1− t)−1/2 and subsequent explicit integra-
tion. That is why

Here we used the fact that 1 ≤ d/(d − 2) ≤ 2 for d ≥ 4 . We can transform:

which gives us the following estimation:

It is easy to check that 
1

√
z(1− z)

 has a minimum value 1/2 for z ∈ [0, 1) , and 
1

1− z
 is 

increasing in z for z > 0 . Therefore,

Now we can explicitly compute the integral:

which implies the final bounds on p̃(α):

This means that T1 can be estimated as follows:

p̃(α) =
d

2π

� 1−t2p,d

1−αtp,d
2

z(d−3)/2
(1− z)−1/2





� 1−
1−αtp,d
1+αtp,d

·
1−z
z

0
yd/2−2

(1− y)−1/2dy



dz.

ua+1

a+ 1
≤

∫ u

0
ta(1− t)−1/2dt ≤

ua+1

(a+ 1)
√
1− u

,

1

π

∫ 1−t2p,d

1−αtp,d
2

z(d−3)/2
(1− z)−1/2

(

1−
1− αtp,d

1+ αtp,d
·
1− z

z

)d/2−1

dz ≤ p̃(α)

≤
2

π

∫ 1−t2p,d

1−αtp,d
2

z(d−3)/2
(1− z)−1/2

(

1− αtp,d

1+ αtp,d
·
1− z

z

)−1/2(

1−
1− αtp,d

1+ αtp,d
·
1− z

z

)d/2−1

dz.

1−
1− αtp,d

1+ αtp,d
·
1− z

z
=

2z − 1+ αtp,d

(1+ αtp,d)z
,

1

2π

∫ 1−t2p,d

1−αtp,d
2

1
√
z(1− z)

(

2z − 1+ αtp,d

1+ αtp,d

)d/2−1

dz ≤ p̃(α)

≤
1

π

√

1+ αtp,d

1− αtp,d

∫ 1−t2p,d

1−αtp,d
2

1

1− z

(

2z − 1+ αtp,d

1+ αtp,d

)d/2−1

dz

1

2π

∫ 1−t2p,d

1−αtp,d
2

(

2z − 1+ αtp,d

1+ αtp,d

)d/2−1

dz ≤ p̃(α)

≤
2

π t2p,d

√

1+ αtp,d

1− αtp,d

∫ 1−t2p,d

1−αtp,d
2

(

2z − 1+ αtp,d

1+ αtp,d

)d/2−1

dz.

∫ 1−t2p,d

1−αtp,d
2

(

2z − 1+ αtp,d

1+ αtp,d

)d/2−1

dz =
1+ αtp,d

d

(

1−
2t2p,d

1+ αtp,d

)d/2

,

1+ αtp,d

2πd

(

1−
2t2p,d

1+ αtp,d

)d/2

≤ p̃(α) ≤
2(1+ αtp,d)

3/2

πdt2p,d
√

1− αtp,d

(

1−
2t2p,d

1+ αtp,d

)d/2

.
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Let us recall (8) and rewrite the ‘essential’ part of previous inequalities.

Of course, we are most interested in the term 
(

1− (2+ α
2
)t2p,d + 2αt3p,d

)

(d−1)/2
 , which 

can be rewritten in the following form:

Since tp,d → 0 as n → ∞ , one can use Taylor series for logarithm:

From (5) one can easily deduce that

where 1 ≤ Ce(p, d) ≤ 12 is some function that depends only on p and d. Therefore,

We have transformed the main term of (11). Let us deal with ‘unimportant’ parts of (10) 
and (11). Denote

(10)

tp,d

2πd

∫ 2

1
(1+ αtp,d)

(

1−
2t2p,d

1+ αtp,d

)d/2

fd(αtp,d)dα ≤ T1

≤
2

πdtp,d

∫ 2

1

(1+ αtp,d)
3/2

√

1− αtp,d

(

1−
2t2p,d

1+ αtp,d

)d/2

fd(αtp,d)dα.

(11)

(

1−
2t2p,d

1+ αtp,d

)d/2

fd(αtp,d)

= Cf (d)
√

d

(

1−
2t2p,d

1+ αtp,d

)3/2(

(1− α
2t2p,d)

(

1−
2t2p,d

1+ αtp,d

))

(d−3)/2

= Cf (d)
√

d

(

1−
2t2p,d

1+ αtp,d

)3/2
(

1− (2+ α
2
)t2p,d + 2αt3p,d

)

(d−3)/2

= Cf (d)
√

d

(

1−
2t2p,d

1+ αtp,d

)3/2
(

1− (2+ α
2
)t2p,d + 2αt3p,d

)

(d−1)/2

1− (2+ α
2
)t2p,d + 2αt3p,d

.

(

1− (2+ α
2
))t2p,d + 2αt3p,d

)

(d−1)/2
= exp

{

d − 1

2
log

(

1− (2+ α
2
)t2p,d + 2αt3p,d

)

}

.

log
(

1− (2+ α
2
)t2p,d + 2αt3p,d

)

= −(2+ α
2
)t2p,d + 2αt3p,d + O(t4p,d)

= −(3+ (α
2
− 1))t2p,d + 2αt3p,d + O(t4p,d), n → ∞.

exp

(

−
d − 1

2
t2p,d

)

= Ce(p, d)ptp,d
√

d exp
(

O(t4p,dd)
)

,

(12)

(

1− (3+ (α
2
− 1))t2p,d + 2αt3p,d

)

(d−1)/2

= exp

{

−3
d − 1

2
t2p,d

}

exp

{

−
d − 1

2

(

(α
2
− 1)t2p,d − 2αt3p,d + O(t4p,d)

)

}

= C3
e (p, d)p

3t3p,dd
3/2 exp

{

−
d − 1

2

(

(α
2
− 1)t2p,d − 2αt3p,d + O(t4p,d)

)

}

.
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Since 1 ≤ α ≤ 2 and tp,d → 0 , for sufficiently large n and some constants Cl > 0 and 
Cu > 0,

and

Then, plugging (11), (12), (13) and (14) into (10), we obtain the following final bounds on 
T1 at this step:

Expression of bounds on T1 with the CDF of the standard normal distribution One 
can easily get that

which implies

Let us treat the integral in the right-hand side of the last equation. Changing the variable 
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d − 1 , we obtain that
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Since tp,d
√
d − 1 → ∞ as n → ∞,

But the ratio of the second and the first terms in the right-hand side converges to 0 as 
n → ∞ . Indeed,

The condition tp,d → 0 implies that

and, therefore,

The last equality holds because under the condition d ≫ log2 n , it is true that dt4p,d → 0 
as n → ∞ , and edt

4
p,d → 1 . Putting (17) in (15) gives the final bounds on T1:

This concludes the first part the proof.

Estimation of T2 The second term can be treated much more easily. Indeed, let us bound 
from above:
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But, similarly to the argumentation in (16), 
√
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 , hence, 

finally,

It is only left to use the standard asymptotic representation of the binomial coefficient 
(

n
3

)

=
n3

6 (1+ o(1)) in order to obtain the bounds on the expected number of triangles:

The theorem is proved.
� �

Let us now discuss the result of this theorem. To make the expressions more handful, 
we consider only p = 1/n , but the idea can be extended up to any sufficiently small p. 
First of all, in this case, as we know from Lemma 1, t3p,dd = �

(

log3/2 n
√
d

)

 . If d ≪ log3 n , the 

exponent exp
(

log3/2 n
√
d

)
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means that the obtained result is better than that of Lemma 3. Unfortunately, the upper 
bound of Theorem 7 is still 1/t2p,d times larger than the lower bound, although this mar-
gin is much smaller than the ‘main’ term et

3
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power of n, but we believe that for d = �(log n) , the number of triangles is linear (or 
almost linear) in n.

Numerical results
So far, all the presented results are strictly theoretical and refer to the asymptotic case. 
But real-life networks have a limited number of nodes, and it is not clear whether our 
theoretical results might be applied to their description. To verify this hypothesis, we 
conducted a few simple numerical experiments.

Our aim is to compare the clustering coefficient and the number of triangles in ran-
dom geometric and Erdős–Rényi graphs. Here we use the global clustering coefficient 
(GCC), or transitivity, which is defined as follows:

where a triplet is a configuration of three nodes connected by at least two edges. This 
quantity represents then the proportion of ‘closed’ triplets. In other words, the GCC is 
the probability that two of my ‘friends’ are also ‘friends’ to each other. In general, this is 
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a good quantitative expression of the clustering level in a network (see Wasserman and 
Faust 1994).

Figure  2 illustrates the difference between a random geometric graph and an 
Erdős–Rényi graph in terms of the GCC and the number of triangles. For our experi-
ments, we took p = ln n/n , a quite popular regime, usually called significantly sparse. 
Figure 2a, b show the average GCC (over 20 iterations) of G(n, p, d) and G(n, p) for 
n = 5000 and n = 10000 , respectively, and for ln n ≤ d ≤ ln3.5 n . As expected, the dif-
ference is large when d is relatively small. As d increases, the difference goes to 0, and 
for d = ln3 n (617 and 781, respectively), it equals 0.002. Since the GCC of G(n,  p) 
is simply p for large n, the GCC significantly higher than p gives a reason to sup-
pose that the network has the underlying geometry with small d. On the other hand, 
the GCC close to p means that a low-dimensional graph representation is most likely 
impossible.

Unfortunately, our results and the result of Bubeck et  al. (2016) do not give the 
exact value of constants for given n, and we cannot try them in practice. However, 
we can compare the growth rate of the number of triangles for different d. Fig. 2c, d 
show how fast the number of triangles grows with n → ∞ for d = ln n and d = ln3 n , 
respectively. The number of triangles in G(n,  p), of course, does not depend on d 
and grows as ln3 n on both pictures. As for G(n, p, d), the number of triangles grows 
almost linearly in n for d = ln n , while d = ln3 n gives a ‘no geometry’ situation of the 
corresponding Erdős–Rényi graph, up to a multiplication factor.

c d

a b

Fig. 2  Comparison of clustering in G(n, p, d) and G(n, p) for p = ln(n)/n . a global clustering coefficient 
for n = 5 000 and ln n ≤ d ≤ ln

3.5 n ; b global clustering coefficient for n = 10 000 and ln n ≤ d ≤ ln
3.5 n ; 

c number of triangles for d = ln n and 100 ≤ n ≤ 10 000 ; d number of triangles for d = ln
3 n and 

100 ≤ n ≤ 10 000
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To conclude, we see a possible extension of this theoretical work in obtaining practical 
results with explicit bounds on the expected number of triangles. Such bounds would 
help to determine whether a network has an underlying geometry. Moreover, if this is 
the case, an interesting problem is to determine (perhaps in real-life tasks) the dimen-
sion of the underlying geometric space. This would help, for instance, to make embed-
ding of big data sets more efficient by better choice of the embedding dimension.

Conclusion
As we have seen, high-dimensional random geometric graphs in the sparse regime 
always fail to create really large communities. It would be natural to expect that these 
graphs do not differ in any way from Erdős–Rényi graphs; however, for d ≪ log3 n , they 
show a rather high tendency for clustering (my ‘friends’ are connected with high prob-
ability). Is it true that in the opposite case G(n, p, d) and G(n, p) resemble each other? 
We believe in the conjecture stated in Bubeck et al. (2016), which proposes the positive 
answer to this question. Since a similar conjecture was proved in that work for the dense 
regime, the situation does not look hopeless. However, the technique applied in the 
dense regime cannot be easily extended to the sparse regime. Any result describing the 
total variation between G(n, p, d) and G(n, p) in this regime would be very interesting.

In the present paper and in Devroye et  al. (2011), Bubeck et  al. (2016), the case 
d ≥ log n is always considered. What happens if d grows at a lower pace? What is the 
value of the clique number? We do not have the answers for this regime. But, obviously, 
the theoretical framework may differ quite a lot from what we used in our work.

As for triangles, it is not hard to prove that the number of triangles can be approxi-
mated by the Poisson distribution with an appropriate parameter that is, of course, the 
expected number of triangles. Hence, we need sharper bounds on this quantity, espe-
cially in the case d ≪ log3 n . We are convinced that the upper bound in Theorem 7 can-
not be improved, and the statement holds true for log n ≪ d ≪ log2 n.

For sure, apart from the description of cliques and communities, many properties of 
high-dimensional random geometric graphs remain unexplored: connectivity, the exist-
ence of the giant component, the chromatic number, to name but a few. But even for 
fixed d, the results describing these properties require quite complex methods, so we do 
not expect immediate breakthroughs in this direction.

The previous section presents some numerical results that already might be useful for 
practical purposes. Let us discuss some possible further work in this direction. Firstly, we 
believe that the cliques (especially triangles) might be useful for community detection in 
networks with a geometric structure. Secondly, we think that some of the ideas intro-
duced in this paper can help determine if a network has an underlying geometry. The lat-
ter is important because if it is known that the nodes are embedded in some space, then 
one can hope to make a lower-dimensional representation of the network structure or to 
use its geometric properties (e. g., two distant nodes cannot have a common neighbor). 
However, this requires more accurate bounds on the number of triangles with explicit 
constants. We did not pursue this goal and concentrated only on asymptotic results. 
Finally, the results obtained above can be helpful for the investigation of possible multi-
ple correlations in data sets with a very large number of features.
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