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Introduction
Complex networks have frequently been studied as graphs, but only recently has atten-
tion been given to the study of complex networks as hypergraphs  (Estrada and Rod-
riguez-Velazquez 2005). The hypergraph-of-entity  (Devezas and Nunes 2019) is a 
hypergraph-based model used to represent combined data (Bast et al. 2016, §2.1.3). That 
is, it is a joint representation of corpora and knowledge bases, integrating terms, entities 
and their relations. It attempts to solve, by design, the issues of representing combined 
data through inverted indexes and quad indexes. The hypergraph-of-entity, together 
with its random walk score (Devezas and Nunes 2019, §4.2.2), is also an attempt to gen-
eralize several tasks of entity-oriented search. This includes ad hoc document retrieval 
and ad hoc entity retrieval, as well as the recommendation-alike tasks of related entity 
finding and entity list completion. However, there is a tradeoff. On one side, the random 
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walk score acts as a general ranking function. On the other side, it performs below tra-
ditional baselines like TF-IDF (term frequency ×  inverted document frequency). Since 
ranking is particularly dependent on the structure of the hypergraph, a characteriza-
tion is a fundamental step towards improving the representation model and, with it, the 
retrieval performance.

Accordingly, our focus was on studying the structural features of the hypergraph. This 
is a task that presents some challenges, both from a practical sense and from a theo-
retical perspective. While there are many tools (Csardi and Nepusz 2006; Bastian et al. 
2009) and formats  (Himsolt 1997; Brandes et al. 2001) for the analysis and transfer of 
graphs, hypergraphs still lack clear frameworks to perform these functions, making 
their analysis less trivial. Even formats like GraphML (Brandes et al. 2001) only support 
undirected hypergraphs. Furthermore, there is still an ongoing study of several aspects 
of hypergraphs, some of which are trivial in graph theory. For example, the adjacency 
matrix is a well-established representation of a graph, however recent work is still focus-
ing on defining an adjacency tensor for representing general hypergraphs (Ouvrard et al. 
2017). As a scientific community, we have been analyzing graphs since 1735 and, even 
now, innovative ideas in graph theory are still being researched  (Aparicio et al. 2018). 
However, the concept of hypergraph is much younger, dating from 1970 (Berge 1970), 
and thus there are still many open challenges and contribution opportunities.

In this work, which is an extended version of our previous characterization 
work (Devezas and Nunes 2019), we take a practical application of hypergraphs in the 
domain of information retrieval, the hypergraph-of-entity, as an opportunity to establish 
a basic framework for the analysis of hypergraphs. We expand on our previous work by 
analyzing the impact of two extensions (synonymy, and contextual similarity), that had 
previously been defined for this representation model  (Devezas and Nunes 2019), and 
we also introduce and characterize a new extension, based on the idea of segmenting 
the document into different sets of terms according to discretizations of term frequency 
(TF-bins, or term frequency bins). The main contributions of this work are the following:

•	 Analysis of multiple versions of real-world hypergraph data structures being devel-
oped for information retrieval;

•	 Proposal of a practical analysis framework for hypergraphs;
•	 Proposal of estimation approaches for the computation of shortest paths and cluster-

ing coefficients in hypergraphs;
•	 Proposal of a computation approach for the density of general mixed hypergraphs 

based on a corresponding bipartite graph representation;
•	 Example of an application in the context of information retrieval, where structural 

features were measured over different hypergraph-based models and presented in 
context with the performance of each model.

The remainder of this document is organized as follows. In “Reference work” section, 
we begin by providing an overview on the analysis of the inverted index, knowledge 
bases and hypergraphs, covering the three main aspects of the hypergraph-of-entity. 
In “Hypergraph characterization approach” section, we describe our characterization 
approach, covering shortest distance estimation with random walks and clustering 
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coefficient estimation with node sampling, as well as proposing a general mixed hyper-
graph density formula by establishing a parallel with the corresponding bipartite mixed 
graph. In “Analyzing the hypergraph-of-entity base model” section, we present the 
results of a characterization experiment of the hypergraph-of-entity for a subset of the 
INEX (INitiative for the Evaluation of XML Retrieval) 2009 Wikipedia collection and, in 
“Analyzing the structural impact of different index extensions” section, we explore the 
effect of including synonyms, contextual similarity, or TF-bins in the structure of the 
hypergraph. In “An application to information retrieval” section, we assess the retrieval 
effectiveness of the representation model, analyzing the correlations between the evalu-
ation metrics and the structural features (“Correlating evaluation metrics and structural 
features” section), and proposing ranking and anomaly indicators based on our con-
clusions (“Design rules for modifying or extending the hypergraph-of-entity” section). 
Finally, in “Conclusion” section, we close with the conclusions and future work.

Reference work
The hypergraph-of-entity is a representation model for indexing combined data, jointly 
modeling unstructured textual data from corpora and structured interconnected data 
from knowledge bases. As such, before analyzing a hypergraph from this model, we 
surveyed existing literature on inverted index analysis, as well as knowledge base analy-
sis. We then surveyed literature specifically on the analysis of hypergraphs, particularly 
focusing on statistics like clustering coefficient, shortest path lengths and density.

Analyzing inverted indexes

There are several models based on the inverted index that combine documents and enti-
ties  (Bhagdev et  al. 2008; Bast and Buchhold 2013) and that are comparable with the 
hypergraph-of-entity. There has also been work that analyzed the inverted index, par-
ticularly regarding query evaluation speed and space requirements  (Voorhees 1986; 
Zobel et al. 1998).

Voorhees (1986) compared the efficiency of the inverted index with the top-down 
cluster search. She analyzed the storage requirements of four test collections, measur-
ing the total number of documents and terms, as well as the average number of terms 
per document. She then analyzed the disk usage per collection, measuring the number 
of bytes for document vectors and the inverted index. Finally, she measured CPU time in 
number of instructions and the I/O time in number of data pages accessed at least once, 
also including the query time in seconds.

Zobel et al. (1998) took a similar approach to compare the inverted index and signa-
ture files. First, they characterized two test collections, measuring size in megabytes, 
number of records and distinct words, as well as the record length, and the number of 
words, distinct words and distinct words without common terms per record. They also 
analyzed disk space, memory requirements, ease of index construction, ease of update, 
scalability and extensibility.

For the hypergraph-of-entity characterization, we do not focus on measuring effi-
ciency, but rather on studying the structure and size of the hypergraph.
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Analyzing knowledge bases

Studies have been made to characterize the entities and triples in knowledge bases. In 
particular, given the graph structure of RDF (resource description framework), we are 
interested in understanding which statistics are relevant for instance to discriminate 
between the typed nodes.

Halpin (2009) took advantage of Microsoft’s Live.com query log to reissue entity and 
concept queries over their FALCON-S semantic web search engine. They then studied 
the results, characterizing their source, triple structure, RDF and OWL (web ontol-
ogy language) classes and properties, and the power-law distributions of the number 
of URIs, both returned as results and as part of the triples linking to the results. They 
focused mostly on measuring the frequency of different elements or aggregations 
(e.g., top-10 domain names for the URIs, most common data types, top vocabulary 
URIs).

Ge et al. (2010) defined an object link graph based on the graph induced by the RDF 
graph, based on paths linking objects (or entities), as long as they are either direct or 
established through blank nodes. They then studied this graph for the Falcons Crawl 
2008 and 2009 datasets (FC08 and FC09), which included URLs from domains like 
bio2r​df.org or dbped​ia.org. They characterized the object link graph based on density, 
using the average degree as an indicator, as well as connectivity, analyzing the largest 
connected component and the diameter. They repeated the study for characterizing 
the structural evolution of the object link graph, as well its domain-specific struc-
tures (according to URL domains). Comparing two snapshots of the same data ena-
bled them to find evidence of the scale-free nature of the network. While the graph 
almost doubled in size from FC08 to FC09, the average degree remained the same and 
the diameter actually decreased.

Fernández et  al. (2016) focused on studying the structural features of RDF data, 
identifying redundancy through common structural patterns, proposing several spe-
cific metrics for RDF graphs. In particular, they proposed several subject and object 
degrees, accounting for the number of links from/to a given subject/object (outdegree 
and indegree), the number of links from a 〈subject, predicate〉 (partial outdegree) and 
to a 〈predicate, object〉 (partial indegree), the number of distinct predicates from a 
subject (labeled outdegree) and to an object (labeled indegree), and the number of 
objects linked from a subject through a single predicate (direct outdegree), as well as 
the number of subjects linking to an object through a single predicate (direct inde-
gree). They also measured predicate degree, outdegree and indegree. They proposed 
common ratios to account for shared structural roles of subjects, predicates and 
objects (e.g., subject-object ratio). Global metrics were also defined for measuring the 
maximum and average outdegree of subject and object nodes for the whole graph. 
Another analysis approach was focused on the predicate lists per subject, measuring 
the ratio of repeated lists and their degree, as well as the number of lists per predi-
cate. Finally, they also defined several statistics to measure typed subjects and classes, 
based on the rdf:type predicate.

While we study a hypergraph that jointly represents terms, entities and their rela-
tions, we focus on a similar characterization approach, that is more based on struc-
ture and less based on measuring performance.

http://bio2rdf.org
http://dbpedia.org
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Analyzing hypergraphs

Hypergraphs (Berge 1970) have been around since 1970. While this concept was intro-
duced by Claude Berge on this year, there had been other contributions surrounding 
the topic, namely in extremal graph and set theory. Post-1970, the work by Erdös (1971) 
and Brown et al. (1973) illustrates the intersection between extremal graph theory and 
hypergraph theory, while, pre-1970, we can also find contributions like Sperner’s theo-
rem  (Sperner 1928), in extremal set theory, or the Turán number  (Turán 1941, 1961), 
in extremal graph theory. Interestingly, hypergraphs have remained somewhat fringe in 
network science, perhaps due to Paul Erdös resistance to the concept (Berge 1970):

At the Balatonfüred Conference (1969), P. Erdös and A. Hajnal asked us why we 
would use hypergraphs for problems that can be also formulated in terms of graphs. 
The answer is that by using hypergraphs, one deals with generalizations of familiar 
concepts. Thus, hypergraphs can be used to simplify as well as to generalize.

Although Erdös himself, who was interested in exploring the representation of graphs 
using set intersections (Erdös et al. 1966), also studied hypergraph problems, he avoided 
this designation, only sparsely using it (Brown et al. 1973):

By an r-graph we mean a fixed set of vertices together with a class of unordered sub-
sets of this fixed set, each subset containing exactly r elements and called an r-tuple. 
In the language of Berge (1970) this is a simple uniform hypergraph of rank r.

Hypergraphs are data structures that can capture higher-order relations. As such, they 
either present conceptually different or multiple counterparts to the equivalent graph 
statistics. Take for instance the node degree. While graphs only have a node degree, inde-
gree and outdegree, hypergraphs can also have a hyperedge degree, which is the number 
of nodes in a hyperedge (Klamt et al. 2009). The hyperedge degree also exists for directed 
hyperedges, in the form of a tail degree and a head degree.1 The tail degree is based on 
the cardinality of the source node set and the head degree is based on the cardinality of 
the target node set. In this work we will rely on the degree, clustering coefficient, average 
path length, diameter and density to characterize the hypergraph-of-entity.

Building on the work by Gallo et  al. (1993), who extended Dijkstra’s algorithm to 
hypergraphs, and the work by Ausiello et al. (1992), who tackled the same problem using 
a dynamic approach, Gao et al. (2015) have also proposed two algorithms for comput-
ing shortest paths in hypergraphs. The first, HyperEdge-based Dynamic Shortest Path 
(HE-DSP), like Gallo et al., proposed an extension to Dijkstra’s algorithm. The second, 
Dimension Reduction Dynamic Shortest Path (DR-DSP), relied on an induced graph 
with the same vertex set, adding weighted edges when a hyperedge containing the two 
vertices exists in the corresponding hypergraph, while selecting the minimum weight 
over all available hyperedges for the pair of vertices.

In this work, we focus on approximated computation approaches, which are useful for 
large-scale hypergraphs. Ribeiro et al. (2012) proposed the use of multiple random walks 
to find shortest paths in power law networks. They found that random walks had the 
ability to observe a large fraction of the network and that two random walks, starting 

1  Tail and head is used in analogy to an arrow, not a list.
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from different nodes, would intersect with a high probability. Głąbowski et  al. (2012) 
contributed with a shortest path computation solution based on ant colony optimiza-
tion, clearly structuring it as pseudocode, while providing several configuration options. 
Parameters included the number of ants, the influence of pheromones and other data 
in determining the next step, the speed of evaporation of the pheromones, the initial, 
minimum and maximum pheromone levels, the initial vertex and an optional end ver-
tex. Li (2011) studied the computation of shortest paths in electric networks based on 
random walk models and ant colony optimization, proposing a current reinforced ran-
dom walk model inspired by the previous two. In this work, we also use a random walk 
based approach to approximate shortest paths and estimate the average path length and 
diameter of the graph.

Gallagher and Goldberg (2013, Eq. 4) provide a comprehensive review on clustering 
coefficients for hypergraphs. The proposed approach for computing the clustering coef-
ficient in hypergraphs accounted for a pair of nodes, instead of a single node, which is 
more frequent in graphs. Based on these two-node clustering coefficients, the node clus-
ter coefficient was then calculated. Two-node clustering coefficients measured the frac-
tion of common hyperedges between two nodes, through the intersection of the incident 
hyperedge sets for the two nodes. It then provided different kinds of normalization 
approaches, either based on the union, the maximum or minimum cardinality, or the 
square root of the product of the cardinalities of the hyperedge sets. The clustering coef-
ficient for a node was then computed based on the average two-node clustering coeffi-
cient for the node and its neighbors.

The codegree Turán density  (Mubayi and Zhao 2007) γ (F) can be computed for a 
family F  of k-uniform hypergraphs, also known as k-graphs. It is calculated based on 
the codegree Turán number co-ex(n,F)—the extremal number based on the codegree in 
a hypergraph, instead of the degree in a graph—which takes as parameters the number 
of nodes n and the family F  of k-graphs. In turn, the codegree Turán number is calcu-
lated based on the minimum number of nodes, taken from all sets of r − 1 vertices of 
each hypergraph Hn that, when united with an additional vertex, will form a hyperedge 
from H. The codegree density for a family F  of hypergraphs is then computed based 
on lim supn→∞

co-ex(n,F)
n  . Since this was the only concept of density we found associ-

ated with hypergraphs or, more specifically, a family of k-uniform hypergraphs, we opted 
to propose our own density formulation (“Hypergraph characterization approach” sec-
tion). Furthermore, the hypergraph-of-entity is a single general mixed hypergraph. In 
other words, it is not a family of hypergraphs, it contains hyperedges of multiple degrees 
(it’s not k-uniform, but general) and it contains undirected and directed hyperedges (it’s 
mixed). Accordingly, we propose a density calculation based on the counterpart bipar-
tite graph of the hypergraph, where hyperedges are translated to bridge nodes.

Methodology
In this section, we introduce general concepts and definitions, formally providing math-
ematical support for this analysis. Next, we present the characterization methodol-
ogy and propose approaches to estimate shortest distances, clustering coefficients and 
density. Finally, we describe the methodology for a practical application of this analysis 
framework in the domain of information retrieval.
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General concepts and definitions

We provide a mathematical framework, where we formalize several concepts and 
definitions, including relevant classes of hypergraphs, as well as useful properties 
and statistics, that we rely upon across this manuscript.

Classes of hypergraphs

In this section we formally define hypergraph, distinguishing between undirected, 
directed and mixed, as well as uniform and general.

Definition 1  (Hypergraph) Let v be a vertex and V be a set of vertices such that v ∈ V  , 
with n = |V | being the number of vertices. Let E = EU ∪ ED be the set of all hyperedges, 
where EU represents the subset of undirected hyperedges eU ∈ EU and ED the subset 
of directed hyperedges eD ∈ ED , with m = |EU | + |ED| = |E| being the total number 
of hyperedges. Let also a set eU ⊆ V  be an undirected hyperedge and a tuple of sets 
eD = (t, h) be a directed hyperedge formed by a tail set t ⊆ V  (source) and a head set 
h ⊆ V  (target). A hypergraph is then a tuple H = (V, E).

Definition 2  (Hypergraph direction) Under this notation, a hypergraph H = (V, E) is 
said to be:

•	 Undirected, when E = EU  or, equivalently, ED = ∅;
•	 Directed, when E = ED or, equivalently, EU = ∅;
•	 Mixed, when EU  = ∅ ∧ ED  = ∅.

Definition 3  (Hypergraph uniformity) A uniform or k-uniform hypergraph is charac-
terized by all of its hyperedges being defined over the same number k of vertices. For an 
undirected hyperedge eU it means |eU | = k , while for a directed hyperedge eD = (t, h) it 
means |t| + |h| = k.

On the other hand, a non-uniform hypergraph is said to be a general hypergraph, which 
contains hyperedges of diverse cardinalities.

*Please refer to Banerjee and Char  (2017) for more information on directed uniform 
hypergraphs.

Definition 4  (Hyperedge incidence) Let v ∈ V  have the following sets of incident 
hyperedges:

•	 Ev = EUv ∪ EDv as the set of all incident hyperedges to v, ignoring direction;
•	 E−

v = EUv ∪ E−
Dv

 as the set of all incoming hyperedges to v;
•	 E+

v = EUv ∪ E+
Dv

 as the set of all outgoing hyperedges from v.
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Hypergraph statistics

In this section, we formally describe the hypergraph statistics that we rely upon for 
our analysis framework. In particular we describe the different degrees that can be 
computed for a vertex, the cardinalities of hyperedges, the diameter and average 
shortest path length, the clustering coefficient, and the density.

Definition 5  (Vertex-based vertex degree) Let dv(v) be the degree of a vertex meas-
ured based on the number of adjacent vertices.

Vertex-based degree (ignoring direction) is given by:

Vertex-based indegree is given by:

And vertex-based outdegree is given by:

Definition 6  (Hyperedge-based vertex degree) Let dh(v) be the degree of a vertex 
measured based on the number of incident hyperedges.

Hyperedge-based degree (ignoring direction) is given by:

Hyperedge-based indegree is given by:

And hyperedge-based outdegree is given by:

Definition 7  (Hyperedge cardinality) Let c(e) be the cardinality of a hyperedge meas-
ured based on the number of nodes it contains. Let eU be an undirected hyperedge and 
eD = (t, h) be a directed hyperedge.

Undirected hyperedge cardinality is given by:

Directed hyperedge cardinality is given by:

dv(v) =
∑

eU∈EUv

|eU | +
∑

(t,h)∈EDv

(|t| + |h|)

d−v (v) =
∑

eU∈EUv

|eU | +
∑

(t,h)∈E−
Dv

|t|

d+v (v) =
∑

eU∈EUv

|eU | +
∑

(t,h)∈E+
Dv

|h|

dh(v) = |Ev|

d−h (v) = |E−
v |

d+h (v) = |E+
v |

c(eU ) = |eU |

c(eD) = |t| + |h|
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In order to index hyperedges based on their number of nodes, we also use the nota-
tion Ea

U to represent sets of undirected hyperedges of cardinality a = |eU | , as well as 
Ea,b
D  to represent sets of directed hyperedges with a tail of size a = |t| and a head of 

size b = |h|.

Definition 8  (Diameter/avg. short. path len.) Let L be the set of shortest path lengths 
between all pairs of connected nodes. Let ℓu,v ∈ L be the length of the shortest path 
between nodes u and v from the vertex set V. For eUi , eUj ∈ EU and eDi , eDj ∈ ED , we 
define L as follows:

The diameter is then given by:

And the average shortest path length is given by:

Definition 9  (Clustering coefficient) The clustering coefficient measures the degree to 
which nodes tend to agglomerate in dense groups. We compute this metric based on the 
following approach by Gallagher and Goldberg (2013). Let Ev = EUv ∪ EDv be the set of 
incident hyperedges to v, ignoring direction. Let N(v) be the set of all vertices adjacent to 
v (i.e., sharing a hyperedge, while ignoring direction).

The clustering coefficient cc(u, v) for a pair of nodes u and v is given by:

The clustering coefficient cc(v) for a single node v is given by:

And the clustering coefficient cc(H) for the hypergraph is given by:

Definition 10  (Density) We transform a hypergraph H = (V, E) into its corresponding 
bipartite graph GH = (V , E) , using the density of GH as an indicator of density for H.

The vertices V of GH are based on the vertices V and hyperedges E from H and are given 
by:

L =
{

ℓu,v : u ∈ eUi ∧ v ∈ eUj ∨ u ∈ t ∧ (t, ·) ∈ eDi ∧ v ∈ h ∧ (·, h) ∈ eDj

}

max L

1

|L|

∑

ℓi,j∈L

ℓi,j .

cc(u, v) =
|Eu ∩ Ev|

|Eu ∪ Ev|

cc(v) =
1

|N (v)|

∑

u∈N (v)

cc(u, v)

cc(H) =
1

|V |

∑

v∈V

cc(v)

V = V ∪ {ve : e ∈ E}
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The edges E = EU ∪ ED of GH are established based on all pairs of vertices connected by 
a hyperedge E = EU ∪ ED from H.

The undirected edges EU of GH are given by:

And the directed edges ED of GH are given by:

Density D(H), or simply D, is then given by:

Hypergraph characterization approach

Graphs can be characterized at a microscopic, mesoscopic and macroscopic scale. The 
microscopic analysis is concerned with statistics at the node-level, such as the degree or 
clustering coefficient. The mesoscopic analysis is concerned with statistics and patterns 
at the subgraph-level, such as communities, network motifs or graphlets. The macro-
scopic analysis is concerned with statistics at the graph-level, such as average clustering 
coefficient or diameter. In this work, our analysis of the hypergraph is focused on the 
microscopic and macroscopic scales. We compute several statistics for the whole hyper-
graph, as well as for snapshot hypergraphs that depict growth over time. Some of these 
statistics are new to hypergraphs, when compared to traditional graphs. For instance, 
nodes in directed graphs have an indegree and an outdegree. However, nodes in directed 
hypergraphs have four degrees, based on incoming and outgoing nodes, as well as on 
incoming and outgoing hyperedges. While in graphs all edges are binary, leading to 
only one other node, in hypergraphs hyperedges are n-ary, leading to multiple nodes, 
and thus different degree statistics. While some authors use ‘degree’ to refer to node 
and hyperedge degrees (Yu and Sun 2018, §4) (Klamt et al. 2009, §Network Statistics in 
Hypergraphs), in this work we opted to use the ‘degree’ designation when referring to 
nodes and the ‘cardinality’ designation when referring to hyperedges. This is to avoid any 
confusion for instance between an “hyperedge-induced” node degree and a hyperedge 
cardinality.

We analyze the base model, as well as three models based on the synonyms, contextual 
similarity and TF-bins extensions. For the full hypergraph of each of the four models, we 
compute the following global statistics:

•	 Number of nodes, in total and per type;
•	 Number of hyperedges, in total, per direction, and per type;
•	 Average degree;
•	 Average clustering coefficient;
•	 Average path length;
•	 Diameter;
•	 Density.

EU = {(u, ve), (ve,w) : e ∈ EU ∧ u ∈ e ∧ w ∈ e}

ED = {(u, ve), (ve,w) : e = (t, h) ∈ ED ∧ u ∈ t ∧ w ∈ h}

D = D(GH ) =
2|EU | + |ED|

2|V|(|V| − 1)
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We also plot the following distributions for the full hypergraph:

•	 Node degree distributions per node type:

–	 Node-based node degree;
–	 Hyperedge-based node degree.

•	 Hyperedge cardinality distributions per hyperedge type.

Then, we define a temporal analysis framework based on an increasing number of docu-
ments (i.e., time passes as documents are added to the hypergraph-of-entity index). We 
prepare several snapshots, with a different number of documents each, for each of the 
four models. We then compute and plot the following statistics for each snapshot, show-
ing its evolution as the number of documents increases:

•	 Average node degree over time;
•	 Average hyperedge cardinality over time;
•	 Average diameter and average path length over time;
•	 Average clustering coefficient over time;
•	 Average density over time.
•	 Size over time:

–	 Number of nodes;
–	 Number of hyperedges;
–	 Space in disk;
–	 Space in memory.

Finally, we also measure the run time for several operations, in order to understand the 
efficiency cost and the evolution of its behavior for an increasing number of documents:

•	 Index creation time;
•	 Global statistics computation time;
•	 Node degrees computation time;
•	 Hyperedge cardinalities computation time.

In order to support large-scale hypergraphs, we compute the average path length, diam-
eter, clustering coefficient, and density using approximated strategies. We estimate 
shortest distances based on random walks, the clustering coefficient based on node sam-
pling, and the density based on a bipartite graph induced from the hypergraph, although 
without the need to explicitly create this graph. The following sections will detail these 
approaches.

Estimating shortest distances with random walks

Ribeiro et  al. (2012) found that, in power law networks, there is a high probability 
that two random walk paths, usually starting from different nodes, will intersect and 
share a small fraction of nodes. We took advantage of this conclusion, adapting it to a 
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hypergraph, in order to compute a sample of shortest paths and their length, used to 
estimate the average path length and diameter. We considered two (ordered) sets S1 ⊂ V  
and S2 ⊂ V  of nodes sampled uniformly at random, each of size s = |S1| = |S2| . We then 
launched r random walks of length ℓ from each pair of nodes Si1 and Si2 . For a given pair 
of random walk paths, we iterated over the nodes in the path starting from Si1 , until we 
found a node in common with the path starting from Si2 . At that point, we merged the 
two paths based on the common node, discarding the suffix of the first path and the pre-
fix of the second path. We computed the length of these paths, keeping only the mini-
mum length over the r repeats. As the number of iterations r increased, we progressively 
approximated the shortest path for the pair of nodes. Despite the inherent estimation 
error, this method can be used to study even large-scale hypergraphs—precision can 
be controlled by tuning the number of sampled nodes and random walks, which will 
eventually lead to convergence for large values. This approach enabled us to generate 
a sample of approximated shortest path lengths, which could be used to compute the 
estimated diameter (its maximum) and the estimated average path length (its mean), in a 
scenario where high precision is not critical. This is true for instance for a quick or initial 
analysis of a hypergraph. Given the repeated research iterations over the hypergraph-of-
entity and the multitude of tests carried over this model, a quick estimation approach is 
ideal.

Estimating clustering coefficients with node sampling

In a graph, the clustering coefficient is usually computed for a single node and averaged 
over the whole graph. As shown by Gallagher and Goldberg (2013, §I.A.), in hypergraphs 
the clustering coefficient is computed, at the most atomic level, for a pair of nodes. The 
clustering coefficient for a node is then computed based on the averaged two-node clus-
tering coefficients between the node and each of its neighbors (cf. Gallagher and Gold-
berg (2013, Eq.4)). Three options were provided for calculating the two-node clustering 
coefficient, one of them based on the Jaccard index between the neighboring hyperedges 
of each node  (Gallagher and Goldberg 2013,  Eq.1), which we use in this work. While 
a global understanding of the clustering coefficient is useful for characterizing overall 
local connectivity in the hypergraph, the existence of a random hypergraph generation 
model, like the Watts–Strogatz model (Watts and Strogatz 1998) for graphs, would pro-
vide further interpretations at a mesoscale. We leave this open and instead focus on the 
macroscale.

Continuing with the philosophy of large-scale hypergraph support in our analysis 
framework, as opposed to computing the clustering coefficient for all nodes, we esti-
mated the clustering coefficients for a smaller sample S ⊆ V  of nodes. Furthermore, for 
each sampled node si ∈ S , we also sampled its neighbors NS(si) for computing the two-
node clustering coefficients. We then applied the described equations to obtain the clus-
tering coefficients for each node si and a global clustering coefficient based on the overall 
average. For S = V ∧ NS(si) = N (si) , being NS the sampled neighbors and N the full 
set of neighbors, we would obtain the exact clustering coefficient. Again, this approach 
offers two parameters that can be controlled as a tradeoff between between efficiency 
and effectiveness.
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Computing the density of general mixed hypergraphs

A general mixed hypergraph is general (or non-uniform) in the sense that its hyperedges 
can contain an arbitrary number of vertices, and it is mixed in the sense that it can con-
tain hyperedges that are either undirected and directed. We compute a hypergraph’s 
density by analogy with its corresponding bipartite graph, which contains all nodes from 
the hypergraph, along with connector nodes representing the hyperedges.

Consider the hypergraph H =  (V, E), with n = |V | nodes and m = |E| hyperedges. 
Also consider the set of all undirected hyperedges EU and directed hyperedges ED , 
where E = EU ∪ ED . Their subsets Ek

U and Ek1,k2
D  should also be respectively consid-

ered, where Ek
U is the subset of undirected hyperedges with k nodes and Ek1,k2

D  is the 
subset of directed hyperedges with k1 tail (source) nodes, k2 head (target) nodes and 
k = k1 + k2 nodes, assuming the hypergraph only contains directed hyperedges between 
disjoint tail and head sets. This means that the union of EU = E1

U ∪ E2
U ∪ E3

U ∪ · · · and 
ED = E1,1

D ∪ E1,2
D ∪ E2,1

D ∪ E2,2
D ∪ · · · forms the set of all hyperedges E. We use it as a way 

to distinguish between hyperedges with different degrees. This is important because, 
depending on the degree k, the hyperedge will contribute differently to the density, when 
considering the corresponding bipartite graph. For instance, one undirected hyperedge 
with degree k = 4 will contribute with four edges to the density. Accordingly, we derive 
the density of a general mixed hypergraph as shown in Eq. 1.

In practice, this is nothing more than a comprehensive combination of the density for-
mulas for undirected and directed graphs. On one side, we consider the density of a 
mixed graph that should result of the combination of an undirected simple graph and a 
directed simple graph. That is, each pair of nodes can be connected, at most, by an undi-
rected edge and two directed edges of opposing directions. On the other side, we use 
hypergraph notation to directly obtain the required statistics from the corresponding 
mixed bipartite graph, thus calculating the analogous density for a hypergraph.

Contextualizing through a practical application

In order to study the usefulness of the analysis framework that we propose, we explore 
it in the context of an information retrieval application. In particular, our use case is 
based on ad hoc document retrieval (leveraging entities). For this retrieval task, given 
a keyword query, the goal is to retrieve and rank the documents that best answer the 
information need of the user. As an entity-oriented search task, the approach must take 
into account entities, mentioned in documents, and their relations to improve retrieval 
performance. Evaluation is then done based on a set of topics (whose title is usually used 
as the keyword query), along with a set of relevance judgments, containing relevance 
grades assigned by the judges on multiple retrieved documents.

In this experiment, we attempt to identify individual properties of the hypergraph that 
correlate with the retrieval performance scores that we compute. We identify indicator 
properties that help us rank our models by effectiveness, as well as identify models that 
might be low performers. Although this is also a contribution of this work, we consider 
it to be secondary, compared to the analysis framework that we propose.

(1)D =
2
∑

k k|E
k
U | +

∑

k1,k2
(k1 + k2)|E

k1,k2
D |

2(n+m)(n+m− 1)
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Data modeling
In this section, we begin by presenting the test collection that we use to build several 
hypergraphs based on the hypergraph-of-entity model. Then, we provide an overview of 
the hypergraph-of-entity, describing the construction approach of the hypergraphs that 
we study, and a description of the random walk score. Finally, we present the motivation 
to characterize this unified model for entity-oriented search.

INEX 2009 Wikipedia collection

In this work, we characterize hypergraphs built based on different versions of the hyper-
graph-of-entity model, relying upon the INEX 2009 Wikipedia collection (Schenkel et al. 
2007). We also explore an application in the domain of information retrieval, where 
assessment is dependent on the topics and relevance judgments from the INEX 2010 
Ad Hoc track. In this section, we describe this test collection, including the main dataset 
and the subset prepared for the analysis and information retrieval application, as well as 
the associated topics and relevance judgments, also known as qrels (query relevance set).

Main dataset The INEX 2009 Wikipedia collection2 is an XML version of articles from 
the English Wikipedia, based on the dump from October 8, 2008, and incorporating 
semantic annotations from the 2008-w40-2 version of YAGO (Yet Another Great Ontol-
ogy).3 Like DBpedia,4 YAGO is a semantic knowledge base, containing structured data 
from Wikipedia, WordNet and GeoNames. The INEX 2009 Wikipedia collection is pro-
vided in multiple tar.bz2 archives that contain nearly 2.7 million articles, requiring 
50.7 GB of disk space when uncompressed and only 5.5 GB when compressed, and it 
relies on over 5800 classes from YAGO, including people, movies, and cites. Each XML 
document also contains links to other articles, corresponding to the hyperlinks found in 
the Wikipedia dump. In total, there are nearly 102 million XML elements in the collec-
tion. In order to build the hypergraph, we rely on the text nodes of the <bdy> element, 
as well as on the <link> elements to create semantic triples that capture the differ-
ent entity names based on mentions. The structure of the hypergraph will be further 
detailed in “Hypergraph-of-entity representation and retrieval model” section. For our 
application to information retrieval (“An application to information retrieval” section), 
we also rely on the qrels for the INEX 2010 Ad Hoc track,5 in a study to determine possi-
ble correlations between the effectiveness of ad hoc document retrieval (leveraging enti-
ties) and the properties of the hypergraphs. Provided relevance grades are binary (0 for 
irrelevant and 1 for relevant).

INEX 2009 10T-NL subset Due to the space and time complexity of the hypergraph-
of-entity, we prepared a smaller subset of the INEX 2009 Wikipedia collection, that we 
could use to circumvent performance issues. In fact, characterizing the corresponding 
hypergraph-of-entity for a smaller subset will enable us to identify weaknesses in our 
model that could help us improve the scalability or retrieval effectiveness of future 
versions. The subset was created based on a random sample of 10 topics (‘10T’). In 

2  https​://www.mpi-inf.mpg.de/depar​tment​s/datab​ases-and-infor​matio​n-syste​ms/softw​are/inex/.
3  https​://yago-knowl​edge.org/.
4  https​://wiki.dbped​ia.org/.
5  https​://inex.mmci.uni-saarl​and.de/data/docum​entco​llect​ion.html.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/inex/
https://yago-knowledge.org/
https://wiki.dbpedia.org/
https://inex.mmci.uni-saarland.de/data/documentcollection.html
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particular, the following topics were considered: 2010003, 2010014, 2010023, 
2010032, 2010038, 2010040, 2010049, 2010057, 2010079, 2010096. We then 
included only documents mentioned in the relevance judgments for the selected topics, 
optionally considering linked documents (in this case, we did not include linked docu-
ments—accordingly, ‘NL’ stands for “no linked”).

Hypergraph‑of‑entity representation and retrieval model

The hypergraph-of-entity  (Devezas and Nunes 2019) is a unified model for entity-
oriented search. It provides a joint representation for corpora and knowledge bases, 
through a general mixed hypergraph, containing the types of nodes and hyperedges 
described in Table 1. Ranked retrieval then relies on a universal ranking function, called 
the random walk score, that supports multiple entity-oriented search tasks, by simply 
controlling the input (e.g., keyword or entity query) and output (e.g., documents or 

Table 1  Hypergraph-of-entity nodes and  hyperedges for  the  base model 
and the extensions

Type Description Observation

Nodes

term Represents a single word from the origi-
nal document

In this work, the preprocessing pipeline 
includes: sentence segmentation; 
lower case filtering; replacement of 
URL, time, money and number expres-
sions with a common placeholder, 
each; stemming via porter stemmer

entity Represents an entity from the list of 
extracted entities and/or provided 
triples

For the INEX collection, each mention to 
an entity is modeled through this type 
of node (we consider disambiguation 
to be a part of the ranking)

Hyperedges (base model)

document Represents a document through the set 
of all its terms and entities

Undirected hyperedge

related_to Represents a semantic relation between 
multiple entities

Undirected hyperedge. In this imple-
mentation, the relation is derived from 
all triples in the collection, by grouping 
by subject

contained_in Represents a relation between a set of 
terms and an entity.

Directed hyperedge. In this implementa-
tion, this relation exists between terms 
that are a part of an entity name or 
mention and the corresponding entity 
node

Hyperedges (extensions)

synonym Represents a relation of synonymy 
between a set of terms

Undirected hyperedge. Present in the 
Synonyms model. The first synset from 
WordNet 3.0 is obtained for each noun 
term, missing terms are added to the 
model and the hyperedge is created

context Represents a relation of contextual simi-
larity between a set of terms

Undirected hyperedge. Present in the 
Contextual similarity model. This is 
computed based on the top similar 
terms according to word2vec embed-
dings

tf_bin Represents a sets of terms within the 
same term frequency interval, for a 
given document

Undirected hyperedge. Present in the 
TF-bins model. The number of TF-bins 
per document is a parameter that can 
be set during indexing
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entities): ad  hoc document retrieval (leveraging entities), ad  hoc entity retrieval, and 
entity list completion.

Representation model

In this work, we explore multiple hypergraph-of-entity versions of the representation 
model, including:

•	 Base model, with term and entity nodes, and document, related_to and contained_in 
hyperedges;

•	 Synonyms model, extending the base model with synonym hyperedges;
•	 Contextual similarity model, extending the base model with context hyperedges;
•	 TF-bins models, extending the base model with tf_bin hyperedges, according to the 

selected number of bins (we experiment with 2–10 TF-bins).

Each of the analyzed hypergraphs is built by indexing the INEX 2009 Wikipedia collec-
tion, based on the text in the <bdy> element and semantic triples formed from <link> 
elements, where the subject is the entity described by the current article and the object 
is the entity described by the linked article. No predicates are considered, as these are 
not a part of the model.

Synonyms are context-based. Our goal is for disambiguation of context to happen 
naturally through the additional information provided by terms and entities grouped 
through document hyperedges, as well as from the related_to hyperedges between enti-
ties. A given synonym will be more frequently visited by a random walk, when a higher 
number of paths from the query nodes (which establish context) also lead the walker 
there.

Contextual similarity is defined for terms that are frequently surrounded by similar 
sequences of terms, i.e., that are used in a similar context. In order to establish a relation 
of contextual similarity, we rely on word2vec (Mikolov et al. 2013) to obtain a distrib-
uted representation of words (i.e., a word embedding—a vector of latent features that 
semantically represents a word). After obtaining the word embeddings, we simply use a 
k-nearest neighbors approach to find the k most similar words based on cosine similar-
ity, ensuring a similarity above 0.5. The original term, as well as the k-nearest neighbors 
are then grouped in a context hyperedge.

Term frequency bins (or TF-bins) are computed as follows. For each document, we 
calculate the term frequency and, for a given number of bins n, we compute the percen-
tiles Pn = {100 x

n | x ∈ Z
+ ∧ x ≤ n} , assigning them the weight w(x) = x

n . So, for exam-
ple, if we consider n =  4 bins, then we compute the percentiles P4 = {25, 50, 75, 100} , 
resulting in four values of TF (term frequency). Let us for instance consider the follow-
ing term frequency for 10 documents: 1, 1, 1, 1, 2, 2, 2, 2, 2, 3. This would result in the 
value 1 for the 25 percentile, 2 for the 50 and 75 percentiles, and 3 for the 100 percentile. 
We would then form the TF intervals ]0, 1], ]1, 2], ]2, 2] and ]2, 3], with the interval ]2, 
2] having no matches in Z+ , thus making it redundant. Per document, and for each non-
empty interval, a weighted hyperedge was then created to group terms with a similar 
term frequency (i.e., within the same TF-bin). This can be used by the ranking function, 
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to issue biased random walks, controlling the flow in a way that the walker will be driven 
towards documents with a higher TF for the query terms.

Retrieval model

Ranked retrieval is done based on RWS (random walk score). A query can be formed by 
any combination of the elements represented in the hypergraph, as can the results that 
we score. Most commonly, we define the following three tasks:

•	 Ad hoc document retrieval, which takes a keyword query as input (mapped to a set 
of term nodes) and ranks a set of documents, through their hyperedges, as output;

•	 Ad hoc entity retrieval, which also takes a keyword query as input, but instead ranks 
a set of entities, through their nodes, as output;

•	 Entity list completion, which takes an entity query as input (mapped to a set of entity 
nodes) and ranks a set of entities, through their nodes, as output.

In this work, however, we only explore the task of ad hoc document retrieval, to illus-
trate an practical application of our hypergraph analysis framework. Regardless of the 
retrieval task, the random walk score always runs over the whole hypergraph, scoring 
each node and hyperedge, based on multiple random walks launched from a set of seed 
nodes that are either a direct or an expanded representation of the query. The random 
walk score RWS(ℓ, r,�nf ,�ef , exp.) is a universal ranking function where, for each seed 
node, r random walks of length ℓ are launched. Each node and hyperedge has a zero 
score by default, storing the number of visits by random walkers. This is then normal-
ized between zero and one, by dividing by the overall maximum number of visits. The 
probability resulting from the normalization is then multiplied by the probability of 
the seed node being a good representative of the query—this is given by the fraction of 
query nodes linked to the seed node (always one for a direct representation of the query) 
and the total number of neighbors of the seed node (Devezas and Nunes 2019, §4.2). The 
parameters �nf  and �ef  are not used in the experiments we present here and thus are set 
to zero. The exp. parameter determines whether we use a direct or an expanded query 
representation—we set it to false, thus disabling expansion and using the existing nodes 
for the terms in the query as a the seed nodes.

Why characterize the hypergraph‑of‑entity?

While the hypergraph-of-entity is able to serve as a unified framework for entity-ori-
ented search, it is still severely outperformed by baselines like Lucene TF-IDF and 
BM25 (cf. Table 6). As such, we rely on hypergraph analysis to gain further insights on 
the structure, and to identify possible changes that could lead to a more effective and 
efficient model. Briefly, the reasons to characterize the hypergraph-of-entity are the 
following:

•	 It supports decision making in the design iterations over the retrieval model;
•	 Statistics like the average path length will help us tune the random walk score length 

parameter, and the clustering coefficient will help us understand how many repeated 
random walks to issue;
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•	 Understanding the evolution of the hypergraph, as the number of documents 
increases, also gives us insights on how to measure the impact of the pruning that 
we apply to the model (e.g., removing redundancies, or retaining only document key-
words).

Analyzing the hypergraph‑of‑entity base model
We indexed a subset of the INEX 2009 Wikipedia collection (Schenkel et al. 2007) given 
by the 7487 documents appearing in the relevance judgments of 10 random topics. We 
then computed global statistics (macroscale), local statistics (microscale) and tempo-
ral statistics. Temporal statistics were based on an increasingly larger number of docu-
ments, by creating several snapshots of the index, through a ‘limit’ parameter, until all 
documents were considered.

Global statistics In Table 2, we present several global statistics about the hypergraph-
of-entity, in particular the number of nodes and hyperedges, discriminated by type, the 
average degree, the average clustering coefficient, the average path length, the diame-
ter and the density. The average clustering coefficient was computed based on a sample 
of 5000 nodes and a sample of 100,000 neighbors for each of those nodes. The average 
path length and the diameter were computed based on a sample of shortest distances 
between 30 random pairs of nodes and the intersections of 1000 random walks of length 
1000 launched from each element of the pair. Finally, the density was computed based 
on Eq. 1. As we can see, for the 7487 documents the hypergraph contains 607,213 nodes 
and 253,154 hyperedges of different types, an average degree lower than one (0.83) and 
a low clustering coefficient (0.11). It is also extremely sparse, with a density of 3.9e−06. 
Its diameter is 17 and its average path length is 8.4, almost double when compared to a 
social network like Facebook (Backstrom et al. 2011).

Table 2  Global statistics for the base model

Statistic Value Statistic Value Statistic Value

Nodes 607,213 Hyperedges 253,154 Avg. degree 0.8338

term 323,672 Undirected 14,938 Avg. clustering coefficient 0.1148

entity 283,541 document 7484 Avg. path length 8.3667

related_to 7454 Diameter 17

Directed 238,216 Density 3.88e−06

contained_in 238,216

Fig. 1  Node degree distributions for the base model (log–log scale)
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Local statistics Figure 1 illustrates the node degree distributions. In Fig. 1a, the node 
degree is based on the number of connected nodes, with the distribution approxi-
mating a log-normal behavior. In Fig. 1b, the node degree is based on the number of 
connected hyperedges, with the distribution approximating a power law. This shows 
the usefulness of considering both of the node degrees in the hypergraph-of-entity, as 
they are able to provide different information.

Figure  2 illustrates the hyperedge cardinality distribution. For document hyper-
edges, cardinality is log-normally distributed, while for related_to hyperedges the 
behavior is slightly different, with low cardinalities having a higher frequency than 
they would in a log-normal distribution. Finally, the cardinality distribution of con-
tained_in hyperedges, while still heavy-tailed, presents an initial linear behavior, fol-
lowed by a power law behavior. The maximum cardinality for this type of hyperedge is 
also 16, which is a lot lower when compared to document hyperedges and related_to 
hyperedges, which have cardinality 8167 and 3084, respectively. This is explained by 
the fact that contained_in hyperedges establish a directed connection between a set 
of terms and an entity that contains those terms, being limited by the maximum num-
ber of words in an entity.

Temporal statistics In order to compute temporal statistics, we first gen-
erated 14 snapshots of the index based on a limit L of documents, for 
L ∈ {1, 2, 3, 4, 5, 10, 25, 50, 100, 1000, 2000, 3000, 5000, 8000} . Each snapshot was built 
based on the natural order of the documents found within the tar.bz2 archives, up 
to a limit L, while the archives were accessed in directory order (i.e., the same as ls -U 
in Linux). This perfectly mimicked index growth, as documents were incrementally pre-
processed and added to the hypergraph-of-entity.

Fig. 2  Hyperedge cardinality distribution based on the total number of nodes for the base model (log–log 
scale)

Fig. 3  Average node degree over time for the base model
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Figure  3 illustrates the node-based and hyperedge-based average node degrees over 
time (represented as the number of documents in the index at a given instant). As we 
can see, both functions tend to converge, however this is clearer for the node-based 
degree, reaching nearly 4000 nodes, through only 9 hyperedges, on average. Figure  4 
illustrates the average undirected hyperedge cardinality over time, with a convergence 
behavior that approximates 300 nodes per hyperedge, after rising to an average of 411.88 
nodes for L = 25 documents.

Figure 5 illustrates the evolution of the average path length and the diameter of the 
hypergraph over time. For a single document, these values reached 126.1 and 491, 
respectively, while, for just two documents, they immediately lowered to 3.8 and 10. For 
higher values of L, both statistics increased slightly, reaching 7.2 and 15 for the maxi-
mum number of documents. Notice that these last values are equivalent to those com-
puted in Table 2 (8.4 and 17, respectively), despite resulting in different amounts. This 
is due to the precision errors in our estimation approach, resulting in a difference of 1.2 
and 2, respectively, which is tolerable when computation resources are limited. In Fig. 6, 
we illustrate the evolution of the clustering coefficient, which rapidly decreases from 
0.59 to 0.11. The low average path length and clustering coefficient point towards a weak 
community structure, possibly due to the coverage of diverse topics. However, we would 

Fig. 4  Average hyperedge cardinality over time for the base model

Fig. 5  Average estimated diameter and average shortest path over time for the base model

Fig. 6  Average estimated clustering coefficient over time for the base model



Page 21 of 42Devezas and Nunes ﻿Appl Netw Sci            (2020) 5:79 	

require a random hypergraph generation model, like the Watts–Strogatz model (Watts 
and Strogatz 1998) for graphs, in order to properly interpret the statistics.

Figure 7 illustrates the evolution of the density over time. The density is consistently 
low, starting from 1.37e−03 and progressively decreasing to 3.91e−06 as the number of 
documents increases. This shows that the hypergraph-of-entity is an extremely sparse 
representation, with limited connectivity, which might benefit precision in a retrieval 
task.

Figure 8 displays the number of nodes (Fig. 8a) and hyperedges (Fig. 8b) created over 
time, as the index grew. Both presented a sub-linear growth behavior, reaching 4566 
nodes and 803 hyperedges for 10 documents, 238,141 nodes and 89,348 hyperedges for 
2000 documents, and 607,213 nodes and 253,154 for the whole collection of 7487 doc-
uments. The ratio of hyperedges per node evolved from 0.18, to 0.38, to 0.42, always 
staying below one. This means that the number of hyperedges increased slower than the 
number of nodes. Moreover, we know that nodes represent terms and entities, which 
will eventually converge to a finite vocabulary, further decreasing index growth rate.

As shown in Fig. 9, we also measured the space usage of the hypergraph, both in disk 
(Fig. 9a) and in memory (Fig. 9b). In disk, the smallest snapshot required 43.8 KiB for 
one document, while the largest snapshot required 181.9  MiB for the whole subset. 

Fig. 7  Average density over time for the base model

Fig. 8  Number of nodes and hyperedges over time for the base model

Fig. 9  Required space for storing and loading the base model over time
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Average disk space over all snapshots was 37.5 MiB ± 58.9 MiB. In memory, for our par-
ticular application,6 the smallest snapshot used 1.0 GiB for one document, including the 
overhead of the data structures, and the largest snapshot used 2.3 GiB for the whole sub-
set. Average memory space over all snapshots was 1.3 GiB ± 461.1 MiB. Memory also 
grew faster for the first 1000 documents, apparently leading to an expected convergence, 
although we could not observe it for such a small subset.

Finally, Fig. 10 illustrates the base model run times of the following operations for an 
increasing number of documents: index creation (Fig. 10a); the computation of the global 
statistics (Fig. 10b), also shown in Table 2; the computation of all node degrees (Fig. 10c); 
and the computation of all hyperedge cardinalities (Fig. 10d). As we can see, the most 
significant increase in run time happens around 1000 documents, with the exception of 
the global statistics computation, which shows an increased run time for the first added 
documents. A possible reason for this anomaly is that this is the first analysis operation 
that we run after creating the index, which might influence the caching mechanisms of 
the system, thus reducing run time after the first documents and then resuming regular 
behavior. Indexing time took 1m09s for 1000 documents and 4m13s for a maximum of 
8000 documents. The computation of global statistics took 17m26s for 1, 000 documents 
and 41m18s for a maximum of 8000 documents. Node degrees were computed in 4m27s 
for 1000 documents, taking 20m55s at most, while hyperedge cardinalities were com-
puted in only 19s for 1000 documents, taking 44s at most, making it the most efficient 
statistic to compute.

(a) (b)

(d)(c)
Fig. 10  Base model run time statistics

6  We relied on the Grph Java library, available at http://www.i3s.unice​.fr/~hogie​/softw​are/index​.php?name=grph, to 
represent the hypergraph in memory.

http://www.i3s.unice.fr/%7ehogie/software/index.php?name=grph
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Analyzing the structural impact of different index extensions
In this section, we extend our previous characterization work (Devezas and Nunes 2019) 
by taking into consideration the index extensions, applied over the hypergraph-of-entity 
base model, as described by Devezas and Nunes (2019, §4.1.2). In Sections 6.1 and 6.2, 
we study the structural impact of synonyms and context, respectively. In “Term fre-
quency bins” section, we propose a new grouping of terms based on the discretization 
of the term frequency (TF-bins), studying the structural impact of this index extension, 
while also considering different numbers of bins.

Synonyms

The base model for the hypergraph-of-entity establishes n-ary connections, both 
directed and undirected, among nodes that represent terms and entities. Most visibly, 
document hyperedges group all terms and entities mentioned in a document, a lot like 
a bag of words and entities that integrates both unstructured and structured evidence. 
This model can easily be extended with synonyms, that establish new bridges between 
documents. In particular, we used the synsets from WordNet 3.0 (Miller 1995), based on 
the first sense of each term in the hypergraph, and only considering its noun form. Each 
synset was modeled as a synonym hyperedge. In this section, we characterize the hyper-
graph-of-entity when using the synonyms extension. We repeat the analysis described 
in “Analyzing the hypergraph-of-entity base model” section, but only cover results that 
show a different behavior from the base model.

Table 3 shows the global statistics for the synonyms model. As we can see, the number 
of terms increased from 323,672 (cf. Table 2) to 326, 671. This means that 2999 syno-
nym terms that did not originally belong to the collection were added. The number of 
undirected hyperedges increased significantly, with 10,650 new synonymy relations. The 
average degree slightly increased, with the average clustering coefficient and the density 
remaining stable. The diameter also remained at 17, however the average path length 
decreased almost a unit, from 8.37 to 7.53, approximating nodes through the relation 
of synonymy. This is an indicator of the usefulness of using synonyms to establish new 
bridges between documents. In fact, we found 4558 new paths created by this extension, 
resulting in 65.29 documents linked on average per synonym. Besides global statistics, 
we also identified four interesting changes or new characteristics when compared to the 
base model:

Table 3  Global statistics for the synonyms model

Statistic Value Statistic Value Statistic Value

Nodes 610,212 Hyperedges 263,804 Avg. degree 0.8646

term 326,671 Undirected 25,588 Avg. clustering coefficient 0.1168

entity 283,541 document 7484 Avg. path length 7.5333

related_to 7454 Diameter 17

synonym 10,650 Density 3.88e−06

Directed 238,216

contained_in 238,216
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•	 Term node degree distribution;
•	 Synonym hyperedge cardinality distribution;
•	 Average hyperedge cardinality over time;
•	 Average estimated diameter and average path length over time.

Term node degree distribution Figure 11 illustrates the node-based node degree dis-
tribution for entity and term nodes in the hypergraph-of-entity with the synonyms 
extension. While the behavior for entity nodes is similar to the base model, term 
nodes show a combination of a power law like behavior for the lower degrees, with a 
log-linear behavior for the remaining degrees. This is due to the introduction of syno-
nyms from WordNet, which, as we can see in Fig. 12, follow a distribution close to a 
power law.

Fig. 11  Node degree distribution, based on connected nodes, for the synonyms model (log–log scale)

Fig. 12  WordNet 3.0 noun synonyms distribution (log–log scale)

Fig. 13  Synonym hyperedge cardinality distribution (log–log scale)
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Synonym hyperedge cardinality distribution Figure  13 illustrates the distribution of 
synonyms per hyperedge. As we can see, most synonym hyperedges either contain two 
or three terms, while less than 100 hyperedges contain more than five synonyms. Most 
synonymy relations are ternary and, while there is not enough data to conclude it, the 
overall behavior approximates a power law.

Average hyperedge cardinality over time Consistent with the fact that most synsets 
introduced as undirected hyperedges have a low cardinality (two or three elements), the 
average hyperedge cardinality over time is overall lower than the base model. This is vis-
ible when comparing Fig. 14 with Fig. 4. Additionally, the behavior also changed from 
a fast growth and convergence behavior, in the base model, to a consistent sub-linear 
growth behavior. While convergence is not immediately clear in the synonyms model, 
the trend does point to such behavior.

Average estimated diameter and average path length over time With synonymy rela-
tions, both the average path length and the diameter start at a lower value than the base 
model, for only one document. Apart from the initial values, when comparing Fig. 15 
with Fig. 5, we find a similar behavior, although the average path length decreases from 
8.37, in the base model, to 7.53, in the synonyms model, when comparing a represen-
tation of the whole collection (cf. Tables 2 and 3). Despite the similar behavior, a uni-
tary difference is quite significative in a network (e.g., in a social network like Facebook, 
the average path length is 4.74 (Backstrom et al. 2012), while in the original small-world 
study by Milgram (1967) and Travers and Milgram (1977) the average path length was 
6.2).

Temporal statistics of run times Finally, Fig.  16 illustrates the synonyms model run 
times of the following operations for an increasing number of documents: index creation 
(Fig. 16a); the computation of the global statistics (Fig. 16b), also shown in Table 3; the 
computation of all node degrees (Fig. 16c); and the computation of all hyperedge car-
dinalities (Fig. 16d). As we can see, similarly to what happened for the base model, the 

Fig. 14  Average hyperedge cardinality over time for the synonyms model

Fig. 15  Average estimated diameter and average shortest path over time for the synonyms model
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most significant increase in run time happens around 1000 documents, with the excep-
tion of the global statistics computation, which shows an increased run time for the first 
added documents. We predict that the same caching mechanisms described for the base 
model are responsible for this anomaly. In Fig. 16c, we also find a slight decrease in run 
time from 5000 to 8000 documents, which we do not find significant, as it was perhaps 
due to temporary load on the virtual machine. Indexing time took 1m13s for 1000 docu-
ments and 4m22s for a maximum of 8000 documents. The computation of global statis-
tics took 17m07s for 1000 documents and 39m13s for a maximum of 8000 documents. 
Node degrees were computed in 4m11s for 1000 documents, taking 19m03s at most, 
while hyperedge cardinalities were computed in only 20s for 1000 documents, taking 44s 
at most, and maintaining the top rank in the most efficient statistic to compute, when 
compared to the base model.

Contextual similarity

Another way that we extended the base model was by using the contextual similar-
ity between terms, as established based on the k-nearest neighbors according to word 
embeddings. For this particular analysis, word embeddings were obtained through 
word2vec, trained on a larger subset of the INEX 2009 Wikipedia collection, built from 
the documents mentioned in the relevance judgments for all 52 topics. The extracted 
vectors were of size 100, using sliding windows of 5 words to establish context, and 
ignoring words that appeared only once. Only the two nearest neighbors, with a similar-
ity above 0.5 were considered to build the similarity graph. Contextual similarity hyper-
edges were then derived from this graph by iterating over each term and building sets 
that included the original term as well as incoming and outgoing terms.

Table 4 shows the global statistics for the context model. As we can see, the number 
of terms significantly increased from 323,672 (cf. Table 2) to 413,527. This means that 
89,855 contextually similar terms that did not originally belong to the collection were 

(a) (b)

(d)(c)
Fig. 16  Synonyms model run time statistics
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added—they were however a part of the larger 52 topics collection, otherwise no new 
terms would have been added. The number of undirected hyperedges also increased 
significantly, with 157,217 new context relations. The average degree also increased 
from 0.83 to 1.18, with the average clustering coefficient remaining stable and the den-
sity decreasing from 3.88e− 06 to 2.75e−06. The diameter significantly decreased from 
17 to 3, as did the average path length, which decreased from 8.37 to 1.93, strongly 
approximating nodes through the relation of contextual similarity. This is an indicator 
of the impact of using word embeddings to establish new bridges between documents, 
although we need to assess whether retrieval effectiveness will be affected by context as 
a kind of noise introduced in the process rather than a good discriminative feature. We 
found 42,145 new paths created by this extension, resulting in 23.03 documents linked 
on average per context. Notice that, although synonyms established a lower number of 
bridges, they also connected a higher number of documents on average (2.83 × more 
than context). Only by studying retrieval effectiveness we will be able to assess which 
characteristic translates into a better performance in the model. Besides global statistics, 
we also identified four interesting changes or new characteristics when compared to the 
base model:

•	 Term node degree distribution;
•	 Context hyperedge cardinality distribution;
•	 Average hyperedge cardinality over time;
•	 Average estimated diameter and average path length over time;

Term node degree distribution Figure  17 illustrates the node-based node degree 
distribution for entity and term nodes in the hypergraph-of-entity with the context 

Table 4  Global statistics for the contextual similarity model

Statistic Value Statistic Value Statistic Value

Nodes 697,068 Hyperedges 410,371 Avg. degree 1.1774

term 413,527 Undirected 172,155 Avg. clustering coefficient 0.1423

entity 283,541 document 7484 Avg. path length 1.9333

related_to 7454 Diameter 3

context 157,217 Density 2.75e−06

Directed 238,216

contained_in 238,216

Fig. 17  Node degree distribution, based on connected nodes, for the context model (log–log scale)
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extension. The behavior for entity nodes is similar to the base model and to the syno-
nyms model. However, like in the synonyms model, term nodes show a combination 
of a power law like behavior for the lower degrees, with a log-linear behavior for the 
remaining degrees. Given the higher number of terms introduced through contextual 
similarity, we also find a distribution plot that is visually denser.

Context hyperedge cardinality distribution Figure  18 illustrates the distribution of 
terms per context hyperedge. As we can see, the behavior approximates a power law, 
with only a few context hyperedges containing around 50 nodes and one of them even 
reaching 156 nodes.

Average hyperedge cardinality over time Given the high number of introduced con-
text hyperedges, most of them with a low cardinality, the average hyperedge cardi-
nality was driven down, as we can see in Fig.  19. In a similar way to the synonym 
hyperedges, the behavior also changed from a fast growth and convergence behavior, 
in the base model, to a consistent sub-linear growth behavior.

Fig. 18  Context hyperedge cardinality distribution (log–log scale)

Fig. 19  Average hyperedge cardinality over time for the context model

Fig. 20  Average estimated diameter and average shortest path over time for the context model
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Average estimated diameter and average path length over time Perhaps one of the 
most interesting results of this analysis is the impact of index extensions in the diam-
eter and average path length. This is particularly visible with the context extension—
the diameter decreased from 17, in the base and similarity models, to only 3, in the 
context model. A similar behavior was identified for the average path length that 
decreased from 8.33 in the base model and 7.53 in the synonyms model, to only 1.93 
in the context model. This behavior over time is seen in Fig. 20, where, contrary to the 
base and synonyms model, we can find shorter geodesics immediately for a low num-
ber of documents. As an increasing part of the collection is considered, the length of 
the geodesics increase. This might be correlated with an increasing diversity of topics, 
thus being indicative of the discriminative power of the context extension, an aspect 
that should be further investigated in the future.

Temporal statistics of run times Finally, Fig. 21 illustrates the contextual similarity 
model run times of the following operations for an increasing number of documents: 
index creation (Fig.  21a); the computation of the global statistics (Fig.  21b), also 
shown in Table 4; the computation of all node degrees (Fig. 21c); and the computation 
of all hyperedge cardinalities (Fig. 21d). As we can see, similarly to what happened for 
the base model, the most significant increase in run time happens around 1000 docu-
ments. When compared to the base model and the synonyms model, the global statis-
tics computation does not show an increased run time for the first added documents. 
This further supports the hypothesis of this being an anomaly that happened due to 
initial caching or load issue, particularly since the synonyms model is quite similar, 
structurally, to the context model. Indexing time took 1m35s for 1000 documents and 
5m05s for a maximum of 8000 documents. The computation of global statistics took 
5m44s for 1000 documents and 24m20s for a maximum of 8000 documents. Node 
degrees were computed in 5m15s for 1000 documents, taking 24m37s at most, while 
hyperedge cardinalities were computed in only 24s for 1000 documents, taking 56s at 
most, making it the most efficient statistic to compute, and maintaining the top rank 

(a) (b)

(d)(c)
Fig. 21  Contextual similarity model run time statistics



Page 30 of 42Devezas and Nunes ﻿Appl Netw Sci            (2020) 5:79 

in the most efficient statistic to compute, when compared to the base model and the 
synonyms model.

Term frequency bins

In this section, we analyze the TF-bins extension, which is based on the discretization 
of the term frequency per document. This way, term frequency can be added to the 
hypergraph-of-entity, while having a low impact in scalability (i.e., we remain focused 
on forming groups of nodes to minimize the space complexity of the representation 
model).

Table 5 shows the global statistics for the TF-bins model. As we can see, the number 
of nodes is the same as the original model, also remaining unchanged with the num-
ber of bins. The number of undirected hyperedges increased from 14,938 to 29,884 
for two TF-bins, or to 43,426 with ten bins. The average degree slightly increased 
from 0.83 to 0.88 for two TF-bins per document, and then to 0.93 for ten TF-bins, 
with the average clustering coefficient remaining stable and the density increas-
ing from 3.88e− 06 to 7.58e− 06 for two TF-bins, and then again slightly to 7.86e− 06 
for ten TF-bins. The diameter decreased from 17 to 13 for two TF-bins, and 14 for 
ten TF-bins, as did the average path length, which decreased from 8.37 to 6.83 and 
6.90 for two and ten TF-bins, respectively. When considering two TF-bins, we found 
156,200 new paths created by this extension, resulting in 30.64 documents linked on 
average per TF-bin. When the number of bins increased to ten, the number of new 
paths decreased to 153,979, but the average number of documents linked per TF-
bin increased to 37.99. Besides global statistics, we also identified seven interesting 
changes or new characteristics when compared to the base model:

•	 TF-bin hyperedge cardinality distribution per number of bins;
•	 Number of undirected hyperedges per number of bins;
•	 TF-bin hyperedges per number of bins;
•	 Diameter and average path length per number of bins;
•	 Average hyperedge cardinality over time per number of bins;
•	 Average density over time per number of bins.
•	 Average estimated diameter and average path length over time per number of 

bins;

Table 5  Global statistics for the TF-bins model (bins = 2 and bins = 10)

Statistic Bins Statistic Bins Statistic Bins

2 10 2 10 2 10

Nodes 607,213 607,213 Hyperedges 268,100 281,642 Avg. degree 0.8831 0.9277

term 323,672 323,672 Undirected 29,884 43,426 Avg. cl. coef. 0.1021 0.1014

entity 283,541 283,541 document 7484 7484 Avg. path len. 6.8333 6.9000

related_to 7454 7454 Diameter 13 14

tf_bin 14,946 28,488 Density 7.58e−06 7.86e−06

Directed 238,216 238,216

contained_in 238,216 238,216
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Notice that, contrary to the synonyms and context extensions, the TF-bins extension 
did not affect the behavior of term node degree distribution, since it does not introduce 
external terms to the collection.

TF-bin hyperedge cardinality distribution Figure 22 illustrates the cardinality distribu-
tion of tf_bin hyperedges, for different numbers of bins. The behavior is similar to the 
related_to hyperedges, however, as the number of bins increases, lower values of cardi-
nality become more frequent and the behavior starts tending towards a power law.

Number of hyperedges per number of bins As expected, in Fig. 23a, we find a growth 
in the number of undirected hyperedges, from 29,884, for two bins, to 43,426, for ten 
bins. The same happens for the tf_bin hyperedges (Fig. 23b), which are responsible for 
propelling such growth. The amount of hyperedges generated by increased TF-bins will 
eventually converge, since there is a limited number of terms per document to segment. 
However, for this collection, it is clear that the number of TF-bins can range from two to 

Fig. 22  TF-bin hyperedge cardinality distribution (log–log scale)

Fig. 23  Number of hyperedges, per number of bins, for the TF-bins model
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ten, while always generating new hyperedges, increasing the granularity at which term 
frequency will contribute to the model.

Diameter and average path length per number of bins As show in Fig.  24, both the 
diameter and the average path length, which correspond to the maximum and average 
geodesic distances in the hypergraph, show a high variability with the number of bins. 
In particular, the diameter and average path length both reach their maximum values 
of 18 and 8.30 when using 6 TF-bins. The minimum diameter of  11 is reached when 
using 9 TF-bins, while the minimum average path length of 5.93 is reached when using 7 
TF-bins. This suggests that the number of bins might influence retrieval effectiveness, if 
varying the diameter and the average path length also affects performance directly.

Average hyperedge cardinality over time Figure 25 shows the evolution of the aver-
age hyperedge cardinality for different numbers of bins. The behavior is similar to the 
base model (cf. Fig. 4), which is equivalent to having one TF-bin. As the number of 
TF-bins increases, the overall average hyperedge cardinality decreases, which is the 
expected behavior. This is less visible as the number of bins reaches a higher value, 
at which point the overall cardinality is less affected, showing a progressively lower 
decreasing behavior. While the number of TF-bins affects this characteristic of the 
hypergraph, the overall behavior is maintained.

Average density over time The average density shown in Fig.  26 follows a similar 
behavior to the base model (cf. Fig. 7), regardless of the number of TF-bins. However, 
there is a small variation for the interval of approximately 100–1000 documents, after 
which it is once again reduced to the same value for the different numbers of TF-bins. 
It is perhaps the diversity in term frequency introduced for documents in this interval 

Fig. 24  Geodesic-based metrics, per number of bins, for the TF-bins model

Fig. 25  Average hyperedge cardinality over time, per number of bins, for the TF-bins model
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that promotes such a difference. This would explain the creation of a higher number 
of tf_bin hyperedges, without empty TF intervals (e.g., ]2, 2]).

Average estimated diameter and average shortest path over time Figure 27 shows the 
evolution of the diameter and average path length, over an increasing number of doc-
uments and TF-bins. Apart from both metrics reaching higher values for a single doc-
ument as well as for five TF-bins, the behavior is similar to the base model (cf. Fig. 5).

Temporal statistics of run times Finally, Figures 28 and 29 illustrate the TF-bins model 
run times of the following operations for an increasing number of documents: index cre-
ation (Fig. 28a); the computation of the global statistics (Fig. 28b), also shown in Table 5; 
the computation of all node degrees (Fig.  29a); and the computation of all hyperedge 
cardinalities (Fig. 29b). As we can see, similarly to what happened for the base model 
and the synonyms model, the most significant increase in run time happens around 
1000 documents, with the exception of the global statistics computation, which shows 
an increased run time for the first added documents. Indexing time took 1m11s for 1000 
documents and 4m27s for a maximum of 8000 documents. The computation of global 
statistics took 16m38s for 1000 documents and 52m50s for a maximum of 8000 docu-
ments. Node degrees were computed in 3m54s for 1000 documents, taking 32m23 at 
most, while hyperedge cardinalities were computed in only 19s for 1000 documents, 
taking 50s at most, making it the most efficient statistic to compute, maintaining the 
top rank in the most efficient statistic to compute, in line with the other studied models 
models.

Fig. 26  Average density over time, per number of bins, for the TF-bins model

Fig. 27  Average estimated diameter and average shortest path over time, per number of bins, for the TF-bins 
model
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An application to information retrieval
So far, we have analyzed the structural impact of different index extensions in regards to 
the characteristics of the hypergraph. However, there is little value in understanding the 
behavior of structural features without the context of its application, which in this case is 
in the area of information retrieval (Devezas and Nunes 2019). Thus, we assess the effec-
tiveness of each model, with different extensions and parameter configurations, through 
a classical information retrieval evaluation process, based on the 10 topic subset of the 
INEX 2009 Wikipedia collection (INEX 2009 10T-NL).

We launched three evaluation runs per index configuration, i.e., for different versions 
of the HGoE (hypergraph-of-entity) representation model based on different extensions. 
We relied on the RWS ranking function, experimenting with different random walk 

(a)

(b)
Fig. 29  TF-bins models run time statistics (part 2)

(a)

(b)
Fig. 28  TF-bins models run time statistics (part 1)
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lengths ℓ ∈ {1, 2, 3} , and a fixed configuration for the remaining parameters: r = 10,000, 
expansion disabled (i.e., without seed node selection (Devezas and Nunes 2019, §4.2.1)), 
and weights enabled (i.e., considering tf_bin hyperedge weights, the only available 
weights in the indexes).

Table 6 shows the MAP (mean average precision), NDCG@p (normalized discounted 
cumulative gain at a cutoff of p), and P@n (precision at a cutoff of n), computed for the 
relevance judgments provided by the INEX 2010 Ad Hoc track (Arvola et al. 2010). As 
we can see, by analyzing the maximum values per column (in bold), the TF-bin models 
were able to obtain significantly better results overall, when compared to the base model, 
the synonyms model, and the context model. None of the HGoE models is yet able to 
outperform the baselines, although TF-bins are able to approximate TF-IDF in regard 
to NDCG@10 and P@10. The hypergraph-based models need to be reiterated over and 
improved. Herein lies the usefulness of computing the properties of the hypergraph 

Table 6  Evaluating the different models in the ad hoc document retrieval task

Model MAP NDCG@10 P@10 MAP NDCG@10 P@10 MAP NDCG@10 P@10

Lucene TF-IDF 0.2160 0.2667 0.2800 0.2160 0.2667 0.2800 0.2160 0.2667 0.2800

Lucene BM25 0.3412 0.5479 0.4900 0.3412 0.5479 0.4900 0.3412 0.5479 0.4900

HGoE RWS ℓ = 1 ℓ = 2 ℓ = 3

Base model 0.0046 0.0799 0.0400 0.0039 0.0718 0.0400 0.0028 0.0576 0.0400

Synonyms 0.0013 0.0440 0.0200 0.0024 0.0799 0.0400 0.0023 0.0718 0.0400

Context 0.0000 0.0000 0.0000 0.0010 0.0220 0.0100 0.0010 0.0220 0.0100

TF-bins2 0.1082 0.2443 0.2100 0.1025 0.1730 0.2000 0.0918 0.1302 0.1400

TF-bins3 0.0911 0.2004 0.2200 0.0989 0.0954 0.1200 0.0868 0.0751 0.1000

TF-bins4 0.0957 0.1969 0.2000 0.1107 0.2007 0.1900 0.0928 0.1669 0.1700

TF-bins5 0.1049 0.2355 0.2400 0.1050 0.1364 0.1400 0.0954 0.1121 0.1400

TF-bins6 0.1057 0.2405 0.2600 0.1108 0.1906 0.2000 0.1022 0.1792 0.1900

TF-bins7 0.1000 0.2212 0.2500 0.1072 0.1255 0.1200 0.0939 0.0934 0.1000

TF-bins8 0.0894 0.2131 0.2100 0.1078 0.0988 0.1100 0.0966 0.0641 0.0800

TF-bins9 0.0954 0.1494 0.1500 0.1107 0.1402 0.1500 0.0958 0.1069 0.1200

TF-bins10 0.1062 0.2127 0.2200 0.1133 0.1436 0.1600 0.1079 0.1143 0.1300

Table 7  Comparing the global statistics for the different models

Model Nodes Hyperedges Degree Cl. coef. Avg. path len. Diam. Density

Base model 607,213 253,154 0.8338 0.1148 8.3667 17 3.88e−06

Synonyms 610,212 263,804 0.8646 0.1168 7.5333 17 3.88e−06

Context 697,068 410,371 1.1774 0.1423 1.9333 3 2.75e−06

TF-bins2 607,213 268,100 0.8831 0.1021 6.8333 13 7.58e−06

TF-bins3 607,213 270,359 0.8905 0.1011 6.7667 13 7.65e−06

TF-bins4 607,213 272,649 0.8980 0.0999 7.0333 14 7.60e−06

TF-bins5 607,213 274,698 0.9048 0.0996 6.7000 16 7.73e−06

TF-bins6 607,213 276,615 0.9111 0.1029 8.3000 18 7.69e−06

TF-bins7 607,213 278,087 0.9159 0.1010 5.9333 14 7.82e−06

TF-bins8 607,213 279,356 0.9201 0.1034 6.6000 14 7.83e−06

TF-bins9 607,213 280,524 0.9240 0.0994 6.8667 11 7.84e−06

TF-bins10 607,213 281,642 0.9277 0.1014 6.9000 14 7.86e−06
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structures and analyzing the hypergraph-of-entity. While there is no clear pattern of 
effectiveness correlated with the number of bins, if we consider the NDCG@10 scores, 
the best model for ℓ = 1 is TF-bins2 , the best model for ℓ = 2 is TF-bins4 , and the best 
model for ℓ = 3 is TF-bins6 . This might indicate that a higher number of bins works best 
with a longer random walk length. However, there is no concordance to support this 
hypothesis when looking at the MAP and P@10 metrics, thus further investigation is 
required.

In order to better understand whether there is a direct relation between any of the 
computed structural features of the hypergraph and the effectiveness of the retrieval 
model, we first summarize the structural features for each model in Table 7. By com-
paring each feature with the evaluation metrics from Table 6, we are able to find some 
indicators of (in)effectiveness in a graph-based retrieval model. According to Table  6, 
context was the worst performing model, over all values of ℓ . The context model also has 
the highest average degree and clustering coefficient, as well as the lowest average path 
length and diameter (cf. Table 7). This indicates that a higher local connectivity and an 
overall lower distance between nodes might not beneficial for retrieval effectiveness. We 
also observe that the TF-bin models, which have the best performance, also have a lower 
clustering coefficient than the base, synonyms and context models, ranging between 
0.0994 and 0.1034.

We also studied the structural impact of each extension, through the relative change to 
individual features, in comparison to the base model. Figure 30 shows a heatmap based 
on the change percentages in regards to the base model, which, by definition, has a 0% 
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change over all features, in comparison to itself. As we can see, the context model suf-
fered the most evident overall change, with a − 467% change in diameter, and a − 333% 
change in average path length. This model is of particular interest, as it resulted in the 
worst retrieval performance, when compared to the remaining models. Interestingly, 
this is also visible in its structural features. The clustering coefficient for the context 
model also suffered a substantial increase in relation to the base model, with a change of 
19%, as did the degree, with a change of 29%. When looking at the density for all models, 
there was no change for the synonyms model, but there was a positive change, rounding 
50% (in green), for the TF-bins models, and there was a negative change of − 41% for 
the context model. The number of nodes suffered no change for the TF-bins models, but 
there a slight increase for synonyms (as new terms from synsets were added), and a more 
significative increase for the context model. The number of edges suffered a consistently 
larger increase for TF-bins models, as the number of bins increased, with the synonyms 
model showing a slight increase, and the context model once again showing a more sig-
nificative increase.

Correlating evaluation metrics and structural features

In Table  8 we further organize this approach, by comparing the evaluation results of 
each metric with the values of each structural feature. By using Spearman’s rank cor-
relation coefficient ( ρ ), we can verify whether the retrieval model’s performance ranking 
given by the evaluation metrics (our ground truth) can compare with the ranking given 
by any of the structural features, as computed for each model. Let us first follow up with 
the indicators we put forth in the manual comparison of the two tables.

We proposed that a high average degree and clustering coefficient would result in a 
low MAP, NDCG@10 and P@10, which does not necessarily mean that either feature 
is a good overall discriminator of model performance. In fact, the average degree does 
not show correlation consistency among the different evaluation metrics and parame-
ter configurations. On the other hand, the clustering coefficient is negatively correlated 
with each evaluation metric over the different random walk length parameter config-
urations, ranging between −  0.61 and −  0.36. This makes the clustering coefficient a 
weak, but consistent indicator of the performance of graph-based retrieval models (i.e., 
higher values of the clustering coefficient indicate a low retrieval effectiveness). Absolute 

Table 8  Spearman’s ρ between evaluation metrics and structural features

Nodes Hyperedges Degree Cl. coef. Avg. path len. Diam. Density

ℓ = 1 MAP − 0.6504 0.0559 0.0559 − 0.5245 0.0979 0.1000 0.5009

NDCG@10 − 0.6504 − 0.0350 − 0.0350 − 0.3636 − 0.1119 0.2000 0.4308

P@10 − 0.6527 0.1018 0.1018 − 0.4667 − 0.0982 0.3047 0.5800

ℓ = 2 MAP − 0.6516 0.4098 0.4098 − 0.5464 0.2172 0.1449 0.8035

NDCG@10 − 0.5913 0.0699 0.0699 − 0.5804 0.2797 0.1036 0.4448

P@10 − 0.6242 0.0035 0.0035 − 0.5519 0.2882 0.0593 0.4049

ℓ = 3 MAP − 0.6504 0.4615 0.4615 − 0.4685 0.0699 0.1965 0.8932

NDCG@10 − 0.5322 − 0.0280 − 0.0280 − 0.5524 0.3357 0.2000 0.3573

P@10 − 0.6242 − 0.0211 − 0.0211 − 0.6151 0.2707 0.1993 0.3873
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correlation is not particularly high, since retrieval performance does not solely depend 
on the structure of the graph, but also on the semantics of the representation model.

We also proposed that a low average path length and diameter would be indicative of 
low model performance. While the average path length and diameter correlations with 
the evaluation metrics are mostly positive, these are not sufficiently consistent to be con-
sidered good global indicators of performance. There are, however, special cases when 
the average path length serves as a slight indicator of performance, namely for ℓ > 1 
and for the top 10 results. For ℓ = 1 , there is a slight negative correlation that could be 
explained by the fact that this model only relies on the immediate neighborhood within 
the hypergraph and does not depend on short paths for connectivity. The diameter, on 
the other side, always shows a positive correlation with the evaluation metrics, but its 
absolute value is overall low and inconsistent for it to provide a good discriminative indi-
cator of retrieval performance.

With a similar behavior to the clustering coefficient, but with an inverse sign, the den-
sity was overlooked as a good indicator of model performance. In particular, the worst 
performing model (context model) also has the lowest density of 2.75e−06, followed by 
the base model and the synonyms model, tied at a density of 3.88e−06, and then by the 
TF-bin models, with densities ranging from 7.58e− 06 to 7.86e−06. While the density is a 
good discriminative of graph-based retrieval models, its granularity is low, only properly 
distinguishing between models with an obvious difference in performance.

Design rules for modifying or extending the hypergraph‑of‑entity

After the analysis of the impact of structural features in the performance of the retrieval 
models, we reflect on the implications of our findings. We use these findings to prepare a 
set of rules that serve as indicators or as a guide for the continued redesign of the hyper-
graph-of-entity. In particular, the guidelines we propose should be helpful in the process 
of comparing different versions based on modifications or extensions to our model. We 
propose two classes of indicators: 

Ranking indicators	� Structural features that can be used to rank different 
graph-based models in regards to their predicted retrieval 
performance.

Anomaly indicators	� Structural features that cannot be used to rank graph-based 
models based on retrieval performance, but can, however, be 
useful for identifying anomalous models with a high chance of 
a low performance.

Table 9 shows the identified ranking and anomaly indicators according to the analysis 
carried at the beginning of this section. The clustering coefficient and the density were 

Table 9  Indicators of graph-based retrieval model performance

Ranking indicators Anomaly indicators

Cl. coef. Ascending order ∼ 50% correlated with 
retrieval performance

Degree Abnormally high values ( > µ+ 2σ ) indicate a 
low performing model

Density Descending order ∼ 50% correlated with 
retrieval performance

Diameter Abnormally low values ( < µ− 2σ ) indicate a 
low performing model
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both identified as ranking indicators with an approximate certainty rate of 50%, based on 
an ascending and descending order, respectively. The degree and diameter were identi-
fied as anomaly indicators, with the degree being used to identify abnormally high val-
ues, for example larger than two standard deviations ( 2σ ) above the mean ( µ ), and the 
diameter being used to identify abnormally low values, for example less than two stand-
ard deviations below the mean.

Conclusion
We characterized the hypergraph-of-entity representation model, based on the struc-
tural features of the hypergraph. We analyzed the node degree distributions, based on 
nodes and hyperedges, and the hyperedge cardinality distributions, illustrating their 
distinctive behavior. We also analyzed the temporal behavior, as documents were added 
to the index, studying average node degree and hyperedge cardinality, estimated aver-
age path length, diameter and clustering coefficient, as well as density and space usage 
requirements. We expanded on the characterization work by analyzing different model 
extensions based on synonymy, contextual similarity, and a new concept of TF-bins, 
and we also measured the run time of several operations like indexing and the compu-
tation of properties. Our contributions included the application of two strategies for 
the approximation of statistics based on the shortest distance, as well as the clustering 
coefficient. We also proposed a simple approach for computing the density of a general 
mixed hypergraph, based on an induced bipartite mixed graph. Finally, we focused on 
the application of this characterization work, which, we proposed, should inform the 
design of graph-based representation models for information retrieval. In particular, we 
studied the change in structural features, when compared to the base model, as well as 
the correlations between retrieval effectiveness metrics (MAP, NDCG@10, P@10) and 
structural features (e.g., average degree, clustering coefficient). While structural features 
rarely presented a higher than 50% absolute correlation with any of the evaluation met-
rics, we identified some of them as indicators useful for ranking the retrieval models 
according to their effectiveness, or for identifying anomalies that lead to low effective-
ness. More importantly, we have provided an analysis framework for hypergraphs that 
can easily be implemented and applied to both small and large-scale hypergraphs. We 
have also provided a characterization based on this framework, illustrating the behavior 
of several statistics, for instance showing that, while the degree distribution based on 
hyperedges still follows a power law, like in real-world networks represented as graphs, 
the degree distribution based on nodes instead approximates a log-normal distribution. 
During the development of this work, we have also found that:

•	 Few attention has been given to hypergraph characterization in the real-world;
•	 The community is still lacking in tools to analyze hypergraphs:

–	 There is no de facto library for hypergraph analysis;
–	 Few file formats support hypergraphs, namely with directed hyperedges.

•	 Polyadism introduces additional complexity and calls for novel metrics that take the 
information within collective relations into account.
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Future work In the future, we would like to further explore the computation of density, 
since the bipartite-based density we proposed, although useful, only accounts for hyper-
edges already in the hypergraph. We would also like to study the parameterization of the 
two estimation approaches we proposed, based on random walks and node sampling. 
Despite their straightforward definition, these approaches also require further evaluation, 
in order to understand what the expected error will be for different configurations. Another 
open challenge is the definition of random hypergraph generation model, which would be 
useful to improve characterization. Additionally, several opportunities exist in the study of 
the hypergraph at a mesoscale, be it identifying communities, network motifs or graphlet, 
or exploring unique patterns to hypergraphs. It would also be interesting to include central-
ity metrics in the correlation analysis, in order to understand for instance whether closeness 
or betweenness might impact retrieval effectiveness in the hypergraph-of-entity, further-
more considering multiple combinations of extensions, as opposed to a single one, as we 
have done here. Finally, regarding the hypergraph-of-entity model, it would also be useful to 
repeat the analysis we describe in this work based on additional test collections, as to sup-
port or disprove the results we found. Perhaps future TREC or CLEF tracks could provide 
relevance judgments for multiple tasks in entity-oriented search, which would be useful to 
boost the study of generality in information retrieval.
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