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Abstract

Online social network has become a new form of infrastructure for communities in
spreading situational information in disasters. Developing effective interventions to
improve the network performance of information diffusion is essential for people to
rapidly retrieve information in coping with disasters and subsequent disruptions.
Existing studies have investigated multiple aspects of online social networks in
stationary situations and a separate manner. However, the networks are dynamic and
different properties of the networks are co-related in the evolving disaster situations.
In particular, disaster events motivate people to communicate online, create and
reinforce their connections, and lead to a dynamic reticulation of the online social
networks. To understand the relationship among these elements, we proposed an
Online Network Reticulation (ONR) framework to examine four modalities (i.e.,
enactment, activation, reticulation, and network performance) in the evolution of
online social networks to analyze the interplays among disruptive events in disasters,
user activities, and information diffusion performance on social media. Accordingly,
we examine the temporal changes in four elements for characterization of
reticulation: activity timing, activity types (post, share, reply), reticulation mechanism
(creation of new links versus reinforcement of existing links), and structure of
communication instances (self-loop, converging, and reciprocal). Finally, the
aggregated effects of network reticulation, using attributed network-embedding
approach, are examined in the average latent distance among users as a measure of
network performance for information propagation. The application of the proposed
framework is demonstrated in a study of network reticulation on Twitter for a built
environment disruption event during 2017 Hurricane Harvey in Houston. The results
show that the main underlying mechanism of network reticulation in evolving
situations was the creation of new links by regular users. The main structure for
communication instances was converging, indicating communication instances
driven by information-seeking behaviors in the wake of a disruptive event. With the
evolution of the network, the proportion of converging structures to self-loop and
reciprocal structures did not change significantly, indicating the existence of a scale-
invariance property for network structures. The findings demonstrate the capability
of the proposed online network reticulation framework for characterizing the
complex relationships between events, activities, and network performance in online
social networks during disasters.
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Introduction
Communication for making sense of disaster situations is important for people at risk

to take protective actions (Fischer-Preßler et al. 2019). Social media has increasingly be-

come a vital infrastructure for communities facing disasters and crises because social

media allows people to rapidly disseminate situational information (Sutton et al. 2015),

perceive environmental risks (Kryvasheyeu et al. 2016), and collaborate with other users

(Lu et al. 2012). This benefits collective sense-making in a communication network in-

volving people affected by the same disruptive event (Heverin and Zach 2012). To en-

hance collective sense-making in emergencies, hence, there is a need for characterizing

the underlying mechanisms and modalities in communication networks through which

information is processed about unfolding disaster situations. Accordingly, the field of

crisis informatics has grown over the past few decades to develop computational sup-

port for data collection and user-behavioral analysis on social media to address chal-

lenges in disaster response and recovery (Anderson 2012). For example, one emerging

stream of studies in crisis informatics is to examine the dynamics in online social net-

works to foster the information dissemination (Del Vicario et al. 2016; Morone and

Makse 2015), cooperative human actions (Jackson et al. 2018; Kogan et al. 2015), and

emergency protocols for disaster response (Bagrow et al. 2011; Méndez-Valderrama

et al. 2018) on social media. In fact, the spread of situational information is an outcome

of the structural properties of online social networks, which are shaped by dynamic

user behaviors such as quoting posts and replying messages (Kim and Hastak 2018;

Romero et al. 2011). In addition, as suggested in social science theories, the dynamic

user behavior is stimulated by the emergent changes in users’ physical environment

such as irresistible flooding and abrupt building damages (Bail 2016). Thus, to improve

the understanding of network dynamics, it is essential to consider the interplay among

the disaster events, dynamic user behaviors, and online social network structures.

However, the study of social media as a tool to communicate with other users and

disseminate information has been more prevalent than the dynamic interactions among

events, behaviors, and networks in disasters. Studies related to information dissemin-

ation over online social networks, ranging from the interaction of communities (Kumar

et al. 2018), to extent of user engagement (Hu and Farnham 2015; Zhang et al. 2017),

to structural patterns of dynamic cascades (Weng et al. 2013; Zang et al. 2017), pro-

vided powerful measurements for characterizing the dynamic information flow on so-

cial media. For example, Lu & Brelsford analyzed the community evolution in online

social networks under the 2011 Japanese Earthquake and Tsunami (Lu and Brelsford

2014). The results show users tend to stay their own communities to get disaster-

related information but fail to explain the impacts of disaster events on the activity ten-

dencies of users within and among online communities. Kryvasheyeu et al. studied the

dynamic topological properties such as users’ network centrality to measure the per-

formance of social networks in sensing the situations in Hurricane Sandy (Kryvasheyeu

and Chen 2014). The study emphasized the strategies of communicating with different

users from disaster-hit areas on social media to achieve situational awareness advan-

tages. However, the researchers did not capture the underlying triggers (e.g., disruptive

events in the built environment) of the topological changes in online social networks.

Thus, it is difficult to draw a robust communication strategy for people under different

disaster events. Bagrow, Liu, and Mitchell demonstrated the importance of social ties
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for user activities by measuring information flow over online social networks (Bagrow

et al. 2019). The limit of the study is that the researchers did not consider the environ-

mental events that provide sources of information. Another stream of the studies fo-

cuses on the evolvement of the structures of online social networks. For example,

Sekara et al. characterized the fundamental structure of dynamic social networks to

capture its evolvement in different social contexts such as teamwork and individual

lives (Sekara et al. 2016). The analysis mathematically reveals the structural patterns of

the networks in a very detailed manner. However, the study did not specify the user ac-

tivities that lead to the dynamics in network structures. Phan and Airoldi conducted a

long-term natural experiment of friendship formation and social dynamics on Facebook

in the aftermath of a natural disaster (Phan et al. 2015). The analysis indicates users’

preferences for strengthening social interactions but did not explain further influences

on the efficiency of information diffusion. In addition, Kwak et al. studied the pattern

of information sharing on Twitter and signified that the tweets with headline news or

persistent news are trending tweets with fast diffusion (Kwak et al. 2010). They demon-

strated the power of Twitter as a new medium of information sharing but did not

examine the network structures that are formed by the cascades and build up the

power of Twitter in information diffusion. Weng, Menczer and Ahn presented a model

to predict the diffusion of memes and behaviors based on their early spreading patterns

in online social networks. However, the model is limited to reveal the underlying fac-

tors such as social reinforcement that affecting the diffusion process.

The current studies, to some extent, advanced the understanding of social behaviors

and network dynamics in disasters. Despite these studies (Fan et al. 2020b), there is an

important gap in theoretical frameworks to characterize the dynamics of collective

sense-making in online social networks by considering the complex relationships

among disaster-induced disruptive events, user activities on social media, the trans-

formation of network structure affected by user activities, and outcomes of social net-

works in terms of improving information propagation and collective actions in

response to disruptions. To address this gap, the objective of this study is to employ a

theoretical network reticulation framework to characterize different modalities influen-

cing the dynamics of online social networks. Unlike the previous models and analysis

described above, the proposed framework is now able to provide a more integrative

and realistic description of the process by which the user activities perform, network

structures evolve, and information propagates. Environmental effects such as infrastruc-

ture disruptions can also be accounted for as a factor whereby the online users can

have dynamic activities to spread the situational information. On top of that, the net-

work performance for information spread plays a role in enhancing the capabilities of

disaster-hit populations in perceiving potential risks and building community resilience.

Online network reticulation framework
Communication theories such as Corman’s NRT (Corman and Scott 1994), Giddens’

structuration theory (Giddens 1984), and Homans’ theory of the human groups

(Homans 1950) have examined some concepts related to communication networks,

such as triggering events, activities, and communication instances (Fan et al. 2020a).

However, these studies primarily focus on individual modalities of the communication

networks. Little is known about the complex relationships among disruptive events,
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user activities, network structures and outcomes in online social networks. Network re-

ticulation theory (NRT) provides an integrative framework to examine different modal-

ities and their relationships that affect the reticulation of communication networks.

Network reticulation theory (NRT), proposed by Corman and Scott (Corman and Scott

1994), provides a theoretical lens for explaining the relationship between external

events, activities in social networks, communication instances, and performance in so-

cial networks. In this study, we extend and employ the standard NRT for characterizing

the dynamics of online social networks in disasters and crises.

The online network reticulation (ONR) framework (Fig. 1) characterizes the dynamics

of online social networks with four modalities: enactment, activation, reticulation, and

network performance.

� Enactment is promulgation over social media platforms of triggering events: in this

study, built environment disruptions such as power outage, road closure, and

flooding caused by a natural disaster. Triggering events often occur abruptly,

promoting social media user activity—sharing information about the impact of

events and adjustment response.

� Activation modality comprises user activities —posting and sharing of and

responding to disruption events. Specifically, activities such as posting, sharing and

responding situational information stimulate the emergence of communication

instances regarding event-related topics among groups of users.

� Reticulation modality is characterized by communication instances among groups

of online social network users. The structural properties of communication

instances and reticulation mechanisms are important elements of the reticulation

modality.

� Network performance modality is the outcome of user activities and

communication instances that influence information propagation and collective

action in response to disruptive events. In the proposed framework, we examine

network performance modality as a function of information diffusion efficiency

based on the average latent distance between the users in the network. Information

propagation efficiency is an indicator of social network performance.

Fig. 1 Online network reticulation framework for characterizing dynamics of online social networks. This
framework is composed of four modalities: enactment, activation, reticulation, and network performance,
which can capture the dynamic behavior of users on social media
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The four modalities in the proposed framework interact with each other, and their in-

teractions are represented by the bi-directional arrows in the schema. Specifically, the

occurrences and evolution of triggering events in enactment modality trigger human

activities (e.g., communication and information sharing) in the activation modality. Hu-

man activities in response to the disruptions also affect the unfolding of the events

(such as relief campaigns) in the enactment modality (Chen et al. 2019). Human activ-

ities form the communication networks with dynamic reticulation structures in the re-

ticulation modality. The reticulation structure of the communication networks

determines the types and time of human activities in the activation modality, and fur-

ther influence the efficiency of information sharing in network outcome modality.

In addition, each modality is characterized by a pair of elements, such as triggers/per-

turbation, timing/types of activities, instances/reticulation, information propagation/

average distances in the network reticulation framework. The pairs of elements signify

the duality of the framework to accommodate a distinction between an abstracted

structural network and a concrete systemic phenomenon. Generally, the enactment

modality refers to the events occurring in the physical environment, (i.e., triggering

events). The activation modality is defined as the human activities triggered by physical

events. Then, the reticulation modality represents the structure of the communication

networks which enables the connections among affected people. The network outcome

modality is the indictors of the network performance including user distance and infor-

mation sharing. This framework explains the underlying mechanism of human commu-

nication networks on social media in response to physical disruptions. The four

modalities and their relationships enable analyzing the dynamics of information sharing

and collective sense-making in emergencies.

Using the proposed framework with a Twitter dataset from Hurricane Harvey, we

first identified the triggering events in communities (such as disruptions in the built en-

vironment), and defined rules (i.e., geographic scales and event-related keywords) for

filtering data for analysis. Once the data was prepared, we examined the hourly volume

of relevant tweets before and during the disruption to evaluate the activation modality.

Accordingly, we investigated the types of user activities (post, share, respond) and tem-

poral tendency in the activities during three time periods (rising, peak, and declining).

We then characterized network reticulation to expose the underlying mechanisms (i.e.,

new link creation versus existing link reinforcement) of user communications. Link, in

this case, refers to the communication relations created by sharing tweets from other

users. We defined three structures (converging, reciprocal, and self-loop) to

characterize communication instances. Finally, we implemented an attributed network

embedding approach to represent the online social network and quantify its efficiency

for information propagation (as an outcome of user activities and communication in-

stances), as described below.

To demonstrate the application of the proposed ONR framework, we focus on mod-

eling human activities on Twitter during disaster disruptions. An approach synthetically

capturing semantic similarity and relations, proposed by Aral et al. (Aral et al. 2009),

was used to characterize human communication behaviors on social media. Semantic

similarity refers to the similarity of the content of the tweets, and relations refers to the

sharing relation created by retweets. To represent the online social network, we

employed an attributed network embedding approach to integrating the semantic
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attributes of online users and their networked relations into a latent space (Fan et al.

2020; Huang et al. 2017a). The first step is to construct a content vector for each active

user based on the user’s daily posts. Specifically, we aggregated the tweets posted each

day by a user into a single document. Each user has its own tweet document. Using

preprocessing approaches, including tokenization, word stemming, removing unin-

formative characters (e.g., “!”, “@”, and URL), removing stop-words and words whose

length is less than three characters, we cleaned the tweets. Then, we adopted the term

frequency-inverse document frequency (TF-IDF) approach to convert the tweet docu-

ment to a vector in which each element corresponds to a token and shows the number

of times that the token appears in a user’s tweet document. By doing so for all users,

the user content vectors were obtained (see Fig. 2). Once the vector for each active user

is determined, we used the cosine similarity method to compute the semantic similar-

ities among all users and construct a pair-wise semantic similarity matrix S:

cos θð Þ ¼ A∙B
‖A‖‖B‖

¼
Pk

i¼1aibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1a

2
i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1b

2
i

q ð1Þ

where A and B are the vector representations of two users’ tweet documents, ai and bi
are the values at ith element of vector A and B, and k is the length of the vectors.

Second, to capture the retweeting behaviors among the users, we extracted the pairs

of user ids from all retweets. In this step, we identified the users who retweeted a post

and the users who posted the original tweets. Then, we built a user-by-user matrix in

which the rows and columns represent all users, and the element in the matrix repre-

sents the number of retweets generated between each pair of users. We consider this

retweet relationship as communication relations among social media users. The

strength of relations is defined as the value in the retweet matrix. By examining the

retweet matrix, we found that the numbers of retweets vary greatly among pairs of

users, although most are relatively weak. The matrix is sparse, in which most of the

users did not retweet any other users’ tweets. But, some of the users retweeted a lot of

posts from a specific user. These extreme values would scale the distance of two users

in the latent space and intensify the skewness towards the large retweet numbers. To

reduce the skewness, the hyperbolic tangent function (Xiao et al. 2005) is adopted to

Fig. 2 A scheme of the attributed network embedding approach
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convert the retweet numbers into an interval where all extreme values are converted to

the maximum of the interval. Hence, taking the absolute values of the relation strength

would place some outliers in the embedding matrix; therefore, we scaled down the ex-

ceptionally strong relations and scaled up the differences among the weak relations by

using hyperbolic tangent. Using the outputs from the hyperbolic tangent function, we

created the retweet relation matrix R:

~rij ¼ tanh rij
� � ¼ sinh rij

� �

cosh rij
� � ¼ e2�rij−1

e2�rij þ 1
ð2Þ

where rij represents the communication frequency attribute, which is defined as the

value at the ith row and jth column of the matrix R; ~ri j represents the scaled retweeting

attribute, which is defined as the ith row and jth column of the matrix ~R; and ~R is the

adjusted matrix of communication relations.

After creating the user semantic similarity matrix S and the retweet relation matrix

R, we adopted the attributed network embedding approach to integrate these two

matrices together and project them into a latent space with reduced dimensions. The

output of this step is the hidden matrix H in the latent space (see Fig. 2). The loss func-

tion for the network embedding approach is shown in Eq. (3) which consists of two

models: the node proximity in networked relations and semantic attributes (Huang

et al. 2017b). The first element on the right-hand side of the loss function is to let the

embedding representation matrix be as close to the semantic similarity as possible; the

second part is to ensure the difference of embedding representation between two users

is small when they have strong communication relation. As such, the embedding repre-

sentation matrix H can be generated in a unified robust and informative space.

J ¼ ‖S−HH⊺‖2F þ λ
X

ði; jÞ∈ε
~ri j‖hi−hj‖2 ð3Þ

where λ is the regularization parameter that conducts trade-off between the represen-

tation performance of the embedding matrix H in semantic similarity and in communi-

cation relation. hi is the vector at the ith row of matrix H, representing the embedding

vector for the ith user; ‖∙‖2 denotes the l2-norm of a vector; and ‖∙‖F denotes the Frobe-

nius norm of a matrix. Adopting the algorithm developed by Huang et al. (2017a) by

setting the embedding vector of length 2, we obtain the two-dimensional representation

matrix H for each day. That is, the representation vector h for each user has length 2.

Enactment modality
In this section, we examine the enactment modality, which includes examining the trig-

gering event and its temporal period.

Triggering event

Hurricane Harvey, which was a Category 4 tropical storm, made landfall in Houston on

August 26, 2017, and brought terribly heavy rainfall to Houston (Sebastian et al. 2017).

Water levels in Barker and Addicks reservoirs and Buffalo Bayou (at the outlet of these

reservoirs) reached their capacities (Fig. 3). To prevent the reservoirs from breaching,

the authorities decide to release water from reservoirs into the downstream neighbor-

hoods (Flood Control District 2017). Water released from reservoirs flooded nearby
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neighborhoods and caused severe damage to households, roads, and emergency facil-

ities (Fan et al. 2018; Fan et al. 2019). This event, which occurred without any warning

to residents, triggered activities on Twitter in which users shared and sought informa-

tion regarding the status of water release, impacts, and response.

Data collection and preprocessing

To model human activities in disaster disruptions, we collected a dataset of tweets sent

from the Houston metropolitan area between August 22 and September 30, 2017, using

profile locations and bounding boxes (Fan and Mostafavi 2019). The dataset includes

tweets posted by online users whose profile locality is Houston, tweets with Houston

geotags, or tweets with the geo-coordinates in predefined bounding boxes. Based on

these filtering rules, the full dataset numbered 21 million tweets. The focus of our study

was to examine the dynamics in online social networks during the water release event

from two flood-control reservoirs, Addicks and Barker, in West Houston. This event

spanned the time period between August 27 through September 5, 2017. The release of

water from these reservoirs tend to only impact nearby neighborhoods. Online user ac-

tivities such as retweeting or posting event-related information would indicate the users

who cared about or were affected by this disruptive event. These users are considered

as the users of interest in our study. Hence, we first filter all the tweets in which the

keywords, “addicks”, “barker”, and “reservoir” were mentioned. Then, we extracted all

the users who posted these tweets. Finally, all tweets posted by these users across the

entire period of interest were collected for this study. Our filtered dataset consisted of

5865 Houston users who engaged in activities on Twitter about the disruptive event of

flood-control reservoirs, 209,370 posts, 194,425 replies, and 1,166,956 shared tweets.

The experiment protocols were approved by the university’s Research Compliance

Committee, Institutional Review Board (IRB). All research was conducted in

Fig. 3 Inundation levels around Barker and Addicks reservoirs and Buffalo Bayou, which is the area affected
by this built-environment disruption event. The water level is recorded at 12:00 p.m. each day, and the top
of the spillway/bank is the baseline for measurement
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accordance with the guidelines and regulations of the IRB. The data does not contain

any identifying information and was used anonymously. The data usage permission was

obtained from Twitter prior to conducting the experiments.

To examine the presence of bots and the quality of our dataset, we adopted a widely-

used bot classification system, Botometer, which has been developed for bot detection

tasks and reported high accuracy (greater than 90%) in existing studies (Varol et al. 2017).

Botometer can extract thousands of features (e.g., user metadata, friends, network struc-

ture, language and sentiment features) from Twitter accounts through Twitter Search API

and compute bot scores for a Twitter account to evaluate the extent to which an account

exhibits similarity to the characteristics of social media bots (Shao et al. 2018). The bot

scores range from 0 to 5. Generally, the accounts which have scores falling into the top

20% of the score range (i.e., greater than 4 and lower than 5) would be considered as likely

bots (Varol et al. 2017).

We adopted Botometer in this analysis; out of 5865 identified Twitter accounts, 593 ac-

counts could not be inspected because they were either suspended, deleted, or turned pri-

vate. For each of the remaining 5272, Botometer returned a bot score estimating the level of

automation in the account. Figure 4 shows the distribution of the bot scores for the Twitter

accounts in our dataset. As shown in the figure, less than 1% of the Twitter accounts in our

dataset are likely bots (which have the scores greater than 4), and about 85.8% of the ac-

counts have the scores lower than 1. By manually evaluating the account profiles and the re-

cent tweets for some bot accounts and human accounts, we validated the classification

results generated by Botometer. In addition, there are 2717 potentially bot-related tweets,

which accounts for less than 0.2% of the total amount of tweets. The results of the bot test

demonstrate that most of the accounts in our analysis are human accounts. The very small

proportion (less than 1%) bot accounts do not affect our analysis and findings since their ac-

tivities are negligible compared to the activities of the real human users.

Activation modality
Activated by the disruptive event, users engaged in activities to seek and share informa-

tion regarding the status of the water release, impacts, and adjustment responses. The

Fig. 4 The distribution of bot scores for Houston users in this study. The ratio of the users in the interval to
the total number of users is calculated in parentheses
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Twitter activities tracked were posting, sharing (retweeting or quoting), and replying to

a tweet public to users’ followers. The frequency and proportion of these three types of

user activities change over time due to the unfolding of the reservoirs’ water release

event. First, we collected tweets posted by users before and during the event. We then

investigated the timing of the activities, as well as the temporal volume of tweets in

each hour and the distribution of users in terms of the proportions of three types of

activities.

Timing of activities

As shown in Fig. 5, the frequency of user activities (i.e., the hourly volume of tweets)

varies over time. Before the disruption happened (August 24 through- August 26, 2017,

in Fig. 5), the magnitude of user activities was constant and with a slight upward trend.

A burst in activity frequency started on August 28, 2017. After that, the magnitude of

user activities triggered by the event became stable (Fig. 3) and finally the frequency of

user activities declined (Fig. 5).

Accordingly, we determined three time periods based on the frequencies of activities

(Fig. 5) and the unfolding of the disruptive event (Fig. 3). The rising period represents

the period before the disruption, and the frequency of activities is rising in this period.

Peak period represents the period immediately after the disruption occurred, and the

frequency of activities is at peak volume. The declining period represents the period

during the disruption, during which the frequency of activities starts declining. The

basic information about the number of users and the volume of tweets during each

period is shown in Table 1.

Fig. 5 The density distribution of tweeting activities per hour by active users. The y-axis is the absolute
value of the tweets volume per hour. Three time periods, rising period (T1), peak period (T2), and declining
period (T3), are determined by the volume of tweets with the same length of duration (3 days) in order to
make the analysis more concise and intuitive

Fan et al. Applied Network Science            (2020) 5:29 Page 10 of 20



Types of activities

The activities (post, share, and reply) allowed users to seek and share event informa-

tion. Post refers to original tweets; share refers to quoted tweets and retweets; and reply

refers to answering the original tweet author or another commenter. In sharing activity,

users transmit information from other users to their followers. In the replying activity,

users present their opinions about the information posted by other users. Both sharing

and replying activities can generate tweets with links to the original tweets; therefore,

all three activities can create communication instances in online social networks.

Hence, examining temporal changes in activity types is an important step in character-

izing activation modality and its relationship with network reticulation.

To this end, we calculated the proportion of three types of activities in each user’s

profile and aggregated the results in density distribution for each kind of proportion

(e.g., post/share proportion) (Fig. 6). Due to the varying numbers of users in each of

the three periods, to make an intuitive comparison, we normalized the number of users

by scaling the results in the rising period and declining period based on the density ra-

tio to the peak period. The density is in log scale, and the axis, ranging from 0 to 100,

is the proportion of the activities in the overall activities of a user. The overall distribu-

tion of these three types of activities is somewhat similar across the three periods. Most

users preferred to share (retweet) information rather than to post and reply. We found

a small group of users who post information only in three periods (bottom left corner

in each ternary plot in Fig. 6). By checking their in-degree retweets, these users might

be some information hubs (e.g., news reporters, emergency agency personnel, and pub-

lic officials) who can gather and access timely situational information during the dis-

ruption and disseminate the information on Twitter. Despite the similarities, the

differences in activities among three periods are more important for characterizing the

activation modality. Specifically, during the disruptive event, the number of users with

a high proportion of reply activities decreases significantly. Because the total number of

users is normalized to be constant, the decreases in the left side of the figure lead to

the increases in the density of the bottom right corner, indicating the number of users

with a high proportion of share activities increases. The results indicate that more users

tend to gather and share information from other online users (rather than replying to

posts) during the disruptive event. Although reply and mentions also contribute to net-

work growth on social media in normal situations, as reported in existing studies

(Abdullah et al. 2017; Kogan et al. 2015; Metaxas et al. 2015a), we find that the primary

activity contributing to network growth in crises situations is sharing. In crisis situa-

tions, people actively search for situational information and when they find useful infor-

mation, they tend to share it. Such a tendency can further increase the closeness of

users in online social networks and promote the performance of networks for informa-

tion diffusion.

Table 1 Basic information (number of users and number of tweets)

Time period # of active users # of tweets

Rising period (T1) 3074 385,175

Peak period (T2) 5220 728,327

Declining period (T3) 4847 457,249

The number of active users is calculated by all users who posted/shared/replied/quoted at least one tweet during a time
period. Types of tweets were original posts, retweets, replies, and quotes
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Reticulation modality
Activities by active users on Twitter confer a structure on a large volume of communi-

cation instances. Further, these communication instances form a directed network

through inter-user connections. The paths of information propagation and user con-

nections are the primary influencers of reticulation in the network. Thus, to

characterize the reticulation modality in the proposed framework, we examine the re-

ticulation mechanisms and structural properties of communication instances.

Reticulation mechanisms

Due to the increase in sharing information on Twitter during disruptive events, the

connections (i.e., communication relations or links) among users increased. Consistent

with existing studies, information diffusion drives the evolution of user activities, and

network structures also affect the spread of information among users (Bakshy et al.

2012; Weng et al. 2013). It is important, therefore, to study what specific changes occur

on the links due to users’ activities. Two main mechanisms affecting changes on the

links in networks include link creation and reinforcement (i.e., the link between two

users has been created via sharing and replying, and now just the frequency of sharing

and replying activity rises during the period.). In addition, posited in social science the-

ories, social influence (measured by degree centrality in networks), is an important fac-

tor driving the link creation (Aral and Dhillon 2018). Thus, it is important to examine

link creation and reinforcement for users with varying levels of degree centrality.

Hence, to characterize the reticulation modality, we investigated the distribution of

new link creation and existing link reinforcement across users with various in-degrees,

the number of times a user is retweeted.

The results shown in Fig. 7 indicate the mechanisms of network growth and the pref-

erential attachment of online users. First, low in-degree users (left side of the x-axis)

tend to create new links in the first 24 h from the occurrence of the event, while high

in-degree users (right side of the x-axis) balance link creation and reinforcement. Low

in-degree users are retweeted fewer times. Low in-degree users are mainly regular users

who do not attract much attention from others but gather and share information from

and to other users. In contrast, high in-degree users are heavily retweeted, and the

Fig. 6 The density distribution of active users with different proportions of three types of activities: post,
share, and reply in each period. The direction of the tick label (e.g., 20, 40, and 60) indicates that the cells
on the same direction of the tick label represent the same value of the type of activity. The proportion of
users for a certain type of activity remains the same along the direction of each tick label. For example, the
direction of the tick label on the side of “Reply” is horizontal, which means the cells horizontally correspond
to the tick labels. Specifically, the proportion of the replying activity is very high on the top of the triangle,
while the proportion of the replying activity is very low at the bottom of the triangle
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information they post becomes popular among other users. They tend to be the influ-

encers (or information hubs) who distribute important situational information to other

users. Twitter data has a major limitation in terms of identifying information transmis-

sion chains. There are two ways to characterize a user as a hub: based on the number

of followers or number of retweets. As documented in existing studies (Metaxas et al.

2015b; Stella et al. 2018), user retweeting behaviors are considered as a form of social

endorsement or trust for the information delivered in the tweets. The more retweets a

user gains, the more trust the user receives from other users. In normal situations,

examining the following behavior seems to be a better approach since people tend to

focus on identifying individuals of interest. In the context of disasters, however, people

tend to seek reliable information from their trusted users and disseminate them by

retweets (C. Zhang et al. 2019). Hence, users who received a great number of retweets

play the role of information hubs in delivering reliable information to other online

users (this phenomenon was examined as the emergence of influential users in a recent

study (Y. Yang et al. 2019). Hence, the current study solely focused on the number of

retweets for examining hubs based on retweets. Accordingly, we computed the number

of links for each user by parsing the metadata in retweets, and then identify the infor-

mation hubs that emerge during the evolving disaster contexts.

According to these results shown in Fig. 7, regular users are active in expanding their

connections in order to receive information faster, while information hubs spread infor-

mation to their existing connections, as well as new ones. Thus, regular users demon-

strate an information-seeking pattern, while information hubs influence network

reticulation by distributing situational information about the event and its impacts. The

main mechanism of network reticulation for information hubs is link reinforcement

during rising, peak, and declining periods.

Comparing link creation and reinforcement in different periods, we found that event

and user activities stimulated more link creation and reinforcement. Since the domin-

ant mechanism for network reticulation was link creation, new information hubs

emerged during the disruptive event, and these information hubs experienced signifi-

cant follower increase in a short period of time compared to regular conditions. As

Fig. 7 Reticulation mechanisms of network growth among users (red points represent new link creation,
and green points represent edge reinforcement). The x and y axes in these three figures are in logarithmic
scale with a base of 10. The x-axis represents the in-degrees of online users in the past 24 h, and the y-axis
represents the number of links created or strengthened in the next 24 h. Because the duration of each
period is 72 h, two data sets are plotted in each figure (with the same color): in-degrees from hour 0 to 24
versus the number of link creations from hour 24 to 48; and in-degrees from hour 24 to 48 versus the
number of link creations from hour 48 to 72. In addition, we measure two types of link creations: new links
created (red dots); and link reinforcement (green dots)
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shown in Fig. 7, the maximum logarithmic scale of the x-axis in the peak period and

the declining period increased to 3.5. This indicates that there were some users whose

in-degree retweets were around 103.5, which is ten times the maximum in-degree of

users in the rising period. As displayed in Table 1, however, the number of users and

tweets during the peak and declining period is less than twice the number of users and

tweets during the rising period. This result implies that, in seeking for event-related in-

formation, regular users find and connect with information hubs, and the information

posted and shared by information hubs is furthered shared by regular users. One sup-

porting evidence is the increase of followers for emerging influential users in disasters

(Y. Yang et al. 2019). These users are first identified by other users based on their

tweets/retweets and then people may decide to follow them as they find the informa-

tion relevant/useful. As such, a large number of new links are created during disasters/

crises instead of reinforcement of existing links (underlying network mechanism in nor-

mal situations). Hence, information hubs’ centrality and influence on network reticula-

tion increases. Figure 7 also demonstrates that creation of new links is a dominant

mechanism in network reticulation during disasters which also support the active

information-seeking behavior of the users in a crisis context, as opposed to strengthen-

ing new links which is the network mechanism in normal situations. This finding also

illustrates a human behavioral pattern that information needs in emergencies motivate

link creation as well as the emergence of information hubs on Twitter.

Structures of communication instances

The structure of communication instances is another component in the

characterization of network reticulation (Tan et al. 2016; Yang and Counts 2010). Based

on findings related to the dynamics of user activities and their contributions to link cre-

ation and reinforcement from previous sections, we examined structural patterns of

communication instances for the reservoir water release event. Existing studies defined

three structural patterns: converging, self-loop, and reciprocal, based on the silhouette

of information cascades on Weibo (Zang et al. 2017). Converge represents a user with

a structure which has at least two links targeting to the user (excluding the self-loop

links); self-loop denotes a user with a structure that has at least one link starting from

and ending at the user; and reciprocal represents a user in at least one structure that

has two reciprocal links between two users (excluding the self-loop and converging

links). Similarly, we examined these structural patterns and amend it to be applicable

to our Twitter data. We examine the presence of three structures in users during three

periods and show their relative proportion in Fig. 8.

Overall, users with a converging structure in their communication instances account

for the largest proportion among all users who had a communication instance for the

event. This finding is consistent with the prominent users’ activity, which was sharing.

Users with a self-loop structure would like to promote the spread of the information

they posted. This self-retweeted activity works in most cases (Fig. 8), with users with

the self-loop structure building subsequent communication instances with converging

structure. In the reciprocal structure, two users mutually retweet information. Thus,

users with the reciprocal structure in their communication instances would affect each

other’s activities. The relation between converging structure and reciprocal structure in
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Fig. 8 shows that almost all users with reciprocal structure also have the converging

structure. This implies that the fusion of converging structure and reciprocal structure

is an embodiment of communication instances influencing network reticulation in on-

line social networks.

Comparing Venn diagrams across the rising, peak, and declining periods, the number

of users in each structure category increases during the disruptive event. One reason

for this result is that the total number of users in online social networks increases when

the event occurs. The peak and declining periods each have more than twice the num-

ber of users with structures than in the rising period. The result implies that communi-

cation instances by users create links (new links, as shown in the previous section) to

other users and enable a burst of structures in online social networks. Finally, the re-

sults show that the proportion of the users with reciprocal structures to the number of

users with converging structures remained constant (21.2%, 24.5%, and 22.9%) over dif-

ferent periods, although the size of the network increased. This result implies the exist-

ence of a scale-invariance property for structures that govern the growth of online

social networks reticulation due to user activities triggered by disaster-induced events.

Network performance
The outcome of activities and network reticulation determines network performance

with respect to a particular goal. In the case of reservoir water release during Hurricane

Harvey, the goal of the online social network was information seeking and sharing.

Hence, we examine the efficiency of information propagation in the network based on

the average latent distance in the network over time. As explained earlier, the attributed

network embedding approach integrates semantic similarity and communication rela-

tions among users into a latent space. Thus, the efficiency of information propagation

in the online social networks can be quantified by the average latent distances of users

in the latent space.

After obtaining the low-dimensionality matrix H, we can investigate the proximity of

the active users in each day by directly calculating their Euclidean distances as follows:

dij ¼ hi−hj

�� ��
2 ð4Þ

where dij is the distance between users i and user j. The corresponding pairwise dis-

tance matrix D is a n × n matrix. Then, to measure the extent of agglomeration among

the active users, we define the average latent distance of a user to other users as:

Fig. 8 The overlap and independence of three important structures of communication instances
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Di ¼
Pn

j¼1dij

n
ð5Þ

where n is the number of active users in each day, Di denotes the numerical average la-

tent distance of the user i to other active users.

Based on this approach, we obtained the average latent distance (Di) of each user and

plotted the distribution of the Di for different days. As shown in Fig. 9, before the event

happened, the average latent distance of users in terms of their conversations and activ-

ities on social media was extremely high, compared to the average latent distances of

users during the disruption. As the event occurred and impacted communities, how-

ever, the mean value of average latent distance and its variance reduced significantly.

The average latent distance values remained low until the event ended (water release

from the reservoirs ended and the resulting floodwater receded). The latent distance

embeds both content similarity and sharing behaviors among the users who engaged in

communicating this disruptive event. Hence, the latent distance in this study can repre-

sent the extent of mutual endorsement between each other. With the decrease of the

latent distance among the users, the mutual endorsement is enhanced. As such, the cri-

sis information would spread to a broader audience in an efficient way.

Concluding remarks
The proposed online network reticulation framework enables understanding the rela-

tionships among disaster-induced disruptive events, user activities, network reticulation,

and network performance in dynamic online social networks in disasters. The applica-

tion of the proposed framework was demonstrated in the context of disruption in flood

control systems in Houston during Hurricane Harvey in 2017 using an analysis of Twit-

ter data.

Fig. 9 The latent distances among active users each day. This box plot shows four quartiles of the
distribution of the latent distances. The average latent distance is the middle line in each box and the
upper and lower boundaries of the box show the third and first quartile of the latent distance in each day.
The unit of the latent distance is 1, so the y-axis is the absolute value of the latent distances among users
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One of the key findings is that the main underlying mechanism of network growth

during the disruptive event was the creation of new links by regular users. This

phenomenon signifies that, to gather situational information, users start to connect the

users they never connected before and significantly expand their communication rela-

tionships in a short period of time. However, information hubs (a.k.a., influential users),

effected reticulation in the online social network by strengthening existing links, mean-

ing a greater number of their posts being retweeted by the users who frequent their ac-

counts. Second, the analysis indicates the existence of homophily in online social

networks where regular users connect to other regular users who seek similar situ-

ational information in disasters (Woodruff 2018). As suggested in existing studies,

homophily is an important phenomenon to strengthen the closeness of online users

and enable users to extend their social network by strategically targeting followees (Sun

and Rui 2017). Capitalizing on this, users in disaster-hit areas can build more cohesive

networks on social media through interventions such as recommending users with the

accounts living in a similar situation or communicating on similar topics.

Another key finding is that the main structure for communication instances due to

user activities was converging structure, indicating communication instances driven by

information-seeking behaviors (retweeting or quoting) in the wake of a disruptive event.

In other words, the proportion of reply/posting activities dissipates overtime after the

triggering event. That is true because the posting activity is triggered by the generation

of new situational information as disruptive events unfold in disasters. A reduction in

the number and consequences of disruptive events leads to the reduction of informa-

tion generation on social media. The sharing and quoting activities account for a larger

proportion of the user activities than posting behaviors on social media in the after-

math of the disruptions.

Finally, with the growth of the network, the proportion of converging structure to

self-loop and reciprocal structures did not change significantly across the entire period

of the disruption. This finding indicates the existence of a scale-invariance property for

structures governing the growth of the reticulation of online social networks due to

user activities triggered by disaster-induced events. The scale-invariance property re-

veals the fundamental relationship between the size of the network and the proportions

of the basic network structures. This property can inform analyses related to the recon-

struction of the online social networks for simulating user activities and testing inter-

vention strategies to improve information propagation.

Based on the findings, we can further interpret the interactions between triggering

events and dynamic human behaviors in an integrative manner using the proposed on-

line network reticulation framework. As expected, a built environment disruption event

triggers an increased frequency of human activities on social media, including posting,

replying and sharing activities. From the perspective of structural network properties, a

disruptive event induces external perturbation that influences the structural properties

of online social networks such as node centralities and betweenness. For example, in

the case study, creating new links among regular users and enhancing existing links

with information hubs through quoting and sharing behaviors improved the cohesive-

ness of the online social network. Furthermore, the increased closeness among online

users enhances the efficiency of information propagation through user connections in

social networks. In contrast, if new disruptive events unfold successively and the
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posting behavior accounts for the largest proportion of user activities, the distances

among users increase and exacerbate information propagation. This is because posting

new situational information will increase the semantic variances in users’ profiles on

social media.

The primary contribution of the study presented in this paper is the integrative

framework to characterize the dynamics of collective sense-making in online social net-

works in response to crises. The network reticulation modalities enable characterizing

the relationships between human activities and physical disruptions in disasters. Based

on the results from the study of Hurricane Harvey, the capability of the proposed

framework was tested. Hence, the outcomes of this study can be adopted in other disas-

ter contexts for characterizing the network reticulation modalities. A critical question

to answer in future studies is to what extent the patterns of user activities and reticula-

tion mechanisms vary from one disaster context to another. Through adopting the net-

work reticulation framework, future studies examine other disaster contexts and

evaluate the universality of patterns regarding user activities and reticulation mecha-

nisms identified in Hurricane Harvey. Further adoption of the framework will enable

examination of the influence of activity types, reticulation mechanisms, and communi-

cation instance structures on the performance of online social networks in the spread

of information in disasters. This knowledge will also inform the design of mechanisms

to improve user activities, and thus achieve better network performance. Apart from

disaster studies, adoption of the online network reticulation framework can enrich

studies of social media dynamics in other contexts such as politics and marketing to

better understand the interplay among user activities, the influence of social, political

and technological events, and the performance of online social networks. This under-

standing will inform the planning of marketing and political campaigning strategies.
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