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model. The first model is based on the linear threshold propagation model. In addition,
by considering multi-step information propagation in one time period, this paper
proposes a learning model for multi-step diffusion influence between pairs of users
based on the idea of random walk. Mixed integer programs (MIP) have been used to
learn these models by minimizing the prediction errors, where decision variables are
estimations of the diffusion influence between pairs of users. For large-scale networks,
this paper develops approximate methods for those learning models by using artificial
neural networks to learn the pairwise influence. Extensive computational experiments
using both synthetic data and real data have been conducted to demonstrate the
effectiveness of the proposed models and methods.
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Introduction

The rapid development of the Internet and its mobile computing technologies in the
past several decades contributes to form online virtual communities in social media net-
works. People share news, their ideas, interests and information in social media networks.
Understanding how the information propagates is essential for successful applications of
viral marketing (Domingos 2005) and cyber security (Budak et al. 2011) in social media
networks. To this end, researchers have defined different problems such as the influ-
ence maximization problem (Kempe et al. 2003; Kimura et al. 2007) and contamination
minimization problem (Kimura et al. 2009). Influence maximization problem involves
finding a limited number of nodes which have the largest influence. Similarly, contamina-
tion minimization problem involves blocking a limited number of nodes which suppress
the propagation of the rumors. However, all of the parameters in the diffusion models
are assumed to be known. In reality, these parameters are not readily available from the
massive historical datasets of social media networks. To fill this gap, this paper proposes
several models to learn these influence parameters from historical cascades.
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In the literature, researchers have tried to learn the information diffusion processes
through different diffusion models. There are two most prevalent diffusion models - Inde-
pendent Cascade Model (IC) (Kempe et al. 2003) and General Threshold Model (GT)
(Granovetter 1978). In the Independent Cascade Model, each active parent node i has
a single chance to activate the child node j with a diffusion probability p;;. Satio et al.
(2008) studied the problem of learning influence probabilities based on the IC propa-
gation model. They estimated the diffusion probabilities by expectation-maximization
algorithm where the likelihood was maximized by iteratively updating the parameters.
Besides, there are some variants of Independent Cascade model based research, consid-
ering continuous time delays of infection as well (Saito et al. 2009; Rodriguez et al. 2011).
In contrast to IC models, General Threshold Model assumes that an inactive user j in
social media networks is activated by all of its active neighbors when the total influence is
larger than the target user’s threshold. Linear Threshold Model is a special case of General
Threshold Model and the total influence is the sum of the influence weights of activated
neighbors. Goyal et al. (2010) adopted the General Threshold diffusion Model and pro-
posed three probabilistic models, which were Bernoulli distribution, Jaccard Index and
Partical Credits to predict the diffusion influence weights. (Vaswani S, Duttachoudhury N:
Learning influence diffusion probabilities under the linear threshold model, unpublished)
learned the influence diffusion weights under the Linear Threshold Model. They used
three different methods, i.e, gradient descent, interior point method and EM algorithm to
maximize the likelihood estimate.

In this paper, we propose two different mixed-integer programming models to esti-
mate the diffusion influence weights between pairs of users underlying the threshold
model. We learn the diffusion influence weights through mining past diffusion cas-
cades of posts. Given the historical information cascading data containing the initial
states x¥ and final states xlT of all the nodes which are users in social media networks,
we are trying to learn the diffusion influence weights w;; between pairs of users in
the Threshold Models. Two different learning models are built under the assumption.
The first model is based on the Linear Threshold Model, where a user will be acti-
vated when the sum of its neighbors’ influence weight is larger than the threshold of
the user. The second model considers multi-step influence from the multi-hop neigh-
borhood of the user. In the real dataset, the status of nodes at each time step could
be collected. However, the time required for each propagation varies. When we know
the status of users at two different time steps, the propagation steps could be more
than one. Therefore, it's necessary to consider multi-step influence to better fit the
real data.

We summarize the contributions of this paper as follows,

e e propose two mixed-integer programming models to learn diffusion influence
between pairs of users. One is based on the popular propagation model, i.e., Linear
Threshold Model, and another one is based on the idea of random walk considering
multi-step influence.

e For large-scale network, we come up with approximate methods for the two learning
models using artificial neural networks with no hidden layer.

e Experiments for assessing the validity of these learning models and approximate
neural network methods are performed on both synthetic data and real data.
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The remainder of the article is organized as follows. “Learning Models of Information
Diffusion Influence” section introduces two different learning models for information
diffusion prediction. “Approximate Approaches using Artificial Neural Networks” section
provides approximate methods for learning models using artificial neural networks.
“Experimental Evaluation” section proceeds with experimental evaluation on both syn-
thetic data and real data. “Conclusions” section concludes the study.

Learning Models of Information Diffusion Influence

We model a social media network as a directed network G = (V,E), where V =
{v1,..., vy} is the set of users of the network and E C V' x V is the set of edges representing
the friend relationships between users. We observe multiple cascades spreading over it.
For any information cascade propagating over the social media network, we observe the
status xf of each user i (i € V) attime t = 0 and ¢t = T. The status of users is either active
in reposting messages or inactive in reposting. Through mining the historical cascades,
we could learn the diffusion influence weights w;; representing the influence exerted by
user i to user j in the social media network. Our model aims at learning the diffusion influ-
ence weights w;; from user i to userj (i,j € V) based on transitions of activation status of
all users, i.e., x? and xlT for all i € V. To learn the diffusion influence weights, we can use
a minimization model with the weights as decision variables and the objective function
as the mean squared error between the predicted final status and the actual final status of
users. Here we formulate two different mixed-integer programming learning models to
make the prediction where the activation status is modeled by a binary variable.

Linear Threshold Learning Model

The first formulation of Linear Threshold Learning Model (LT) we come up with is
underlying the Linear Threshold Propagation Model. In the propagation model of Lin-
ear Threshold Model (Chen et al. 2013; Kempe et al. 2003), initially, each node j € V
independently selects a threshold 6; uniformly at random in the range of [0, 1]. If the
total influence weights of the arcs from its active in-neighbors N f;{‘ () is at least 6, i.e.,
Die NiG) @ij = 0j, then user j is activated. The diffusion influence weights are normalized
in the Linear Threshold Model.

We formulate a mixed integer programming model shown below to learn the infor-
mation diffusion influence between each pair of user i and user j based on the Linear
Threshold Model. The objective is to minimize the mean squared error between actual
final status of users and predicted final status of users. Here, the mean squared error is
a quadratic function. It’s hard for solver to handle quadratic function. We linearize the
objective function by replacing mean squared error with mean absolute value of the error.
The mean absolute value of the error equals to the mean squared error because the status
of users is a binary variable. The Constraints (1a) and (1b) represent the mean absolute
error. The Constraints (1c) and (1d) represent when the total influence from its active
neighbors is larger than the threshold of target user, the target user will be activated. Oth-
erwiese, the target user will remain inactive. The Constraints (1le) represent the sum of
the diffusion influence from neighbors to user j is at most 1. Constraints (1f) show when
two users are connected, the value of diffusion influence is between 0 and 1. However,
when they are not connected, the diffusion influence weights w; ; will be 0, which is shown
in the Constraints (1g).



Qiang et al. Applied Network Science (2019) 4:111 Page 4 of 16

1 K N
in — k
min g 229 (OBJ)
k=1 j=1
s.t. z/lf > x].’T aAc]].(’T VkeK,je] (1a)
7> ]kT - xjk’T VkeK,je] (1b)
N
3 0 i —g =g (1 - xf‘T> VikjeT (1)
i=1,i#j
N
Y e - < AT VkjeT (1d)
i=1,i#j
N
w1 Vie (le)
i=1
e<wy<1 V(i,j) €Ei#]j (19)
wij =0 (i,j) € E (1g)
T2 e (0,1 VijelkeK (1h)

Where index k represents different observation, index i,/ represent different users, w;;
represents the diffusion weight from user i to user j, 6; represents the threshold of user j,

k,0

x;" and &f’T are the initial status of user i and final status of user j of observation k which

are known already and x/]f’T represents the predicted final status of user j of observation
k. T is the set of (j, k), where the initial status of user j of observation k denoted as &f’o

should be 0. E represents the arcs of the social network.

Random Walk Learning Model

The second formulation is based on the idea of random walk. In comparison with the
first formulation (LT) which considers the diffusion influence from one-step neighbor-
hood only, Random Walk Learning Model (RW) introduces the diffusion influence from
multi-step neighborhood. In reality, when we know the initial and final status of each
user, we can't tell how many steps of information propagation occur. The target node j
could be activated by either one step neighborhood or even multiple step neighborhood.
Therefore, we come up with a learning model considering multi-step diffusion influence
between pairs of users based on the idea of random walk. Here we consider the diffu-
sion influence from two-hop neighborhood. The total diffusion influence matrix Y* for
observation k could be represented as:

Yk = (A1 o Wi + A% 0 W) X0 2)

Where o represents the Hadamard product, A is the adjacency matrix of the social net-
work, the (i, j) entry of A, denotes a; 1, is the number of paths of length 1 starting at i and
ending at j. The (i, ) entry of A2, denotes a;j2, is the number of paths of length 2 starting
at i and ending at j. W] is the average diffusion influence weight matrix for one step dif-
fusion, the entry w;;,1 denotes the diffusion influence weight from user i to user j for each
one step path. W, is the average diffusion weight matrix for two step diffusion, the entry
w;j» denotes the average diffusion influence weight from user i to user j for each two
step path. X%0 is a vector containing all the users’ initial status from observation k, the i
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entry of X*9, denotes &f'o, is the initial status of user i from observation k. The learning
formulation based on Random Walk is shown below:
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The Constraints (3c) represent when the total influence from two step neighborhood is
larger than the threshold of target user, the target user will be activated. Constraints (3d)
represent when the total influence from two step neighborhood is smaller than the thresh-
old of user, the user will not be activated. Constraints (3e) show that the average influence
weights for different step of path are in the range of 0 and 1.

Approximate Approaches using Artificial Neural Networks

In the previous section, we formulate two different mixed integer programming learning
models to learn the information diffusion influence weights. We could use solver Gurobi
to solve the models and get a global optimal estimation of diffusion weights between pairs
of users with the assumption. However, sometimes it doesn’t seem to allow for an effi-
cient solution for large network. Here we come up with approximate approaches of Linear
Threshold Learning Model and Random Walk Learning Model using artificial neural
networks.

We are using the simplest kind of neural network called a single-layer perceptron net-
work consisting of a single layer of output nodes (Bishop 2006). Then the inputs are fed
directly to the outputs via a series of weights. To train the neural network and get the
estimation of weights, the loss function we use is the mean squared error for both of the
models. The optimization algorithm we use for training the neural network is gradient
descent. Gradient descent starts with the initial values of parameters and iteratively moves
toward the set of values minimizing the loss function through taking steps proportional
to the negative of the gradient (Avriel 2003). To compute the gradients, backpropaga-
tion algorithm is introduced (Goodfellow et al. 2016). However, the gradient descent with
backpropagation is not guaranteed to find the global optimal of the loss function.
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Artificial Neural Network for Linear Threshold Learning Model
We build the Linear Threshold Neural Network (LTNN) shown in Fig. 1 to approximate
the Linear Threshold Learning Model. The input x(l), xg, ..., %9 are the status of 7 users in
social media networks at time ¢ = 0. The output layer outputs x{,sz ,...,xL, which are
the status of 7 users in social media networks at time ¢t = 7.

There are several constraints to consider for the Linear Threshold Learning Model.
Firstly, if the user is active in the beginning (5610 = 1), then they will stay active (aAcl-T =1).
To satisfy this constraint, we set the (i, /) entry of the neural network weights matrix W’,
denoted as w;

bj
the total influence it gets at time ¢ = T will definitely be larger than its threshold and

, as 1 when i equals j. In this case, when user is active at the beginning,

the user will stay active. Besides, the influence weights should be suppressed to 0 when
the pair of users has no connection. Here, we use the Hadamard product of adjacency
matrix A of the network and neural network weights matrix W to suppress the influence
weights matrix W. Thirdly, in the Linear Threshold Model, the diffusion influence weights
should be normalized as well. All of the constraints above could be satisfied by designing
the structure of neural network. However, the Linear Threshold Model has the activation
function of step function. The gradients of step function are vanishing and the weights
will not update at all (Friesen and Domingos 2017). The neural network is using gradient
to update the estimation. Therefore, step function is not applicable to neural network.
Instead, we approximate the step function using sigmoid function. Then the output X7 =

{x7,x3,...,x1} of neural network could be represented as:

XT = Sigmoid (XO ((A +Do W) - 9)

Where 0 is the threshold vector of users and / is the identity matrix. As mentioned before,
the influence weights are normalized as well, thus the diffusion influence weight w; j(w;; €
W) between user i and user j could be represented as:

!
o Gy
wij = p 7
i1 Aijw;;
20 0
e O o
e O o
T T T
x, Ty x]
Fig. 1 Neural Network for Linear Threshold Model
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Where a;; is the (i,j) entry of adjacency matrix A and a);j is the (i,/) entry of artificial

neural network weights matrix W',

Artificial Neural Network for Random Walk Learning Model

The structure of neural network called Random Walk Neural Network (RWNN) built for
Random Walk Learning Model is shown in Fig. 2. Here we consider the diffusion influence
could be from 2-step neighborhood. Therefore, the input is the two times combination

of the initial status of # nodes, denoted as x?, e ,xg,x?, ...,%%. The output layer outputs
xl,xL,...,xI, which are the status of users in the social media at time ¢ = 7.

To satisfy the constraints in Random Walk Learning Model, we make the following
modifications to the artificial neural network. Considering the diffusion influence from
two step neighborhood, the total influence shown in Eq. 2 in the Random Walk Model
could be transferred as:

(A' o Wy + A% 0 Wy) X° = [XO XO] ([j;} ) [%D

Besides, the user will remain active when they are active in the beginning. Thus we add the
identity matrix / to adjacency matrix A to satisfy the constraint. Then the output vector
XT =«xT,xT,.. ., xI of neural network could be represented as:

xT = Sigmoid ([XO x° | ([A:;[] 0 [V‘ED —9)

Where 6 is the threshold of users, A is the adjacency matrix, A2 is the square of adjacency
matrix. W{ and Wé are weights matrix of neural network. Thus the diffusion influence
weights matrix W could be represented as:

w, -1
W = ,
WZ
0 0 0 0
Ty ) Zs3 ) Tn1 Ty

[ ] [ J [}
A A

Fig. 2 Neural Network for Random Walk Learning Model
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Experimental Evaluation

In this section we conduct the experimental evaluation of our proposed models which are
Linear Threshold Model, Random Walk Model, Linear Threshold Neural Network Model
and Random Walk Neural Network Model to learn the information diffusion weights. We
analyze the performance of proposed models on both synthetic data and real data.

Experiments on Synthetic Data
Firstly, we generate synthetic data to evaluate our models. The generation of synthetic
data includes both network generation and cascade generation.

Network generation: In order to understand how the underlying network topol-
ogy affects the performance of our learning models, we generate different well-known
generative networks.

¢ Erdos-Renyi Graph: In the graph theory, Erdos-Renyi model generates random
graph. Here we use the G(#, p) model in which a graph is constructed by connecting
nodes randomly by edges with probability p. For experimental purpose, we generate
the network shown in Fig. 3 containing 50 nodes and generate edges between each
pair of nodes in the network with probability of 0.3.

e Barabasi-Albert Graph: Social media networks are thought to be scale-free.
Barabasi-Albert graph generates random scale-free networks using a preferential
attachment mechanism. Here we generate a graph of 50 nodes shown in Fig. 4 which
is grown by attaching new nodes each with 15 edges that are preferentially attached
to existing nodes with high degree.

¢ Watts-Strogatz Graph: Watts-Strogatz model generates random graph with
small-world properties, which are short average path lengths and high clustering.
Here we generate a graph of 50 nodes shown in Fig. 5, and each of them connects to
15 nearest neighbors. In addition, the probability of rewiring each edge is 0.5.
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Fig. 4 Barabasi-Albert
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Cascade generation: We learn the diffusion influence weights from mining historical

diffusion cascades. Here, we generate the cascades for the synthetic data. We randomly

select a set of seed nodes accounting for 35% of total nodes . Then the seed nodes could

propagate the information to other nodes. Here we assume the active nodes will remain

active and the inactive nodes will have the chances to be activated only when they have

connections to active nodes within 2 step neighborhood. The activation probability p for

target node is defined as:

Fig. 5 Watts-Strogat
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= —i—ﬁ*AN (4)
p=a+ty

Where N represents the total number of nodes and AN represents the active direct neigh-
bors. We set a as 0.5 and b as 0.5 for the following experiments. We experiment with 200
cascades to compare the performance of different learning models.

Implementation Details and Evaluation: In order to learn the diffusion influence
weights under different proposed learning models, we set the threshold of 0.5 for each
user in the social media network. In order to provide an unbiased evaluation of a final
model on the training dataset, we split the dataset into training set and testing set with
80% of training set and 20% of testing set. To validate the performance of the mixed
integer programming learning models and the approximate neural network learning
models, we evaluate the performance of accuracy. Accuracy is the ratio of correct pre-
dictions. Regarding to solve the problem using mixed-integer programming, we propose
the decomposition method which is tractable to compute and to optimize for the origi-
nal learning models. For each node, we apply the optimization model to get the diffusion
weights separately because the diffusion influence from neighbors to each node is inde-
pendent from each other. For the neural network learning models, we train in 10000 steps,
with batch size of 10 and learning rate of 0.001.

Experimental Results: For different network types, we generate the same number of
cascades using the same cascade generation strategy to compare the performance of
different models. Table 1 shows the performance of synthetic data of 50 nodes.

The performance of different learning models are consistent in different network
topologies. For the same number of observations(cascades), approximate neural network
learning methods even outperform the mixed integer programming learning methods.
The mixed integer programming methods of Linear Threshold Model and Random Walk
Model have severe overfitting problems. In addition, the computational time for mixed
integer programming models is much longer than neural network based models.

Therefore, for larger scale networks we conduct the experimental evaluation just using
approximate neural network learning models. The performance of different sizes of net-
works which are 100 nodes and 1000 nodes are shown in Table 2. The testing accuracy is

consistent for different network types.

Table 1 Performance of synthetic data

Network type Model Nodes Edges Cascades Train accuracy Test accuracy
Erdos-Renyi LT 50 335 200 76.4% 65.6%
RW 50 335 200 98.9% 68.8%
LTNN 50 335 200 72.0% 69.6%
RWNN 50 335 200 76.6% 70.7%
Barabasi-Albert LT 50 525 200 77.6% 63.1%
RW 50 525 200 99.5% 68.3%
LTNN 50 525 200 75.8% 71.8%
RWNN 50 525 200 79.1% 73.1%
Watts-Strogatz LT 50 350 200 76.6% 62.9%
RW 50 350 200 98.6% 67.5%
LTNN 50 350 200 72.6% 70.8%

RWNN 50 350 200 76.6% 68.9%
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Table 2 Performance of large-scale synthetic data

Network type Model Nodes Edges Cascades Training accuracy Testing accuracy
Erdos-Renyi LTNN 100 270 200 70.5% 66.7%
RWNN 100 270 200 73.9% 67.5%
LTNN 1000 24980 200 74.6% 67.6%
RWNN 1000 24980 200 68.5% 68.0%
Barabasi-Albert LTNN 100 291 200 69.6% 67.7%
RWNN 100 291 200 75.1% 67.0%
LTNN 1000 29100 200 74.5% 68.2%
RWNN 1000 29100 200 68.7% 68.4%
Watts-Strogatz LTNN 100 300 200 69.9% 66.9%
RWNN 100 300 200 74.1% 67.0%
LTNN 1000 3000 200 69.8% 67.5%
RWNN 1000 3000 200 73.8% 67.9%

The performance of different models could be affected by the way of generating cas-
cades. We test the performance of different generation methods by changing a and b
parameters in Eq. 4 using the same network topology. The performance of different
network topologies are shown in Figs. 6, 7 and 8. When a is larger which means get-
ting more influence from two step neighborhood, Random Walk Neural Network Model
outperforms Linear Threshold Neural Network Model.

Experiments on Real Data

We collect the real data from Lerman Digg 2009 dataset (Lerman and Ghosh 2010). The
Digg 2009 dataset contains data about stories promoted to Digg’s front page over a period
of a month in 2009. The dataset contains the time stamp of all of the users’ vote for the
stories. Both of the network topology and cascade information can be obtained from the
dataset.

Dataset Preprocessing: Considering the computation limitation of mixed integer pro-
gramming models, we extract a small size subgraph containing 1203 nodes shown in
Fig. 9 to compare the performance between mixed integer programming learning mod-
els and approximate neural network learning models. Our extracted subgraph contains
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Test Accuracy
o
~
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Fig. 6 Erdos-Renyi
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Fig. 7 Barabasi-Albert

1203 users shown in Fig. 9. In Fig. 10, we could see the degree distribution of all the users
follows power law distribution. The extracted network keeps the social network prop-
erty of scale-free. In addition, to prove the effectiveness of the proposed models in large
scale social network, we extract a network with 42259 nodes and conduct the experiments
using neural network based models. In order to get the cascade information, we choose
the most voted 600 stories. Then we collect all the users voting status at time Ty and T}
for each story.

Implementation Details and Evaluation: To investigate the performance on real data,
we set the threshold of 0.5 for each user in each of the proposed learning models.

Experimental Results of Real Data: We proceed with experiments on preprocessed
real data of 1203 nodes to see the performance of different learning models. We collect
the historical cascades of 650 stories and get 406 efficient cascades. We treat 300 obser-
vations as training samples and the rest of observations as testing samples. For the neural
network models, we train in 10000 steps with batch size of 10 and learning rate of 0.001.
The performance of the dataset is shown in Table 3. First, we evaluate the performance
of different learning models based on test accuracy. Random walk learning model has the
best performance in this preprocessed real dataset. It doesn’t have any overfitting issue

0.85| mmm LTNN
m=m RWNN

o
o)
o

Test Accuracy
o
~
(6]

0.70

a=0.5,b=0.5 a=0.8,b=0.2
Cascade

Fig. 8 Watts-Strogat
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Fig. 9 Network Topology

here which is likely due to the fact of sparseness of the network. In general, the ran-
dom walk based learning models outperform the linear threshold based learning models
in this preprocessed dataset. However, when it comes to the speed of computation, the
approximate methods using neural network, i.e., LTNN and RWNN are much faster.
Then, we examine the performance of LTNN model and RWNN model using cascade
information from different time intervals. We collect the data from different lengths of
time intervals. One has the time interval of 4T and another has the time interval of 97.
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Table 3 Performance of real data

Model Nodes Edges Cascades Training accuracy Testing accuracy Time(s)
LT 1203 29166 406 82.8% 86.3% 1773
RW 1203 29166 406 88.3% 92.3% 32406
LTNN 1203 29166 406 85.5% 84.1% 137
RWNN 1203 29166 406 86.4% 85.6% 330

Figure 11 shows the performance comparison of two approximate models during differ-
ent time intervals. For shorter time period, the LTNN model has significant improvement
over RWNN model. In converse, RWNN model outperforms LTNN model in longer time
period. This happens because in short time period, only one step propagation could hap-
pen. In longer time period, two-steps or multiple steps propagation could occur where
random walk based model would better describe the information diffusion process.

For the large scale network containing 42259 users, we collect the historical cascades
of 600 stories and get 566 efficient casacades for experimental purpose. We treat 440
cascades as training samples and the rest as testing samples. We train in 500 steps with
batch size of 10 and learning rate of 0.001. The cascade has the time interval of 97Ty.
The experimental result of the large dataset is shown in Table 4. Random Walk Neural
Network Model requires 380GB memory and it takes about 10 min for each step. It’s time
consuming and it gets stuck during the optimization process because of too many nodes.
In comparison, Linear Threshold Neural Network Model converges in 500 steps and has
very good performance.

Conclusions

We have investigated the problem of learning diffusion influence weights between pairs
of users in social media networks from mining historical cascades. We formulate two dif-
ferent mixed-integer programming models to learn the diffusion influence weights which
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Fig. 11 Performance of Different Time Intervals
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Table 4 Performance of large-scale real data

Model Nodes Edges Cascades Training accuracy Testing accuracy Time(s)
LTNN 42259 1559768 566 91.2% 90.4% 22782

could be used to predict the status of users in the future. The first mixed integer program-
ming model is based on the popular propagation model, i.e., Linear Threshold Model.
The second mixed integer programming model is based on the idea of random walk
considering the influence from multi-step neighborhood. For larger network, we intro-
duce approximate approaches for both models using neural network. We bring marriage
between optimization-based diffusion models and deep neural network through approx-
imating optimization models using deep neural networks. Therefore, the parameters in
the neural network are explainable, which are diffusion weights related parameters in our
models. The approximate approaches using artificial neural networks have relatively good
performance and fast computational speed.

There are several interesting directions for future works. Here we just learn the informa-
tion diffusion influence through the historical cascades. It would be more interesting to
consider other features such as the similarity between posters and reposters, the user pro-
files or even the topology information of the social media networks to make predictions
with higher accuracy.
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