
Applied Network ScienceGutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82
https://doi.org/10.1007/s41109-019-0197-1

RESEARCH Open Access

Unsupervised network embeddings
with node identity awareness
Leonardo Gutiérrez-Gómez1* and Jean-Charles Delvenne1,2

*Correspondence:
leonardo.gutierrez@uclouvain.be
1Institute for Information and
Communication Technologies,
Electronics and Applied
Mathematics (ICTEAM), Université
catholique de Louvain, Avenue
Georges Lemaitre, 4, 1348
Louvain-la-Neuve, Belgium
Full list of author information is
available at the end of the article

Abstract
A main challenge in mining network-based data is finding effective ways to represent
or encode graph structures so that it can be efficiently exploited by machine learning
algorithms. Several methods have focused in network representation at node/edge or
substructure level. However, many real life challenges related with time-varying,
multilayer, chemical compounds and brain networks involve analysis of a family of
graphs instead of single one opening additional challenges in graph comparison and
representation. Traditional approaches for learning representations relies on
hand-crafted specialized features to extract meaningful information about the graphs,
e.g. statistical properties, structural motifs, etc. as well as popular graph distances to
quantify dissimilarity between networks.
In this work we provide an unsupervised approach to learn graph embeddings for a
collection of graphs defined on the same set of nodes so that it can be used in
numerous graph mining tasks. By using an unsupervised neural network approach on
input graphs, we aim to capture the underlying distribution of the data in order to
discriminate between different class of networks. Our method is assessed empirically
on synthetic and real life datasets and evaluated in three different tasks: graph
clustering, visualization and classification. Results reveal that our method outperforms
well known graph distances and graph-kernels in clustering and classification tasks,
being highly efficient in runtime.

Keywords: Network embeddings, Graph visualization, Graph classification,
Unsupervised learning

Introduction
Numerous complex systems in social, medical, biological and engineering sciences can
be studied under the framework of networks. Network models are often analyzed at
the node/edge or substructure level, studying the interaction among entities, iden-
tifying groups of nodes behaving similarly or finding global and local connectivity
patterns among a given network. Furthermore, many real life challenges might involve
collections of networks representing instances of the system under study, e.g func-
tional brain networks (connectomes) (Hagmann et al. 2008), chemical compound graphs
(Srinivasan et al. 1997), multilayer networks (Cardillo et al. 2013), and so on.
Other applications involve dynamic interactions between components, introducing an
additional complexity in the time evolution of the system. For example, in a social
mobile phone network, people are considered as nodes and the phone calls as edges.
The dynamics of calls between users will systematically add and remove edges between

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0197-1&domain=pdf
http://orcid.org/0000-0001-6405-3775
mailto: leonardo.gutierrez@uclouvain.be
http://creativecommons.org/licenses/by/4.0/

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 2 of 21

them, describing a sequence of static graphs characterizing a dynamic evolution of the
system.
With the increasing availability of manually labeled network data, many of these prob-

lems have recently raised the attention of the machine learning community. Machine
learning applications seek tomake predictions or discovering patterns in graph structured
data. For example, in chemoinformatics (Debnath et al. 1991), one might need to predict
the toxicity or anti-cancer activity of proteins and molecules represented as graphs. In
time-varying social networks, one might be interested in detecting unusual events (Peel
and Clauset 2015), e.g points in time in which the network connectivity differs abruptly
with respect to the evolution of the underlying process. Prediction of subjects having
a neural disorder such as Alzheimer or Schizophrenia, based on their connectomes is
crucial in neuroscience (Griffa et al. 2015).
The cornerstone of this approach is the feature representation of the input data, e.g

finding effective ways to encode graph structures in such a way that it can be used in tra-
ditional machine learning models. For example, in order to predict whether a molecule
is toxic or not, one might build a feature vector representation of a molecule incorpo-
rating information about its atoms, as well as global and local properties of the graph
structure itself (Barnett et al. 2016; Gutiérrez-Gómez and Delvenne 2019). By doing so we
can train a traditional machine learning model such as support vector machines, random
forest, neural network, etc. so it will discriminate unseen toxic and non-toxic chemical
compounds.
There exist many manners to extract features and comparing networks. For instance,

graph distances (Donnat and Holmes 2018; Livi and Rizzi 2013) such as the Jac-
card and Hamming distances compute differences between graphs by counting the
number of edit operations to transform a graph into another one, focusing mainly
in their local connectivity patterns. Other distances are spectral in nature based
on the comparison between the eigenvalues of the reference matrices represent-
ing the networks. Another popular class of distance measures are the graph ker-
nels (Shervashidze et al. 2011; Yanardag and Vishwanathan 2015). A kernel can
often be seen as the scalar product between implicit high-dimensional feature rep-
resentations of a network (Schölkopf and Smola 2002). The so-called kernel trick
allows to compare networks without ever computing explicitly the coordinates of
data points in the high-dimensional feature space, sometimes with a substantial
gain in computational time over classical graph-distance approaches. Moreover, some
supervised approaches, e.g. requiring class labels for graphs, to learn embeddings
of entire graphs have shown excellent performances in NLP tasks, i.e. semantic
parsing and natural language generation graph2seq (Xu et al. 2018), graph clas-
sification with CNN for graphs (Niepert et al. 2016) as well as metric learning
approaches to brain network classification (Ma et al. 2018). However, they pose
some important limitation in practice given the large volume of annotated data
needed to learn such deep neural networks architectures, as well as a limited
expressiveness of the learned representations constrained to particular supervised
tasks.
Because real life networks are complex structures involving diverse connectivity pat-

terns across domains the expressiveness of the aforementioned methods is constrained
when applied inmultiple tasks. Therefore, themost relevant hand-crafted features tend to

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 3 of 21

Fig. 1 Overview of the proposed method. Given a family of graphs, we train an unsupervised neural network
in order to uncover dissimilar relationships between graphs. The graphs are embedded into a feature space
and mapped to a Euclidean distance matrix reflecting the structural similarity between input examples

be task dependent and often require specialized domain expertise in order to incorporate
the right properties to perform accurately on the target task.
Unlike previous approaches, in this work we propose a method to learn unsupervised

network embeddings from a collection of networks all defined on the same set of nodes. It
should not be confused with node embedding approaches which aim to map nodes from
a graph into vectors on a feature space (see Cai et al. (2017); Goyal and Ferrara (2018) for
a survey of those methods). Therefore, in this paper we refer to graph or network embed-
ding the outcome ofmapping each network of a family as a vector in a Euclidean space (see
Fig. 1). The unsupervised nature of the method allows to capture the most relevant fea-
tures from the data in order to produce lower dimensional representation of input graphs.
This reduces the curse of dimensionality of high dimensional graphs uncovering discrim-
inative relationships in the underlying dataset. As a consequence, networks with similar
structural properties will have neighboring embeddings in the feature space, and dissim-
ilar graph will be more distant. Our approach thus differs from the various definitions
of graph distances or similarities mentioned previously in that we learn automatically a
feature representation of graphs assessing their similarity on a Euclidean space, instead
of using a hand-crafted metric on the graphs. In addition, because many graph coming
from real life applications rarely have exchangeable nodes, we focus on problems defined
on networks that account for node identities, e.g. time-varying networks, brain networks,
multilayer networks, etc.
Although the purpose of this paper is not to make an extensive evaluation on graph

clustering and classification tasks, we rather introduce and illustrate an unsupervised
method for embedding networks on same node set, i.e. taking the node identity into
account. We validate our method empirically in three network mining tasks: graph
clustering (grouping similar graphs together), graph classification (predicting the class
to which unseen networks belong to) and visualization (plotting many networks in R

2).
We perform diverse experiments on synthetic and real life datasets such as time-varying
networks (primary school network), multilayer networks (European airport network) and
brain networks datasets.
This paper is structured as follows. First, we introduce some popular methods of the lit-

erature used to compare networks, as well as the development of the proposed approach.
Then, we present some applications in graph visualization, clustering and classification
performed on synthetic and real life datasets. Subsequently, a computational analysis
of our method is presented, finalizing with a discussion and perspectives for future
work.

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 4 of 21

Methods
Graph distances

Distinguishing among a class of networks requires a notion of distance or similarity
between pairs of graphs (Donnat and Holmes 2018). These measures capture different
aspects of the local and global structure of graphs having an impact in the outcome of
different applications. We present some of the most representative graph distances of the
literature.
The Hamming and Jaccard distances are special instances from the broader class of

graph-edit distances. They measure the number edge insertion and deletion operations
necessary to transform one graph to another one. Denoting N the number of nodes of
the undirected graphs G1 = (V ,E1) and G2 = (V ,E2) with adjacency matrices A1 and A2
respectively, the Hamming distance between them is defined as:

dH (G1,G2) = 1
N(N − 1)

N∑
i,j

|A1 − A2|i,j (1)

which defines a scaled version of the L1,1 norm between matrices bounded between 0 and
1. Similarly, the Jaccard distance is defined as:

dJ (G1,G2) = |E1 ∪ E2| − |E1 ∩ E2|
|E1 ∪ E2| (2)

where E1 and E2 are the set of edges for the graphs G1 and G2 respectively.

DeltaCon (Koutra et al. 2016) is a popular graph similarity measure in connectomics.
As the edit distances it also exploits node correspondence across graphs. The intuition
behind the method is to compute first pairwise node similarities of input graphs through
a variant of a personalized PageRank algorithm (Koutra et al. 2016). The pairwise node
affinity matrices (S1, S2) are compared using the Matusita Distance defined by:

dDC(S1, S2) =
√√√√

n∑
i,j=1

(√
S1(i, j) − √

S2(i, j)
)2

(3)

On the other hand, the spectral distances for graphs have proven to be very useful in
many applications (Masuda and Holme 2019; Wilson and Zhu 2008). However, the spec-
tral nature of the method makes it invariant to node permutations. Roughly speaking,
these methods compare the spectrum of any matrix representing the input graph, gener-
ally the graph Laplacian. The combinatorial Laplacian matrix (CL) of an undirected graph
G is defined by L = D − A, where D is the diagonal matrix whose i-th element equal to
the degree of node i, and A its adjacency matrix. The normalized Laplacian matrix (NL) is
defined by L′ = D−1/2LD1/2 = I−D−1/2AD1/2, with I the corresponding identity matrix.
We denote the eigenvalues of any of the Laplacian matrices as 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .
For any L and L′ we consider the following spectral distance. The spectral distance

between two undirected graphs G1 and G2 is defined as Masuda and Holme (2019):

d (G1,G2) =
√√√√

nλ∑
i=1

[λN+1−i (G1) − λN+1−i (G2)]2 (4)

where nλ is the number of eigenvalues considered for the computation of the distance
(typically nλ = N).

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 5 of 21

Embedding distances

Unlike the previous distances, our approach performs network comparisons directly on a
feature space through a learned non-linear mapping applied to input graphs (see Fig. 1).
The building blocks of our method are explained in the following subsections.

Autoencoder

Unsupervised learning approaches aim to uncover hidden patterns or learning represen-
tations from unlabeled data. The autoencoder (AE) (Vincent et al. 2008) is one of the
most popular unsupervised neural network approaches. It has been widely used as a per-
formant mechanism to pre-train neural networks and general purpose feature learning
(Choi et al. 2018). It allows to compress the representation of input data, disentangling
the main factors of variability, removing redundancies and reducing the dimension of the
input.
Given a set of data examplesD = {

x(1), x(2), . . . , x(m)
}
, the purpose of the the traditional

auto-encoder is to learn a non-linear mapping which encodes an input example x ∈ R
n

in a smaller dimensional latent vector y ∈ R
d with n � d. The encoding mapping has

the form of fθ (x) = s(Wx + b) = y, generally through a non-linear function s such as
sigmoid or tanh applied entrywise on the vectorWx + b. A reverse mapping of f is used
to reconstruct the input from the feature space: gθ ′(y) = s(W ′y+b′) = z. The parameters
θ = {W , b} and θ ′ = {W ′, b′} are optimized by minimizing the average reconstruction
error over the training set:

θ∗, θ ′∗ = argmin
θ ,θ ′

1
m

m∑
i=1

∥∥∥x(i) − z(i)
∥∥∥2
2

(5)

Note that when s is the trivial identity, the solution is equivalent to the classical
PCA (principal component analysis) with the number of hidden units as the principal
components. One can therefore see autoencoders as a nonlinear extension of PCA.

Denoising autoencoder (DAE)

Minimizing the previous reconstruction criterion alone is unable in general to guarantee
the extraction of meaningful features as it can potentially memorize the training data.
We want the Autoencoder to be sensitive enough to recreate the original observation
but insensitive enough to the training data such that the model learns a generalizable
encoding and decoding mapping.
To avoid this limitation, the objective (Eq. 5) is redefined in such a way that the

autoencoder will be able to clean partially corrupted input or simply denoising it. This
modification leads a simple variant of the basic autoencoder described above. A denoising
autoencoder (DAE) (Vincent et al. 2008) is trained to reconstruct a clean or repaired ver-
sion from a corrupted input. This is done by transforming the original input x in x̃ through
a stochastic mapping x̃ ∼ qD(x̃|x). By doing so the AE is forced to learn meaningful
features, robust under corruption of the input.
The corrupted version x̃ is mapped with the original autoencoder to a hidden represen-

tation y = fθ (x̃) from which we reconstruct a clean z = gθ ′(y). An important observation
is that z is now a deterministic function of x̃ rather than x. See Fig. 2 for an schematic
representation of the model. Thus, we optimize the same objective than Eq. 5 but replac-
ing x by x̃. Optimization is done with the standard mini-batch gradient descent and back
propagation algorithms (Lecun et al. 1998).

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 6 of 21

Fig. 2 Denoising Autoencoder. A corrupted instance x̃ of a graph x is fitted into the Autoencoder’s input.
The Autoencoder is trained to recover a cleaned version of the input by compressing it through a non-linear
mapping fθ and mapping it back (through gθ ′) to a reconstructed version of the original input graph x

Network embedding distances

The adjacency matrix A of a graph is a simple network representation but alone can be
insufficient as an input for the DAE. It only captures first order relationships between
neighboring nodes. We extend this by computing higher powers of the adjacency matrix
in order to capture multiple paths relationships. Thus, we consider Ar for some r ≥ 1 as a
more adequate input for the Denoising Autoencoder.
Note that as the class of problems we tackle are defined on a collection of networks

having a node correspondence across graphs, our method remains invariant to the node
ordering when the same node permutation is assigned to the graphs.
The vectorization of matrices is required to feed the graphs into the DAE input. Let Ar

the r power of the n×n adjacency matrix A of a graph. The vectorization of Ar is a n2 × 1
column vector x = vec(Ar) obtained by staking the columns of Ar . Notice that when the
graph is undirected, the input matrix can be described with a n(n+1)

2 × 1 column vector
x. We apply a stochastic noise on the input by removing or adding an small fraction of
edges at random, then we infer the parameters of the DAE using the noisy inputs x̃ as was
presented in the previous section.
The optimal solution θ∗ = {W ∗, b∗} parametrizes an encoder mapping fθ∗ of the DAE.

It embeds the input x = vec(Ar) into a smaller dimensional vector fθ∗(x) ∈ R
d . A main

advantage of transforming graphs into feature vectors is that it allows us to compare eas-
ily networks computing only Euclidean distances between their embeddings. Hence, the
network embedding distance between two graphs G1 and G2 with power matrices Ar

1 and
Ar
2 is defined as:

d(G1,G2) = ∥∥fθ∗
(
vec

(
Ar
1
)) − fθ∗

(
vec

(
Ar
2
))∥∥

2 . (6)

In the following we introduce other related work on graph embeddings.

Other graph embeddings

Inspired by the success of the recent document embedding models (Le and Mikolov
2014), graph2vec (Narayanan et al. 2017) extends the same ideas in the graph domain.
This method proposes to consider a graph as a document where rooted subgraphs

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 7 of 21

around every node in the graph are the words composing the document. The under-
lying assumption is that different subgraphs compose graphs in a similar way that
different words compose sentences/documents. The graph embedding is then trained fol-
lowing the popular skip-gram model (Mikolov et al. 2013), sampling rooted subgraphs
around different nodes as input vocabulary. These non-linear substructures allow to cap-
ture structural equivalence patterns ensuring that graph2vec representation learning will
yield similar embeddings for structurally similar graphs. Similar to this, subgraph2vec
(Narayanan et al. 2016) is an unsupervised method to learn subgraph embeddings but
sampling linear substructures such as fixed length random walks.
On the other hand Graph Attention Model (GAM) (Lee et al. 2018) is an end-to-end

approach for graph classification based on Recurrent Neural Networks (RNN). The atten-
tion mechanism allows the method to process a portion of the graph avoiding noise in
the rest of the graph. The idea is to use a walk on the graph to sample a number of
nodes and using an attention mechanism to guide the walk. It helps to biases the walks
towards neighboring nodes having similar node labels, exploiting local graph information.
At the end, the RNN component will integrate information gathered from different parts
of the graph, accumulating the historical representation of the data for predicting the
output graph label. In practice, the history layer ht is taken as graph embedding for our
experiments.
It is worth mentioning that we introduce and illustrate an unsupervised method for

embedding networks on same node set, i.e. taking the node identity into account.
Although we found no exact competitors in the literature, making systematic compar-
ison difficult, it is illuminating to compare it numerically on some typical tasks with
edit-distances like Hamming’s and Jaccard’s (which are node-id aware but not learning
an embedding from a given family of networks), DeltaCon which is also node-id aware
but not learning an embedding, spectral methods (which are not node-id aware, and not
learned), Graph2Vec and Subgraph2vec (which learn unsupervised embeddings but are
not node-id aware) and GAN.
In the following sections we present some experimental results of ourmethod in various

synthetic and real life applications.

Experiments and results
The experiments have three purposes. First, they assess the performance of our method
in discriminating different types of networks which are generated from different mod-
els, edge densities and heterogeneous community structure. Next, they show the use
of graph embeddings in networks coming from diverse real life applications such as
time-varying networks, connectomes and multilayer networks. Finally, they highlight the
runtime performance of feature computation and compare it against other techniques.
It is worth to mention that all our experiments were performed with A3 where A is

the adjacency matrix of the graph, as input for the DAE. As A3 counts the number of
3−hop walks between pairs of nodes, it will encode a ’mesoscopic’ view of the graph
beyond immediate neighbor-neighbor relations. For instance it includes on the diagonal
the number of triangles, a feature deemed representative of the clustering of the complex
networks (Newman 2003).
The dimension of our graph embedding was determined empirically and fixed in all

experiments to 800. The dimension for the considered graph embedding methods was

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 8 of 21

also 800. It was set as the one that provided the best clustering performance. The training
hyper-parameters for theDAE, graph2vec,GAM and subgraph2vecmethods can be found
in the appendix section.
We evaluate our approach on three different but related tasks: graph visualization,

graph clustering and classification.

Synthetic datasets

We generate four synthetic datasets incorporating different structures, degree distribu-
tions and edge densities. Each dataset has 600 networks with 81 nodes. An overview of
the generated datasets is shown in Table 1. Their properties are detailed in the following:

• In the first synthetic dataset, we generate three Erdős-Rényi networks (ER) with
different parameters, producing random networks with different average degrees.
Then we make 200 copies from each graph reordering the nodes with a different
permutation of the original graph.

• In the second dataset named Mixed, we generate two groups of networks: a
collection of power-law networks generated with the Barabási-Albert (BA) model
and Erdős-Rényi networks, all of them with the same average degree of 6.

• In the third dataset, power-law networks were generated using the
Lancichinetti–Fortunato–Radicchi (LFR) benchmark (Fortunato and Lancichinetti
2009). This algorithm creates networks with heterogeneous structures and
communities sizes. The mixing parameter μ ∈[0, 1] controls the strength of the
community arrangements, achieving well defined communities with small μ,
meaningless community structure when μ is close to one and μ = 0.5 as the border
beyond which communities are no longer defined in the strong sense (Radicchi et al.
2004). Thus, we generate two groups of networks: one with mixing parameter
μ = 0.1 and other with μ = 0.5. Other parameters are common for both groups:
number of nodes N = 81, average node degree equal 11, community sizes varying
between 6 and 22 nodes, exponent for the degree sequence 2 and exponent for the
community size distribution 1. Therefore, the two groups of networks differ only in
the strength of their communities structure and not in the degree distribution, being
a more challenging problem than the previous dataset.

• In an attempt to simulate a dynamic network evolution, we simulate a time varying
network (Dynamic) following (Donnat and Holmes 2018), applying a perturbation
mechanism from a starting ER network. At each time step, a fraction of edges of the
previous graph are rewired uniformly at random. At the same time, we apply a
depletion/thickening process in which edges are deleted with probability 0.015 and
formerly absent edges are added with probability 0.015. We introduce two
perturbation points by augmenting the probabilities of adding and deleting edges to

Table 1 Summary of synthetic datasets

DATASET Type of network Properties True clusters

ER Erdős-Rényi Different average degrees 3

Mixed ER - Power law Different models, same average degree 2

LFR Power law Strong vs weak communities strength 2

Dynamic Erdős-Rényi Perturbation mechanism: rewiring, adding and removing % edges 3

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 9 of 21

0.2 from time t = 200 and also to 0.6 from time t = 400, defining three ground truth
clusters of similar behaving networks.

For all datasets we generate balanced ground truth classes.

Graph visualization

A useful application of network embedding is graph visualization. It mainly consists in
representing graph as 2D points, e.g an entire graph as one point, maximizing a certain
notion of similarity. Considerable research has been done in visualizing nodes of graphs
based on the premise that nodes sharing common structures e.g. neighboring nodes,
structural equivalent nodes, assortative nodes, etc. should be mapped to close points in
the embedding space (Cai et al. 2017; Goyal and Ferrara 2018).
In contrast, we propose to visualize multiple graphs at once on a two-dimensional space

in the following way. From a given family of graphs, their embeddings are learned and
used to compute the embedding distance matrix (Eq. 6). The same procedure is applied
for the graph embeddings described in Methods. In order to enable a visualization, a
methodology is needed to bring the embedding distances into a low-dimensional visual-
ization.We choose theMulti-scale SNE tool (Lee et al. 2015) as standardmethod. This is a
non-linear dimensionality reduction approach for data visualization which aims to repro-
duce in a low-dimensional space the local and global neighborhood similarities observed
on any similarity matrix. In this way, we expect that networks with similar properties as
learned by the Denoising Autoencoder are neighboring points in the two dimensional
visualization, while the gap between dissimilar groups of graphs is maximized.
We perform a visualization of some datasets from Table 1. As networks within a partic-

ular dataset were generated with a range of parameters, we assign a color to each point
in the visualization that reflects the value of the parameter used to generate the network.
In this way we expect that a good visualization will preserve the same colored points as
neighbors points in R

2 maximizing the gap between groups.

Discussion

Figure 3 shows the visualization of the ER dataset after applying our method together
with the methods introduced in the aforementioned sections. as can be expected, results

Fig. 3 Visualization of permuted Erdős-Rényi (ER) dataset. Each point corresponds to a network. Color of a
point indicates the category of the network according with its average degree 〈d〉. For blue 〈d〉 = 4, green
〈d〉 = 6 and red color 〈d〉 = 8 a Jaccard. b Hamming. c Deltacon. d Claplacian. e Graph2vec. f GAM.
g Subgraph2vec. h Emb

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 10 of 21

with Jaccard and Hamming distances are not satisfactory because points from different
groups overlap. even though DeltaCon tries to separate the data, the boundary between
groups was not clearly determined. because spectral distances are permutation invariant
measures, they collapse all permuted graphs to the same point showing a hard separation
between classes. Regarding graph embeddings, graph2vecmakes a good job grouping the
data in three non-overlapping clusters whereas subgraph2vec creates concentric cloud
of points collapsing different graphs to the center. on the other hand GAM captures a
different notion of similarity, where graphs with locally similar nodes degree sequences
are grouped together. finally, our embedding (Emb) shows three well defined clouds of
points grouping together isomorphic graphs. our method exploits node correspondence
across graphs when it is known, but even if the node order is not of particular significance
we can retrieve networks that are essentially identical.
Similarly, in Fig. 4 we show the visualizations of Mixed and LFR datasets. We can

make the following observations: CLaplacian and our graph embedding method (Emb)
are capable to discover the differences between data examples, so that they separate the
data almost perfect clusters. Although edit distances (Jaccard, Hamming) work better in
discriminating networks with distinct degree distribution than networks with commu-
nity structure (LFR), their discriminative power is still poor. GAM as in Fig. 3 collapses
networks with local similarities into the same embedding, performing poorly in this
benchmark. Even though subgraph2vec does not capture perfectly the differences in ER
and Mixed datasets, it performs better than graph2vec on networks with community
structure.
Finally, Fig. 5 shows the visualization of the LFR dataset in more detail. The left-hand

side plot shows two clouds of points encoding networks with different mesoscopic struc-
ture. As can be seen the blue cluster tends to spread more than the red one, which is
more compact. This illustrates the structural variability of networks having heteroge-
neous number/size communities (blue cluster) against a group of networks with weakly
modularity (red cluster).

Fig. 4 (Left) networks fromMixed dataset. Blue color correspond to ER networks and red color are BA networks,
both groups with 〈d〉 = 6. (Right) Networks generated with the LFR benchmark. Blue color correspond to
networks with well defined communities, μ = 0.1 whereas red color are networks generated with μ = 0.5

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 11 of 21

Fig. 5 Visualization of networks generated with the LFR benchmark. (Left) networks with different
community strength: μ = 0.1 and μ = 0.5. (Right) Same left-hand side networks. Colors encode the number
of planted communities within each network

In the right-hand side plot of Fig. 5, we keep the same networks from the left-hand
side plot, but we color them according with the number of ground truth commu-
nities on each network. Inspecting the bottom cluster we observe that even if there
is not a clear grouping of points, the data is distributed in a quasi-continuum man-
ner, having networks with similar number of communities as neighboring points in
the plane. On the other hand, the group of networks on the top are indistinguishable,
which is expected because their weak community strength. This visualization allows us
to understand the notion of similarity captured by the Autoencoder on the underlying
dataset.
Once more we emphasize that although the embedding is in principle dependent on

the order of the nodes, in this specific case different orderings lead to closely similar
visualizations. This is expected as in this case, albeit all the networks are supported
on the same number of nodes, there is no natural one-to-one correspondence between
the nodes of two networks, and all nodes are treated symmetrically in the generation
process.

Visualizing real life networks: temporal networks

The primary school network (Stehlé et al. 2011) is a dataset containing temporal face-
to-face interactions between 232 children and 10 teachers in a primary school in Lyon,
France. The data was collected over two days (Thursday, October 1 and Friday, October
2, 2009) spanning from 8:45 am to 5:20 pm the first day, and 8:30 am to 5:05 pm the
second day.
The dynamic evolution of the network can be modeled as a time-varying network

defined on a fixed number of nodes, and dynamic edges representing the physical inter-
action between children and teachers. It can be represented as a sequence of static graph
snapshots over a time window τ which aggregates all events or edge activations occurred
between the interval [(t − 1)τ , tτ]. For this experiment, we chose a time resolution
τ = 20s yielding 1230 snapshots for Thursday, 01-October. Its visualization is shown
in Fig. 6.
The clusters in Fig. 6 can be seen as groups of networks behaving similarly and cor-

related with external events, e.g consecutive clusters are separated because an external

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 12 of 21

event. For instance, lunch time is characterized by clusters defined between 12:00 and
14:00. The class time is represented by a long cluster of dark and light blue points in the
morning and yellow, orange groups in the afternoon. The end of the school day is high-
lighted with a brown group of points. Mixed group colors indicates smooth temporal
transitions, e.g. end of lunch time and beginning of classes (green-yellow-light blue), also
the end of the afternoon break to classes (orange-red).
Note that unlike synthetic examples from the previous section, nodes have an individual

identity, and different network snapshots take place on the same set of nodes.

Graph clustering

Clustering synthetic graphs

Another important application is clustering of networks. Clustering aims to group a set
of networks in such a way that networks in the same group (cluster) are more “similar”
to each other than to those in other clusters. We proceed similarly to the previous
section, but we do not perform dimensionality reduction to R2. Instead, clustering is per-
formed directly in the embedding space with the standard spectral clustering algorithm
(Ng et al. 2002). This technique makes use of the spectrum of a similarity matrix of the
data to performing clustering in fewer eigenvectors.
We run our method on each dataset from Table 1 and compute a 600 × 600 net-

work embedding matrix using Eq. 6. In order to compare against other techniques, the
graph distance matrices for the methods introduced in the first part of the manuscript

Fig. 6 Visualization for primary school embeddings. Each point represents a network snapshot during the
day of the 01-October-2009. Color of points encode a time frame of the day spanning from 8:45 until 17:20

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 13 of 21

are computed. All matrices are normalized having a maximum entry of one for simi-
lar pairs of graphs and zero for the most dissimilar ones. Therefore, spectral clustering
is performed on the similarity matrices induces by graph distances and other graph
embeddings.
The clustering performance is evaluated through the normalized mutual information

(NMI) (Cahill 2010) metric in the form:

NMI(Ct ,Cp) = 2I(Ct ;Cp)

H(Ct) + H(Cp)
(7)

where H is the entropy of a class distribution and I the mutual information between the
ground truth class distribution Ct , and the predicted cluster assignment Cp. It runs from
zero when the algorithm fails to a value of one when the clustering is perfectly recovered.
Details about the datasets are presented in Table 1.
In order to evaluate the sensitivity of the clustering to the node ordering, we perform

clustering with different enumeration of nodes by applying a fixed node permutation
across the networks. We reported the mean and standard deviation of the NMI after
running the experiment ten times.

Discussion

Regarding the clustering results in Table 2, we observe that our graph embeddings (Emb)
provides better clustering than traditional graph distances. The method is capable to
differentiate networks with different edge densities (ER). Meanwhile, it is also able to dis-
criminate networks with different degree distributions even if they have a similar average
degrees (Mixed). Discriminating power law networks from strong to weak community
structure (LFR) is also well achieved. The time-evolving network (Dynamic) is a harder
setting in which our method performs the best comparatively to graph distances. In this
case the graph embeddings are able to capture the variations introduced by change points
in the underlying evolution of the network. This can be explained because the DAE was
not designed for a target kind of graphs. Instead, it learns the underlying distribution of
the data, identifying the main factor of variability adapting its parameters for discrimi-
nating networks with different structure. The quality of the embeddings remains almost
the same after permuting the nodes, which is confirmed by the low variance in the NMI.
Hence, in practice we fixed a node numbering for the learning procedure.
In addition, as can be seen in Table 3 all graph embedding methods have a good per-

formance on the ER dataset except GAM. We found that globally subgraph2vec performs
better than graph2vec, but our embedding approach (Emb) performs the best.

Table 2 Graph distances

Hamming Jaccard DeltaCon CLP CLP normed Emb

ER 0.239 0.603 0.581 1.0 1.0 1.0±0.0

Mixed 1.0 1.0 1.0 1.0 0.364 1.0 ±0

LFR 0.269 0.284 0.278 0.766 0.973 0.995±0.005

Dynamic 0.389 0.232 0.205 0.237 0.195 0.452±0.085

Clustering results for synthetic datasets (NMI)

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 14 of 21

Table 3 Graph embeddings

Graph2vec GAM Subgraph2vec Emb

ER 1.0 0.11 1.0 1.0±0.0

Mixed 0.432 0.004 0.983 1.0±0

LFR 0.002 0.0001 0.009 0.995±0.005

Dynamic 0.074 0.001 0.219 0.452±0.085

Clustering results for synthetic datasets (NMI)

Clustering real life networks: multilayer networks

The European Air Transportation Network (ATN) (Cardillo et al. 2013) is a multilayer
network with 37 layers each representing a different European airline. Each layer has
the same number of nodes which represent 450 European airports. We learn graph
embeddings for all layers and we cluster them applying a standard hierarchical cluster-
ing algorithm on the network embedding distance matrix. The hierarchical clustering
provides partition of layers according with their similarity on the embedding space, see
Fig. 7.
Our findings confirm those introduced in Cardillo et al. (2013). We can identify two

main clusters representing major and low-cost aerial companies, as well as some regional
airlines grouped together. Indeed, these airlines have developed according with different
structural/commercial constraints. Low-cost companies tends to avoid being central-
ized and cover more than one country simultaneously. Major airlines have a hub and
spoke network, connecting outlying airports to few central ones, providing a maximum
coverage from their home country.

Graph classification

We evaluate graph classification in the context of supervised classification. It requires
previously annotated reference samples (graphs) in order to train a classifier and subse-
quently classify unknown data.

Brain connectomes classification

In this experiment we apply our method on a brain networks (connectomes) dataset built
from magnetic resonance imaging (MRI) (Chiêm and Crevecoeur 2018). Structural and
diffusion MRI data of 91 healthy men and 113 healthy women is preprocessed in order
to create undirected networks. All graphs have the same 84 nodes representing neural
Regions of Interests (ROIs). Weighted edges correspond to the number of neural fibers
linking two ROIs. The ROI keeps the same correspondence among graphs. The task is to
classify connectomes according to gender, male or female.

Experimental setup

We assess the performance of our method against some well known algorithms for
graph classification, mainly graph kernels and feature-based approaches. We choose the
Shorthest Path (SP) and theWeisfeiler-Lehman (WL) subtree kernels (Shervashidze et al.
2011). We also compare against the feature-based (FB) method (Barnett et al. 2016) and
Multi-hop assortativities features (MaF) for network classification (Gutiérrez-Gómez and
Delvenne 2019). Such methods provide a pairwise similarity matrix between networks in

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 15 of 21

Fig. 7 Dendrogram of airlines for European airports

the form of a Gram matrix which is used to train a popular support vector machine clas-
sifier (SVM) (Boser et al. 1992). Note that the graph distances considered in this work do
not define a proper positive semi-definite matrix. Therefore, following (Wu et al. 2005)
we shift the spectrum of their similarity matrices providing a proper kernel coherent with
the SVM setting.
We follow the experimental setup of (Shervashidze et al. 2011; Yanardag and Vish-

wanathan 2015). The dataset is randomly split in training and testing sets. The best model
is cross-validated over 10 folds. Parameters of SVM are optimized only on the training
set. Thus, we compute the generalization accuracy on the unseen test set. In order to
exclude the random effect of the data splitting, we repeated the whole experiment 10
times. Finally, we report the average prediction accuracies and its standard deviation.
For each graph kernel we report the result for the parameter that gives the best clas-

sification accuracy. For the feature-based approach (Barnett et al. 2016), feature vectors
were built with the same network features they reported in their paper: number of nodes,
number of edges, average degree, degree assortativity, number of triangles and global
clustering coefficient. Results are shown in Tables 4 and 5.

Discussion

As can be seen in Table 4, WL, SP and FB perform significantly worse than spectral dis-
tances and graph embedding. This is expected as they do not take the identity of the nodes
into account. Here, all brains share the same anatomical regions, which make the order
of the nodes relevant. In Table 5 can be seen that among the approaches exploiting node
correspondence, our method (Emb) outperforms all others while remaining competitive
with DeltaCon.

Table 4Mean and standard deviation of classification accuracies on brain connectomes dataset

WL SP FB CLaplacian NLaplacian Emb

61.20 ± 2.16 65.45 ± 1.78 65.95 ± 2.54 74.19 ± 11.16 71.07 ± 10.95 87.20 ± 7.60

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 16 of 21

Table 5Mean and standard deviation of classification accuracies on brain connectomes dataset

Hamming Jaccard DeltaCon MaF Emb

84.37 ± 9.26 84.34 ± 10.11 87.80 ± 6.54 84.26 ± 5.81 87.20 7.60
*Bold values correspond to the most performing techniques

Computational cost

Our graph embedding approach involves globally two steps: learning graph embedding
through the DAE followed by a pairwise Euclidean distance matrix computation (Eq. 6).
For the considered methods listed in Table 2 (except Emb), we measure the running time
for deriving the pairwise distance matrix. For the graph embedding approaches from
Table 3 including our approach (Emb), we report the running time for the entire process,
including learning the graph embeddings and computing the Euclidean distances. Results
are shown below in Fig. 8.
As can be seen our method (Emb) outperform all graph distances across all studied

datasets. Hamming and Jaccard distances are globally fast methods because they rely in
simple edge-level computations being slower in dense networks. It is known that spectral
distances (CLP, NLP) are heavy in computation due to the entire eigenvalue calcula-
tion. Even if Deltacon is a scalable graph similarity measure, it is outperformed by the
edit distances (Hamming, Jaccard), but prevails over spectral distances. On the other
hand, graph2vec outperforms the hand-crafted spectral andDeltaConmethods being effi-
cient for a method without node identity awareness. Subgraph2vec is globally the slowest
method, showing that modeling varying size context for the skip-gram model is consid-
erable more expensive than fixed size neighborhoods. Meanwhile, our graph embedding
method remains the fastest. Indeed, the performance of mini-batch gradient descent is

Fig. 8 Computational time for feature computation. Time is log scaled

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 17 of 21

proportional to the batch size thus it converges faster on relatively small datasets. For
efficiency reasons, the Euclidean distance between two feature embeddings x, y was com-
puted as d(x, y) = √〈x, x〉 − 2〈x, y〉 + 〈y, y〉. This formulation has the advantage of being
very efficient for sparse graphs given that some terms can be pre-computed for an entire
pairwise computation.
All computations were done on a standard computer Intel(R) Core(TM) i7-4790 CPU,

3.60GHzI with 16G of RAM.

Discussion and concluding remarks
In the presented work we propose a method to learn graph embeddings for a col-
lection of networks defined on the same set of nodes, e.g mapping graphs to R

p

vectors. Our method allows to compare graphs computing only Euclidean distances
between their embeddings in a feature space. We evaluate our method in three dif-
ferent applications in graph clustering, visualization and classification. Across diverse
synthetic and real life datasets, we compare our approach against well known graph
distances, graph-kernel methods and unsupervised graph-embedding methods of the
literature.
It turns out that our approach extract themost appropriated features for distinguish dif-

ferent kind of graphs. Indeed, clustering groups of similar networks provides good quality
partitions among synthetic datasets (Table 2), discriminating heterogeneous structures
among networks better. Although there is not a clear agreement about the use of com-
binatorial or normalized Laplacian in graph mining applications, spectral distances are
highly competitive in graph clustering and visualization but are incapable to exploit node
correspondence. Nevertheless, our learned graph embeddings turns out to be computa-
tionally cheaper than the considered methods (Fig. 8), being an attractive yet efficient
method for comparing networks with equal size.
The results in graph classification reveal that our approach has superior performance

than graph-kernels and graph spectral distances (Table 4). Indeed, exploiting the node
identities across graphs increases the accuracy of the method. Thus, this result suggest a
promising research direction in the connectomics domain.
Note that in this work we were not focusing in the task of for instance differentiating

randomnetworks with different average degrees, which can be trivially solved without any
machine learning tool. Instead, we aimed to show an automatic way to leave the machine
figure out the most relevant hidden patterns from the data, which is more general than
designing tailored methods for particular applications.
The current study was limited by the assumption that all networks must have the same

set nodes. Even if in many real applications this hypothesis holds, a large amount of com-
plex systems have varying size graphs, e.g. chemical compounds, social networks, etc.
This study has only investigated the class of graphs without node/edge attributes, such as
age, gender in social networks. In addition, regarding the scalability on large networks,
addressing these issues introduce additional challenges and new opportunities for further
research.
Despite this limitation, our work has the potential of being extended in two direc-

tions. Because the DAE captures the underlying probability distribution of the data
(Vincent et al. 2008), the decoding function could be used to generate artificial data, e.g
generating brain networks, for mining purposes. Another possibility is to explore deeper

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 18 of 21

neural network architectures such as the stacked autoencoders (Vincent et al. 2010) and
its variants in order to learn hierarchical feature representation of the data for graph
classification and clustering applications.

Appendix
For completeness we provide the parameters we used on our experiments.

Layer Number of neurons Activation function
Input N(N+1)

2 –
Hidden 800 tanh(x) = ex−e−x

ex+e−x

Output N(N+1)
2 sigmoid: σ(x) = 1

1+e−x

DAE parameters
• Let A the adjacency matrix of a graph. We consider A3 as input for the DAE.
• Denoting as N the number of nodes of the considered graph, the neural network

architecture is:
• We inject 10% of random edges to each example in order to introduce corrupted

examples for the denoising process.
• Optimzation: Adam algorithm with initial learning rate of 0.001, a batch of 128

examples and 15 epochs.

Graph2vec parameters

We used the following parameters: Batch size: 128, epochs: 15, embedding size: 800,
Number of negative samples to be used in training: 10, learning rate: 0.3, degree of rooted
subgraph (for WL kernel): 3.

GAM parameters

As this method requires explicitly node attributes, we used the node degree as struc-
tural attribute. Optimization was done with the following parameters: Number of training
epochs 15, number of neurons in the step network as 32, number of neurons in the shared
layer of the step net 64, batch size of 128, time budget for steps 10, learning rate of 0.001
and weight decay 10−5.

Subgraph2vec parameters

The parameter used for training this model were: batch size of 128, epochs 3, embedding
size 800, learning rate for optimization 1.0, negative sub sampling of 10 and weight of WL
kernel 3.

Synthetic datasets

In the following we provide the parameters used to generate the synthetic datasets. The
considered number of nodes is N = 81 and 600 examples for each case.

• ER: Erdős-Rényi networks. We generate networks with average degree equal to 4,6,8
and 10. Parameter p{0.05, 0.075, 0.10, 0.125}

• Mixed: Power law and random networks. We use the Barabási-Albert model with
m = 3 and Erdős-Rényi model with p = 0.075, generating networks with an average
degree of six.

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 19 of 21

• LFR: we generate power law networks with μ = 0.1 and μ = 0.5. The average node
degree is 11, community sizes between 6 and 22 nodes, the exponent for the degree
distribution equal to 2 and the exponent for community size distribution of 1.

• Dynamic: initial random network with p = 0.08. We remove and add edges with a
probability of 0.015. At time t = 200 we remove and add edges with probability of
0.2, increasing it at time t = 400 to probability of 0.6

Acknowledgements
We thank Leto Peel and Michel Fanuel for helpful discussion and suggestions. Thanks to Cyril De Bodt for providing the
Multi-scale SNE scripts and Benjamin Chiêm for providing the brain dataset. We also thank the anonymous referees for
helpful suggestions.

Authors’ contributions
LG implemented the code, manipulated the data and performed the computational research. JCD contributed with the
designing of experiments and performed an examination of results. All authors participated in writing the manuscript. All
authors read and approved the final manuscript.

Funding
Funding This work was supported by Concerted Research Action (ARC) supported by the Federation Wallonia-Brussels
Contract ARC 14/19-060 and Flagship European Research Area Network (FLAG-ERA) Joint Transnational Call “FuturICT
2.0” to which are gratefully acknowledged.

Availability of data andmaterials
The datasets generated and analyzed during the current study are available in the Github repository https://github.com/
leoguti85/GraphEmbs The human brain networks dataset used and analyzed during the current study are available from
the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université
catholique de Louvain, Avenue Georges Lemaitre, 4, 1348 Louvain-la-Neuve, Belgium . 2Center for Operations Research
and Econometrics (CORE), Université catholique de Louvain, Avenue Georges Lemaitre, 4, 1348 Louvain-la-Neuve,
Belgium.

Received: 1 March 2019 Accepted: 23 August 2019

References
Masuda N, Holme P (2019) Detecting sequences of system states in temporal networks. Sci Rep 9(1)
Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton J, Quaggiotto M, Van den Broeck W, Régis C, Lina B, Vanhems P (2011)

High-resolution measurements of face-to-face contact patterns in a primary school. PLOS ONE 6(8):23176. https://doi.
org/10.1371/journal.pone.0023176

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of
human cerebral cortex. PLOS Biol 6(7):1–15. https://doi.org/10.1371/journal.pbio.0060159

Cahill ND (2010) Normalized measures of mutual information with general definitions of entropy for multimodal image
registration. In: Fischer B, Dawant BM, Lorenz C (eds). Biomedical Image Registration. Springer, Berlin, Heidelberg.
pp 258–268

Donnat C, Holmes S (2018) Tracking network dynamics: A survey using graph distances. Ann Appl Stat 12(2):971–1012.
https://doi.org/10.1214/18-AOAS1176. https://projecteuclid.org/euclid.aoas/1532743483

Schölkopf B, Smola A (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge. Max-Planck-Gesellschaft

Barnett I, Malik N, Kuijjer ML, Mucha PJ, Onnela J.-P. (2016) Feature-based classification of networks. http://arxiv.org/abs/
1610.05868

Chiêm B, Crevecoeur JCDF (2018) Supervised Classification of Structural Brain Networks Reveals Gender Differences. In:
2018 19th IEEE Mediterranean Electrotechnical Conference (MELECON)

Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth
Annual Workshop on Computational Learning Theory. COLT ’92. ACM, New York, NY, USA. pp 144–152. https://doi.
org/10.1145/130385.130401. http://doi.acm.org/10.1145/130385.130401

Cardillo A, Gómez-Gardeñes J, Zanin M, Romance M, Papo D, del Pozo F, Boccaletti S (2013) Emergence of network
features from multiplexity. Sci Rep 3:1344. http://arxiv.org/abs/1212.2153. https://doi.org/10.1038/srep01344

Ma G, Ahmed NK, Willke TL, Sengupta D, Cole MW, Turk-Browne NB, Yu PS (2018) Similarity learning with higher-order
proximity for brain network analysis. CoRR abs/1811.02662. http://arxiv.org/abs/1811.02662

Cai H, Zheng VW, Chang KC (2017) A Comprehensive Survey of Graph Embedding: Problems, Techniques, and
Applications. IEEE Trans Knowl Data Eng 30(9):1616–1637. https://doi.org/10.1109/TKDE.2018.2807452

https://github.com/leoguti85/GraphEmbs
https://github.com/leoguti85/GraphEmbs
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1214/18-AOAS1176
https://projecteuclid.org/euclid.aoas/1532743483
http://arxiv.org/abs/1610.05868
http://arxiv.org/abs/1610.05868
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
http://doi.acm.org/10.1145/130385.130401
http://arxiv.org/abs/1212.2153
https://doi.org/10.1038/srep01344
http://arxiv.org/abs/1811.02662
https://doi.org/10.1109/TKDE.2018.2807452

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 20 of 21

Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Syst
151:78–94. https://doi.org/10.1016/j.knosys.2018.03.022

Choi H, Cho K, Bengio Y (2018) Fine-grained attention mechanism for neural machine translation. Neurocomputing
284:171–176. https://doi.org/10.1016/j.neucom.2018.01.007

Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C (1991) Structure-activity relationship of
mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and
hydrophobicity. J Med Chem 34(2):786–797. https://doi.org/10.1021/jm00106a046.
https://doi.org/10.1021/jm00106a046

Griffa A, Baumann PS, Ferrari C, Do KQ, Conus P, Thiran J.-P., Hagmann P (2015) Characterizing the connectome in
schizophrenia with diffusion spectrum imaging. Human Brain Mapping 36(1):354–366. https://doi.org/10.1002/hbm.
22633. https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.22633

Gutiérrez-Gómez L, Delvenne J.-C. (2019) Multi-hop assortativities for network classification. J Compl Netw 7(4):603–622.
https://doi.org/10.1093/comnet/cny034

Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256. https://doi.org/10.1137/
S003614450342480

Fortunato S, Lancichinetti A (2009) Community detection algorithms: A comparative analysis: Invited presentation,
extended abstract. In: Proceedings of the Fourth International ICST Conference on Performance Evaluation
Methodologies and Tools. VALUETOOLS ’09. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Brussels. pp 27–1272. http://dl.acm.org/citation.cfm?id=1698822.1698858

Koutra D, Shah N, Vogelstein JT, Gallagher B, Faloutsos C (2016) Deltacon: Principled massive-graph similarity function
with attribution. ACM Trans Knowl Discov Data 10(3):28–12843. https://doi.org/10.1145/2824443

Livi L, Rizzi A (2013) The graph matching problem. Pattern Anal Appl 16(3):253–283. https://doi.org/10.1007/s10044-012-
0284-8

Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings
of the IEEE. pp 2278–2324

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32. ICML’14. JMLR.org. pp 1188–1196. http://
dl.acm.org/citation.cfm?id=3044805.3045025

Lee JB, Rossi R, Kong X (2018) Graph classification using structural attention. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’18. ACM, New York. pp 1666–1674.
https://doi.org/10.1145/3219819.3219980. http://doi.acm.org/10.1145/3219819.3219980

Lee JA, Peluffo-Ordóñez DH, Verleysen M (2015) Multi-scale similarities in stochastic neighbour embedding: Reducing
dimensionality while preserving both local and global structure. Neurocomputing 169(Complete):246–261. https://
doi.org/10.1016/j.neucom.2014.12.095

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and
their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2. NIPS’13. Curran Associates Inc, USA. pp 3111–3119. http://dl.acm.org/citation.cfm?id=2999792.
2999959

Narayanan A, Chandramohan M, Chen L, Liu Y, Saminathan S (2016) subgraph2vec: Learning distributed representations
of rooted sub-graphs from large graphs. In: MLGWorkshop. KDD’16 Workshop

Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y (2017) graph2vec: Learning distributed representations of
graphs. In: 15th International Workshop on Mining and Learning with Graphs. MLGWorkshop 2017

Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: Proceedings of The 33rd
International Conference on Machine Learning, vol. 48. PMLR. pp 2014–2023. http://arxiv.org/abs/1605.05273

Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S,
Ghahramani Z (eds). Advances in Neural Information Processing Systems 14. MIT Press. pp 849–856. http://papers.
nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf

Peel L, Clauset A (2015) Detecting change points in the large-scale structure of evolving networks. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI’15. AAAI Press, Austin. pp 2914–2920. http://dl.acm.
org/citation.cfm?id=2888116.2888122

Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Nat
Acad Sci 101(9):2658–2663. https://doi.org/10.1073/pnas.0400054101.
https://www.pnas.org/content/101/9/2658.full.pdf

Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels.
J Mach Learn Res 12:2539–2561

Srinivasan A, King RD, Muggleton SH, Sternberg MJE (1997) The predictive toxicology evaluation challenge. In:
Proceedings of the 15th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’97. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA. pp 4–9. http://dl.acm.org/citation.cfm?id=1624162.1624163

Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denoising
autoencoders. In: Proceedings of the 25th International Conference on Machine Learning. ICML ’08. ACM, New York.
pp 1096–1103. https://doi.org/10.1145/1390156.1390294. http://doi.acm.org/10.1145/1390156.1390294

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A (2010) Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

Wilson RC, Zhu P (2008) A study of graph spectra for comparing graphs and trees. Pattern Recogn 41(9):2833–2841.
https://doi.org/10.1016/j.patcog.2008.03.011

Wu G, Chang EY, Zhang Z (2005) An analysis of transformation on non-positive semidefinite similarity matrix for kernel
machines. In: Proceedings of the 22nd International Conference on Machine Learning. International Conference on
Machine Learning (ICML)

Xu K, Wu L, Wang Z, Feng Y, Witbrock M, Sheinin V (2018) Graph2seq: Graph to sequence learning with attention-based
neural networks. In: arXiv Preprint arXiv:1804.00823

https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.neucom.2018.01.007
https://doi.org/10.1021/jm00106a046
http://arxiv.org/abs/https://doi.org/10.1021/jm00106a046
https://doi.org/10.1002/hbm.22633
https://doi.org/10.1002/hbm.22633
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.22633
https://doi.org/10.1093/comnet/cny034
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
http://dl.acm.org/citation.cfm?id=1698822.1698858
https://doi.org/10.1145/2824443
https://doi.org/10.1007/s10044-012-0284-8
https://doi.org/10.1007/s10044-012-0284-8
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://dl.acm.org/citation.cfm?id=3044805.3045025
https://doi.org/10.1145/3219819.3219980
http://doi.acm.org/10.1145/3219819.3219980
https://doi.org/10.1016/j.neucom.2014.12.095
https://doi.org/10.1016/j.neucom.2014.12.095
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://arxiv.org/abs/1605.05273
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an- algorithm.pdf
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an- algorithm.pdf
http://dl.acm.org/citation.cfm?id=2888116.2888122
http://dl.acm.org/citation.cfm?id=2888116.2888122
https://doi.org/10.1073/pnas.0400054101
http://arxiv.org/abs/https://www.pnas.org/content/101/9/2658.full.pdf
http://dl.acm.org/citation.cfm?id=1624162.1624163
https://doi.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
https://doi.org/10.1016/j.patcog.2008.03.011

Gutiérrez-Gómez and Delvenne Applied Network Science (2019) 4:82 Page 21 of 21

Yanardag P, Vishwanathan SVN (2015) Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’15. ACM, New York. pp 1365–1374. https://doi.org/10.
1145/2783258.2783417. http://doi.acm.org/10.1145/2783258.2783417

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
http://doi.acm.org/10.1145/2783258.2783417

	Abstract
	Keywords

	Introduction
	Methods
	Graph distances
	Embedding distances
	Autoencoder
	Denoising autoencoder (DAE)
	Network embedding distances
	Other graph embeddings

	Experiments and results
	Synthetic datasets
	Graph visualization
	Discussion
	Visualizing real life networks: temporal networks

	Graph clustering
	Clustering synthetic graphs
	Discussion
	Clustering real life networks: multilayer networks

	Graph classification
	Brain connectomes classification
	Experimental setup
	Discussion

	Computational cost

	Discussion and concluding remarks
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

