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Abstract

This paper addresses two critical questions related to (1) the co-evolutionary dynamics
between information diffusion and network topology and (2) the relationship between
viral content and social reinforcement. A recurrence relation model is developed to
formulate the growth dynamics of a community centered on a dominant user using
the tweet-retweet-follow (TRF) and exogenous link-creation events. This model
illustrates several fundamental relations among parameters and quantities that are
critical to answering the questions. The model reproduces social reinforcement and
structural trapping effects, including empirical evidence that viral content does not
require strong social reinforcement. In addition, the model demonstrates that the
community growth rate is influenced not only by the rate of retweets but also by the
network density of the community.

Keywords: Network density, Community, Twitter, TRF events, Recurrence relation,
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Introduction
Online social networks (OSNs) have become indispensable vehicles of communication,
information access, and advertisement. Content on OSNs may have economically, polit-
ically, or socially strong influences when shared among a large number of OSN users.
Numerous papers in the literature have documented the manner in which such phenom-
ena emerge; however, the mechanism that causes the phenomena may not be completely
understood. This paper presents new insights into this field of study, shedding light on
certain mechanisms that work in OSNs.
Every once in a while, large-scale information cascades emerge. Because of their rare

occurrence, statistical or machine learning approaches present risks associated with
overdependence on small samples. Therefore, analytical approaches must verify pieces of
empirical evidence and derive unknown causal relationships based on the evidence. This
paper contributes to the literature in the field of information diffusion by answering two
important questions.

Question 1 (co-evolution) Does the information diffusion co-evolve with the network
topology?

It has been established that the underlying network topology affects information dif-
fusion. Conversely, can information diffusion significantly alter the topology? To answer
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this question, this paper evaluates the community growth rate while a diffusion process
is underway and demonstrates that the growth rate is greatly influenced by the network
density of the community.

Question 2 (viral content) Why does viral content not require strong social reinforce-
ment?

The seminal paper by Weng et al. (2013) presented a discussion on several community-
related features that exhibit significant influences on information diffusion, including
social reinforcement, which indicates that each additional exposure significantly increases
the chance of adoption. One of the key findings of the paper was that non-viral content
requires strong social reinforcement, whereas viral content does not. From an analytical
perspective, this paper illustrates that large-scale cascades emerge only if the network
density of the community is low.
These questions are directly related to improvements in future cascade-size prediction.

Therefore, answering these questions can help, for example, develop more effective viral
marketing strategies and realize more efficient content delivery network (CDN) resource
deployment for viral content.
The model in this paper presents a community structure for revealing the mecha-

nisms that yield large-scale information cascades because the community-related fea-
tures are considered to exhibit a strong influence on future content popularity (Weng
et al. 2014). An important factor that must be considered while designing an ana-
lytical model is that deviations from the empirical evidence must be small. Based
on the evidence that a large number of adoptions occurred within only one degree
of a few dominant individuals (Goel et al. 2012), this paper presents a scenario in
which one dominant user, who has a significant influence on some online applica-
tion or some social issues, is followed by a large number of Twitter users. This
paper incorporates link-creation events, called tweet-retweet-follow (TRF), into the
model because TRF link-creation events are orders of magnitude more likely than
link-creation events caused by exogenous reasons (Antoniades and Dovrolis 2015). In
addition, the paper also presents a discussion on the effects of exogenous link-creation
events.
This paper focuses on the two Twitter features (a dominant user and TRF events)

mentioned previously and emphasizes their importance by reproducing the community-
related effects (social reinforcement and structural trapping) and the evidence describ-
ing that non-viral (viral) content (does not) requires strong social reinforcement
(Question 2). After that, the paper presents a discussion on the manner in which
the parameters in the model, particularly the network density, relate to the two
questions.
The paper is organized as follows. “Related work” section presents the related work.

“The model” section defines the retweet diffusion model, and “Results” section derives
the fundamental relations among parameters and quantities based on the computational
results, and presents some insights into Questions 1 and 2. “The extended model” section
extends the model by detailing user behavior. “Discussion” section presents a discussion
on the implications of the findings and the limitations of this approach. “Conclusions”
section concludes the paper.
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Related work
Information diffusion on OSNs has been a subject of intensive study. It has been widely
recognized that information diffusion is a more complex contagion than the spread
of infectious diseases. Several empirical studies indicate that connectivity distributions
among online users are highly inhomogeneous (Goel et al. 2012; Goel et al. 2015; Bose and
Shin 2008). Prior studies have examined the influence of underlying network properties,
such as scale-free, small-world, and community structures, on the process of information
diffusion under the assumption that the networks are static (Weng et al. 2013; Moore and
Newman 2000; Watts 2002; Moreno et al. 2004). The influence maximization problem in
social networks, under a variety of influence mechanisms and network properties, is an
ongoing focus of research (Kempe et al. 2003; 2005; Aral and Dhillon 2018).
Current OSNs include a variety of communities such as language communities (Jin

2017); therefore, many studies have examined or applied the characteristics of informa-
tion diffusion processes as information is transmitted within/across OSN communities.
For example, the authors in (Li et al. 2015) categorized nodes into six community-aware
types and evaluated their diffusion capabilities. This paper investigates the dynamics of
a single Twitter community, assuming all community members are homogeneous and
uniformly connected with each other.
Recent work (Tur et al. 2018) evaluated the effect of social reinforcement using a thresh-

old model that assumes that additional contacts are not redundant but reinforce the
probability of contagion. The model in this paper also assumes that additional retweet
arrivals are not redundant; the retweet rate is constant independent of the number of
arrivals. A fundamental difference is that the model in Tur et al. (2018) considers static
networks. Another similar study (Banisch and Olbrich 2019) introduced positive and
negative social feedback, and discussed the role of network density in the emergence
of opinion polarization. The model in Banisch and Olbrich (2019) also assumes static
underlying networks.
There are numerous studies that focus on predicting large-scale information diffusion

(Weng et al. 2013; Szabo and Huberman 2010; Cheng et al. 2014; Zhao et al. 2015; Cheung
et al. 2017; Krishnan et al. 2016). Incorporating the community structure into diffusion
models is expected to improve model accuracy (Bao et al. 2017). Several studies utilize
community properties for prediction, such as predicting the future popularity of a meme
(Weng et al. 2014) and the virality timing of content (Junus et al. 2015). Contrary to these
results, this paper discusses the intrinsic difficulty associated with the prediction.
Moreover, there are studies on the dynamic nature of the OSNs (Leskovec et al. 2008;

Myers and Leskovec 2014). The work in (Myers and Leskovec 2014) empirically demon-
strated that large information diffusion has the potential to generate sudden influxes
of edge creation or deletion events. In contrast to the assumption that the network
topology is static while a diffusion process is ongoing, some papers have attempted
to understand the diffusion phenomena on the basis of the co-evolutionary dynamics,
where network topology and information diffusion influence each other reciprocally. In
(Weng et al. 2013), several link-creation mechanisms were introduced and their roles
in the diffusion process were examined. The authors in Farajtabar et al. (2017) formu-
lated a stochastic process expressing the joint dynamics of information diffusion and
network evolution. In Antoniades and Dovrolis (2015), the authors studied the impor-
tance of a link-creation event called tweet-retweet-follow (TRF). They demonstrated that
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TRF events can create dense user communities. There have been several studies that
focused on link-creation events such as triadic closure (Leskovec et al. 2008), shortcuts
(Weng et al. 2013), homophily (Hours et al. 2016; Aragón et al. 2017), and social influ-
ence (Aragón et al. 2017). This paper formulates a retweet diffusion model based on
TRF events because the events express general content sharing and link creation dynam-
ics on Twitter. Instead of introducing stochastic processes or differential equations, this
paper uses recurrence relations to express TRF dynamics because the recurrence relations
derived are simple and ensure extensibility.

Themodel
The model includes an initiator, a large number of Twitter followers of the initia-
tor (referred to as supporters), and Twitter users who are not supporters (referred
to as non-supporters). The model assumes that supporters are closely related to
each other on the basis of the follower-followee relationship and form a commu-
nity. Therefore, the model is a community centered on the initiator. This section
introduces recurrence relations to express the retweet propagation phenomena that
originate from the initiator to supporters and non-supporters according to the TRF
events.
Table 1 presents the parameter values in the model. Ni denotes the number of support-

ers at the time initiator tweets, Nf is the number of followers a user (except the initiator)
has, and α ∈ (0, 1] is the ratio of supporters in Nf followers of a supporter; e.g., α = 0 (1)
indicates that all Nf followers are non-supporters (supporters). Parameter α is an indica-
tor of the network density of the community because a higher α implies a higher network
density. Therefore, α is also referred to as the network density indicator of the commu-
nity. This paper fixes the value of Nf at 500 because most of the Twitter analysis reports
on the Internet present three-digit numbers for the average number of followers.
The model is designed under the following assumptions:

Asm 1 Supporters and non-supporters are homogeneous in that they do not possess any
unique attributes.

• Supporters (non-supporters) retweet with rate λs (λn). λs ≥ λn.
• Supporters and non-supporters have the same Nf followers.
• Supporters have αNf followers who are supporters (0 < α ≤ 1), while the followers

of non-supporters are all non-supporters.

Asm 2 Users synchronously post retweets after receiving (re)tweets. The synchronization
points are called steps.

Table 1 Parameter values in the model

Parameter Description Default value

Ni Number of supporters at step 0 10,000

Nf Number of followers a user has 500

α Ratio of supporters in Nf followers (0, 1]

λs Retweet rate of supporters 0.01

λn Retweet rate of non-supporters 0.0015
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Asm 3 The community does not have any specific network topology. At each step, αNf
followers of each supporter are uniformly selected from all supporters.

Asm4 All non-supporters who post retweets become supporters (i.e., follow the initiator).

Asm 4 is relaxed in “The extended model” section; however, the assumption provides
most of the essential results in this paper. The model is simplified to focus on two Twit-
ter properties: TRF events and locally scale-free structure (one dominant user and other
users with a relatively small number of followers). The importance of the properties
is confirmed by reproducing the community-related effects (social reinforcement and
structural trapping) and (non-)viral content behavior.
Figure 1 illustrates a retweet cascade originated from the initiator at step 0. The

recurrence relation model can be described as follows. Let r(i) (q̄(i)) be the number of
supporters (non-supporters) who retweet at step i. At step 0, the initiator tweets. At step
1, r(1) supporters retweet the tweet. At step 2, r(2)+q(1, 1) followers of the r(1) support-
ers post retweets, where q(i, j) denotes the number of non-supporters who post retweets
at step i + j after receiving retweets from q(i, j − 1) non-supporters if j > 1 or from r(i)
supporters if j = 1 (see Fig. 1).
From Asm 4, q(1, 1) followers become supporters and the new q(1, 1) supporters influ-

ence r(3). Therefore, q(i, j) also denotes the number of new supporters at step k > i + j.
At step 3, r(3) + q(1, 2) + q(2, 1) users retweet. At step i, r(i) + q̄(i) users retweet, where
q̄(1) = 0 and for i > 1,

q̄(i) =
i−1∑

k=1
q(k, i − k). (1)

Using the parameters in Table 1, r(1) = λsNi, q(1, 1) = λn(Nf −αNf )r(1), and q(1, 2) =
λn(Nf − αNf )q(1, 1). In general, for i ≥ 1 and j ≥ 0,

q(i, j + 1) = λn(Nf − αNf )q(i, j)

= λ
j+1
n (Nf − αNf )

j+1r(i). (2)

Fig. 1 The arrow from r(2) to q(2, 1) indicates that after receiving retweets from r(2) supporters at step 2,
q(2, 1) non-supporters post retweets at the next step
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Algorithm 1 Calculate r(i)
1: r′ ← 0
2: for j = 1 to r(i − 1) + q̄(i − 1) do
3: for k = 1 to αNf do
4: Punret ← Ni−r′−∑

1≤�≤i−1 r(�)
Ni−1−(k−1)+∑

1≤�≤i−1 q̄(�)
5: r′ ← r′ + λsPunret
6: end for
7: end for
8: r(i) ← r′

On the other hand, r(i) is computed according to Algorithm 1. The algorithm can
be explained as follows. At step i − 1, r(i − 1) + q̄(i − 1) supporters retweet and each
supporter sends αNf retweets to supporters. Because each retweet message arrives at uni-
formly selected followers (Asm 3), the probability (Punret) that the k-th retweet arrives at
a supporter who has not posted any retweets is given by

Punret = Ni − r′ − ∑
1≤�≤i−1 r(�)

Ni − 1 − (k − 1) + ∑
1≤�≤i−1 q̄(�)

, (3)

where the numerator denotes the number of supporters who have not posted any
retweets, and the denominator denotes the number of supporters who have the possibil-
ity to receive the k-th retweet. In (3), r′ is the number of supporters who have retweeted
at step i. In the denominator, “− 1” indicates that retweeters do not receive their own
retweets, and “−(k− 1)” indicates that a user does not receive multiple retweets from the
same user. Because Punret is also the mean of the binomial distribution B(1,Punret), the
mean value of the number of supporters who retweet after receiving the k-th retweet is
given by λsPunret . For all (r(i−1)+ q̄(i−1))×αNf retweets, λsPunret values are computed
and added to r′ in line 5. r(i) is then derived in line 8.
The computation of r(i) and q̄(i) stops at i = T + 1 if

r(T + 1) + q̄(T + 1) < 1, (4)

which indicates that the number of users who post retweets at step T + 1 is less than one.
This paper defines T (steps) as the duration of retweet propagation.

Results
Sparse community effect

This section discusses the impact of the ratio α on R = ∑T
k=1 r(k)/Ni,Q = ∑T

k=1 q̄(k)/Ni,
and T, where R denotes the relative number of original supporters (supporters at step
0) who have retweeted until step T and Q is the relative number of non-supporters who
become supporters until step T. R satisfies 0 ≤ R ≤ 1 and R = 1 indicates that all original
supporters have retweeted. Q can grow larger than one and Q > 1 means that the num-
ber of supporters has more than doubled. Figure 2 illustrates R, Q, and T as functions
of α. From Fig. 2(upper left), R exhibits a curve that is similar to a sigmoid curve, while
Fig. 2(upper right) and (lower left) illustrate that Q and T have uni-modal curves. There-
fore, there are three characteristic ratios: αR, αQ, and αT . αQ and αT denote the ratios at
which T and Q exhibit peaks, respectively. αR is the smallest ratio satisfying |R − 1| < δ,
where δ is a positive and sufficiently small real number (e.g., 10−4).
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Fig. 2 Upper left: the social reinforcement and sparse community effects (αR ↓ as λs ↑ or λn ↑) appear.
Upper right: the structural trapping and sparse community effects (αQ ↓ as λs ↑ or λn ↑) and “Q(αQ) ↑ as
λs ↑ or λn ↑” hold. Lower left: the sparse community effect (αT ↓ as λs ↑ or λn ↑) and “T(αT ) ↓ as λs ↑ or
λn ↓” hold. Lower right: relations “αT < αQ < αR” and “T(αT ) ↑ as Ni ↑” hold. Upper left, upper right, and
lower left: Ni = 104. Lower right: Ni = 104, 105, λs = 0.01, and λn = 0.0015. R and Q curves at Ni = 104 in the
lower right graph completely overlap with those at Ni = 105

Through intensive calculations, the following four fundamental relations are derived.
The first two findings are related to the behavior of αR,αQ, and αT . From Fig. 2(lower
right),

αT < αQ < αR. (5)

The second finding is that αT , αQ, and αR decrease as λs or λn increases (see Fig. 2(upper
left), (upper right), and (lower left)); i.e.,

αT ↓,αQ ↓,αR ↓ as λs ↑ or λn ↑ . (6)

This paper terms this phenomenon the sparse community effect. The effect implies that
sparse communities, in which supporters have many (few) links to non-supporters (sup-
porters), yield the largest cascades (R + Q) and the most long-lived cascades (T) when
the rates of retweet are high. The sparse community effect presents a case in which the
network structure affects content virality.
The third finding is that Q(αQ) rises as λs or λn grows; whereas T(αT ) falls (rises) as λs

(λn) grows; i.e.,

T(αT ) ↓,Q(αQ) ↑ as λs ↑, (7)

T(αT ) ↑,Q(αQ) ↑ as λn ↑. (8)

The fourth finding is illustrated in Fig. 2(lower right). T(αT ) increases with Ni; i.e.,

T(αT ) ↑ as Ni ↑. (9)



Oida Applied Network Science            (2019) 4:29 Page 8 of 17

Note that in Fig. 2(lower right), R and Q do not change with Ni (these are quantities
relative to Ni).

Structural trapping and social reinforcement

Figure 2 presents other findings that agree with the empirical phenomena. It can be
observed from Fig. 2 (upper right) that Q approaches zero as α approaches one; i.e.,

Q ↓ 0 as α ↑ 1, (10)

which represents the structural trapping effect (Weng et al. 2013) because a larger α,
indicating denser communities with fewer outgoing links, lowers Q, indicating a smaller
amount of propagation outside of the community. While, Fig. 2 (upper left) illustrates the
social reinforcement effect, which indicates that in the presence of high clustering, any
additional adoption is likely to produce more multiple exposures than in the case of low
clustering (Weng et al. 2013), because R is a strictly increasing function of α; i.e.,

R ↑ as α ↑. (11)

Answering two questions

Let us first discuss Question 1 (co-evolution) in “Introduction” section using the commu-
nity growth rate measured byQ/T . A largeQ/T implies dynamic community growth. The
following demonstrate under what conditions it is dynamic (or static). Because αT 	= αQ,
the growth rate Q/T must greatly vary in the range of [αT ,αQ]. It can be anticipated that

Q(αT )

T(αT )
<

Q(αQ)

T(αQ)
. (12)

Figure 3 compares the growth rates at α = 0.05, which is close to αT , and at α =
0.2(≈ αQ). From the figure, Q(0.2)/T(0.2) is approximately 10 times greater than
Q(0.05)/T(0.05).

Fig. 3 Growth rate Q/T depends on α, λs , and Ni .
Q(0.2)/T(0.2) ≈ 10 × Q(0.05)/T(0.05),Q(0.05)/T(0.05)|λs=0.05 ≈ 30 × Q(0.05)/T(0.05)|λs=0.01, and
Q/T |Ni=104 > Q/T |Ni=105 . λn = 0.0015
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Meanwhile, (7) suggests that Q/T monotonically increases with λs; i.e.,

Q/T ↑ as λs ↑. (13)

Figure 3 illustrates the case where λs increases from 0.01 to 0.05. From the figure,
Q(0.05)/T(0.05) at λs = 0.05 is approximately 30 times greater than that at λs = 0.01.
This implies that an attractive tweet from the initiator has the potential to greatly enlarge
the growth rate. Note from Fig. 3 that Q(0.05)/T(0.05) at Ni = 104 and λs = 0.05
is approximately 0.06, and this implies that after 10 steps, the average community size
increases by 60%.
Because Q is independent of Ni (see Fig. 2(lower right)), it follows from (9) that

Q/T ↓ as Ni ↑. (14)

In other words, communities with a large number of supporters grow slowly. Figure 3
illustrates that Q/T at Ni = 105 is slightly smaller that at Ni = 104. Accordingly, the
growth rate is particularly sensitive to α and λs.
Let us next discuss Question 2 (viral content) using the cascade size W, which is

measured byW = R + Q. From (6)–(8),

Q(αQ) ↑,αQ ↓,αR ↓ as λs ↑ or λn ↑, (15)

which implies that cascade size W exhibits a higher peak at a smaller α as λs or λn
increases; i.e.,

W (αW ) ↑,αW ↓ as λs ↑ or λn ↑, (16)

where αW is the ratio α that maximizesW. Namely, a large number of users post retweets
(i.e., viral content emerges) at small α values where the social reinforcement effect is
considered to be small.
Let us intuitively explain why (16) occurs. Community members (i.e., supporters)

exhibit a greater tendency to post retweets than non-members (i.e., non-supporters)
because of the social reinforcement effect and λs > λn. When the value of λs is high, for
example, members easily retweet; therefore, by reducing α, more retweets must be sent
outside of the community, providing non-members more chances to retweet; otherwise,
the structural trapping effect becomes more pronounced. In other words, to maximize
W, the ratio αW controls the numbers of retweet messages flowing inside and outside the
community such that fewer (more) messages flow inside (outside) the community (i.e.,
αW is reduced) when the value of λs or λn increases (the sparse community effect).

The extendedmodel
Detailed user behavior

Asm 4 in “Results” section assumes that all non-supporters who post retweets become
supporters. This section relaxes the assumption and introduces exogenous link-creation,
which states that non-supporters become supporters without receiving retweets, by
replacing Asm 4 with the following assumptions:

Asm 5 The ratio of non-supporters who become supporters after retweeting βr (referred
to as the retweeter’s follow rate), which is given by

βr = #{x ∈ Sn|x posts a retweet and become a supporter}
#{x ∈ Sn|x posts a retweet} , (17)
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satisfies 0 < βr ≤ 1, where Sn is the set of non-supporters.

Asm 6 The ratio of non-supporters who become supporters without retweeting βn
(referred to as the exogenous link-creation indicator), which is given by

βn = #{x ∈ Sn|x becomes a supporter and does not retweet}
#{x ∈ Sn|x becomes a supporter} , (18)

satisfies 0 ≤ βn < 1.

Asm 7 The ratio of non-supporters who become supporters without retweeting after
receiving retweets c, which is given by

c = #{x ∈ Sn|x receives a retweet, becomes a supporter, and does not retweet}
#{x ∈ Sn|x becomes a supporter} , (19)

is fixed and 0 ≤ c ≤ βn.

Asm 4 corresponds to βr = 1 and βn = 0. Constant c in Asm 7 does not affect the output
of the extended model; while, Asms 5 and 6 require making the following modifications
to Algorithm 1:

• In line 2 in Algorithm 1, r(i− 1) + q̄(i− 1) (the number of supporters who retweet at
step i − 1) is replaced with r(i − 1) + βrq̄(i − 1).

• In line 4, Punret is revised as

Punret = Ni − r′ − ∑
1≤�≤i−1 r(�) + βr

βn
1−βn

∑
1≤�≤i−1 q̄(�)

Ni − 1 − (k − 1) + βr
(
1 + βn

1−βn

) ∑
1≤�≤i−1 q̄(�)

. (20)

The following explains (20). Figure 4 illustrates five non-supporter groups classified on
the basis of three actions: receive, retweet, and follow. In the figure, Nk denotes the size
of the k-th group at each step. Note that the previous model corresponds to the case of
N2 = N4 = N5 = 0. From (17)–(19),

Fig. 4 Non-supporters are classified into five groups on the basis of three actions (receive, retweet, and
follow) at each step. N1,N2, . . . ,N5 denote the sizes of these groups (e.g., N2 non-supporters post retweets
and do not become supporters)
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βr = N3
N2 + N3

, (21)

βn = N4 + N5
N3 + N4 + N5

, (22)

c = N4
N3 + N4 + N5

. (23)

Because the number of non-supporters who retweet at step � is q̄(�),

N2 + N3 = q̄(�). (24)

As a modification, the numerator in (3) must include N4 + N5 (the number of new
supporters who have not retweeted) of all previous steps and the denominator requires
replacement of N3, which corresponds to q̄(�), with N3 + N4 + N5 (the number of new
supporters) for all previous steps. From (21), (22), and (24),

N4 + N5 = βn
1 − βn

βrq̄(�), (25)

N3 + N4 + N5 = βrq̄(�) + βn
1 − βn

βrq̄(�). (26)

Therefore, compared with (3), the numerator in (20) includes a new term
βr

βn
1−βn

∑
1≤�≤i−1 q̄(�), and in the denominator,

∑
1≤�≤i−1 q̄(�) is replaced by

βr
(
1 + βn

1−βn

) ∑
1≤�≤i−1 q̄(�).

Let us next consider exogenous link-creation events (Antoniades and Dovrolis 2015),
which indicate that non-supporters become supporters without receiving retweets.
Therefore, the ratio of exogenous link-creation events in the link-creation events βe is
given by

βe = N5
N3 + N4 + N5

. (27)

Using (22), (23), and (27),

βn = βe + c, (28)

which indicates that βe linearly increases with βn. Therefore, βn is referred to as the
exogenous link-creation indicator.
The new assumptions redefine R (the relative number of supporters who retweet until

step T), Q (the relative number of non-supporters who become supporters until T), and
cascade size W (the relative number of users who retweet until T). Let Q̄ = ∑T

k=1 q̄(k)
and R̄ = ∑T

k=1 r(k). They are written as

R = R̄
(
Ni + βr

βn
1 − βn

Q̄
)−1

, (29)

Q = βr

(
1 + βn

1 − βn

)
Q̄/Ni, (30)

W = (
Q̄ + R̄

)
/Ni, (31)

where R is normalized such that it satisfies 0 ≤ R ≤ 1, and Q and W are quantities
relative to Ni. Note that Q and Q̄/Ni are different; Q̄/Ni denotes the relative number of
non-supporters who post retweets until T. Note also that the definition ofW is the same
as before.
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Relaxing sparse community effect

Figure 5 exhibits the effects of the retweeter’s follow rate βr and the exogenous link-
creation indicator βn. In Fig. 5(left) and (right), the solid lines correspond to the previous
model (i.e., βr = 1 and βn = 0). Because these parameters directly affect Q, it is natural
thatQmust increase with βr or βn. The effects of βr and βn can be summarized as follows:

αT ↓,αQ ↓,αR ↓ as βr ↑ or βn ↓, (32)

T(αT ) ↑,Q(αQ) ↑ as βr ↑ or βn ↑. (33)

From (32), an increase in βr strengthens the sparse community effect, whereas βn weak-
ens the effect. The following partly explains (32). An increase in βr or a decrease in βn
indicates that a percentage of retweeters in the community increases; therefore, to enlarge
R and Q, more retweets must flow outside the community, which implies that αQ and αR
decrease.
The extended model also satisfies the fundamental relations (5)-(9) in “Results” section

and exhibits the sparse community, social reinforcement, and structural trapping effects.
Therefore, the extended model provides the same discussion on Questions 1 and 2 as
in “Answering two questions” subsection.
Figure 6 illustrates the growth rate (Q/T) and the cascade size (W ) for different βr and

βn values. It can be observed from the figure that

Q/T ↑ as βr ↑ or βn ↑, (34)

W ↑ as βr ↑ or βn ↑. (35)

It is worth noting that in Fig. 6(upper left), Q(0.1)/T(0.1) at βr = 1 is approximately 50
times greater than that at βr = 0.1; i.e., a low retweeter’s follow ratemakes networks static.
In addition, from Fig. 6(lower right), the high peak of W at βn = 0.4 suggests another
mechanism that creates large-scale cascades.

Large cascade creation mechanisms

Figure 7 illustrates contour lines of cascade size W and growth rate Q/T on the α − λs
plane. Figure 7(upper left) exhibits the case wherein large-scale cascades emerge because
W = 16 implies W × Ni = 160, 000 retweets. This large cascade creation mechanism at
βn = 0 is referred to as the endogenous mechanism. The figure exhibits that

αW < 0.01. (36)

Fig. 5 Left: “αT ↓,αQ ↓,αR ↓, T(αT ) ↑,Q(αQ) ↑ as βr ↑” hold. Right: an increase in βn highly enlarges Q(αQ).
“αT ↑,αQ ↑,αR ↑, T(αT ) ↑,Q(αQ) ↑ as βn ↑” hold. Both figures show “αT < αQ < αR .” For all figures, solid
lines correspond to the previous model (βr = 1,βn = 0), λs = 0.01, λn = 0.0015, and Ni = 104
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Fig. 6 Upper left: “Q/T ↑ as βr ↑” and Q(0.1)/T(0.1)|βr=1 ≈ 50 × Q(0.1)/T(0.1)|βr=0.1 holds. Upper right:
“Q/T ↑ as βn ↑” holds. Lower left: “W ↑ as βr ↑” holds. Lower right: βn has a large impact onW. “W ↑ as βn ↑”
holds. For all figures, solid lines correspond to the previous model (βr = 1,βn = 0), λs = 0.01, λn = 0.0015,
and Ni = 104

Fig. 7 Upper left: contour lines ofW at λn = 0.002 and βn = 0. Large-scale cascades emerge at α < 0.01.
Upper right: contour lines ofW at λn = 0.001 and βn = 0. Large-scale cascades do not appear. Lower left:
contour lines ofW at λn = 0.001 and βn = 0.7. Large-scale cascades emerge at αW ∈ (0.05, 0.07). They
require somewhat weak social reinforcement. Lower right: contour lines of Q/T at λn = 0.002 and βn = 0.
Q/T is small if λs and α are both small. For all figures, βr = 0.5 and Ni = 104
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Inequality (36) coincides with (16). The figure also indicates that W significantly
decreases at low ratios α as λs decreases to 0.005. This result also agrees with the sparse
community effect because (6) is equivalent to

αQ ↑,αR ↑ as λs ↓. (37)

It must be noted that the cascade size is determined not by λs (content infectivity) but by
α (network structure) when α > 0.1.
Figure 7(upper right) is obtained using the same parameter values as Fig. 7(upper left)

except that λn is reduced from 0.002 to 0.001. Large-scale cascades do not appear in this
case. The maximumW falls to 2.5 and αW increases and satisfies

0.3 < αW < 0.4, (38)

which also coincides with (16). This result implies that large α values in (38) enlarge
small- and middle-scale cascades; i.e., non-viral content requires social reinforcement.
The result also demonstrates that large-scale cascades require not only a large λs but also
a large λn.
Figure 7(lower left) is calculated using the same parameter values as Fig. 7(upper right)

except that βn is increased from 0 to 0.7. In this case, large-scale cascades again emerge
because the maximum of W is 25. This large cascade creation mechanism is referred to
as the exogenous mechanism. From the figure,

0.05 < αW < 0.07, (39)

which indicates that compared with (36), this mechanism requires somewhat weak social
reinforcement. This result agrees with (32).
Figure 7(lower right) illustrates contour lines of growth rate Q/T obtained using the

same parameter values as Fig. 7(upper left). It can be observed that the α − λs plane is
separated into dynamic (high Q/T) and static (low Q/T) areas. The static area is located
in a small area where λs and α are both small. This result agrees with (13), Figs. 3, 6(upper
left), and 6(upper right). From Fig. 7(upper left) and (lower right), W and Q/T are not
correlated and they have the maximum values at different (α, λs) points.

Discussion
Implications of the findings

There are many studies that focus on the prediction of large-scale information cascades.
Figure 7(upper left) demonstrates the potential difficulty in predicting such information
cascades. From the figure, it can be observed that not only large-scale cascades but also
small- and middle-scale cascades appear at low ratios and their future sizes are highly
sensitive to α, λs, and λn. The same result can be seen in Figs. 2(upper left) and 2(upper
right), where R and Q vary significantly near ratio zero when λs and λn are high. It is
not easy to measure these rates accurately at the initial stage of a cascade because the
sample size at that stage is small. Even if the rates are accurately measured, the future
size will, in general, have a certain probability distribution. For example, W at (α, λs) =
(0.01, 0.01) in Fig. 7(upper left) is not deterministically given but will take values such
as 4, 6, and 8. Furthermore, ratio α, a network density indicator, itself may vary with
time (Antoniades and Dovrolis 2015; Oida and Okubo 2019). This paper considers the
ratio as time-invariant; however, if TRF events affect the network densities of Twitter
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communities (Antoniades and Dovrolis 2015), the prediction of viral content becomes
even more difficult.
This paper incorporated exogenous link-creation events into the model and demon-

strated that these events have the potential to create large-scale cascades. According to
(Antoniades and Dovrolis 2015), their occurrence probability is significantly low (two or
three orders ofmagnitude lower than the occurrence probability of TRF events). However,
big data analytical services, such as personalized recommendation in social networking
sites, may boost exogenous link creation in the future.
This paper presents a simplified model, focusing on two Twitter properties: the TRF

events and the existence of a dominant user with a large number of followers; never-
theless, the model reproduces social reinforcement and structural trapping effects and
presents many interesting causal relations related to Questions 1 and 2. This outcome
suggests that these properties are important factors for understanding real network
dynamics.

Limitations of this approach

The results in the paper are only hypotheses and must be validated by detailed event-
driven simulations or empirical evidence. Because of the uniformly-connected homoge-
neous agent and synchronous retweet assumptions (Asms 1–3), the model presents the
average behavior of the retweet diffusion phenomena. Tomeasure the effects of variations
in agent behavior or network structure, one approach is to introduce a heterogeneous
agent model with some network topological features. Another approach is to extend
the model such that communities or sub-communities inside a community have differ-
ent attribute values. The latter approach minimizes the complexity of the model and is
therefore suited to simulate large-scale diffusion processes. Using the recurrence rela-
tions and Algorithm 1 in the paper, the heterogeneous (sub)community model can be
easily derived.

Conclusions
This paper addressed the following questions: (1) Can the underlying network be con-
sidered static while a diffusion process is underway? (2) Why does viral content not
require strong social reinforcement? The paper introduced a recurrence relation model
that describes the retweet diffusion and community growth dynamics, in which one dom-
inant user (initiator) with a large number of followers posts a tweet, then retweets by
followers propagate the tweet, and TRF and exogenous link-creation events generate
new followers. Consequently, the community comprising the followers of the initia-
tor grows. The paper focused on the ratio of community members in the followers of
each community member (α), which is also a network density indicator of the com-
munity. The model not only illustrates the structural trapping and social reinforcement
effects but also presents several important relations among three ratios αT ,αQ, and
αR, three quantities R, Q, and T, and four parameters λs, λn,βr , and βn. Above all, the
magnitude relation (αT < αQ < αR), the sparse community effect, and the result
that Q(αQ) grows and T(αT ) falls as λs increases were directly associated with the two
questions.
The computational results derived from the model answered the two questions as

follows:
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(1) The criterion for network variability was the community growth rate. Except for
the cases in which the retweeter’s follow rate βr is significantly small or the commu-
nity size is extremely large, the growth rate is small when retweet rate λs and ratio
α are both small. If the condition does not hold, the growth rate may rise by more
than 10 times; i.e., the networks are potentially dynamic. Therefore, depending on
the evaluation conditions of diffusion models, the effect of topological changes must
be considered.
(2) There are two mechanisms that create large-scale cascades: the endoge-
nous and exogenous mechanisms. Currently, only the endogenous mechanism
is functional in the Twitter network. Both mechanisms demonstrated that the
cascade size is maximized at a low ratio α (i.e., at a low network density), at
which the social reinforcement effect is considered to be low. Thus, the model
reproduced the evidence that viral content does not require strong social rein-
forcement. This result is closely related to the sparse community effect, which
indicates that as the retweet rates increase, the α value that maximizes the
cascade size decreases. Therefore, large-scale cascades emerge only if the ratio
is low.
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