
ORIGINAL ARTICLE

Safety framework and platform for functions of future automotive
E/E systems

Jelena Frtunikj1

Received: 7 December 2015 / Accepted: 28 June 2016 / Published online: 6 July 2016

� Springer International Publishing Switzerland 2016

Abstract This paper proposes a new safety framework and

platform for the functions of future electrical/electronic (E/

E) systems. The framework aims to cope with the

increasing complexity of the E/E systems, and to enhance

their flexibility, but retain the safety properties and keep

low engineering costs. A domain-specific meta-model is

used to specify relevant aspects of the system such as

component interface requirements and function descrip-

tions. The meta-model is used in a tool that generates data

structures, which are then used to configure the fault-

management layer of the run-time environment. The fault-

management layer preserves the safety properties of the

system at run-time, by facilitating error detection and fault-

handling mechanisms, and supporting controlled adapta-

tion. By reusing already developed safety measures for

different systems and functions, future development costs

for non-functional qualities can be saved.

Keywords Adaptation � Automotive � Fault-tolerance �
Run-time environment � Safety

1 Introduction

Today’s E/E systems consist of growing number of inter-

connected and interacting computer subsystems. The

increase in safety–critical software-based functions in these

systems (e.g., increased software-based automated self-

driving operation in vehicles), the growing networking

subsystems and functions to each other (e.g., up to 100

interacting control units, sensors, actuators in a vehicle)

lead to a continuous increase of system complexity. Inte-

grating existing and new subsystems or system functions

drive engineering costs. System failures in these safety–

critical systems mainly arise in the interactions among

subsystems rather than the failure of individual subsystems.

To cope with the complexity of these systems in the

future, and to increase their flexibility and extensibility but

retain the safety properties and keep low engineering costs,

these systems have to be supported with a suitable devel-

opment approach and extended to contain a run-time

environment including configurable fault-management

safety mechanisms. A model-based approach and a fault-

management layer for a run-time environment, targeting

the automotive domain is offered as a solution to the

mentioned problems.

This paper is structured as follows. In Sect. 2, a short

overview of the main features of a new scalable fault-tol-

erant E/E architecture that aims at targeting the before-

mentioned problems is given. Section 3 presents the safety

framework by explaining the meta-model and the fault-

management of the run-time environment that is also part of

the new E/E architecture. An evaluation of the presented

approach and a rationale for the made assumptions is given

in Sect. 4. Section 5 compares the approach against avail-

able solutions provided by industry and scientific commu-

nity. The last section provides a brief summary and outlook.

2 Foundations of the new E/E platform-RACE

The challenges, mentioned before force a change of the

E/E system architecture. A new architecture was developed

in the robust and reliant automotive computing

& Jelena Frtunikj

frtunikj@fortiss.org

1 fortiss GmbH, An-Institut Technische Universität München,

Guerickestr. 25, 80805 Munich, Germany

123

Automot. Engine Technol. (2016) 1:93–105

DOI 10.1007/s41104-016-0007-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s41104-016-0007-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41104-016-0007-z&domain=pdf

environment for future eCars1 project [1]. In RACE, the

existing system architecture is replaced by a centralized

platform computer (CPC) that executes all high-level

functionalities (Fig. 1). In this architecture, sensors and

actuators become smart but still responsible for the low

level control tasks. These sensors and actuators are exe-

cuting high-level control commands calculated by appli-

cations deployed on vehicle control-computers (VCCs), the

electronic control units (ECUs) of the central platform

computer. The interconnection of these smart components

and the VCCs is done by a high-bandwidth Ethernet

communication. One type of vehicle control computer is a

duplex control computer (DCC). The main task of the DCC

is to execute control functionality. To guarantee fail–safe, a

DCC has two execution channels and both channels mon-

itor input and output data mutually. In case of channel

inconsistency, the faulty DCC backs out to not jeopardize

the operation of a RACE system. A fail-operational

behavior is guaranteed when at least a second DCC is

provided that takes over the control tasks after the first one

failed. Fail-operational behavior requires a redundant

power supply (Fig. 1, blue and red) and redundant com-

munication infrastructure for the redundant DCC

controllers.

The software architecture of the centralized platform

computer containing the run-time environment is designed

with different components including the ones of the fault-

management layer (Fig. 2, monitoring, detection, handling

components). A data-centric approach, used by the run-

time environment, enables the decoupling of applications

from the infrastructure components i.e., the DCCs. Dif-

ferent predefined topics are used to represent various

information of a vehicle, e.g., velocity or exterior tem-

perature. These topics are used for the communication

among software components over hardware boundaries.

The set of possible topics in one system is predefined in a

so-called Dictionary. The dictionary concept allows data

compatibility between different subsystems and SW com-

ponents, without requiring additional synchronization of

interfaces.

Demanding safety–critical E/E systems such as vehicles

operate under tight and hard real-time constraints. There-

fore, critical system functions are scheduled in time-trig-

gered manner under control of the internal clock rather than

in event-triggered manner where external incidents can

stress the system. This provides a safety–critical system a

more deterministic behavior for the mission for which it

was constructed and dimensioned. Thus, the SW compo-

nents including also the run-time environment components

in RACE are executed in cyclic manner (Fig. 2) with a

defined duration, e.g., 10 ms. A flexible assignment of two1 http://www.projekt-race.de/.

Fig. 1 RACE system architecture: fail-operational design with central platform computer and smart sensors and actuators

94 Automot. Engine Technol. (2016) 1:93–105

123

http://www.projekt-race.de/

or more SW components to computers is also supported by

the RACE run-time environment, enabling easy integration

of additional software functions. Support for mixed-criti-

cality, meaning SW components with different safety

criticality requirements can be executed on one control

unit, is enabled by spatial and temporal separation provided

by the PikeOS operating system.

3 Safety framework and platform

An overview of the safety-oriented framework and soft-

ware platform targeting future E/E systems is given in this

section. The approach workflow is summarized as follows:

A meta-model is defined, which allows function devel-

opers to explicitly specify and capture safety relevant

aspects of the system such as component interface

requirements and function descriptions. The meta-model is

to be used by a model-driven development tool. The tool

subsequently generates data that is used for configuration

of- and at run-time by the safety platform i.e., fault-man-

agement layer. The fault-management layer preserves the

safety properties of the system at run-time, by facilitating

error detection and fault-handling mechanisms on function

and on system level. The idea behind using a run-time

environment approach is to reuse the already developed

safety mechanisms for different systems and functions and

save future development costs spent on non-functional

qualities. By decoupling the system function logic from the

safety mechanisms the development of complex functions

is reduced.

3.1 Framework: modeling future E/E functions

The framework is based on modeling required information

(e.g., subsystem interface requirements) so that fast and

automatic error detection and fault-handling by the

platform at run-time is possible. Therefore, the necessary

meta-model (Fig. 3) for describing that information is

explained below as previously described in Frtunikj

et al. [2]. The model enables the composition of functions

from different subsystems (HW and/or SW) and the defi-

nition of different service rules. This is the first step

towards automated and uniform function description. With

this description a.k.a. Manifest, the designer of functions

and subsystems is able to specify the non-functional

requirements and characteristics. For example, information

such as: worst-case execution time (WCET), required

memory, safety requirements as ASIL level etc., required

and provided (subscriptions and publications) subsystem

data are specified. Based on this information, the configu-

ration for the fault-management layer of the run-time

platform is generated.

The composition of a system function is driven by the

identification and specification of basic subsystems, and

specification of the interactions across the subsystems, i.e.,

the linkages, that are needed to communicate the value and

temporal information across the subsystems from which the

aggregated system function results. The service level rules

represent specification of the quality of a system function

functionality after occurrence of failures of the subsystems

from which the function is composed. The information

about the integrity quality requirement is important for the

health monitoring mechanisms that provide information

required to determine the correct or faulty behavior of the

subsystem and thereby of a function. The meta-model is

used in an Eclipse-based model-driven development tool

CHROMOSOME Modeling Tool (XMT).2

System functions are grouped in set of system function

clusters. All system functions on the top layer are grouped

into clusters because functions with the same requirements

on safety can be managed using the same algorithms and

2 http://www.fortiss.org/en/research/projects/chromosome/.

Fig. 2 DCC channel SW architecture concept

Automot. Engine Technol. (2016) 1:93–105 95

123

http://www.fortiss.org/en/research/projects/chromosome/

reconfiguration mechanisms. The grouping of system

functions is based on the safety properties of the functions

such as: (a) criticality level of the function [in the

automotive standard called automotive safety integrity

level (ASIL)]; (b) performance requirements regarding

fail-operational or fail–safe behavior.

Fig. 3 Meta-models defining function and its composing subsystems

96 Automot. Engine Technol. (2016) 1:93–105

123

It is important to emphasize that each of the subsystems

has configuration description that expresses additional

restrictions, required to be considered at run-time. For

example, if the subsystem is a sensor, the configuration

description contains information such as sensor position,

viewing direction, maximum distance, type of target or

collision objects w.r.t. geometry and material data, etc. [3].

The information is used to check if the data from one type

of sensor in case of failure can be replaced by the data from

another type of sensor [4].

3.2 Software platform: fault-management layer

for future E/E functions

Since vehicles are complex safety–critical systems, layered

system design paradigm copes with such complexity by

focusing on those aspects of the system that support the

design activities at the corresponding level of abstraction.

Therefore, a multi-layered SW architecture is offered in

this paper in which a fault-management layer that guar-

antees the predefined safety properties at run-time, repre-

sents one of the layers (Fig. 4). The generic fault-

management layer simplifies the development of complex

vehicle functions by releasing the functionality from safety

properties, and enables safe integration and execution of

the vehicle functions.

For realizing a fault-management layer that detects

errors and handles faults, self-monitoring and self-healing

control components are needed. These components super-

vise the system and initiate the adaptation during run-time

in case of faults by using control loops. In the autonomic

computing (AC) paradigm, the elements of the system are

managed by control loops based on the so-called MAPE-K

(monitor, analyze, plan, execute-knowledge based)

cycle [5]. The control loop continuously monitors and

analyzes the system and its environment and based on this

information it plans the next steps and executes the planned

actions. The different phases have access to a common

knowledge base which provides information about the

changes within the system or in the systems environment.

Below an overview of the tasks that are executed in each

MAPEK phase in the context of the presented approach is

given.

Monitor In this phase the monitoring components of the

run-time environment collect the error indication infor-

mation of the managed components. The parameters,

which need to be monitored, are given by the requirements

specified in the meta-model, and are supervised by health

monitoring subsystem of the run-time environment.

Analysis During this stage the error indications and the

available information in the knowledge base are analyzed

to determine the health state of each subsystem in the

system, and assess whether an adaptation is required.

Plan The plan stage provides mechanisms that deter-

mine a set of actions (e.g., new configuration) required to

adapt the system in order to maintain its safety properties.

Execute During this stage the planned actions are exe-

cuted to transition the system into an improved or safer

state. Additionally, extra artifacts created during the plan-

ning phase are added to the knowledge base and can be

used when a new need for adaptation is detected.

An overview of the core concepts and components of the

fault-management layer is given below. The MAPE phases

i.e., the phases of error detection (health monitoring),

consolidation of error indications, health state determina-

tion and fault-handling, and the mapping to components of

the fault-management layer is depicted on Fig. 5.

3.2.1 Monitor and analysis: error detection and state

management

A system function is considered as a composition of sub-

systems (Fig. 3 in Sect. 3.1). Since the subsystems have

precisely specified interfaces in the domains of time and

value, that information is used for configuring the safety

mechanisms of the run-time system, which provide

Fig. 4 Layered design

Automot. Engine Technol. (2016) 1:93–105 97

123

information and error indications required to determine the

health state of the corresponding subsystems. The meta-

model introduced before generates configuration informa-

tion for the diverse safety mechanisms of the fault-tolerant

layer, which are able to detect errors (i.e., deviation from a

correct behavior) of subsystems at run-time. The infor-

mation that the error detection mechanisms produce i.e.,

error indication (VALUEIndication or TIMEIndication) can be

mapped to the health state of the defined subsystems.

Each of the subsystem interfaces is specified in the two

domains: the value a.k.a. content associated with the

interface, and the time at which this content is presented. A

value error (VALUEIndication) happens when the content of

the information delivered at the interface (i.e., the content)

deviates from the specified one. When the time of arrival or

the duration of the information delivered at the interface

deviates from the specified one, a time error is detected

(TIMEIndication).

A differentiation is made between detection of transient

and permanent errors. This is done by introducing config-

urations of each error indicator which is configured indi-

vidually based on the defined requirements. The

configuration has the following information: increment,

decrement, and threshold, as a three-tuple (increment,

decrement, threshold). Whenever an error of a certain

subsystem is registered at receiver side the error indication

is incremented by increment value. As soon as the

threshold is reached then the error of a system is confirmed

i.e., recognized. In a case when the error is not present the

error indication is decremented by decrement.

The subsystems represent modular fault-containment

regions (FCR) [6] which are seen as black box w.r.t. error

detection. Failure modes of FCRs are defined according to

the effects appearing at the signal interface of an FCR.

Therefore, the defined FCRs have precisely specified

interfaces requirements, which are needed to detect

anomalies (failures) at run-time. This means, in a case of a

failure the FCR and with that the subsystem is marked and

handled as faulty. The following relevant FCRs/subsystems

are defined and they can be composed to form a system

function:

• Execution nodes (sensors and actuators with their

corresponding SW computing units).

• Application software components—SW functions

implementing the system function control algorithm

including its resource partition (time and space) in

which it is running.

The above FCRs are strictly modular and encapsulated,

which is important in order to uniquely restricts and assign

the impact of a fault to a certain subsystem. Below a brief

explanation of the error detection mechanisms is given.

Moreover, it is shown how the information that they pro-

duce (error indications) can be mapped to the health state

of the defined FCRs.

A: Error detection.

The error detection approach is mainly based on error

indications produced by safety mechanisms that

detect errors of: (a) communicating FCR execution

node or network element by analyzing error indica-

tion that are result of errors detected in Ethernet

frames related to the sending FCR/subsystem. This

failure is a result of a HW fault in the corresponding

FCR; (b) local FCR computing unit by analyzing

error indication produced by global tests preformed

on that unit. This failure is a result of a HW fault in

the corresponding FCR; (c) application software

components by analyzing error indication produced

by the operating system environment and application

heath monitors. These errors are a result of a SW

Fig. 5 Fault-management layer

98 Automot. Engine Technol. (2016) 1:93–105

123

fault in that application software FCR. The error

detection mechanisms forward their error indications

to the Health Monitoring component of the fault-

management layer.

Error detection of communicating subsystem Since it

is assumed that execution nodes communicate only

via exchange of messages, an error of a communi-

cating node or a network element is discovered on

the receiving node solely by message (a.k.a. frame)

evaluation. A message can be incorrect in the value

domain if the data field of the message contains a

corrupted value. In addition, an incorrect message in

the time domain is recognized if the message is sent

at an unintended instant or not at all. All these errors

can be detected by the safety mechanisms e.g., cyclic

redundancy code (CRC) check in the receiving

FCR/subsystem, provided the safety mechanisms

have a priori knowledge about the correct behavior

of a subsystem. Thus, correct behavior can be

considered only in the case when the following

quality characteristics can be recognized by the

monitoring mechanisms: (a) correct timing—a mes-

sage containing updated data is received in a

previously defined time frame, (b) correct cyclic

redundancy code—a CRC check of the complete

frame is valid; (c) correct value—a message contains

plausible data (valid data). In case a violation of any

of the above-specified behavior is detected by the

monitoring safety mechanisms, respective

VALUEIndication or TIMEIndication is updated.

Error detection of local subsystem Error indications

that point to errors in the hardware parts of the local

FCR execution unit is also taken into consideration.

Therefore, the results of global tests such as periodic

CPU tests, validation of ROM/Flash check-sums,

memory tests, and hardware-assisted built-in self-

test, update the error indication VALUEIndication of the

local FCR [15].

Error detection of application software components

The error detection concept of application software

components is built around various monitor compo-

nents, tests, and plausibility checks, which report

their status through setting the corresponding indi-

cations. Application-specific monitor is a specific

supervisor developed for a concrete software com-

ponent independently based on function specifica-

tion [15]. Typical examples are plausibility checks

developed by an independent team. This kind of

monitor has read access to input data and internal

state of the function and performs checks to ensure

state consistency and transition correctness. Since we

are dealing with a mixed critical system, meaning

SW components with different criticality levels, i.e.,

ASIL, can be deployed and run on a same computing

unit, time and memory partitioning is used to avoid

interference between the functions. However, if an

application violates the memory or timing resources

allocated to it due to design faults, the application-

independent safety mechanisms notify the fault

(updates the VALUEIndication or TIMEIndication of the

application FCR).

B: State management of fault-containment regions.

By analyzing the error indications at run-time the

health state of each FCR is determined. The benefit

of this kind of state management is the always

deterministic state of all subsystems and with that of

the complete system, which is essential w.r.t. safety.

A differentiation between the following FCR states is

made: (a) passive or isolated—deactivation or isola-

tion FCR when an error is detected in order to

prevent further error propagation; (b) active— tran-

sition of an FCR from a non-operation into a fully

operational state. In case of a detection of permanent

error, the FCR and the corresponding subsystem is

isolated, in a case of transient error the FCR is

passivated.

The information regarding the state a.k.a. health state

of the defined FCRs is collected in state vector on

each execution node and cyclically exchanged with

the other health state vectors of the other execution

nodes. In this way all execution nodes have the

information about the health state of other node and

with that of the whole system.

3.2.2 Plan and execute: system function service level

determination and reconfiguration

To enable calculation and appropriate determination of

system function (sf) service level at run-time, a run-time

system component named system function manager (SFM)

identifies the state of all subsystems belonging to all

functions in the system. This means the SFM is able to

determine the health state and the degradation level of all

subsystems (subS), based on the actual subsystem state and

the error indications that are result of the diagnosis of that

specific subsystems.

Depending on the error indications that the health

monitoring run-time system components generate and the

redundancy type of the subsystem (e.g., single, double,

triple redundancy etc.), the SFM identifies the health state

and calculates the degradation level of each subsystem at

run-time as presented in Frtunikj et al. [2]. Based on the

states and the redundancy information, the following

degradation level of the subsystems subSDegxi are defined:

Automot. Engine Technol. (2016) 1:93–105 99

123

• Degradation level 0 (subSDeg0): data available (no

error detected and the subsystem health state is active)

• Degradation level 1 (subSDeg1): data available but data

coming via one network link in the previously

mentioned system architecture are not available the

subsystem health state is active)

• Degradation level 2 (subSDeg2): data available but one

redundant subsystem from same type is faulty (meaning

lost) (the subsystem health state is active)

• Degradation level N (subSDegN): data are not available

due to a fault (the subsystem health state is isolated)

Certain system function sf can provide different level of

service depending on the state and degradation level of the

subsystems from which it is composed from. The infor-

mation about the degradation level of each subsystem is

used to calculate the level of service of a system function

sfLoS at run-time. Since only the function developer has

the knowledge and the expertise, which subsystems com-

pose and are required for certain system function, he is

responsible for defining the allowed service level of the

system function. A service level rule for a system function

is expressed by means of first-order logic using the meta-

model (Fig. 3) introduced before. The expression includes

all subsystems and their degradation state subSDeg. An

example of such an expression for a system function con-

sisting of three subsystems can look like:

sfLoS1 = subSDeg0i ∧ subSDeg1j ∧ subSDeg0k

An example system function sf in a vehicle is pedestrian

detection and auto brake function that consists of four

subsystems/FCRs: camera subScamera, radar subSradar, brake

subSbrake, and SW component implementing the algorithm

for pedestrian detection subSpdswc. Each of these subsys-

tems has different degradation levels depending on the

redundancy constellation:

• Camera: subSDeg0camera and subSDegNcamera
• Radar: subSDeg0radar, subSDeg

1
radar and subSDegNradar

• Brake: subSDeg0brake and subSDegNbrake
• Pedestrian detection SW component: subSDeg0pdswc and

subSDegNpdswc

The service level rules specified by the predicates define

the dependency between the specific function and the

sensors or actuators and other applications whose data are

required in order the function to work. The system function

degradation sfLoS can get values form 0 to N (0 lowest

(fully functionality) level and N highest (no functionality)

service level) which define the different service levels that

the system functions can have.

Based on the service level rules and the actual degra-

dation level subSDegxi of each subsystems, the boolean

expressions are evaluated at run-time and the ‘‘best’’ sys-

tem function service level sfLoS is calculated. For the

pedestrian detection and auto brake function the system

function developer has specified the following degradation

rules:

sfLoS0
pedDet = subSDeg0camera∧subSDeg0radar∧subSDeg0brake∧subSDeg0pdswc

sfLoS1
pedDet = subSDeg0camera∧subSDeg1radar∧subSDeg0brake∧subSDeg0pdswc

sfLoS2
pedDet = subSDeg0camera∧subSDegNradar∧subSDeg0brake∧subSDeg0pdswc

sfLoS3
pedDet =

Figure 6 graphically sketches the service level 2 of the

pedestrian detection system function.

3.2.3 Plan and execute: system level run-time

reconfiguration

The main goal to be achieved by the reconfiguration is to

improve the operational safety of the system also in case of

faults while preserving the required safety properties. A

reconfiguration can be considered in different scenarios

such as [8]: (a) granularity level—reconfiguration is either

performed at execution node or at partition level. For node

level reconfiguration, a spare execution node is allocated to

all SW applications running on the faulty computing node.

For partition level reconfiguration, spare partitions running

on non-faulty nodes are allocated to the applications run-

ning on the faulty computing node; (b) location—recon-

figuration can be performed either locally or distantly on

any module of the platform; (c) time—reconfiguration can

be performed while the system runs or while it is stopped

(e.g., vehicle driving or when the vehicle is stopped).

An important benefit of local reconfiguration over dis-

tant reconfiguration, is that it requires almost no reconfig-

uration of communication in comparison to the distant

reconfiguration. The loss of system functions when the

system is stopped has generally very little effect on safety.

So it is likely to be much simpler to show the innocuity of

reconfiguration on safety when it is performed when the

system is stopped.

After error(s) are detected, its impact identified via the

subsystem health state and exchanged via the health state

vectors between the executing nodes, the reconfiguration

manager component chooses one or multiple adaptation

options:

• Execute SW component belonging to a system function

in a different partition—a system function SW compo-

nent is instantiated on different partition on the same

execution node.

• Execute SW component belonging to a system function

on different execution node—a system function SW

components is instantiated on a different core node. In

case the previous core node is defective, the node will

also be isolated.

100 Automot. Engine Technol. (2016) 1:93–105

123

• Run system function with different allowed service

level—a system function is provided with fewer

resources during execution and the adaptation is based

on different execution paths of the function.

• Deactivate system function–system function SW com-

ponents are shut down.

It has to be emphasized that a clear distinction between an

allocation strategy and a reconfiguration strategy is made.

The allocation strategy should be done offline at design

time or when the system is not running, and the reconfig-

uration steps concentrate on deactivation of low critical

functions or start them in mode with lower service level at

run-time. Therefore, to enable a fast reconfiguration during

run-time and also do not jeopardize the safety and certifi-

ability of the system, a set of so-called configuration

allocation set (CAS) for each execution node is predefined

during the development process or when the system is not

running. Each CAS represents a fixed set of allocated

functionalities which have to be provided in a particular

context (e.g., system mode), resulting in a set of allocated

system functions. The allocation of the SW components

defined by the CAS is fixed; however, during run-time the

reconfiguration manager decides about activation or deac-

tivation of set of functionalities on a certain execution node

(local reconfiguration). In case of an execution node fail-

ure, an offline analysis that determines and later allocates/

loads new configuration allocation set (CAS) is done when

the vehicle is in a stationary position. In this case of distant

reconfiguration, the routing of the impacted switches must

be also modified to ensure the required traffic. The offline

analysis has access to the healthiness knowledge of the

system and before each start of the vehicle it checks

whether for all applications the correct level of redundancy

is available. It must be possible to restore the minimum

level of redundancy by moving the applications running on

the faulty module to a non-faulty one. If this is not the case

the vehicle cannot be used and is not able to be started by

the user.

The reconfiguration solution presented here is a dis-

tributed one. The Reconfiguration Manager component is

distributed on each node. Each local manager indepen-

dently realizes a local reconfiguration which communicates

via the health state vector with the other local supervisors

running on other nodes. Via the reconfiguration algorithm

the best utilization of local resources with respect to

specific system objectives (e.g., in this case the safety

requirement) can be realized. The reconfiguration proce-

dure is divided in three main steps:

Fig. 6 Pedestrian detection and auto brake function sfLoS2pedDet

Automot. Engine Technol. (2016) 1:93–105 101

123

A. Triggering a reconfiguration.

When a computing node or a partition fails, a

reconfiguration can be launched if this failure has an

operational and safety impact. The monitoring and

error detection function detects an error and sends this

event to the reconfiguration manager. This happens in

the Monitoring phase of the MAPEK cycle.

B. Selection of a correct configuration at run-time.

When the failure is confirmed, the reconfiguration

manager component must determine the current state

of the system in order to define the next configuration

(planing phase of the MAPEK cycle). Since each node

has already allocated configuration allocation set

(CAS) the algorithm explained below performs a local

node reconfiguration at run-time. The proposed recon-

figuration algorithm dynamically selects which soft-

ware components of the (CAS) belonging system

functions to be activated or deactivated in order to

maximize the safety properties of the system and to

ensure computing resources are conserved. Given the

limited computational power and the requirement for

timely response, the algorithm opts for approximate

answers rather than optimal solutions, so that accept-

able decisions can be decided quickly. As a result, the

algorithm is similar and can be compared to a Greedy

approximation algorithm.

The proposed three step algorithm is illustrated on

Fig. 7. Step 1 is to choose the system function cluster

based on the Cost Function 1 that should be present in

the system in order to satisfy the safety properties/

requirements. The cost function contains two variables

(and two coefficients) that can influence the score of

the function. The criticality variable ASIL (in the

automotive system meaning automotive safety integ-

rity level) can get values 0; 1; 2; 3; 4f g for

QM;ASILA;ASILB;ASILC;ASILDf g criticality level

respectively. The PerformanceRequirement can be

assigned values 1; 2f g for fail� safe and fail–opera-

tional behavior respectively. First the clusters with the

highest cost, meaning ASIL D and a performance

requirement (fail–operational) is selected. For the two

coefficients holds kþ d ¼ 1, and it is up to the system

architect to decide upon their weight.

Step 2 selects the SW components that belong to the

system functions of the selected cluster. Step 3 then

ensures that all selected SW components are activated

on one of the available execution units (DCC) and that

constraints (enough memory and CPU resources) for a

valid configuration hold. Failure of the activation

results in a re-execution of previous step, with SW

components that have smaller Cost Function 2 as a

result of service level. The service level can be decided

based on the allowed service level of the system

functions. Normally, the inferior service levels require

less hardware resources. As shown on Figure 7, the

score is dependent on the three parameters and their

corresponding weight coefficients. Despite of the

required resources, the priority of the function, which

states the importance (w.r.t. system safety) of the

system function within the cluster (which can have

values in range ½0�M� depending on the system

specification), also has influence on the score of the

Cost Function 2. Again, for the three coefficients holds

the following aþ bþ c ¼ 1. Depending on the system

requirements, the system architect may decide to

modify the coefficients values.

C. Reconfiguration execution.

The last phase of the MAPEK cycle is the execution

phase where the transition into an improved or safer

state is executed. A reconfiguration is said to be safe if

Fig. 7 Reconfiguration

algorithm

102 Automot. Engine Technol. (2016) 1:93–105

123

it satisfies some constraints. For instance, an applica-

tion software component can be hosted on a module

only if it provides adequate resources for the applica-

tion such as processing power or memory. A recon-

figuration transition is safe if the intermediate steps are

safe (they do not impact the integrity of the vehicle)

and the duration of the transition is bounded. Since

only predefined configuration sets are used during run-

time, the system may only exhibit predictable behavior.

To provide a dependable transition between CAS, a

transaction-based methodology is foreseen, consider-

ing the so-called ACID properties (atomicity, consis-

tency, isolation and durability) [14]. These properties

must be ensured by the mode change protocol, e.g., by

including a roll-back mechanism. A failing transition

might result in a predefined fall-back configuration.

Unwanted and uncontrolled behavior is not admitted

by this approach while enabling the adaptation of the

system regarding safety properties.

4 Approach evaluation

One of the fundamental design principles of the presented

approach is guaranteeing simplicity and expressiveness for

the modeling and re-usability and complexity reduction for

the fault-management layer. As showed in the previous

section, the principles were applied to both aspects i.e., the

modeling of safety requirements and properties of sub-

systems and system functions, and to the fault-management

layer architecture. The main idea of the approach is to

decompose safety into an expressive enough configuration

specifications and reusable mechanisms of the fault-man-

agement layer. The separation contributes to reduction of

the complexity of the system function since the fault-

management layer preserves the safety properties of the

system and its system functions at run-time.

However, some assumptions had to be made to make the

approach generative and be feasible for practice. Below we

identify these assumptions and discusses for each one, why

it is reasonably made.

4.1 Assumptions: safety modeling framework

The specified meta-model is not able to capture arbitrary

safety requirements, formulated in natural language.

Moreover, the restriction to the value and time quality

attributes of required and provided signals of each sub-

system excludes the explicit modeling of some aspects of

errors such as: correct, subtle incorrect, coarse incorrect

and omission in the value domain and correctly timed,

early, late and infinitely late in the time domain as defined

by McDermid [10]. However, by offering configurations

for each error indicator the aforementioned failure behavior

is modeled. One might argue that the possible choices of

value and time quality attributes are limiting the power of

the approach to a set of general error classes, but they are a

popular consensus in the research community.

4.2 Assumptions: safety platform

Decoupling of a transmitter and a receiver subsystem is

assumed in the presented approach. In RACE, this is per-

mitted by the usage of publish-subscribe paradigm. This

kind of decoupling on functional level increases flexibility

and offers the possibility to validate the data exchanged

between transmitter and receiver directly into the fault-

management layer. Therefore, the assumption is plausible

and also used in other run-time environments such as the

automotive AUTOSAR environment.

The approach assumes a time-triggered system such as

RACE, where the error detection and state management

mechanisms and the components of the fault-management

layer can be scheduled with cycle-precision. Therefore, the

safety platform, i.e., the fault-management layer cannot be

ported to event-triggered systems without much effort.

However, event-triggered systems are very rare in the

domain of safety–critical systems especially because of the

difficulty of demonstrating an execution determinism.

The approach also relies on an operating system that

enables time and space partitioning to run applications with

different safety and security levels on the same hardware,

protected from each other. PikeOS3 is a platform that

provides these kind of partitioning and which is used in the

RACE demonstrators i.e., test rack and test vehicle. The

targeted hardware platform which is used in RACE is

ARM�dual-core Cortex-A9 MPCore processor on which

PikeOS was running.

In the automotive industry, software components

assigned to an ECU cannot be easily transferred to other

devices after they have been deployed. This is because

today’s E/E architecture has a dedicated ECU for each

system function for safety and certification reasons, which

results in huge complexity. However, with the introduction

of the RACE architecture different software components

can be deployed to one control unit (DCC) and in case of a

resource scarcity highly safety–critical SW components

can be transferred to another control unit.

The execution of reconfiguration is currently only in a

basic prototypical phase where the so-called ACID prop-

erties are not guaranteed. Thus, already established results

3 https://www.sysgo.com/products/pikeos-rtos-and-virtualization-con

cept/.

Automot. Engine Technol. (2016) 1:93–105 103

123

https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

from other research groups developing transaction-based

methodologies have to be included in the future.

5 Related work

A lot of modeling languages exist in academia and industry

that are dealing with the questions modeling. Systems

modeling language (SysML) [11] is a general purpose

graphical modeling language for representing any kind of

system. The UML2 specification was adapted by SysML by

excluding unrelated diagrams and including new modeling

concepts and different types of diagrams for systems engi-

neering. The SysML language is able to capture require-

ments, structural modeling, and behavioral constructs.

Compared to the generic SysML, the presented meta-model

aims at specification of non-functional properties such as the

value and time quality attributes of subsystem interfaces.

The modeling and analysis of real-time and embedded

(MARTE) [12] profile is an OMG standard for modeling

real-time and embedded applications. MARTE provides

concepts for modeling and analyzing concerns of real-time

and embedded systems such as performance and schedu-

lability. In comparison to MARTE, the main aim of the

presented meta-model is not performing different types of

analysis at design time, but capturing and generating

information required for configuration of safety mecha-

nisms that ensure safety at run-time.

Over the last decade, many architecture description

languages (ADLs) have been developed to improve the

quality of automotive electronic and software systems.

Automotive ADLs such as EAST-ADL [13], TADL [14]

and AADL [15] are being defined to address not only the

architectural description or the representation issues but

also as a method to enable requirements traceability and

early analysis of a system. The main difference of these

languages to the model presented here is that the tool

environment for EAST-ADL and TADL aim, apart from

manual system design, at executing safety or timing anal-

ysis and not at using the gained information to influence or

configure the system design and automatic code generation.

A significant number of related work focusing on fault-

handling approaches and middlewares that aim at keeping

the safety system properties exist and some are mentioned

here. One of the main objectives of industrial automotive

standard AUTOSAR [16] version 4 release is to support

safety-related applications by implementing features to

comply with the ISO 26262 safety standard requirements.

The AUTOSAR execution environment safety capabilities

focus on the correct execution of software components

only, and the monitoring of functional behavior of the

system functions and components and fault-handling is

neglected and suggested to be handled at function level

(Explanation of Error Handling on Application Level in

latest AUTOSAR Release 4.2.1). In comparison to this, our

approach offers safety mechanisms for error detection and

handling as part of the run-time environment. In this way

the SW function code becomes simpler because the run-

time environment takes care of function safety. Moreover,

the approach enables easy and reusable system and func-

tion degradation by specifying intuitive degradation rules.

Thus, the approach presented here can be seen as an

extension and improvement to AUTOSAR.

FTOS [17] is a tool for model-driven development of

fault-tolerant real-time systems. It focuses on the generation

of code for non-functional system aspects. FTOS provides

four different meta-models that are used for HW modeling,

SW modeling, fault modeling and modeling of fault-toler-

ancemechanisms.An extension of FTOS, called SynDiawas

provided by Sojer [18]. The difference between FTOS and

SynDia, is that SynDia is able to generate diagnostic tech-

niques i.e., monitoring functions, as opposed to fault-toler-

ance mechanisms. FTOS and SynDia influenced the design

of the presented meta-model especially the detailed specifi-

cation of value and time failure classes that provide the

information for the monitoring functions. The difference

between the approaches is the introduction of FCRs and the

state-based management of them. In addition, the fault-tol-

erance meta-model of FTOS is used tomodel mechanisms to

handle faults on system function level. This is similar to the

service level specification of system functions. However, on

system function level FTOSdoes not consider providing data

from different sources. Moreover, FTOS does not offer

reconfiguration on the system level as an instrument for

adaptation when failures occur in the system.

Becker et al. [19] provide an approach to calculate and

analyze different SW function allocation (deployment) recon-

figurations to becomeactive after components become isolated.

Based on a formal systemmodel and a set of formal constraints

describing the validity of deploymentswith respect to the safety

concept, deployment/allocation of application is generated by

SMT-solver. This approach allows to formally analyze at

design time if the desired system and feature properties can be

fulfilled, likewhich set of features can still be provided after one

ormultiple isolation. In comparison to this approach, this paper

provides a run-time environment for system function degra-

dation and reconfiguration.The results presented in [19] canbe

used for calculatingConfigurationAllocation Set (CAS) that are

presented here.

6 Summary and future work

This paper presented an approach that enables specifying

safety as a visible and reusable property of future E/E

systems. The approach starts with defining a required meta-

104 Automot. Engine Technol. (2016) 1:93–105

123

model that enables specifying system functions and sub-

system interface requirements. Based on this information, a

configuration code is generated, which is used to config-

ure the error detection and fault-handling components of

the fault-management layer that ensure system safety at

run-time. The fault-management layer manages the sub-

systems and the system functions of a certain system in

normal and critical situations. Based on the information

from the meta-model and the information from the error

detection mechanisms, decisions regarding fault-handling

via controlled adaptation are made at run-time. To

demonstrate the practical feasibility of the approach, the

contributions are applied in a computer based Linux virtual

environment, test rack and in a prototypical vehicle [20].

Since the safety mechanisms (error detection and han-

dling) of the fault-management layer are offered out-of-the

box in the run-time environment and are clearly separated

from the system functions application logic, reduction of

the developing costs, i.e., efforts and time can be achieved.

Such layered architecture makes a significant contribution

to solving the software reuse problem in safety–critical

systems, since a system function application logic could be

ported to a new environment without any change in its

software interface.

In future work, an evaluation of how to integrate the

approach in AUTOSAR is planned. In this way its impact

can be shown. Additionally, an evaluation is to be per-

formed how to extend the concept of different service

levels in a Car2Car scenarios. For example, in a coopera-

tive adaptive cruise control scenario, bad wireless Car2Car

communication will result in a worse service level of the

function, where a larger inter vehicle distance shall be kept.

Acknowledgments The work presented here was partially funded by

the German Federal Ministry for Economic Affairs and Energy

(BMWi) through the RACE project.

References

1. Sommer, S. et al.: RACE: a centralized platform computer based

architecture for automotive applications. Vehicular electronics

conference (VEC) and the international electric vehicle confer-

ence (IEVC) (2013)

2. Frtunikj, J., Armbruster, M., Knoll, A.: Run-time adaptive error

and state management for open automotive systems. 4th work-

shop on open systems dependability, IEEE international sympo-

sium on software reliability engineering (2014)

3. Roth, E., Dirndorfer, T., Kilian v. Neumann-Cosel, Fischer, M.-

O., Ganslmeier, T., Kern, A., Knoll, A.: Analysis and validation

of perception sensor models in an integrated vehicle and envi-

ronment simulation. In: Proceedings of the 22nd Enhanced Safety

of Vehicles Conference (2011)

4. Frtunikj, J., Rupanov, V., Armbruster, M., Knoll, A.: Adaptive

error and sensor management for autonomous vehicles: model-

based approach and run-time system. 4th international sympo-

sium on model based safety assessment (2014)

5. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Comput-

ing. IEEE Computer Society Press, New York (2003)

6. Lala, J.H., Harper, R.E.: Architectural principles for safety-crit-

ical real-time applications. In: Proceedings of the IEEE (1994)

7. Frtunikj, J., Rupanov, V., Camek, A., Buckl, C., Knoll, A.: A

safety aware run-time environment for adaptive automotive

control systems. In: Embedded real-time software and systems

(ERTS2) (2014)

8. Bieber, P., Noulard, E., Pagetti, C., Planche, T., Vialard, F.:

Preliminary design of future reconfigurable IMA platforms.

SIGBED (2009)

9. Haerder, T., Reuter, A.: Principles of Transaction-oriented data-

base recovery. ACM Comput. Surv. (1983)

10. McDermid, J.A., Pumfrey, D. J.: A development of hazard

analysis to aid software design. In: Proceedings of the Ninth

Annual Conference on Computer Assurance (COMPASS) (1994)

11. Object Management Group: Systems modeling language

(SysML) specification version 1.2 (2010)

12. Object Management Group: UML profile for MARTE: modeling

and analysis of real-time embedded systems Version 1.1 (2011)

13. Cuenot, P. et al.: The EAST-ADL architecture description lan-

guage for automotive embedded software. In: Model-based

engineering of embedded real-time systems (2010)

14. Klobedanz, K., Kuznik, C., Thuy, A., Mueller, W.: Timing

modeling and analysis for AUTOSAR-based software develop-

ment: a case study. In: Proceedings of the Conference on Design,

Automation and Test in Europe (DATE) (2010)

15. Feiler, P., Rugina, A.: Dependability Modeling with the Archi-

tecture Analysis and Design Language (AADL). Carnegie Mellon

University, Software Engineering Institute, Pittsburgh (2007)

16. AUTOSAR Group: AUTomotive Open System ARchitecture

(AUTOSAR) Release 4.1 (2013)

17. Buckl, C.: Model-based development of fault-tolerant real-time

systems. PhD Thesis, Technische Universität München (2008)

18. Sojer, D.: Synthesis of online diagnostic techniques for embedded

systems. PhD Thesis, Technische Universität München (2012)

19. Becker, K., Schätz, B., Armbruster, M., Buckl, C.: A Formal

model for constraint-based deployment calculation and analysis

for faulttolerant systems. Softw. Eng. Form. Methods (2014)

20. Buechel, M. et al.: An automated electric vehicle prototype

showing new trends in automotive architectures. International

conference on intelligent transportation systems (ITSC) (2015)

21. Shelton, C.P., Koopman, P. , Nace, W.: A framework for scalable

analysis and design of system-wide graceful degradation in dis-

tributed embedded systems. In: Proceedings of the Eighth Inter-

national Workshop on Object-Oriented Real-Time Dependable

Systems (2003)

Automot. Engine Technol. (2016) 1:93–105 105

123

	Safety framework and platform for functions of future automotive E/E systems
	Abstract
	Introduction
	Foundations of the new E/E platform-RACE
	Safety framework and platform
	Framework: modeling future E/E functions
	Software platform: fault-management layer for future E/E functions
	Monitor and analysis: error detection and state management
	Plan and execute: system function service level determination and reconfiguration
	Plan and execute: system level run-time reconfiguration

	Approach evaluation
	Assumptions: safety modeling framework
	Assumptions: safety platform

	Related work
	Summary and future work
	Acknowledgments
	References

