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Abstract
In semi-competing risks (which generalizes the competing risks scenario), a subject 
may experience both terminal and non-terminal events, usually dependent, where the 
event time to the intermediate non-terminal event (say, tumor recurrence in cancer 
studies) is subject to censoring by the terminal event (say, death), but not vice-versa. 
As an alternative to the latent failure time formulation of semi-competing risks with 
joint survival functions, here, we consider an illness-death (multistate) shared frailty 
framework, where the dependency between the terminal and non-terminal failure 
times is incorporated via the power variance frailty between the conditional tran-
sition rates that are assumed Markov. Inference is conducted via maximum likeli-
hood. A simulation study is conducted to evaluate the finite sample performance of 
the model parameters. Finally, we compare and contrast our power variance frailty 
proposal to known alternatives via application to a colon cancer dataset. Relevant R 
code for implementation of our model is available in GitHub.

Keywords  Semi-competing risks · Frailty · Illness-death process · Proportional 
hazards · Dependent censoring

1  Introduction

In biomedical studies with survival endpoints, the eventual goal is to model the time 
until occurrence of an event of interest, say death. In some situations, the subjects 
under study can experience one of the several so-called ‘terminal’ events, and where 
the occurrence of an event precludes the subsequent occurrence of any other (Haneuse 
and Lee 2016). This is the classic ‘competing risks’ framework (Lau et  al. 2009), 
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where the time to the event of failure, and the cause of failure/censoring indicator is 
recorded for each observation. However, in many cancer clinical trials, the occurrence 
of an intermediate non-terminal event, such as tumor recurrence, is often the event 
of interest. This non-terminal recurrence may not prevent the subject from death (the 
terminal event), with the terminal event dependently censoring the non-terminal event, 
but not vice-versa. This is the semi-competing risks scenario (Fine et al. 2001).

Consider our motivating dataset generated from a randomized, multi-center, 
concurrently controlled clinical trial (Moertel et al. 1990, 1995) to determine the 
effectiveness of two adjuvant therapy regimens (‘levamisole only’, and ‘levamisole 
plus fluorouracil’) in improving surgical cure rates for stage III colon cancer. 
Clinically, a proper evaluation of the survival distribution of patients experiencing 
intermediate tumor recurrence following a specific treatment regimen post 
resection is necessary for an informed prediction of the risk of recurrence for other 
patients, and subsequent adaptive treatment strategies. Yet, this is challenging, 
given the strong positive correlation (see Fig.  1, left panel) between T1 (time to 
tumor recurrence) and T2 (time to death), with T1 ≤ T2 (data observed only in the 
upper wedge), which renders the typical independent censoring assumptions in 
survival analysis (Oakes 1993) and competing-risks (consisting of only terminal 
events) invalid.

There are two main approaches to analyzing semi-competing risks data. The 
first approach considers a joint distribution for (T1, T2) specified via a copula model 
in the upper wedge. Within the copula framework, Fine et al. (2001) considered a 
Clayton copula (Clayton 1978) with two margins, Wang (2003) considered a more 
general copula setting, while Lakhal et al. (2008) considered an Archimedean cop-
ula to estimate the dependency parameter. Related formulation considering time-
varying effects of a treatment on the marginal distribution of a non-terminal event 
was considered in Peng and Fine (2007) and Hsieh and Huang (2012). In addition to 
semiparametric transformation models (Chen 2012), more recent approaches (Zhou 
et al. 2016) tackled dependent censoring by first selecting a suitable copula model 
through an exploratory diagnostic approach (Bandeen-Roche et al. 2005), and then 

Fig. 1   Correlation plot of T1 and T2 for the colon cancer data (left panel). Illness-death model for data 
with semi-competing risks structure (right panel)
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developing an inference procedure to simultaneously estimate the marginal survival 
function of cancer recurrence, and an association parameter in the copula model. 
Recently, Peng et al. (2018) considered a semiparametric extension to handle clus-
tered semi-competing risks data. This latent variable formulation via a joint (copula) 
structure leads to hypothetical interpretation of the marginal distribution of the non-
terminal events, and also complicates covariance analysis (Xu et al. 2010). The sec-
ond approach casts the semi-competing risks problem into the classic illness-death 
(see, Fig. 1, right panel) compartment framework (Haneuse and Lee 2016), which, 
in reality, is a special case of multi-state models (Andersen and Keiding 2002). The 
concept of evaluating semi-competing risks fits naturally into the well-established 
illness-death paradigm (Xu et  al. 2010), where, a patient can either transit to the 
terminal event either directly, or via the non-terminal event, with the model com-
pletely specified via the transition intensity functions for the three distinct transi-
tions. Here, the dependency between T1 and T2 is introduced via a shared frailty, or 
random effects term. While Xu et al. (2010) considered a Gamma frailty, Jiang and 
Haneuse (2017) extended this to a class of transformation frailty models, allowing 
a wider range of possible frailty distributions. Within this illness-death framework, 
there exists other classical (Do Ha et al. 2020; Kim et al. 2019; Lee et al. 2021) and 
Bayesian (Han et al. 2014; Lee et al. 2015, 2016) frailty-based formulations of sem-
icompeting risks handling various data complications, such as interval-censoring, 
intermediate missingness, and bias reduction.

In this paper, we consider the power variance function (PVF, Tweedie 1984) as our 
choice of the frailty, under the illness-death formulation. The PVF is easily tractable 
(Wienke 2010) due to the closed-form expressions of the marginal survival function, 
and contains the gamma, inverse Gaussian and positive stable densities as special cases. 
Choice of the frailty density is crucial in modeling the dependence structure, and mis-
specified frailty may lead to biased results (Kiche et al. 2019). Although gamma and 
other frailties have been extensively considered in modeling semicompeting risks, 
considering a frailty family would be elegant from a generalization perspective, and 
thereby ascertain whether the fit of these sub-models (that are members of the family) 
are satisfactory.

The remainder of this article proceeds as follows. After a brief introduction to the 
PVF density, Sect. 2 presents the general illness-death model, with the corresponding 
marginal transition rates, joint marginal survival function, leading to its formulation 
using the PVF frailty. Section 3 develops inference via maximum likelihood, incorpo-
rating covariates. In Sect. 4, we apply our model to the colon cancer data. The finite 
sample performance of the model parameters are evaluated via a small simulation study 
in Sect. 5. Finally, Sect. 6 concludes, with a discussion. Proof of the theorem presented, 
as well as detailed derivations of various important results and likelihood construction 
appear in the accompanying Supplementary Material.
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2 � Statistical Model

2.1 � PVF Density

The PVF density, suggested by Tweedie (1984) and derived independently by Hou-
gaard (1986), is a three-parameter family with parameters 𝜇 > 0 , 𝜎 > 0 , and 0 < 𝛾 ≤ 1 , 
with the probability density function g(z) given by:

The expectation �[Z] = � and variance Var[Z] = �2∕� can be derived from the 
Laplace transform of the PVF density (Aalen et al. 1992) given by

The PVF density reduces to the gamma ( � → 0 ) and inverse Gaussian ( � = 0.5 ) dis-
tributions, respectively, while the stable density is a particular case of the PVF under 
some asymptotic considerations (Wienke 2010). Furthermore, the compound Poisson 
(cP) distribution (Aalen 1988), which can be constructed as the sum of a Poisson-dis-
tributed number of independent and identically distributed (iid) gamma random varia-
bles, can be shown to have the same Laplace transform as the PVF model under certain 
parameterization (Wienke 2010), except for the range of � , which can be negative in the 
cP model. Consequently, the density function coincides with the respective function in 
the PVF model.

2.2 � The Illness‑Death Framework

Assume n, the number of subjects in our study. Let Tj1 and Tj2 be the time to non-termi-
nal and terminal events, respectively, with Cj , the (right) censoring time for the jth sub-
ject, j = 1,… , n . If the subject dies before the occurrence of the non-terminal event, 
we define Tj1 = ∞ . This specification (Xu et al. 2010) avoids a latent distribution of 
(Tj1, Tj2) over the region t1 > t2 . Consider also the p-dimensional covariate vector 
�� = (xj1, xj2,… , xjp)

� observed for the jth subject. We also assume the censoring time 
Cj ⟂ of (Tj1, Tj2) , given �� . Under this setup, the observed data is denoted by 
D = (Yj1, Yj2, �j1, �j2, xj) , j = 1,… , n , where Yj1 = min{Tj1, Yj2} , �j1 = I{Tj1≤Yj2} , 
Yj2 = min{Tj2,Cj} , and �j2 = I{Tj2≤Cj}

 . Also, when �j1 = 0 and �j2 = 1 , we have 
Yj1 = Yj2 = Tj2 and Tj1 = ∞ . Since 0 ≤ Yj1 ≤ Yj2 , the observations lie on the upper 
wedge of the two-dimensional graph of (Tj1, Tj2) . For the joint probability model of 
(T1, T2) , we consider an absolutely continuous density f (t1, t2), 0 ≤ t1 ≤ t2 (Fig. 1, left 
panel). Thus,

(1)

g(z) = e
−�(1−�)(

z

�
−

1

�
) 1

�

∞∑
k=1

(−1)k+1
(�(1 − �))k(1−�)�k�
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Γ(k� + 1)

k!
z−k�−1 sin(k��),

(2)LZ(s) = �[esZ] = e
�(1−�)

�

[
1−

(
1+

�s

�(1−�)

)�]

�
∞

0 �
∞

t1

f (t1, t2)dt2dt1 = ℙ[T1 < ∞] ≤ 1,
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with the balance of the probability distributed along the line at t1 = ∞ with continu-
ous density f∞(t2) , t2 > 0 (Xu et al. 2010).

Now, under the illness-death specification, a subject in the initial state, or state 0 
(‘full resection of the tumor’) can transit directly to state 2 (‘death’ state), or first to state 
1 (‘tumor recurrence state’), and then to state 2. This is described in Fig. 1 (right panel). 
This model is completely specified by the transition or hazard functions for the three 
distinct transitions: a cause-specific hazard for the illness (tumor) recurrence, �1(t1) ; 
for death, �2(t2) ; and for death conditional to the time to illness recurrence, �12(t2|t1) , 
0 < t1 < t2 . These transition rates are defined as:

Note, in general, the rate of the terminal event following the occurrence of the 
non-terminal event at time T1 = t1 , �12(t2|t1) , can depend on both t1 and t2 . However, 
under Markov assumptions, �12(t2|t1) depends only on t2 , i.e., �12(t2|t1) = �12(t2) . 
The Markov model is most frequently used because of its simplicity (Meira-Machado 
et al. 2009). Intuitively, tumor recurrence can occur before the terminal event, but, not 
vice versa, and the occurrence of the non-terminal event can influence the occurrence 
of the terminal event, i.e., subject with tumor recurrence may die early. To quantify 
this (latent) dependency, we consider a shared frailty (or random effect) model (Wie-
nke 2010), where the event times T1 and T2 are considered conditionally independent, 
given the frailty. Denoting this frailty term by a random variable Z > 0 with �[Z] = 1 , 
we define conditional transition functions analogous to �1(t1) , �2(t2) and �12(t2|t1) as 
follows:

 where �0i(⋅) , i = 1, 2, 3 are the baseline hazard functions that can be considered 
parametric, or non-parametric. The current framework considers the same value 
of the frailty for the three conditional transition rates. The conditional transition 
rate for terminal event given that a non-terminal event has occurred, �12(t2|t1, Z) , 
is assumed Markov, i.e., �03(⋅) does not depend on t1 . The conditional explanatory 
hazard ratio, which characterizes the dependence between T1 and T2 , is given by 
EHR = �12(t2|t1, Z)∕�2(t2|Z) = �03(t2)∕�02(t2) , for t2 > t1 (Clayton 1978; Xu et al. 
2010). Thus, for �02(t2) ≠ �03(t2) (General model), the dependence of T2 on T1 is 
described both by the conditional (given Z) explanatory hazard ratio, �03(t2)∕�02(t2) , 
as well as by the common frailty Z, through its unknown parameter, which we 
denote by 𝜃 > 0 . When �02(t2) = �03(t2) , (Restricted model), the dependence of T1 
and T2 is completely specified by Z. The marginal transition rates can be expressed 

(3)

𝜆1(t1) = lim
Δ→0

ℙ[T1 ∈ [t1, t1 + Δ)|T1 ≥ t1, T2 ≥ t1]

Δ
, t1 > 0

𝜆2(t2) = lim
Δ→0

ℙ[T2 ∈ [t2, t2 + Δ)|T1 ≥ t2, T2 ≥ t2]

Δ
, t2 > 0

𝜆12(t2|t1) = lim
Δ→0

ℙ[T2 ∈ [t2, t2 + Δ)|T1 = t1, T2 ≥ t2]

Δ
, 0 < t1 < t2.

(4)
𝜆1(t1|Z) = Z𝜆01(t1), t1 > 0,

𝜆2(t2|Z) = Z𝜆02(t2), t2 > 0,

𝜆12(t2|t1, Z) = Z𝜆03(t2), 0 < t1 < t2,
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as a function of the Laplacian transform LZ(s) from the conditional transition rates. 
This result is presented in Theorem 1 below.

Theorem  1  Define the conditional transition rates �i(ti|Z) = Z�0i(ti) , i = 1, 2 , and 
�12(t2|t1, Z) = Z�03(t2) , where �0i(⋅) , i = 1, 2, 3 are the baseline hazard functions, 
and Z is a continuous random variable (frailty), with positive support having mean 
1 and finite variance. If the distribution of Z has Laplace transform, LZ(s) , then the 
marginal transition rates are given by 

where Δ03(t1, t2) = Δ03(t2) − Δ03(t1) and Δ0i(ti) = ∫ ti
0
�0i(t)dt , i = 1, 2, 3. are base-

line cumulative distribution functions.

Expressions for the conditional survival functions, and proof of Theorem  1 
appear in the Supplementary Material (Sections A and B, respectively). Wienke 
(2010) show that the joint survival function S(t1, t2) , for shared frailty models can 
be expressed as the Laplace transform of the frailty distribution evaluated at the 
cumulative baseline hazard. Along the lines of Xu et al. (2010), we can prove that

For the restricted model, the above expression reduces to

Note, considering the Laplacian of the gamma distribution, the expression 
in (6) above is the joint survival function proposed by Xu et  al. (2010) for the 
restricted case. Once we know the joint survival function, S(t1, t2) , we can com-
pute a local measure of association (Clayton 1978; Oakes 1982) between T1 and 
T1 , denoted by 𝜗⋆(t1, t2) , as a function of � , defined as:

 where � denotes the partial derivatives of the corresponding quantities. Here, 
𝜗⋆(t1, t2) = 1(> 1) implies independence (positive association) between T1 and T2 . 
Under the general and restricted models in (5) and (6), respectively, and assuming 
the PVF density, �∗(t1, t2) ( 0 < t1 < t2 ) is well-defined, and takes the form (deriva-
tion available in the Supplementary Material, Section C):

a. �i(ti) = −�0i(ti)
d

ds
log(LZ(s)), s = Δ01(ti) + Δ02(ti), i = 1, 2 and

b. �12(t2|t1) = −�03(t2)
d

ds
log

(
d

ds
LZ(s)

)
, s = Δ01(t1) + Δ02(t1) + Δ03(t1, t2).

(5)S(t1, t2) = LZ(Δ01(t1) + Δ02(t1) + Δ03(t2) − Δ03(t1)), 0 < t1 ≤ t2

(6)S(t1, t2) = LZ(Δ01(t1) + Δ02(t2)), 0 < t1 ≤ t2

(7)𝜗⋆(t1, t2) =
S(t1, t2)

𝜕2

𝜕t1𝜕t2
S(t1, t2)(

𝜕

𝜕t1
S(t1, t2)

)(
𝜕

𝜕t2
S(t1, t2)

)
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 We have lim
ti→∞

Δ0i(ti) = ∞ , i = 1, 2, 3 . Note, in both cases, � ⟶ 0 implies 
𝜗⋆(t1, t2) = 1 + 𝜃 , a constant in (t1, t2) , which corresponds to the gamma frailty. In 
this case, the association between T1 and T2 increases, or decreases with � . However, 
𝜗⋆(t1, t2) decreases with increasing time, with 𝜗⋆(t1, t2) → 1 as t1 → ∞ and t2 → ∞ . 
This implies that for a sufficiently large time, T1 and T2 are independent, but this 
does not happen for the gamma model. On the other hand, when 𝛾 < 0 (implying the 
cP model), 𝜗⋆(t1, t2) → ∞ as t1 → ∞ and t1 → ∞ , i.e., larger t1 and t2 leads to greater 
dependency.

2.3 � The Illness‑Death PVF Framework

In this section, we consider the illness-death framework for the general model; 
the corresponding results for the restricted model follows directly by assuming 
�02(⋅) = �03(⋅) . In Theorem  1, we consider the frailty Z distributed as a PVF, with 
�[Z] = � = 1 and Var(Z) = � = 1∕� (this choice avoids the identifiability problem). 
Thus, the marginal transition rates are:

Note, �12(t2|t1) , the marginal transition rate from ‘recurrence’ to ‘death’, depends 
on both t1 and t2 , and is therefore not Markovian, as opposed to its corresponding 
conditional transition rate, unless Z is constant (� = 0) . In this model, not all sub-
jects have the same value of the frailty. Hence, the conditional transition rates are 
only comparable within subjects sharing frailty. This causes the interpretation of the 
marginal and conditional transition rates to be different (Lee and Nelder 2004).

As stated before, the PVF density constitutes a family, which includes the 
Gamma, inverse Gaussian (IG) and positive stable densities (Wienke 2010). In 
Table 1, we present the marginal transition rates for the Gamma and IG densities; 
these results were obtained from Eq. (9). The marginal transition rates for the cP 
model (when 𝛾 < 0 ) are similarly obtained. An interesting property of the cP model 
is that it allows for a fraction of individuals with zero frailty who never experience 
the event under study (Wienke 2010). The size of the non-susceptible fraction, p0 , is 
obtained when (t1, t2) → ∞ in S(t1, t2) , i.e., using the Laplacian (2) in (5) for 𝛾 < 0 
and assuming lim

ti→∞
Δ0i(ti) = ∞ , i = 1, 2, 3 , we can show

(8)�∗(t1, t2) =

⎧
⎪⎨⎪⎩

1 + �
�
1 +

�(Δ01(t1)+Δ02(t1)+Δ03(t2)−Δ03(t1))

1−�

�−�

, General M.

1 + �
�
1 +

�(Δ01(t1)+Δ02(t2))

1−�

�−�

, Restricted M.

(9)

𝜆i(ti) = 𝜆0i(ti)

(
1 +

𝜃(Δ01(ti) + Δ02(ti))

1 − 𝛾

)𝛾−1

, ti > 0, i = 1, 2.

𝜆12(t2|t1) = 𝜆03(t2)

(
1 +

𝜃(Δ01(t1) + Δ02(t1) + Δ03(t1, t2))

1 − 𝛾

)−1

×

[
𝜃 +

(
1 +

𝜃(Δ01(t1) + Δ02(t1) + Δ03(t1, t2))

1 − 𝛾

)𝛾]
, 0 < t1 < t2.
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The marginal transition probabilities ℙ01(t1) , ℙ02(t2) and ℙ12(t2|t1) are defined 
as the probability of being in state 1 at time t1 given that the previous state 0 was 
entered at time 0, the probability of being in state 2 at time t2 given that the previ-
ous state (state 0) was entered at time 0, and probability of being in state 2 at time 
t2 given that the previous state (state 1) was entered at time t1 , respectively. These 
quantities are estimated by integrating the conditional transition rates over the pos-
sible transition times,

where s1(t, t1) = Δ01(t) + Δ02(t) + Δ03(t, t1) , s2(t, t1) = Δ01(t) + Δ02(t) and 
s3(t, t1) = Δ03(t1, t) . The integrals in (11) will be solved numerically, and the appears 
in proof of this result appear in the Supplementary Material (Section C).

3 � Maximum Likelihood Inference

In this section, we develop the inferential procedures for our illness-death model via 
maximum likelihood (ML). Hereafter we assume a Weibull distribution for hazard 
baseline function �0i(t) = �i�it

�i−1 , for 𝛼i > 0 and 𝛽i > 0 , i = 1, 2, 3 . We incorporate 
covariates in the conditional transition rates (4) as follows:

where x = (x1,… , xp)
� is a subject-specific vector of p covariates, 

�i = (�i1,… ,�ip)
� , i = 1, 2, 3 are vectors of coefficients, and Z is the subject-

specific shared frailty, distributed independently of x . The corresponding marginal 

(10)
p0 = lim

t1 → ∞

t2 → ∞

S(t1, t2) = exp

(
1 − �

��

)
.

(11)

ℙ0i(t1) = ∫
t1

0

�01(t)

(
1 +

�si(t, t1)

1 − �

)�−1

exp

{
1 − �

��

[
1 −

(
1 +

�si(t, t1)

1 − �

)�]}
dt, i = 1, 2.

ℙ12(t2|t1) = ∫
t2

t1

�03(t)

(
1 +

�s3(t, t1)

1 − �

)�−1

exp

{
1 − �

��

[
1 −

(
1 +

�s3(t, t1)

1 − �

)�]}
dt

(12)
𝜆1(t1|Z, x) = Z𝜆01(t1) exp (�

�
1
x), t1 > 0

𝜆2(t2|Z, x) = Z𝜆02(t2) exp (�
�
2
x), t2 > 0

𝜆12(t2|t1, Z, x) = Z𝜆03(t2) exp (�
�
3
x), 0 < t1 < t2

Table 1   Marginal transition rates for the Inverse Gaussian (IG) and Gamma model

Model Marginal transition rates

�
i
(t
i
) t

i
> 0 , i = 1, 2 �12(t2|t1) , 0 < t1 < t2

IG ( � = 0.5) �0i(ti)

1+2�(Δ01(ti)+Δ02(ti))
1∕2

�03(t2)�+(1+2�(Δ01(t1)+Δ02(t1)+Δ03(t1,t2)))
1∕2

(1+2�(Δ01(t1)+Δ02(t1)+Δ03(t1,t2)))

Gamma ( � → 0) �0i(ti)

1+�(Δ01(ti)+Δ02(ti))

�03(t2)(�+1)

1+�(Δ01(t1)+Δ02(t1)+Δ03(t1,t2))
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transition rates with covariates are the same as in (9), where the baseline hazard 
functions, �0i(⋅) , and the cumulative baseline hazard functions, Δ0i(⋅) , are multiplied 
with exp (��

i
x) for i = 1, 2, 3.

The likelihood function is constructed via the conditional transition rates 
from each of the 4 possible cases, (�j1, �j2) = (1, 1), (0, 1), (1, 0), (0, 0) , and 
then integrating out Z. In this model, we assume the covariate effects are same 
at all times, and the censoring time Cj is independent of ( Tj1, Tj2|xj ). Denote 
� = (� , �, �1, �2, �3,�1,�2,�3) , the parameter vector to be estimated, where 
�i = (�i, �i) is the parameter vector of the Weibull model for the rate �0i(⋅) and 
�i = (�i1,�i2,… ,�ip)

� , the coefficient vector, i = 1, 2, 3 . The log-likelihood func-
tion for � given observed data is:

where K1(xj) = (Δ01(Yj1)e
��
1
xj + Δ02(Yj1)e

��
2
xj + Δ03(Yj1, Yj2)e

��
3
xj ) , and 

K2(xj) = (Δ01(Yj1)e
��
1
xj + Δ02(Yj1)e

��
2
xj), j = 1,… , n . The details on the derivation 

appear in the Supplementary Material (Section D). In the restricted model, note that 
�02(Yj2) = �03(Yj2) , for j = 1, 2,… , n . However, to guarantee that EHR = 1 , we also 
consider �2 = �3 . Thus, the expression in (13) is reduced to the likelihood function 
of the restricted model.

The ML estimator of � ( ̂� , say) can be obtained via numerical optimization of 
�(�) , utilizing the optim function in R. Although all parameters can be estimated 
this way, here, we adopt a more computationally efficient profile likelihood approach 
for � . The maximization of �(�) is a two-step procedure. In general, it is reasonable 
to expect the parameter � to belong to the interval (−�, 1) , 𝜏 > 0 , since 0 ≤ � ≤ 1 
represents the PVF model, while 𝛾 < 0 in the cP model. Hence, the first step involves 
specifying � to take values in this interval, and determine the corresponding ML 
estimates �̃(�) , �̃1(�) , �̃2(�) , �̃3(�) , �̃1(�) , �̃2(�) , and �̃3(�) , and the corresponding 
(maximized) log-likelihood function �max(�) . In the second step, the log-likelihood 
function �max(�) is maximized, and 𝛾̂ is obtained. The ML estimates of � , �1 , �2 , �3 , 

(13)

�(�) =

n∑
j=1

{
�j1 log �01(Yj1) + �j2(1 − �j1) log �02(Yj2) + �j1�j2 log �03(Yj2)

}

+

n∑
j=1

{
�j1�

�
1
xj + �j2(1 − �j1)�

�
2
xj + �j1�j2�

�
3
xj

}

+

n∑
j=1

{
�j1�j2 log

[
� +

(
1 +

�K1(xj)

1 − �

)�]
+ �j1(� − 1 − �j2) log

(
1 +

�K1(xj)

1 − �

)}

+

n∑
j=1

{
log

[
�j1(1 − �)

��

(
1 −

(
1 +

�K1(xj)

1 − �

)�)]}

+

n∑
j=1

{
(� − 1)�j2(1 − �j1) log

(
1 +

�K2(xj)

1 − �

)}

+

n∑
j=1

{
log

[
(1 − �j1)(1 − �)

��

(
1 −

(
1 +

�K2(xj)

1 − �

)�)]}
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�1 , �2 , �3 are, respectively, given by, 𝜃̂ = �𝜃(𝛾) , �̂1 = �̃1(�) , �̂2 = �̃2(�) , �̂3 = �̃3(�) , 
�̂1 = �̃1(�) , �̂2 = �̃2(�) and �̂3 = �̃3(�) . Under suitable regularity conditions 
(Maller and Zhou 1996), it can be shown that the asymptotic distribution of the 
MLE �� = (𝜃̂,��1,��2,��3, ��1, ��2, ��3) is multivariate normal with mean vector � and 

covariance matrix �(��) =
{
−

𝜕2�(�)

𝜕�𝜕�⊤

}−1

= {−J(�)}−1 , evaluated at � = �̂ . The ele-
ments of the observed matrix J(�) are obtained numerically from the Hessian 
matrix, using the optim function. An asymptotic confidence interval with signifi-

cance level � for each parameter �r is given by 
�
𝜗̂r − z𝛼∕2

√
�Σr,r, 𝜗̂r + z𝛼∕2

√
�Σr,r

�
 , 

where Σ̂r,r is the rth diagonal element of �̂(�̂) estimated at �̂ , for 
r = 1,… , p + dim(�) + 1 , dim(⋅) denotes the dimension of the parametric space, 
and z�∕2 is the 1 − �∕2 quantile of the standard normal distribution.

4 � Application: Colon Cancer Data

We now apply the illness-death model to the dataset generated from the stage III 
colon cancer clinical trial. The data appears as the colon data in the R survival 
package (Therneau 2015). Here, patients who had curative-intent resections of can-
cer were assigned to one of the (1) observation only, (2) Levamisole (Lev) only, 
and (3) Lev + Fluorouracil (5-FU). Here, after the full surgical resection of tumor, 
929 patients were followed for 5 years or more (median follow up = 6.5 years). The 
scientific objective here is to evaluate covariate and treatment effects on the rates 
of the terminal and non-terminal events, and the dependence between these events. 
After deleting subjects with incomplete data and missing observation times, we have 
a subset of n = 888 patients with approximately 50% of censoring. For each patient, 
we have tj1 : time to tumor recurrence (in years), tj2 : time to death (in years), and xj : 
treatment (Observation only, Lev, Lev + 5-FU), j = 1,… , 888 . R code for imple-
menting our model are available in the GitHub link: https://​github.​com/​bandy​opd/​
PVF-​Semic​ompet​ing.

We consider a Weibull baseline hazard, specified by �0i(t) = �i�it
�i−1 , i = 1, 2, 3 , 

with the term incorporating covariates in (13) as �ij = exp(�i1xj1 + �i2xj2) , 
j = 1,… , n , where the covariate (treatment) effects are defined via dummy variables 
as:

We now fit our illness-death model with the PVF frailty, with the particular cases: 
Inverse Gaussian (IG, � = 0.5 ), and Gamma ( � → 0 ). The parameter � was estimated 
via profile likelihood; see Fig. 2 for the respective plots corresponding to the full 
and the restricted model. The ML estimates (MLE), standard errors (SE), the cor-
responding confidence intervals (95% CI) are listed in Table 2, for both the general 

x1 =

{
1, if Levamisole;

0, otherwise
and x2 =

{
1, if Levamisole+5-FU;

0, otherwise.

https://github.com/bandyopd/PVF-Semicompeting
https://github.com/bandyopd/PVF-Semicompeting
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and restricted models. In both cases, we observe a strong evidence of dependence 
between time to recurrence, and death (revealed by the estimate of � ). Note, for the 
three frailty models, 𝜃̂ is smaller in the general model, indicating that part of the 
dependency between T1 and T2 is captured by the varying baseline hazards. We also 
observe that although Lev alone has no significant effect on the risk of recurrence, 
the combination (Lev + 5-FU) does. In addition, both regimens do not have any 
significant effect on the risk of death, with or without tumor recurrence, as revealed 
from both models.

Model comparisons were conducted using the popular AIC/BIC criteria and pre-
sented in Table 3. For the restricted model, Gamma frailty provides a (marginally) 
better fit, also revealed in Table  2 (since, 𝛾̂ estimate is very close to zero.) Note, 
although the log-likelihoods for PVF and Gamma were almost identical, the ΔBIC 
(difference between the BICs) was more prominent (compared to ΔAIC), yet not 
exceeding the ≥ 10 rule of thumb (Anderson and Burnham 2004) to generate some 
enthusiastic support for the Gamma model. For the general model, both ΔAIC and Δ
BIC were < 10 , implying considerably less support for the Gamma model. Although 
both models can be chosen, we consider the PVF/cP model in our subsequent analy-
sis. The estimated proportion of patients remaining disease free, i.e., p̂0 (given in 
(10)) is 0.2561, which implies that after a long period of time, approximately 25% 
of patients might experience neither tumor recurrence nor death from colon cancer 
after complete tumor resection surgically.

In Fig.  3 (left panel), we plot the conditional explanatory hazard ratio (HR) 
including covariates, given by EHR =

𝜆03(t2)

𝜆02(t2)
exp

[
(�T

3
− �T

2
)x
]
, t2 > t1 . Here, EHR 

describes how the risk of death changes over time, given that the tumor recurrence 
occurred at time t1 (Lee et  al. 2015). In particular, EHR > 1 implies tumor recur-
rence has an effect on the hazard of death due to colon cancer. Although EHR does 
not depend on t1 due to it’s Markov structure, it’s interpretation depends on the con-
dition t2 > t1 , for all t1 fixed. For a better visualization, we zoomed in on the EHR 
curve (see Fig. 3, right panel). We observe that the EHR for patients under the com-
peting regimens (Observation only, Lev only, and Lev + 5-FU) is 1 at approximately 
t = 19.5, 33.5 and 38 years, respectively. This implies that at those instants, the time 
to tumor recurrence has no effect on death.
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In Fig.  4, we plot the marginal transition rates, 𝜆̂1(t) and 𝜆̂2(t) , stratified by 
treatments. We observe that in the first year, the patients following Lev+ 5-FU 
regimen have a lower risk of tumor recurrence, compared to patients in the other two 
groups. This finding is consistent with Table 2, where we observe a significant effect 
only for the Lev + 5-FU group on tumor recurrence. However, the transition rate 
to death (from 𝜆̂2(t) ) is higher with Lev + 5-FU, although Table 2 reveals regimen 
types do not have significant effects on death.

The estimated transition rates for death after tumor recurrence is plotted in 
Fig. 5. Note, this transition rate depends on the time to death t2 , in addition to the 
time since tumor recurrence, and the plots varies with recurrence times t1 . If we 

Table 3   Log-likelihood, AIC and BIC for the fitted models

Model General model Restricted model

Log-likelihood AIC BIC Log-likelihood AIC BIC

PVF/cP − 2070.847 4167.695 4230.538 − 2110.411 4240.823 4289.164
IG − 2135.397 4296.793 4359.637 − 2304.823 4627.645 4671.152
Gamma − 2073.759 4173.517 4236.361 − 2110.445 4238.890 4282.397
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compare these transition rates with the transition rates for death in Fig. 4 (right 
panel), the curves without tumor recurrence (Fig. 4 right panel) lie significantly 
lower than the curves with tumor recurrence (Fig. 5), implying strong evidence 
of the effect of the non-terminal event (tumor recurrence) on the terminal event 
(death), and the dependence between them. We can infer that a patient with tumor 
recurrence has a higher risk of death than another without tumor recurrence. 
However, we also observe that as t1 increases, the transition rates to death after 
tumor recurrence decreases. This implies the effect of tumor recurrence to be less 
prominent for patients who experience tumor recurrence at the end of the study, 
than patients who experienced it early.

Finally, Fig.  6 plots the transition probabilities presented in Sect.  2.3. From 
the plot of ℙ̂01(t1) (for tumor recurrence, see upper left), we observe that the 
probability is lowest for the Lev + 5-FU group, which corroborates with the 
finding in Table 2. For these patients, the first few post-surgical months following 
full tumor resection are critical, as revealed by the increasing probability of 
recurrence till time t, beyond which it decreases. However, the corresponding 
probabilities for death, i.e., ℙ̂02(t2) (see upper right panel), are increasing for all 
time points, and treatments. Interestingly, this probability is the largest for the 
Lev + 5-FU group. The plot in the lower left panel compares ℙ̂01(t1) to ℙ̂02(t1) . 
We observe that a patient is more likely to experience recurrence than death 
within the first 2.5 years post resection, beyond which the situation reverses. 
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Finally, Fig.  6 (lower right) plots ℙ̂12(t|t1) , the transition probability to death, 
given that the patient was in the recurrence state at time t1 , for various choices 
of t1 . Comparing with ℙ̂02(t2) (upper right), we infer that a patient experiencing 
tumor recurrence at time t1 is more likely to progress to death, compared to 
another patient without recurrence. The dependence between the recurrence and 
death is now manifested through the transition probabilities.

5 � Simulation Study

In this section, we present a small simulation study to evaluate the finite sample 
performance of the ML estimates of the model parameters. We generate semi-
competing risks data, following the algorithm of Selle (2016) as follows: 

1.	 Generate Z ∼ PVF(� , 1,
1

�
) , for � = 0.5.

2.	 S i m u l a t i n g  t h e  f i r s t  e v e n t  t i m e  t1  :  D e n o t e 
p1 = ℙ[not having any transitions before t1|Z] , and generate u1 ∼ Uniform(0,1). 
Equating the expression for p1 to u1 , we solve for t1.
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Fig. 6   Estimated marginal transition probabilities for recurrence(ℙ̂1(t) , upper left), death ( ̂ℙ2(t) , upper 
right), their comparison plot (with ℙ̂1(t) , lower left), and death given patient had tumor recurrence at t1 
( ̂S12(t|t1) , lower right), stratified by the explanatory variable treatment regimen. Ŝ12(t|t1) is plotted for 
various values of t1
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3.	 Simulating the second event time t2 : Denote p2 = conditional probability of stay-
ing in state 1 until t2 , and generate u2 ∼Uniform(0,1). Equating the expression for 
p2 to u2 , we solve for t2.

4.	 Denote p = ℙ[The transition at timetis to state 1] , and generate u ∼Uniform(0,1). 
If u ≤ p then Y1 = t1 , �1 = 1 and Y2 = t2 , else, Y1 = Y2 = t1 and �1 = 0.

5.	 Simulating the censoring time C: Generate u3 ∼Uniform(0,1). If u3 < 0.5 , then 
C ∼Uniform(v, w), else C = w.

6.	 If C > Y2 , then �2 = 1 ; else if C ≥ Y1 and C ≤ Y2 , then Y2 = C and �2 = 0 , else 
Y1 = Y2 = C and �1 = �2 = 0.

In Step 2, the probability of not having any transitions before time t is given 
in (A.1), and considering the conditional model with covariates given in (12), 
we have p1 = exp(−Z[Δ01(t)e

(��
1
x) + Δ02(t)e

(��
2
x)]) . Similarly, if there is a tran-

sition to state 1, the second event time t2 is simulated in step 3, where the condi-
tional probability of staying in state 1 until t2 is given in (A.2). From (12), we have 
p2 = exp(−Z[Δ03(t1, t2)e

��
3
x]) . It follows that the probability of going to state 1 at 

time t (step 4) is p = �01(t)e
��
1
x∕(�01(t)e

��
1
x + �02(t)e

��
2
x) . In step 5, the censor-

ing time was simulated from a mixture distribution, i.e., from a uniform distribu-
tion on (1.5,3) with probability 0.5, and a point mass at 3 with probability 0.5. This 
restricts the average percentage of censored observations between 10% to 20%. 
The covariates x1j and x2j were generated, respectively, from a Bernoulli (0.5) , and 
uniform (0, 1) distribution, for j = 1,… , n . The baseline hazard, once again, follows 
Weibull (�i, �i) , i = 1, 2, 3 . For the restricted model, we consider the coefficient vec-
tors �

1
= �

2
= �

3
= (1, 1) , the Weibull parameters log �1 = log �2 = log �3 = 1 , 

and �1 = �2 = �3 = 1 , such that EHR = 1 . For the general model, we consider 
�

1
= �

2
= �

3
= (1, 1) , log �1 = log �2 = 1 , log �3 = 1.25 and �1 = �2 = �3 = 1 , 

leading to EHR > 1 . Finally, we consider the frailty parameter � = 1.
For the simulations, we consider sample sizes n = 250, 500 and 1000. For each 

configuration, we conduct N = 1000 replications to calculate the averages of the 

MLEs, denoted by 𝝑̄ . We compute the standard deviations SD =

�∑N

k=1
(𝝑̂k − 𝝑̄)∕N , 

where 𝝑̂k is the MLE vector in the kth simulation, k = 1,… ,N , root mean squared 

errors RMSE =

�∑N

k=1
(𝝑̂k − 𝝑(0))2∕N where �(0) is the initial value vector of 

parameters, the average standard error (MSE), where SEk =

√
diag(�̂k(�̂k)) , 

k = 1,… ,N , where diag(�̂k(�̂k)) is the diagonal of the kth estimated variance and 
covariances matrix, the empirical 95% coverage probabilities (CP) for the model 
parameters, and bias. The simulation results listed in Tables 4 and 5 for the general 
and restricted models, respectively, reveal that the MLEs are close to the true values, 
the bias, RMSE and standard errors decrease as sample size increases and the empir-
ical CPs are closer to the nominal coverage level as sample size increases, which are 
all expected if the underlying estimation scheme is working correctly to produce 
consistent and asymptotically normal estimates. The simulation study was also 
repeated for 𝜃 = 0.5 < 1 and 𝜃 = 1.15 > 1 , and the results obtained were very 
similar.
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Table 4   Simulation results for the general model ( EHR > 1)

Sample size Rates Par Truth Mean BIAS MSE SD RMSE CP

n = 250 log � 0.0 − 0.182 − 0.182 0.932 0.823 0.843 99.4
�
1

log �1 0.0 − 0.003 − 0.003 0.122 0.110 0.110 95.4
log �1 1.0 0.995 − 0.005 0.480 0.433 0.433 95.3
�11 1.0 0.997 − 0.003 0.251 0.243 0.243 94.8
�12 1.0 1.009 0.009 0.402 0.387 0.387 94.5

�
2

log �2 0.0 − 0.006 − 0.006 0.122 0.108 0.108 95.0
log �2 1.0 0.986 − 0.014 0.480 0.418 0.418 94.6
�21 1.0 1.002 0.002 0.251 0.251 0.251 94.9
�22 1.0 1.004 0.004 0.402 0.394 0.394 95.7

�
12

log �3 0.0 − 0.013 − 0.013 0.222 0.211 0.211 94.4
log �3 1.25 1.266 0.016 0.381 0.359 0.359 95.5
�31 1.0 0.993 − 0.007 0.326 0.321 0.321 95.5
�32 1.0 1.035 0.035 0.493 0.501 0.502 94.7

n = 500 log � 0 − 0.058 − 0.059 0.641 0.592 0.594 97.8
�
1

log �1 0.0 0.004 0.004 0.091 0.084 0.084 95.2
log �1 1.0 1.030 0.031 0.364 0.341 0.342 94.7
�11 1.0 0.999 − 0.001 0.180 0.175 0.175 96.6
�12 1.0 0.992 − 0.008 0.286 0.287 0.286 94.1

�
2

log �2 0.0 0.002 0.002 0.091 0.085 0.085 94.6
log �2 1.0 1.024 0.024 0.364 0.340 0.340 94.2
�21 1.0 1.000 0.000 0.180 0.179 0.179 95.2
�22 1.0 0.997 − 0.003 0.285 0.288 0.288 94.3

�
12

log �3 0.0 0.001 0.001 0.165 0.155 0.155 94.5
log �3 1.25 1.279 0.029 0.280 0.273 0.275 95.5
�31 1.0 1.002 0.002 0.237 0.216 0.216 96.1
�32 1.0 1.017 0.017 0.352 0.350 0.350 94.3

n = 1000 log � 0 0.010 0.010 0.448 0.417 0.417 96.7
�
1

log �1 0.0 0.010 0.010 0.066 0.062 0.063 95.5
log �1 1.0 1.034 0.034 0.264 0.251 0.253 96.1
�11 1.0 1.010 0.010 0.128 0.126 0.126 95.8
�12 1.0 1.013 0.013 0.202 0.201 0.201 95.5

�
2

log �2 0.0 0.006 0.007 0.066 0.062 0.063 94.6
log �2 1.0 1.030 0.030 0.264 0.254 0.256 96.0
�21 1.0 1.006 0.006 0.128 0.125 0.125 96.4
�22 1.0 1.009 0.009 0.202 0.206 0.206 94.8

�
12

log �3 0.0 0.008 0.008 0.119 0.111 0.112 94.5
log �3 1.25 1.274 0.023 0.200 0.188 0.189 96.2
�31 1.0 1.014 0.014 0.170 0.168 0.168 95.0
�32 1.0 1.015 0.015 0.249 0.248 0.248 95.1
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Table 5   Simulation results for the restricted model ( EHR = 1)

Sample size Rates Par Truth Mean BIAS Mean SE SD RMSE CP

n = 250 log � 0.0 − 0.151 − 0.151 0.865 0.761 0.776 99.2
�
1

log �1 0.0 − 0.001 − 0.001 0.117 0.102 0.102 96.6
log �1 1.0 1.002 0.002 0.464 0.413 0.412 96.1
�11 1.0 0.998 − 0.002 0.249 0.241 0.241 95.1
�12 1.0 1.011 0.011 0.401 0.389 0.389 94.6

�
2

log �2 0.0 − 0.002 − 0.002 0.117 0.103 0.103 95.7
log �2 1.0 1.008 0.008 0.463 0.416 0.416 95.0
�21 1.0 0.994 − 0.006 0.249 0.242 0.242 95.2
�22 1.0 0.999 − 0.001 0.401 0.391 0.391 96.4

�
12

log �3 0.0 − 0.004 − 0.004 0.209 0.194 0.194 95.3
log �3 1.0 1.023 0.023 0.367 0.352 0.353 96.5
�31 1.0 0.999 − 0.001 0.321 0.321 0.321 94.8
�32 0.5 1.023 0.492 0.503 0.023 0.503 94.0

n = 500 log � 0.0 − 0.025 − 0.025 0.597 0.559 0.559 97.7
�
1

log �1 0.0 0.009 0.008 0.087 0.082 0.083 94.7
log �1 1.0 1.049 0.049 0.350 0.336 0.340 95.4
�11 1.0 1.003 0.003 0.178 0.176 0.176 96.3
�12 1.0 0.989 − 0.011 0.285 0.287 0.287 94.0

�
2

log �2 0.0 0.006 0.006 0.087 0.082 0.082 94.9
log �2 1.0 1.039 0.039 0.349 0.329 0.331 95.4
�21 1.0 1.009 0.009 0.178 0.176 0.177 95.7
�22 1.0 1.000 0.000 0.285 0.286 0.286 94.8

�
12

log �3 0.0 0.009 0.009 0.154 0.145 0.145 94.2
log �3 1.0 1.037 0.037 0.267 0.269 0.271 95.3
�31 1.0 1.008 0.008 0.232 0.209 0.209 96.4
�32 0.5 1.018 0.018 0.351 0.348 0.348 94.8

n = 1000 log � 0.0 0.024 0.024 0.418 0.391 0.392 96.2
�
1

log �1 0.0 0.010 0.010 0.063 0.058 0.059 95.8
log �1 1.0 1.038 0.038 0.252 0.241 0.244 96.2
�11 1.0 1.009 0.009 0.127 0.122 0.122 95.7
�12 1.0 1.012 0.012 0.201 0.195 0.195 95.9

�
2

log �2 0.0 0.008 0.008 0.063 0.060 0.060 95.2
log �2 1.0 1.034 0.034 0.251 0.243 0.246 95.9
�21 1.0 1.008 0.008 0.127 0.123 0.124 96.3
�22 1.0 1.011 0.011 0.201 0.204 0.205 94.5

�
12

log �3 0.0 0.012 0.012 0.111 0.104 0.105 94.9
log �3 1.0 1.029 0.029 0.189 0.183 0.185 96.2
�31 1.0 1.014 0.014 0.165 0.161 0.161 95.2
�32 0.5 1.013 0.013 0.248 0.243 0.244 95.4
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6 � Conclusion

In this paper, we consider modeling semi-competing data that arises in cancer clini-
cal trials via the shared frailty illness-death framework. Our central contribution is 
to avoid the latent failure time approach (which comes with well-explored limita-
tions), and explore the illness-death specification via the PVF frailty, which is a flex-
ible and general class containing the gamma, inverse Gaussian and positive stable 
densities. The convenient Laplace transform of the PVF allows mathematically trac-
table representations of the hazards, transition probabilities, and survival functions. 
The simulation study indicate adequate finite sample performance with increasing 
sample sizes.

The R package SmoothHazard (Touraine et al. 2013) also fits an illness-death 
model with both Weibull (parametric), or penalized M-splines (semi-parametric) 
specifications of baseline hazard for arbitrarily censored survival data. To compare 
and contrast, our approach incorporates a dependency structure between recur-
rence time and death time using a shared frailty between conditional transition rates, 
which acts as a multiplicative effect on baseline hazard rates. This dependency is 
characterized by the frailty parameter �.

Our current proposal of a (parametric) Weibull baseline hazard is certainly from 
the context of achieving computational stability. Future extensions may include var-
ious popular and flexible choices of the baseline hazard from the non- and semi-
parametric toolbox (Ibrahim et  al. 2001), such as a piecewise-constant, and study 
its impact both on parameter estimation and computational gain. Depending on 
the dataset, the current setup can also be extended to include a higher-dimensional 
covariate space, with a principled selection of those covariates (Chapple et al. 2017). 
Furthermore, the conditional transition rate for terminal event given that a non-ter-
minal event was specified as a Markov model, however, a semi-Markov (Lee et al. 
2015) specification is also possible. Inference may also be explored under a Bayes-
ian paradigm. These will be considered elsewhere.
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