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Abstract 3D-aware image synthesis has attained high
quality and robust 3D consistency. Existing 3D controllable
generative models are designed to synthesize 3D-
aware images through a single modality, such as 2D
segmentation or sketches, but lack the ability to finely
control generated content, such as texture and age.
In pursuit of enhancing user-guided controllability,
we propose Multi3D, a 3D-aware controllable image
synthesis model that supports multi-modal input. Our
model can govern the geometry of the generated image
using a 2D label map, such as a segmentation or sketch
map, while concurrently regulating the appearance of
the generated image through a textual description.
To demonstrate the effectiveness of our method, we
have conducted experiments on multiple datasets,
including CelebAMask-HQ, AFHQ-cat, and shapenet-
car. Qualitative and quantitative evaluations show that
our method outperforms existing state-of-the-art methods.

Keywords generate adversarial networks (GANs);
neural radiation field (NeRF); 3D-aware
image synthesis; controllable generation

1 Introduction

The generation of high quality realistic images has
wide application in artistic creation. Generative
adversarial networks (GANs) [1] are instrumental
in learning the mapping from a Gaussian distribution
to the distribution of real images through the joint
adversarial training of both a generator and a
discriminator. Subsequent to the introduction of
GANs, numerous studies [2–4] have made noteworthy
advances in enhancing image quality and resolution.
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To exert control over generated images, there has been
a surge of research in the field of image-to-image
transformation. Various methods [5–7] have been
developed to convert a two-dimensional label image
into a tangible image that adheres to the semantic
directions conveyed by the label.

The evolution of neural radiance fields (NeRFs)
has facilitated the bridging of the two-dimensional
image and the three-dimensional world, enabling
the seamless transfer of gradients between them.
Researchers have directed their focus toward 3D
GANs, and several methods [8–10] have emerged,
showcasing the ability to generate high-quality, three-
dimensionally consistent objects. Leveraging the
inherent differentiability of NeRFs, these approaches
can be entirely trained using two-dimensional
images, obviating the necessity for dedicated three-
dimensional datasets. Further advances in this field
are exemplified by various methods [11–14] that
specifically address the utilization of two-dimensional
labels for the generation and manipulation of
three-dimensional objects. This dedicated research
aims to refine and enhance synthesis and editing
capabilities, offering valuable insights into the
potential of leveraging two-dimensional information
for comprehensive three-dimensional modeling.

Nevertheless, existing work predominantly
addresses the task of control through a single
modality, such as a segmentation or a sketch map.
These methods control 3D-aware image synthesis
through 2D label maps but are limited in their
ability to finely control the content of the generated
images, such as age, gender, color, etc. This paper,
in contrast, undertakes the more intricate challenge
of orchestrating the generation of 3D objects by
harnessing multiple input modalities. As illustrated
in Fig. 1, our objective is to govern the geometric
shape of the generated three-dimensional object
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Fig. 1 Given 2D segmentations or sketches and descriptive text as input, Multi3D can generate high-quality 3D-aware images that closely
meet the input conditions. To demonstrate the effectiveness of our approach, we present generation results on multiple datasets, including
CelebAMask-HQ, AFHQ-cat, and shapenet-car.

through a two-dimensional label map. Subsequently,
we articulate the appearance characteristics of
the three-dimensional object through a descriptive
sentence, thereby achieving synthesis of a high-
quality, three-dimensionally consistent object in
agreement with multiple conditional inputs.

To achieve this goal, several challenges must be
addressed: how to (i) inject multiple conditional
inputs into the generation process, (ii) decouple
multiple conditions to ensure their independence,
and (iii) ensure that the generated three-dimensional
objects agree with multiple conditional inputs. To
tackle the first challenge, we introduce a multimodal
condition encoder designed to map various conditions
to distinct control vectors. For the second challenge,
we implement a conditional cross-training mechanism,
enhancing the model’s robustness and decoupling
capabilities. To address the third challenge, we
propose an image text alignment adaptive CLIP
loss and a label reconstruction loss, ensuring the
alignment of the generated three-dimensional object
with multiple conditional inputs simultaneously.

Qualitative and quantitative experiments demon-
strate that our method outperforms state-of-the-art
approaches in the domain of 3D-aware multimodal
image synthesis. The primary contributions of this
paper are in summary:
• We pose a new and more challenging task in 3D-

aware image synthesis: controllable generation
under multiple input conditions.

• We propose Multi3D, a 3D generative model
capable of simultaneously controlling the
generation process of 3D-aware images using 2D
label maps and text. We propose two training
techniques, including adaptive CLIP fine-tuning
(ACF) and a conditional crossover strategy (CCS) ,
which improve the quality of generated images
and alignment with the input conditions.

• Our method achieves better generation and
control effects than state-of-the-art 3D-aware
conditional image synthesis methods, for diverse
datasets, including CelebAMask-HQ [15], AFHQ-
cat [16], and shapenet-car [17]. Both qualitative
and quantitative evaluations demonstrate the
effectiveness of our method for 3D-aware
multimodal image synthesis.

2 Related work

Our work is closely related to neural implicit
representations and 3D-aware image synthesis.

2.1 Neural implicit representations

One of the seminal works in neural implicit
representations is the neural radiance field (NeRF), a
model that conceptualizes a three-dimensional scene
as a neural network. NeRF models take three-
dimensional position encoding as input, and predict
density and color within the network, employing voxel
rendering operations for image synthesis. NeRFs are
widely employed for tasks such as 3D reconstruction
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and the synthesis of novel perspectives. Subsequent
methods [8, 19–21] have advanced the field by
introducing novel three-dimensional representations,
specifically designed to accelerate training and
inference processes.

EG3D [8] introduced the tri-planes expression
format and implemented it for 3D generation, yielding
results characterized by high quality and three-
dimensional consistency. It is an unconditional
generative model that transforms sampled random
noise into a three-dimensional object. Our aim
is to enhance the controllability of this generation
process through multi-modal conditional forms. To
achieve this objective, we have developed a multi-
modal conditional encoder and designed a series of
loss functions and training strategies to ensure the
generated results are consistent with the specified
input conditions.

2.2 3D-aware image synthesis

Generative adversarial networks (GANs) [1],
introduced in 2014, operate through the adversarial
training of a generator and discriminator. Initially
applied to generate low-resolution images like those
in MNIST and CIFAR-10, subsequent methodologies
[2–4] have been dedicated to enhancing the quality
and resolution of generated images, scaling up
to resolutions of 5122 or even 10242. To enable
control over generated images, conditional GANs
(cGANs) integrate category information into the
generation process, facilitating control over the
category of the generated images. Various methods
[5–7, 22–38] employ two-dimensional label maps,
such as segmentations or sketch maps, to control the
generation and editing of images.

The emergence of the neural radiance field has
played a pivotal role in advancing the domain
of 3D generative adversarial networks. Several
methods [9, 10, 39–42] generate high-quality 3D
objects by supervising rendered images from different
viewpoints. EG3D [8] introduces the tri-planes
representation, enhancing both geometric quality and
three-dimensional consistency of generated objects.
At the same time, many 3D downstream tasks
have also undergone rapid development, such as
segmentation map-based editing [11–13, 43, 44],
sketch-based editing [14], relighting [45, 46], and
animation [46, 47]. Several methods [11, 13] adopt
a dual-phase strategy where an initial generator is

trained to produce both images and semantic label
maps. Subsequently, an optimization process on
latent vectors refines the generated output according
to input label maps. Meanwhile, some methods
[33, 44, 48, 49] focus on single-modal 3D image
synthesis. Pix2NeRF [48] proposes a NeRF-based
single-modality generation model for transforming
images into 3D models; however, its impact is
constrained by limitations in both quality and three-
dimensional consistency. pix2pix3D [49] proposes
an end-to-end network and training strategy geared
towards the direct conversion of semantic label maps
into three-dimensional objects. Existing methods
concentrate on single modalities and geometries,
which limits the means to control the generation
process. Our approach diverges by placing emphasis
on novel forms of multimodal control. Specifically,
we address hybrid controls that encompass semantic
segmentation maps, sketch maps, and textual
descriptions. This distinctive focus allows for a more
comprehensive and versatile means of governing the
generation process, accommodating a diverse set of
user inputs across different modalities.

3 Method

3.1 Architecture

Given a 2D segmentation map or sketch, along
with descriptive text, Multi3D aims to generate
3D-aware images that satisfy the combined input
conditions. Figure 2 shows the architecture of
Multi3D. In Section 3.2, we first introduce the three-
dimensional representation and generation process
of EG3D. In Section 3.3, we introduce the proposed
model architecture and training strategy of Multi3D.
Our multi-modal conditional encoders module is
designed to encode multi-modal input. Our adaptive
CLIP fine-tuning and conditional crossover strategy
respectively improve the quality of generated objects
and the alignment of generated objects with text.
Subsequently, we elaborate on the loss function used
for training Multi3D in Section 3.4, including label
reconstruction loss, adaptive CLIP loss, and cross-
view consistency loss.

3.2 Preliminaries

Since we use tri-planes proposed by EG3D [8] as a
3D representation in our model, we first introduce
the generation process of EG3D, which is initiated by
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Fig. 2 Framework. Multi3D takes a 2D input label M , a sentence of input text T , and random noise z as inputs. We use our multi-modal
conditional encoders module to encode them into W latent codes and inject them into the first and last seven layers of the generator G. We
adopt tri-planes [8] as our three-dimensional representation. The decoder D is responsible for predicting the density σ, color c, label m, and
features φ of the three-dimensional sampling points. Low-resolution images and labels are obtained through volume rendering [18]. Subsequently,
high-resolution images and labels are obtained through two super-resolution networks. Adaptive CLIP loss and label reconstruction loss
supervise the alignment of the generated objects with input labels and text respectively. Two discriminators DI , DIM are introduced to
supervise the quality and alignment of generated images and labels.

sampling random noise z ∈ R1×512 and concatenating
it with the camera pose embedding p ∈ R1×512.
These values are then input into several layers of
fully connected networks, resulting in the generation
of latent codes w ∈ R1×512. Subsequently, these
latent codes w are transmitted to the generator
backbone of StyleGAN2 [4], producing tri-planes
F ∈ R256×256×96. The tri-planes F are further
partitioned into three orthogonal feature planes
Fxy, Fyz, Fxz ∈ R256×256×32. Each sampled three-
dimensional point p has the capability to query
its high-dimensional features Fp from the tri-planes
through trilinear interpolation. Subsequently, Fp is
directed to a decoder to predict the density σ, color
c, and feature fp of p, facilitating the rendering of
the low-resolution image Il through volume rendering
[18]. Finally, both Il and fp undergo processing by a
super-resolution network, ultimately resulting in the
generation of the final high-resolution image Ih.

pix2pix3D [49] currently stands as the state-of-
the-art single-modal 3D image synthesis model. It
adopts tri-planes as a 3D representation and conducts
model training by supervising the difference between
the rendered mask and the input mask, as well as
the rendered image and the real image. A notable
distinction lies in the fact that pix2pix3D only
supports a single-modal input, whereas we tackle
the more challenging task of multi-modal 3D image
synthesis. Our core challenge is to make the model
support multi-modal condition input and improve
the consistency of the generated results with multi-

modal conditions. To address this, we introduce
the multi-modal conditional encoders, allowing the
model to support multi-modal conditional inputs. We
propose an innovative adaptive CLIP loss to improve
the consistency between the generated image and the
input text. Furthermore, we propose a conditional
crossover strategy (CCS) to improve the quality of
the generated images.

3.3 Multi-modal 3D generative model

3.3.1 Multi-modal conditional encoders
The multi-modal conditional encoders module
contains two encoders EM and ET , which are
responsible for encoding a 2D label map and text
respectively. Given a 2D input segmentation map
or sketch map M ∈ RH×W×C , we first use a
convolutional encoder EM to map M to the geometry
latent code wM ∈ R1×512. Then, a text encoder
ET is used to map the input text and a random
latent code z ∼ N(0, I) to the texture W latent code
wT ∈ R1×512. We use the text encoder of an adaptive
fine-tuned CLIP model as ET .

wM = EM (M) (1)
wT = ET (T, z) (2)

The first few layers of a GAN network often determine
the geometric information of the generated content,
while the last few layers determine its texture
information [30, 50]. Therefore, we inject wM into
the first seven layers of the generator G and wT into
the last seven layers of the generator G to obtain the
generated tri-planes Ftri.
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3.3.2 Adaptive CLIP fine-tuning
We use CLIP loss to supervise the alignment of
generated images with input text. Since the original
CLIP model is trained on a large-scale dataset [51],
there is a certain gap between this large-scale dataset
[51] and the task-specific dataset. Before training
Multi3D, we first make adaptive adjustments to the
CLIP model to better match our dataset and tasks.
We fine-tune the CLIP model on the training set
using adversarial loss [51].
Lfinetune = LCE(EI

CLIP(I) ∗ ET
CLIP(T ), labels) (3)

where EI
CLIP and ET

CLIP are the image encoder and
text encoder of the CLIP model respectively. I and T
represent real images and text in the training dataset.
∗ represents the matrix multiplication operation. LCE
represents the cross-entropy loss function, labels is
an integer array [0, · · ·, bs− 1], and bs is the training
batch size.
3.3.3 Conditional crossover strategy
In order to enhance the expressive ability of the
model and improve the reality of the generated results,
we propose a conditional crossover strategy during
training. We set a crossover probability pc. For a
set of training data M and T , we randomly sample a
random number p from 0 to 1. If p is greater than the
crossover probability pc, we randomly sample another
text T ′ from the training set to replace the current
text T for training. Otherwise, the current training
data are not replaced. This improves the image
quality for rare samples, such as a bearded man with
long hair.
3.3.4 Generative process
Given a 3D spatial point x ∈ R3, we can query its
features in the tri-planes Ftri and obtain the following
information through several layers of MLP networks:
(i) density value σ ∈ R1, (ii) color feature φc ∈ R32,
(iii) color value, c ∈ R3, (iv) label feature φm ∈ R32,
and (v) label value m ∈ RK . If M is a segmentation
map, K is the number of categories. If M is a sketch
map, K is 1.

Ftri = G(wM , wT ) (4)
σ, φc, c, φm,m = D(Ftri(x)) (5)

The low resolution images I ′l and corresponding
label maps M ′l are rendered through volume rendering
[18]. By sending a ray from the camera pose to each
pixel of the imaging plane, we sample N discrete 3D

points on the ray. We get I ′l and M ′l using

I ′l =
N∑

i=1
Ti(1− exp(−σiδi))ci (6)

M ′l =
N∑

i=1
Ti(1− exp(−σiδi))mi (7)

Ti = exp
(
−

i−1∑
j=1

σiδi

)
(8)

where δi is the distance between points the i-th and
the (i+ 1)-th.

We adopt two convolutional neural networks
SI , SM as our super-resolution networks. SI inputs
the low-resolution images I ′l and image features φc

and generates high-resolution images I ′h. SM inputs
the low-resolution labels M ′l and label features φm

and generates high-resolution labels M ′h.
I ′h = SI(I ′l , φc) (9)

M ′h = SM (M ′l , φm) (10)
3.4 Learning objective

3.4.1 Goals
We design our loss function considering three
requirements: alignment, quality, and consistency.
Label reconstruction loss and adaptive CLIP loss are
used to ensure that the generated three-dimensional
object is aligned with the input 2D label map
and input text respectively. GAN loss is used
to ensure the quality of generated images. Cross-
view consistency loss is used to ensure the three-
dimensional consistency of the generated object.
3.4.2 Label reconstruction loss
To ensure that the generated image conforms to the
geometric constraints of the input label map, we
introduce a label reconstruction loss Lrecon between
the generated label map M ′l ,M

′
h and the real label

map M .
Lrecon = Ll(M, {M ′l ,M ′h}) (11)

where Ll refers to cross entropy loss when M is a 2D
segmentation map, and L1 loss when M is a sketch
map.
3.4.3 Adaptive CLIP loss
Adaptive CLIP loss LCLIP is adopted to supervise the
generation of images that match the input text T .

LCLIP = arccos2(EI
Adap-CLIP(I′l , I′h),

ET
Adap-CLIP(T )) (12)
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where EI
Adap-CLIP and ET

Adap-CLIP are respectively
the image encoder and text encoder of the fine-tuned
adaptive CLIP models, which have a smaller gap
between images and text for our task.
3.4.4 GAN loss
Adversarial loss is introduced to supervise the training
process of Multi3D. We use two discriminators:
(i) an image discriminator DI , trained to ensure the
quality of the generated image, and (ii) an image and
label alignment discriminator DIM , trained to ensure
the alignment and consistency of the generated image
and label map. At the same time, we also introduce
a gradient penalty to the discriminator to ensure
stability of training:

LDI
= E[1 + exp(DI(I ′l , I ′h))]

+ E[1 + exp(−DI(Il, Ih))]
+ λIregE‖∇DI(Il, Ih)‖2 (13)

LDIM
= E[1 + exp(DIM (I ′l , I ′h,M ′l ,M ′h))]

+ E[1 + exp(−DIM (Il, Ih,M
′
l ,M

′
h))]

+ λIregE‖∇DIM (Il, Ih,Ml,Mh)‖2 (14)
3.4.5 Cross-view consistency loss
Following pix2pix3D, we introduce cross-view
supervision to ensure 3D consistency of the generated
objects. In the current input pose p, for the generated
tri-planes, we render a label image Mnovel

l from
another novel random pose p′. Then we feed the
label map Mnovel

l into the generator and render the
label map Mproj

l on the pose p. We use L1 loss to
ensure that the projected label map Mproj

l remains
consistent with M ′.

Lcvc = L1(M ′l ,M
proj
l ) (15)

3.4.6 Overall learning objective
Our overall learning objective is a weighted
combination of the above loss functions.

L = λreconLrecon + λcvcLcvc + λCLIPLCLIP

+ λDI
LDI

+ λDIM
LDIM

(16)
In our experiments, we empirically set λrecon = 2,

λcvc = 0.0001, λCLIP = 1, λDI
= 1, λDIM

= 0.1.

4 Experiments

4.1 Datasets

We conducted quantitative and qualitative
evaluations on three datasets: CelebAMask-HQ [15]
(24,183 training images, 2824 test images), AFHQ-

cat [16] (9117 training images, 1013 test images), and
shapenet-car [17] (48,3878 training images, 53,764 test
images). We use the camera poses and segmentation
or sketch labels constructed by pix2pix3D [49] for
these three datasets. For the CelebAMask-HQ
dataset, we use the text labels from a previous method
[24]. Since the AFHQ-cat and shapenet-car datasets
do not have text annotations, we used the BLIP
model to construct labels for images by asking “what
color is this cat/car?”

4.2 Baseline

Since there is no previous method for multi-modal 3D
image synthesis, we compare our results to those from
the latest single-mode generative model pix2pix3D
[49] and modify it to support our new multi-modal
tasks. pix2pix3D encodes the segmentation or sketch
maps into latent codes that control the geometry
and injects them into the first seven layers of the
generator, using random noise to inject into the last
seven layers of the generator. To support text control,
we feed text latent codes encoded by our adaptive
CLIP model into the last seven layers of the generator
instead of random noise.

4.3 Metrics

Using the test sets of CelebAMask-HQ, AFHQ-cat,
and shapenet-car, we generated 10, 30, and 1 sample
for each set of inputs by sampling different z to
ensure that the total number of generated samples
is approximately 30,000 and above. We evaluated
performance using three considerations:
• Quality: We evaluate Fréchet inception distance

(FID) [52], which measures the distance between
all the generated images and all the training
images.

• Alignment: We evaluate alignment using two
aspects: (1) Geometric alignment. In scenarios
where the input is a 2D segmentation image, we
compute both the accuracy and mIoU (mean
intersection over union) metrics between the
generated segmentation image and the input
segmentation image. In the cases where the
input is a 2D sketch map, we calculate the L1
difference between the generated sketch image and
the input sketch; (2) CLIP score (CS) : we use
the CLIP model to calculate the cosine similarity
between the generated image and the input text,
multiplied by 100 to give the CLIP score.
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• Consistency: We evaluate facial identity
consistency (ID) by calculating the mean Arcface
[53] cosine similarity of the rendered images of the
same generated face from two different random
camera poses following EG3D [8].

4.4 Implementation details

When fine-tuning CLIP, we used the AdamW [54]
optimizer with a learning rate of 0.0005. When
training Multi3D, we used the Adam [55] optimizer
with β1 = 0 and β2 = 0.99 to train the generator and
discriminators, with learning rates for G, DI , DIM

of 0.0025, 0.002, and 0.002 respectively. Using eight
NVIDIA GeForce 3090 GPUs, we trained the Multi3D
model on the CelebAMask-HQ dataset for four days,
the AFHQ-cat dataset for three days and four hours,
and the ShapeNet-car dataset for three days and
ten hours. Fine-tuning the CLIP model introduced
negligible overhead. The duration of CLIP training
varied across datasets, from half a day to one and a
half days.

4.5 Speed

In terms of inference speed, our method achieves
nearly real-time framerates at 5122 resolution. On a
single NVIDIA GeForce 3090 GPU, we can render 15
images and corresponding label maps per second.

4.6 Results

We qualitatively demonstrate the generation ability
using the CelebAMask-HQ dataset in Fig. 3. Our
approach demonstrates the capability to produce
images that exhibit a high degree of consistency
with the input text, simultaneously ensuring three-
dimensional consistency. At the same time, thanks
to the conditional crossover strategy, our method
can successfully generate challenging results, such as
inputting a segmentation image with long hair and
inputting the text “This gentleman is in his forties.
His face is covered with beard of medium length.” Our
method generates samples that do not exist in the
dataset. At the same time, the results we generate
are more diverse. A quantitative comparison is given
in Table 1.

To show our generalization ability, we conducted
a quantitative comparison with four mainstream

Table 1 Comparison of quality, alignment, and consistency using
the CelebAMask-HQ dataset. CS = CLIP score, which evaluates the
alignment of generated images and text

Method
Quality Alignment Consistency

FID ↓ CS ↑ acc ↑ mIoU ↑ ID ↑

pix2pix3D 28.53 2.90 0.74 0.40 0.36
Our 14.72 8.52 0.80 0.45 0.53

Fig. 3 3D face generation results driven by both segmentation maps and text. For the same 2D semantic segmentation map input, we
demonstrate diverse text-driven face generation results. The results we generate are more consistent with the input segmentation map and text.
We can even generate the challenging example of a bearded man with long hair with high quality and 3D consistency.
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latest single-modal 3D image generation methods:
SEAN [26], SoFGAN [33], Pix2NeRF [48], and
pix2pix3D* [49] (the original single-modal version of
pix2pix3D). Their FIDs are 32.74, 23.34, 54.23, and
17.11 respectively, while ours is 14.72. This means
that even though our task is more challenging, the
quality of our generated images is still state-of-the-
art. In addition, we also show qualitative results
alongside ones from the best single-modal model
pix2pix3D* in Fig. 4. It is evident that pix2pix3D*
results exhibit inconsistencies with the input mask,
exemplified by the generation of incorrect earrings,
the absence of an open mouth, and unnatural texture
artifacts. Furthermore, the images generated by
pix2pix3D* are limited to a single modality. For
example, given a mask with long hair, pix2pix3D*
can only generate young women. Given a short hair
mask, it can only generate young men. In contrast,
Multi3D can generate diverse results for different
genders, ages, etc.

Figure 5 shows qualitative results when generating
3D cats from segmentation maps and text using the
AFHQ-cat dataset. Table 2 quantitatively compares
results with those of pix2pxix3D*.

Figure 6 shows the qualitative results of generating
3D cars from sketches and text on the shapenet-car
dataset. It can be seen that our method has relatively
good decoupling in multiple condition controls, and
the shape of the vehicle generated under different text
inputs is consistent with the input sketch. However,
pix2pix3D has different vehicle shapes for different
texts, and even generates wrong geometry. Table 3

Table 2 Quantitative comparison of quality, alignment, and
consistency using the AFHQ-cat dataset

Method
Quality Alignment

FID ↓ CS ↑ acc ↑ mIoU ↑

pix2pix3D 28.95 28.08 0.83 0.55
Our 13.34 50.24 0.84 0.57

Fig. 4 Results compared to those of pix2pix3D* (the original state-of-the-art single-modal version of pix2pix3D [49]). Its results are not only
inconsistent with the input mask, e.g., in terms of incorrect earrings, closed mouths, and unnatural texture artifacts, but are also limited to one
mode, only generating young women given long-haired masks and young men given short-haired masks. In contrast, Multi3D provides diverse
results across genders and ages.

Fig. 5 3D cat generation results driven by both segmentation maps and text. For the same 2D semantic segmentation map input, we
demonstrate diverse text-driven face generation results.
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Fig. 6 3D car generation results driven by both sketch maps and text. For the same 2D sketch map input, we demonstrate diverse text-driven
car generation results.

Table 3 Quantitative comparison of quality and alignment for the
shapenet-car dataset

Method
Quality Alignment

FID ↓ CS ↑ Difference ↓

pix2pix3D 28.37 23.05 0.16
Our 26.74 31.71 0.16

gives a quantitative comparison.

4.7 Ablation experiments

We further conducted a full range of ablation
experiments, including considering different training
strategy settings, crossover probabilities pc, and
types of latent space. All ablation experiments were
performed on the CelebAMask-HQ dataset.
4.7.1 Varying training strategy settings
The adaptive CLIP fine-tuning aims to further reduce
the gap between images and text on a specific dataset,
thereby making the generated image closer to the
input text. Example results are shown in Fig. 7:
without fine-tuning, the generated results no longer
have medium-length beards, which clearly does not
conform to the input text. Quantitative metrics
are provided in Table 4. The FID and CLIP scores
decrease significantly.

Table 4 Ablation experiments with different training strategy
settings. Without adaptive CLIP fine-tuning, the generated results no
longer have medium-length beards, so clearly do not conform to the
input text. Without conditional crossover, the quality of the generated
images is lower

Setting
Quality Alignment Consistency

FID ↓ CS ↑ acc ↑ mIoU ↑ ID ↑

w/o ACF 23.26 4.52 0.79 0.45 0.49
w/o CCS 17.43 8.80 0.80 0.45 0.51

Full model 14.72 8.52 0.80 0.45 0.53

The conditional crossover strategy aims to allow the
network to generate more challenging samples, such
as bearded men with long hair. As can be seen from
Fig. 7, the style-mixing [3, 4, 56] of StyleGAN can
make the model generate results consistent with the
input text even when there is no conditional crossover
strategy. However, as can be seen from Table 4,
the FID is lower, as is the quality of the generated
images, because the discriminator cannot supervise
the samples generated by the cross condition during
training.
4.7.2 Conditional crossover probability
We also performed experiments on conditional
crossover probabilities pc. When training a set of
conditions M and T , we generated a random number
p ranging from 0 to 1. When p was greater than pc,
we randomly selected another set of data M ′ and T ′

from the training set, and then we used M and T ′

for training, otherwise we directly used M and T for
training. If pc is too large, there will be very few
crossover samples, which may lead to poor quality of
the generated samples. Setting pc too small will lead
to too many crossover samples, which may lead to
an excessive amount of data that the model needs to
accept. Table 5 shows the effects of pc taking different
values: 0.00, 0.25, 0.50, 0.75. It can be seen that our
method obtains the best FID score when pc = 0.50,
which we choose in our standard method.
4.7.3 Type of latent space
Our generator network has a total of 14 convolutional
layers for injection of style latent codes. We can
encode segmentation images, sketches, and text into
two alternative latent code spaces through their
respective encoders: W ∈ R1×512 and W+ ∈ R14×512.
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Fig. 7 Results of ablation experiments. Without adaptive CLIP fine-tuning, the generated results no longer have medium-length beards,
which clearly does not conform to the input text. Without conditional crossover, the texture of the generated results is less realistic, and the
generated results look unnatural.

Table 5 Ablation experiments on cross probability pc. Our method
obtains the best FID score when pc = 0.50

pc

Quality Alignment Consistency

FID ↓ CS ↑ acc ↑ mIoU ↑ ID ↑

0.00 16.35 7.73 0.80 0.44 0.51

0.25 16.21 8.93 0.81 0.45 0.54

0.50 14.72 8.52 0.80 0.45 0.53

0.75 15.12 8.84 0.80 0.45 0.52

The W latent code is converted into 14 style latent
codes through the repeat operation and then sent to
the generator, while the W+ latent code is directly
sent to the generator. We conducted experiments on
both latent code spaces, with results shown in Table 6.
W latent code space has better FID and ID, so we
choose W latent code space in our standard method.

Table 6 Ablation experiments on the type of latent space

Latent space
Quality Alignment Consistency

FID ↓ CS ↑ acc ↑ mIoU ↑ ID ↑

W+ 15.80 8.97 0.80 0.45 0.51

W 14.72 8.52 0.80 0.45 0.53

5 Conclusions, limitations and future
work

We have proposed Multi3D, a multimodal 3D image
synthesis model that can generate 3D objects aligned
with multiple input conditions. We have proposed
a multimodal condition encoders module to encode
different input conditions. We adopt an adaptive
CLIP fine-tuning strategy to improve alignment
between the generated results and the input text.
At the same time, we suggest a conditional crossover
strategy to improve the quality of generated results.
Our method provides state-of-the-art performance on

the three datasets: CelebAMask-HQ, AFHQ-cat, and
shapenet-car.

One limitation of our approach is that we currently
focus on controlling the generation process through
two modalities. One mode controls the geometry
and the other controls the texture (appearance).
Simultaneously supporting three or more modes
for hybrid control, including but not limited to
segmentation maps, sketches, text, depth maps,
attitude maps, etc., is a more challenging research
problem. Multimodal 3D-aware image synthesis is an
emerging and valuable research direction. We believe
our work takes an important step towards multimodal
3D-aware image synthesis. In future, how to complete
the task of multi-modal generation for universal three-
dimensional objects is one of the most challenging
and valuable research directions.
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