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Abstract 3D pose transfer over unorganized point
clouds is a challenging generation task, which transfers
a source’s pose to a target shape and keeps the target’s
identity. Recent deep models have learned deformations
and used the target’s identity as a style to modulate the
combined features of two shapes or the aligned vertices
of the source shape. However, all operations in these
models are point-wise and independent and ignore the
geometric information on the surface and structure of
the input shapes. This disadvantage severely limits the
generation and generalization capabilities. In this study,
we propose a geometry-aware method based on a novel
transformer autoencoder to solve this problem. An
efficient self-attention mechanism, that is, cross-
covariance attention, was utilized across our framework
to perceive the correlations between points at different
distances. Specifically, the transformer encoder extracts
the target shape’s local geometry details for identity
attributes and the source shape’s global geometry
structure for pose information. Our transformer
decoder efficiently learns deformations and recovers
identity properties by fusing and decoding the extracted
features in a geometry attentional manner, which does
not require corresponding information or modulation
steps. The experiments demonstrated that the geometry-
aware method achieved state-of-the-art performance
in a 3D pose transfer task. The implementation code
and data are available at https://github.com/SEULSH/
Geometry-Aware-3D-Pose-Transfer-Using-Transfor
mer-Autoencoder.
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1 Introduction

Three-dimensional (3D) pose transfer has attracted
increasing interest in the computer vision and
graphics community for decades. This has enabled
several applications such as generating new poses and
animation sequences [1, 2] for making 3D movies
and games. This is challenging when the given
shapes differ significantly in intrinsic attributes,
such as identity. For computing and transferring
deformations, traditional methods have attempted
to utilize mesh topology and build correspondences
between the source and target meshes, such as
key point annotations [3], skeleton poses [4], and
auxiliary meshes [5]. Unfortunately, the information
requires considerable effort and additional steps by
users, limiting their applications to more practical
3D shape data. Recently, studies based on deep
learning have been conducted for 3D pose transfer.
Skeleton-Free [6] achieved pose transfer between
different body proportions and topological structures
by representing characters in an implicit unified
articulation model and predicting the skinning
weights and deformation transformations in a learning
manner. However, the method requires part-level
correspondence and an additional rest pose shape and
cannot transfer poses to target shapes with arbitrary
poses. The studies in Refs. [7, 8] disentangled or
aggregated poses and identities in latent spaces for
pose transfer between meshes. However, they still
require a dense correspondence or a mesh topology
and cannot be applied to shapes with arbitrary poses.

In this study, we focus on deep-learning-based
works that deal with point cloud shapes without
a consistent mesh topology and vertex order for
the pose transfer task. We aim to solve some of
the problems associated with the existing related
methods. Inspired by the work [9–12] on style transfer
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in 2D images, some models have achieved 3D pose
transfer by considering the identity of the target shape
as a style and modulating the pose of the source
shape in terms of latent features. NPT [13] was
the first neural framework proposed for learning and
modulating the deformation of the target shape. It
does not require a correspondence between the target
and source shapes; however, this study generated
degraded shapes when transferring poses. To improve
the generation ability, the geometry-contrastive
transformer (GCT) [14] follows the NPT and uses the
self-attention mechanism in the decoder to perceive
the geometry inconsistency information between the
source and target shapes. For the 3D-CoreNet [15],
the authors proposed a network architecture for both
learning correspondences and deformation, in which
the learned correspondences guide the deformation
and modulation of the target shape. The work [16]
presents an unsupervised version of 3D-CoreNet that
transforms supervised training into self-supervised
loss using cross-consistency and dual reconstruction.
The method’s key components and processes are
identical to those of 3D-CoreNet. However, these
studies ignored the geometric information of the input
shapes across their models. In each layer of the
encoder and decoder, the point-wise input features
are mapped independently of the output point-wise
features, which do not consider the correlations of
different points on each shape. Their modulation
operations use point-wise features of the target shape
to modulate the input features in a point-by-point
manner, where the point-wise features are obtained
simply by mapping the coordinate values of the point
to high-dimensional features. Therefore, the latent
features in all layers of their models do not contain
geometric information, such as the local surface
details of the target shape and the global structure
information of the source shape. Therefore, the loss
of local geometry information in identity features can
explain why they repeatedly utilize the target shape
to modulate latent features in decoders, which leads
to complex frameworks.

Transformers have been successfully used in natural
language processing and are increasingly being
adopted in several computer vision applications.
Additional applications of attention mechanisms
and transformers in computer vision can be found
in surveys [17, 18]. The self-attention modules in

transformers help capture correlations that are
beneficial to their tasks. Motivated by these studies on
transformers, we propose a transformer autoencoder
to directly achieve a geometry-aware 3D pose transfer.
Our transformer encoder extracts identity features
with local geometric details and poses features using
the global structural information. Our transformer
decoder, also in a geometry-aware manner, fuses
concatenated features of the identity and pose
features and decodes them to learn the deformation
and generate the deformed shape while maintaining
the identity of the target shape and the pose of the
source shape. Because the identity features from
our encoder contain complete geometric information,
our framework does not need to modulate the latent
features in the decoder using the information of the
target shape.

The contributions of this study can be summarized
as follows:

(1) We present a transformer autoencoder for
geometry-aware 3D pose transfer, which leverages the
transformer’s self-attention mechanism to effectively
capture the geometric information of the input shapes
and fuses them to learn the deformation of the target
shape.

(2) Our framework has a simple and efficient
structure with fewer parameters, which does not
require a correspondence between the target and
source shapes or multiple modulation steps using
the style of the target shape.

(3) Our method outperforms other deep models
and achieves state-of-the-art results in the evaluation
experiments of generation and generalization abilities.

2 Related works
2.1 3D pose transfer

2.1.1 Traditional methods
Previous studies on 3D pose transfer have primarily
focused on mesh shapes. They aimed to obtain a
deformed mesh with the desired pose and identity,
where the gestures and identities were from two
given meshes with different identities and poses.
Although traditional methods perform well in this
task, they primarily rely on the mesh topology and
sparse or dense correspondence between the target
and source meshes, which limits their applications.
DT [19] used manually specified landmarks to
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build face correspondences between the source
and target meshes to transfer deformations in an
optimized manner. Mesh topology information is also
required to calculate the final deformed vertices. To
compute and transfer deformation to mesh sequences,
methods in Refs. [20–22] require correspondences
of all points on the meshes. Instead of directly
transferring deformation between meshes, Refs. [23–
25] adopted different harmonic functions to represent
spatial deformation, where they required user-selected
correspondence points to generate the deformation.
In addition to these techniques, Ref. [26] attempted
to construct maps between the pose spaces of the
source and target meshes and generated the projected
deformation in the target shape. Unfortunately, a
dense correspondence is still required to calculate
and transfer the deformation. Reference and source
meshes are also necessary to obtain the deformation
in traditional methods, where the pose of the target
mesh must be similar to that of the reference mesh.
These disadvantages constrain the application of these
methods from being applied to more general data,
such as shapes with unordered points and arbitrary
poses.
2.1.2 Learning methods
In recent years, deep-learning-based methods have
been proposed for 3D pose transfer. Some studies
have disentangled [27] or aggregated [28] the
identity and pose features in learning methods;
however, they still have extra constraints on the
meshes. Chen et al. [29] attempted to decompose
meshes into identity and pose latent representations
using dual autoencoders; however, the training
process requires dense correspondences and mesh
topology information. Wang et al. [30] used dual-
mesh autoencoders to predict shape cages for
calculating and transferring deformations; however,
this method cannot deal with shapes with arbitrary
poses. Skeleton-free methods also need to acquire
correspondence and cannot be applied to shapes
with arbitrary poses. To overcome these limitations,
some studies have proposed learning approaches
based on a similar style transfer strategy for 2D
images. NPT presented the first neural model for
3D pose transfer on 3D shapes with point clouds,
where correspondences between the target and
source shapes are unnecessary. However, this method
only processes point-wise features independently

in all model operations, discounting the geometric
information of the input shapes. Consequently, the
model exhibits distorted shapes. To improve the
quality of pose transfer, GCT follows NPT and adds
a self-attention module before each modulation layer
to perceive the geometry-contrastive information
between the source and target mesh. In addition,
this model does not identify correlations between the
points of each shape. Each self-attention layer applied
to the current features of the target and source shapes
was used only to find the geometric inconsistency
information between the two shapes for learning the
deformation. 3D-CoreNet proposes a new strategy
for designing a pose-transfer framework for learning
correspondences and deformation simultaneously,
where the obtained correspondences help void
artifacts in the deformation phase. However, the
entire network and its unsupervised version learn
and modulate the pointwise features independently.
Although these methods have made significant
breakthroughs in 3D pose transfer, they ignore the
geometric information of each shape, such as the
local geometry details of the target shape and global
pose information of the source shape. The loss of
local geometric features in their encoders also causes
these methods to repeatedly modulate features using
the target shape in their decoders. In this study,
we focus on the geometric information of identity
and pose shapes across the entire network. Based
on our transformer’s self-attention mechanism, we
achieved geometry-aware 3D pose transfer in a simple
and efficient manner without correspondences and
without modulating the latent features by the target
shape.

2.2 Transformers in 3D vision

An original transformer model [31] was proposed for
a language task, which showed a powerful inference
ability for temporal sequences. The ideal structure
of the transformer was later naturally adopted in
vision tasks, such as image recognition [32], 3D mesh
reconstruction [33, 34], and 3D object detection [35,
36]. However, the self-attention operation underlying
transformers results in quadratic complexity in
terms of time and memory, which hinders their
application in long sequences and high-resolution
images or point clouds. To solve this problem,
Xcit [37] proposed a transposed version of self-
attention called cross-covariance attention (XCA),
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which has a linear complexity with respect to the
number of input tokens. This study demonstrated
the strong ability of an image transformer to embed
XCA. Based on the XCA mechanism and the
original transformer architecture, Chandran et al.
[38] constructed topology-independent 3D shape
models for modeling 3D face and body shapes.
In contrast to these studies using transformers,
our transformer autoencoder model exploits the
transformer’s self-attention mechanism to capture the
required geometric information of the input shapes
and learn the deformation to achieve the 3D pose
transfer task. The encoder and decoder of our model
are based on transformers with XCA blocks, where
we modify the XCA block in Xcit to deal with
unorganized 3D point cloud data.

3 Method

This section introduces our transformer autoencoder
network for achieving geometry-aware 3D pose
transfer. Our model leverages the self-attention
mechanism of the transformer in Xcit to effectively
capture the nonlinear spatial correlation between two
arbitrary points in each shape. This enables our
encoder to extract features that are beneficial to
our task and simplifies the process of the decoder
to deform the target shape. Unlike existing deep
models that learn point-wise features independently,
our autoencoder focuses on the local surface details of

the target shape and global structural features of the
pose shape, thereby generating high-quality deformed
shapes. Instead of adopting the style transfer method
for 2D images, our model only requires the extraction
and fusion of features that contain identity and
pose information. Finally, deformation and identity
are learned and decoded from the fused features.
Therefore, the proposed method does not repeatedly
use the shape of the input identity to modulate the
deep features of the decoder.

3.1 Framework and XCA-based block

As shown in Fig. 1(a), our transformer autoencoder
contains an identity transformer extractor (ITE), a
pose transformer extractor (PTE), and a transformer
decoder, where the modules ITE and PTE make up
the transformer encoder. The input target shape
T {PT , IT } and the source shape S {PS , IS} have
different poses and identities, where P and I denote
the pose and identity information, respectively. From
the meshed figures, we can observe different identities.
Each input shape in our framework is an unorganized
point cloud with N disordered vertices V N×3 ⊆
RN×3. We aimed to transfer the source shape’s
pose to the target shape and keep the target shape’s
identity. Thus, the generated shape, which is also a
point cloud, can be denoted as G {PS , IT } and has
the same vertex order as the input target shape. The
module ITE is responsible for extracting the target
shape’s identity features FN×dI

I and focuses on the

Fig. 1 Framework of our transformer autoencoder (a) and the transformer unit block (b) based on the cross-covariance attention.
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geometric information of the local surface details of
the shape. The module PTE is in charge of obtaining
the source shape’s pose features FN×dP

P and attempts
to remove its identity information and retain the pose
component with the global structure of the shape.
The variables dI and dP denote the corresponding
feature channel sizes. After obtaining the identity
and pose features, the transformer decoder processes
the combined information FN×(dI +dP )

C to deform the
target shape and generate a new target shape that
maintains its identity and has the pose of the source
shape. The procedure for our framework can be
described as Eq. (1):
G {PS , IT } = Decoder

(
F

N×(dI +dP )
C

)
= Decoder

([
ITE

(
V N×3

T

)
,PTE

(
V N×3

S

)])
(1)

where [] denotes a concatenation operation.
The three submodules of our autoencoder are

built from XCA-based blocks and other operations.
The structure of the XCA-based block is shown in
Fig. 1(b). We designed a unit block based on the
transformer layer in Xcit by revising its original
structure to suit our 3D shapes. Specifically, we
modified the local patch interaction (LPI) and
feedforward network (FFN) layers. The LPI layer was
changed to one consisting of a sequence of operations
{Conv1D, GeLU, BatchNorm1D, Conv1D}. The FFN
layer includes the operations {Linear, GeLU, Linear}.
The crucial part of an XCA-based block is the
cross-covariance attention layer, which enables the
capture of correlations on high-resolution images or
point clouds. The previous self-attention mechanism
computes the entire pairwise interaction between the
input tokens, where the time and memory complexity
increase quadratically with the number of input
tokens. XCA substitutes it by designing self-attention
among the features. The attention map is represented
by a cross-covariance matrix computed over the key
and query projections of the input-token features.
The XCA function on the points can be defined as
Eq. (2):

XC-Attention (Q,K, V ) = VAXC (K,Q)

= V Softmax
(
∧
K

T ∧
Q/τ

)
(2)

where Q ∈ RN×d, K ∈ RN×d, and V ∈ RN×d

are the queries, keys, and values mapped from the

input tokens, respectively. The attention weights
AXC are computed based on the cross-covariance

matrix
∧
K

T ∧
Q, where the query matrix Q and key

matrix K are normalized to matrices
∧
Q and

∧
K by

l2-normalising, respectively. Therefore, the d × d

cross-covariance matrix elements are within the range
[−1, 1]. Moreover, the new self-attention mechanism
introduces a learnable temperature parameter τ to
scale the inner products before Softmax. This allows
for a sharper or more uniform distribution of attention
weights. XCA can also divide features into h groups
instead of allowing all features to interact with
each other, which further reduces the computational
complexity and speeds up the optimization process.
Further details regarding the XCA mechanism are
available in Xcit.

3.2 Identity transformer extractor

In the 3D pose transfer task, we focus on the
identity features of the target shape and eliminate the
influence of its pose features. The identity information
of a shape largely depends on local geometry
information, such as the details and curvatures of
its local surfaces. Therefore, the encoder module
for 3D pose transfer should be able to capture the
local geometry-aware representations of the input
target shape. It is natural to consider deriving
the identity information from the correlations of
local points on the target shape. However, it is
not easy to manually specify the relevant local 3D
points for the complex geometric domains of human
and animal bodies. Previous studies have used the
coordinate values or deep features of each point
on the target shape as identity information. The
deep features are independently mapped from the
coordinate values of each point by layers consisting
of Conv1D operations. Consequently, the point-wise
features in their encoders do not contain the local
geometry information of the target shape, which
severely affects the results of 3D pose transfer.

In contrast to previous models, we present
an identity transformer extractor in our encoder
to obtain identity features using local geometry
information. The structure of the module ITE is
shown in Fig. 2. ITE first processes the coordinate
values of points on the input target shape using
several layers consisting of Conv1D operations and
ReLU activation functions. These layers map the
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Fig. 2 Identity transformer extractor.

points onto high-dimensional latent positions. These
operations enable our network to stretch and squeeze
the distribution of the input shapes, which becomes
an optimal distribution for our task. Therefore, using
the initial layers before putting the tokens into XCA
blocks makes our model more general, instead of
being affected by the spatial distribution of 3D shapes.
After obtaining the latent tokens, we use a sequence
of two XCA blocks to extract the identity features of
the target shape. In each transformer block, the XCA
layer with its self-attention mechanism dynamically
learns the correlations between points within arbitrary
distance scopes without dictating the size of the local
receptive field prior. The channel dimensions of the
tokens after each XCA block are not changed. As
network training proceeds, the identity transformer
extractor gradually acquires a powerful ability to
perceive the local geometry information of the target
shape. It is an automatic and data-driven method for
learning the identity information of a target shape.

3.3 Pose transformer extractor

In contrast to processing the target shape, the
modules for handling the source shape in a 3D pose-
transfer task should focus on the pose information
of the shape and remove its identity attributes.
The pose information of a shape relies primarily on
its global features, such as its extension structure.
Nevertheless, a global vector obtained by a max-
pooling operation on each feature channel of all
point-wise features cannot represent complete pose
information. Accordingly, the pose information of the
source shape can be extracted from the correlations
between points at long distances. In encoders of
previous methods, the authors used layers that are
made up of Conv1D and Instance Norm operations to
learn the pose features of the source shape. Instance
Norm operations can eliminate identity properties.
However, the Conv1D operations in their encoders

still deal with point-wise features of the source
shape independently, rendering them insufficient for
extracting desirable pose information.

A pose transformer extractor was designed to learn
the pose features of the source shape. The structure of
the PTE module is shown in Fig. 3, which comprises
two similar layers and an additional layer. Each
of the two similar layers has a Conv1D operation,
XCA block, instance norm operation, and ReLU
activation function. The Conv1D operation maps the
input features to higher-dimensional features. The
XCA block, based on its self-attention, derives the
global pose structure information of the source shape,
which attempts to learn the correlations between
long-distance points during training. To eliminate
the identity features of the source shape that are
reinforced again by each XCA block, we adopt an
instance norm operation after the XCA block. Finally,
the pose features are mapped to the latent features by
an additional layer that includes a Conv1D operation,
an instance norm operation, and a ReLU activation
function. Throughout the processing of the three
layers, our pose transformer extractor can efficiently
learn the pose information using the global geometry
information of the source shape.

3.4 Transformer decoder

Similar to previous methods, we concatenate the
identity features FN×dI

I and pose features FN×dP

P to
obtain the concatenated features FN×(dI +dP )

C after
the encoder. The difference in the concatenated
features between our work and previous methods
is that our point-wise features contain geometric
information, which consists of local identity details of
the target shape and global structure contents of the
source shape. Owing to the loss of geometric features,
NPT, GCT, and 3D-CoreNet must repeatedly
modulate the latent features in their decoder layers.
In their modulation operations, the input features
of each layer are simply multiplied by the point-
wise features of the target shape, which cannot

Fig. 3 Pose transformer extractor.
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learn the complete identity information. Moreover,
the Conv1D operations on point-wise features in
their decoders remain independent, leading to
inefficient deformation learning from point-wise
features. Therefore, decoders are modules with
complex structures that can easily result in target
shapes with geometric distortion.

As shown in Fig. 4, the concatenated features with
geometric information are passed into our transformer
decoder, which is composed of Conv1D operations,
XCA blocks, and activation functions. First, we used
a Conv1D layer to merge the point’s identity and
pose information. The second and third Conv1D
operations adjust the input features from higher to
lower dimensions. After the first and second Conv1D
layers, two XCA blocks exist for fusing and decoding
the features between arbitrary points. Benefiting
from the self-attention mechanism in each XCA
block, our decoder recovers the identity of the target
shape from fused features with local geometry-aware
identity features. It also deforms the target shape
under the guidance of fused features using global
geometry-aware pose features. Our transformer
decoder has a simple structure that does not require
multiple modulations using the target shape.

3.5 Loss function

We trained our model by minimizing a combined
loss function that includes a reconstruction loss, an
edge loss, and a regularization term. Similar to
previous studies, we also conducted training under the
supervision of ground truth shapes, where each ground
truth shape had the same vertex order as the target
shape. Therefore, we can obtain the reconstruction
loss by calculating the point-wise distance of the
corresponding vertices between the deformed target
shape and the ground truth shape as Eq. (3):

Lrec = ‖Vgt − Vgenerate‖2
2 (3)

Vgt ∈ RN×3 and Vgenerate ∈ RN×3 are the corre-
sponding vertices between the ground truth and
generated shape, respectively. The reconstruction
loss is a direct condition that causes a network to

Fig. 4 Transformer decoder.

rapidly converge to the ground truth. We followed
NPT and used edge loss to consider the connectivity
of the mesh vertices. The edge loss can be defined as

Ledg =
∑

v

∑
p∈N(v)

‖v − p‖2
2 (4)

where points N (v) are the neighbors of point v ∈
Vgenerate. The neighbors of each vertex in the output
shape are the same as those of the corresponding
vertex in the target shape, which can be obtained
using an indexical dictionary based on a random
sequence used to disorder the original vertices.
Therefore, we can easily calculate the edge loss to
help restrain flying vertices and generate smoother
surfaces. In addition, we introduce L2 regularization
as a loss term to prevent overfitting in our model.
The term is defined as

LL2 = 1
2n
∑
w

w2 (5)

where n is the total number of weight parameter
w in the proposed model. Consequently, the final
combined loss function is

L = λrecLrec + λedgLedg + λL2LL2 (6)
λrec, λedg, and λL2 denote the weights of the
reconstruction, edge, and L2 regularization losses,
respectively.

4 Experiments

In this section, we evaluate our method both
quantitatively and qualitatively using human and
animal datasets. Because the proposed deep-learning-
based work deals with unorganized point clouds,
our experiments follow the evaluations in previous
studies. NPT was the first work to achieve 3D
pose transfer on non-corresponding shapes in a deep
learning manner. 3D-CoreNet is by far the state-of-
the-art related method for 3D pose transfer tasks on
disordered point clouds, surpassing the traditional
DT and deep-learning-based methods, NPT and
GCT. The main principle of the supervised version
of 3D-CoreNet is the same as that of 3D-CoreNet.
Therefore, we selected NPT and 3D-CoreNet as the
main baseline models to demonstrate the effectiveness
of our proposed approach. Even though the skeleton-
free approach requires a reference pose and can only
transfer the pose to the target shapes with a rest
pose, we also compare our method with the method
qualitatively. The experiments prove that our method
outperforms these contrasting methods in terms of
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generation and generalization capabilities. In ablation
studies, we verified the effectiveness of the proposed
submodules based on XCA blocks and analyzed the
influence on our model caused by the number of XCA
blocks. We also analyzed the impact of different
combined loss terms for training our network and
proved the effectiveness of the L2 regularization loss
term. Finally, we present a simple analysis of the
limitations and robustness of the proposed method.
4.1 Experimental setup

4.1.1 Datasets
For the human body shapes, we used the mesh
dataset in the NPT, which was generated using SMPL
[39]. The dataset included 30 identities, each of
which had 6890 vertices and 800 poses that shared
the same topology. When training our network, we
generated 6400 pairs from 16 identities with 400
poses and shuffled these pairs every epoch. Each
pair had an identity (target) and pose (source) mesh.
The ground-truth mesh was generated using the
identity parameters of the target mesh and the pose
parameters of the source mesh for each pair. To make
the obtained model invariant to the vertex order, the
mesh vertices were shuffled randomly before being
fed into the network. Accordingly, the ground-truth
mesh was shuffled to the same vertex order as the
identity mesh for supervised training and evaluation.
To evaluate our model, we randomly selected 400
pairs from the 14 unseen identities and 400 poses
as the test dataset. To evaluate the generalization
ability of our model further, we employed human
shapes from FAUST [40] and MG [41]. For animal
shapes, we used a dataset generated using SMAL
models [42]. The dataset contained 41 identities and
60 poses, and each mesh contained 3889 vertices. The
41 identities included different animals, such as cats,
dogs, deer, cows, and hippos. The training dataset
contained 11,600 pairs comprising 29 identities and
400 poses. The test dataset comprised 400 randomly
selected pairs of other identities and poses. For fair
comparison with the baseline models, we used the
same training and test datasets from the human and
animal datasets. For all input shapes from the human
and animal datasets, we shifted them to the center
according to their bounding boxes.
4.1.2 Implementation details
In the pose transformer extractor, the output
channels of the Conv1D filters from left to right are

[64,128,256]. We set the number of groups in the
two XCA blocks as 4 and 8, which split features,
and kept each group’s feature channel at 16. In our
identity transformer extractor, the output sizes of
the Conv1D filters were [64,128,256]. The number
of groups in the XCA blocks was set to 16. In our
transformer decoder, the output size of the Conv1D
filters was [256,128,3]. The number of groups in the
XCA blocks was set to [16,16,8,8]. In all XCA blocks
of our network, the output sizes of the attention
modules for the query, key, and values were the same
as those of the input features. The output sizes of
the Conv1D filters and the MLP in the LPI and FFN
layers were the same as the channels of the input
features. To train our network, we specify λrec and
λedg of the loss functions (Eq. (6)) as 1000 and 0.5,
respectively. To implement the L2 regularization
loss, we chose the AdamW optimizer [43] and set the
weight decay λL2 = 0.0005. Using PyTorch [44] on a
single GTX 1080Ti GPU, we trained our models for
200 epochs with batch sizes of 8 for humans and 12 for
animals. We started by adjusting our learning rate from
100 epochs using a fixed decay, where the decay value
was 5×10−6. The initial learning rate was set to 0.0005.

Following NPT, we utilized the point-wise mesh
Euclidean distance (PMD) as an evaluation metric
for our models. The PMD is the l2 distance of
the corresponding vertices between the output and
ground-truth shapes. Similar to the 3D-CoreNet, we
evaluated our models using the Chamfer distance
(CD) proposed in Ref. [45].

4.2 Quantitative comparison

Based on the PMD and CD metrics, we compared our
model with the baseline models NPT and 3D-CoreNet
on test datasets of human and animal shapes. For the
PMD and CD values, the lower is better. The units
of PMD and CD are 10−3. As shown in Table 1, the
model’s PMD and CD values on the two test datasets
were the lowest, indicating that our method achieved
state-of-the-art results on the 3D pose-transfer task.
Our model reduced 85% of NPT and 43% of 3D-
CoreNet on human shapes about PMD metric. In
the CD metric, our model decreased 83% of NPT
and 50% of 3D-CoreNet on the human dataset. Even
though the evaluation results of our model and the
baseline models on animal shapes are in an order of
magnitude, the performances of our model are still
better than those of other models. The PMD and
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Table 1 PMD and CD evaluation of different models on human and
animal shapes

Model NPT 3D-CoreNet Ours

SMPL
PMD 0.29 0.074 0.042
CD 0.6 0.2 0.1

SMAL
PMD 2.4 2.3 1.5
CD 4.4 4.4 2.7

CD values of the NPT and 3D-CoreNet models are
close to each other in terms of animal shape, whereas
our model outperformed them by approximately 34%
(PMD) and 38% (CD), respectively.

The excellent performance of our model relies
on the self-attention mechanism of the transformer
across the autoencoder. This helps our model
derive geometry-aware features of identity and
pose information and enables it to learn and
transfer deformation efficiently. Therefore, our model
obtained high-quality deformed shapes with the
best reconstruction losses. Moreover, our model is
lighter than NPT and 3D-CoreNet. Table 2 lists
the parameter numbers for the different models.
As shown, our model has the minimum number
of parameters. In particular, compared with 3D-
CoreNet, the size of our model is one-sixth that of
the 3D-CoreNet. Nonetheless, our method extends
beyond baseline models.

Table 3 lists the testing time costs of the different
models for calculating the pose transfer for a
pair of human or animal shapes. As can be seen,
our model requires less time than the baseline
models, especially the baseline model, 3D-CoreNet.
The main reason for the considerable time cost
of 3D-CoreNet is that its encoder and decoder
have complex network structures for extracting
and modulating features. Another reason is that
calculating the correspondence information between
pose and identity shapes is an iterative and time-
consuming process. Our transformer-based model has

Table 2 Parameter values of different models

Model NPT 3D-CoreNet Ours

Parameter number (M) 6.05 24.46 4.06

Table 3 Testing time cost of different models for a pair of target
and source shapes

Model NPT 3D-CoreNet Ours

Human time cost (s) 0.027 0.036 0.024

Animal time cost (s) 0.031 0.053 0.025

a more straightforward network structure and directly
deforms the target shape; the process does not require
corresponding information or multiple modulation
steps. Although the testing time costs of NPT are
close to ours, it performs poorly in the task and
still requires multiple modulation steps, which leads
to this model consuming much more time than our
model, whereas our model outperforms NPT and
3D-CoreNet significantly.

4.3 Qualitative comparison

As shown in Fig. 5 and Fig. 6, we transferred different
poses to different identity shapes using our models
and baseline models, where poses and identity shapes
were not used during training. To demonstrate the
advancement of our method, we show the deformed

Fig. 5 Pose transfer results of different models on human shapes.

Fig. 6 Pose transfer results of different models on animal shapes.
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shapes (the fourth, sixth, and eighth columns of
Fig. 5 and Fig. 6) and hot maps (the fifth, seventh,
and ninth columns of Fig. 5 and Fig. 6). Hot
maps were drawn on ground truth meshes based
on the normalized reconstruction errors between the
generated and ground truth shapes. In the figures,
the colors from left to right of the color bar indicate
that the error increases. Blue indicates a small
error and red indicates a large error. The deformed
shapes and hot maps indicate that our model obtains
results of the highest quality in the pose-transfer task.
Owing to independent point-wise operations and no
correspondence, which lead to the loss of geometric
information on the identity and pose shapes, the
NPT gets bad pose transfer results. For example, the
surfaces of the generated human shapes (the fourth
column in Fig. 5) were uneven and distorted. The
generated animal shapes (the fourth column in Fig. 6)
had spikes and artifacts on their bodies, heads, legs,
and feet. The hot maps of NPT also show that
this method generates deformed shapes with large
reconstruction errors. With the assistance of the
corresponding information obtained optimally and
iteratively, the model 3D-CoreNet achieves better
deformation than NPT. However, the operations of
3D-CoreNet are still point-wise and independent,
which causes the identity and pose features to miss
local and global geometric information. From the hot
maps of 3D-CoreNet, we can see that this method also
obtained results with significant gaps from the ground-
truth shapes. Because the transformer modules in our
network are geometry aware and interactive between
points, our models can efficiently obtain the deformed
shapes closest to the ground truth shapes. As seen
in our models’ deformed shapes and hot maps, the
proposed method achieved results with more accurate
geometric information and fewer errors than 3D-
CoreNet.

To further prove the superiority of our method, we
compared our method with the skeleton-free approach,
which can transfer poses between shapes with different
body proportions and topology structures. We used
the skeleton-free pretrained model trained on the
AMASS dataset [46], which is a large human motion
dataset that fits SMPL to real-world human motion
data. For a fair comparison, we selected shapes
with identities and poses that did not exist in our

training dataset and the AMASS dataset. As shown
in Fig. 7, some poses are transferred to an identity
shape with a rest pose using our model and are
skeleton-free. We can see that our results are close
to those of the GT and much better than those
of the skeleton-free model. Although the skeleton-
free model can obtain the correct poses, it produces
distortions in the body areas enclosed by black boxes,
such as the arm, knee, and belly regions. This
is because the skeleton-free model focuses on part-
wise latent features and transformations instead of
considering geometric details. Of course, skeleton-free
methods can achieve pose transfer between shapes
with different categories, which our methods and
the baseline methods NPT and 3D-CoreNet cannot
achieve.

4.4 Generalization capability

The above human and animal shapes were generated
from parametric models, which indicate that they
cannot replace realistic shapes with true identities
and wide poses. To demonstrate the generalization
capability of our method, we transferred the shape
poses from the realistic datasets FAUST and MG to

Fig. 7 Pose transfer comparison between the skeleton-free methods
and our method.
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the identity shapes in SMPL. As shown in Fig. 8 and
Fig. 9, the wide poses of shapes in FAUST and the
poses of clothed shapes in MG were transferred to the

Fig. 8 Transfer wide poses of shapes in FAUST to target shapes in
SMPL.

Fig. 9 Transfer poses of clothed shapes in MG to target shapes in
SMPL.

identity shapes in SMPL using different models. The
shape in the MG dataset contained 27,554 vertices,
which differed from the SMPL shape’s vertex number.
To transfer poses in the MG to identities in SMPL,
we downsampled the vertices in the shapes of the
MG and made the number of vertices equal to
6890. The model NPT cannot extract local and
global geometric information regarding identities and
poses, which results in uneven surfaces and inaccurate
poses of deformed shapes. The model 3D-CoreNet
also cannot obtain geometric information. This
produces distorted shapes, where the arms, bodies,
hands, and legs are unnatural because of incorrect
correspondence information between the pose and
identity shapes. Being far superior to baseline models,
our model achieved the best results, where each
deformed shape had the correct identity attributes
and exact poses. Because of the powerful geometry
perception ability of transformers with XCA in our
entire network, our model has a strong generalization
capability.

We also transformed the SMPL poses into the
identity shapes of DFAUST and MG. As shown in
Fig. 10, we selected some unseen poses from the
NPT dataset and transformed them into several
identity shapes in DFAUST and MG using different
models. To transfer poses in SMPL to identities in
the MG, we upsampled the vertices of the SMPL
shape repetitively to ensure that the shape has the
same number of vertices as the identity shapes in the
MG. From this figure, we can see that the proposed
method obtains the best generative results. Our
model considerably outperforms the NPT model. Our
model also achieved more accurate shape details than
the 3D-CoreNet model using its strong geometry-
perceived ability, such as the regions of hands and
legs in the body shapes. When processing shapes
with stick parts, such as the identity shape in the
last row of the figure, our method and the baseline
methods failed to address this situation.

4.5 Ablation studies

In this section, we study the relations and effects
of the different submodules proposed in this paper,
such as ITE, PTE, and transformer decoder (TD), by
replacing or using them in several networks for the
3D pose transfer task. We also studied the impact
of various XCA blocks on the decoder. Subsequently,
different combinations of loss terms were evaluated.
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Fig. 10 Transfer SMPL poses into identity shapes in DFAUST and
MG.

Finally, we analyzed the robustness and limitations
of the proposed method.
4.5.1 Submodule analysis
Owing to the embeddable character of submodules,
we replaced or used them to obtain many combined
networks and studied them in a 3D pose transfer task.
In the network proposed in this study, the ITE can
be replaced with the identity feature extractor (IFE)
of 3D-CoreNet. Our PTE can be replaced by the
pose feature extractor (PFE) of NPT. We can remove
PFE from NPT and use PTE for the NPT network.
The PMD and CD evaluation results for the human
shapes of different combined networks in the 3D pose
transfer task are listed in Table 4. The PMD and CD
had units of 10−3. We also list the relative results of
NPT, 3D-CoreNet, and our full network in this table
for convenience of comparison.

As shown in Table 4, regardless of the replacement
of PTE and ITE or both, the networks (from the third

to fifth rows of the table) still performed better than
NPT and 3D-CoreNet. The PMD values of the three
networks were significantly lower than those of NPT
and 3D-CoreNet. This implies that our transformer
decoder based on XCA blocks plays a vital role in
3D pose-transfer tasks. Compared with our complete
network (the last row of the table), the combined
networks achieved deficient results, such as higher
PMD and CD values. The PTE and ITE in our
network also made contributions that worked together
with our transformer decoder, leading to the best task
performance. The combined network (PTE+NPT)
that uses our PTE to replace PFE in NPT produces
worse results than the original NPT results. This is
because there is no process for decoding the relations
between points in the decoder of NPT. Therefore, the
PTE and ITE should be used with our transformer
decoder to enhance their abilities.
4.5.2 Different numbers of XCA blocks
The impact of different numbers of XCA blocks in
submodules on the 3D pose-transfer tasks must be
studied. We set our transformer decoder with one,
two, three, and four XCA blocks in two groups of
XCA blocks. Considering the situation with zero XCA
blocks in a decoder, we adopted the decoder structure
of NPT, which uses point-wise convolutions to decode
the features. Under the different settings, the PMD
and CD evaluation results of the 3D pose transfer task
on human shapes are shown in Table 5. The PMD and
CD are in units of 10−3. As can be seen from the table,
there is a considerable difference between the zero
XCA blocks and the other situations, proving that our

Table 4 Evaluation results of different combined networks trained
on human shapes

Model PMD CD

NPT 0.29 0.6
3D-CoreNet 0.074 0.2

PFE+ITE+TD 0.050 0.2
PTE+IFE+TD 0.064 0.2
PFE+IFE+TD 0.061 0.2

PTE+NPT 0.30 0.6
Our complete network 0.042 0.1

Table 5 Evaluation results under decoder with different numbers of
XCA blocks on human shapes

XCA block number 0 1 2 3 4

PMD 0.21 0.051 0.042 0.047 0.043
CD 0.5 0.2 0.1 0.1 0.1
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decoder with XCA blocks has enormous advantages
over the decoder with point-wise convolutions. The
table also shows that one XCA block in each XCA
group of the decoder is insufficient for the 3D pose
transfer task. When the number of XCA blocks was
two, our model achieved the best performance, with
a PMD of 0.042 and a CD of 0.1. Other numbers of
XCA blocks in the decoder have little impact on the
performance of 3D pose transfer.
4.5.3 Loss analysis
To evaluate the influence of the different loss terms,
different combinations of these loss terms were used
to train the network. The corresponding PMD and
CD results are listed in Table 6. Merely combining
the reconstruction loss term with L2 regularization
loss or edge loss can have negative consequences. In
particular, combining the reconstruction loss term
with the edge loss resulted in the worst PMD results.
When using all loss terms, we can obtain the best
performance, which indicates that the L2 loss term
improves the combination of the reconstruction loss
term with the edge loss.

To further study the L2 loss, we also show
the reconstruction loss values on the training and
test datasets of animal shapes during the training
processes of our models with or without the L2
regularization term in the loss function. The results
of the comparison are shown in Fig. 11. The PMD
value of our model without the loss term of L2
regularization on the training dataset decreased in
the later stages. In contrast, the PMD value of the
model for the test dataset increased significantly. This
indicates that a model without L2 regularization can
easily overfit during the training phase. After we
added the L2 regularization term to the loss function,
the PMD values of our model on the training and test
datasets maintained a consistent trend in the later
training stages. Therefore, the L2 regularization term
in our loss function effectively relieves the network
overfitting.

Table 6 Evaluation results of models trained by different combined
losses on human shapes

Model under different loss PMD CD

Lrec 0.044 0.1
Lrec + LL2 0.046 0.1
Lrec + Ledg 0.047 0.1

Lrec + LL2 + Ledg 0.042 0.1

Fig. 11 Training and evaluation of animal shapes.

4.5.4 Robustness and limitations
We also analyze the robustness and limitations of the
proposed method. As shown in Fig. 12, we evaluated
our approach using shapes with more adhesive regions
and different visual angles. In the first and second
rows, our method failed to transfer poses to identity
shapes with many sticky areas. The results for the
moving postures were also poor when the identity
and pose shapes had different visual angles, as shown
in the third and fourth rows of Fig. 12. Although
the generated bodies of our model were slightly

Fig. 12 Failed generation shapes.
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better than those of the previous methods in the
two situations, the results were much worse than
the expected shapes. Therefore, our approach is not
robust in these two situations.

5 Conclusions

This study proposes a novel transformer autoencoder
for achieving geometry-aware 3D pose transfer. A
self-attention mechanism, cross-covariance attention,
is embedded in the entire network to perceive the
local geometry details of the identity information
and global properties of the pose structure. These
geometric features are extracted and fused to learn
the deformation of the target shape dynamically
while maintaining its identity attributes. Our method
does not require correspondence information, and
is conducted in a simple and data-driven manner
without multiple modulation steps based on the
guidance of the target shape. Compared with other
models, our model with fewer parameters efficiently
executes 3D pose transfer and achieves state-of-the-
art results in terms of generation and generalization
capabilities. In future work, we will attempt to
address limitations, such as the same vertex number,
supervised training, and pose transfer between shapes
with adhesive regions and different visual angles.
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