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Abstract Good proposal initials are critical for
3D object detection applications. However, due to
the significant geometry variation of indoor scenes,
incomplete and noisy proposals are inevitable in most
cases. Mining feature information among these “bad”
proposals may mislead the detection. Contrastive learning
provides a feasible way for representing proposals, which
can align complete and incomplete/noisy proposals in
feature space. The aligned feature space can help us build
robust 3D representation even if bad proposals are given.
Therefore, we devise a new contrast learning framework
for indoor 3D object detection, called EFECL, that
learns robust 3D representations by contrastive learning of
proposals on two different levels. Specifically, we optimize
both instance-level and category-level contrasts to align
features by capturing instance-specific characteristics
and semantic-aware common patterns. Furthermore,
we propose an enhanced feature aggregation module
to extract more general and informative features for
contrastive learning. Evaluations on ScanNet V2 and SUN
RGB-D benchmarks demonstrate the generalizability and
effectiveness of our method, and our method can achieve
12.3% and 7.3% improvements on both datasets over the
benchmark alternatives. The code and models are publicly
available at https://github.com/YaraDuan/EFECL.

Keywords indoor scene; object detection; contrastive
learning; feature enhancement

1 Introduction

In recent years, RGB-D cameras and LiDAR devices
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are widely adopted for 3D data collection, which
produces massive large-scale indoor or outdoor
datasets for 3D object detection, such as ScanNet [1],
SUN RGB-D [2], KITTI [3], and so on. The detection
of objects holds paramount significance in various
fields of 3D vision, including augmented reality, robot
navigation, robot grasping, etc. Nevertheless, the
direct detection of objects from raw point clouds
continues to present substantial challenges.

A main line of research focuses on object detection
by generating candidate proposals and subsequently
performing box regression and object classification
tasks [4–10]. Certain methods adopt object center
prediction and point aggregation to generate high-
quality proposals. For example, VoteNet [4] utilizes
deep Hough voting for object centers, H3DNet [5]
employs a hybrid set of geometric primitives for
more accurate proposals, and BRNet [11] back-traces
representative points from the centers. Additionally,
numerous other approaches concentrate on extracting
high-dimensional abstract features from proposals
through the design of complicated networks or the
incorporation of supplementary input information,
including MLCVNet [12], Imvotenet [13], and
GroupFreed3D [8], among others. However, these
advanced approaches inherently produce incomplete
and noisy proposals, which is particularly evident
in the diverse and complex objects found in indoor
scenes (see Fig. 1). To mitigate the impact of
incomplete proposals, GroupFree3D selectively
samples proposals based on their high objectness
scores.

ProposalContrast [14] recently introduced
contrastive learning to align the features of
proposals obtained from multiple views within
an instance. Similarly, proposals derived from
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Fig. 1 Main idea of EFECL. In the figure’s top, the proposal
usually contains part of the objects which is difficult for the detector
to recognize. Our instance-level contrast (ICL) module computes
the contrasts of the same instance and different objects to provide
the instance-aware characteristics. In addition, objects in the same
category usually differ in structure. The instance-aware contrasts are
limited. Therefore, the category-level contrast (CCL) module extracts
the common pattern of the category for the incomplete object by
computing the contrast of objects in the same category and objects
from different categories.

multiple views are also susceptible to incompleteness.
ProposalContrast aims to maximize the agreement
of feature embeddings between two differently
augmented views of the same data instance while
simultaneously minimizing the agreement between
different instances.

Inspired by the method, we take advantage of
contrastive learning to learn the 3D representations
for 3D detection. While ProposalContrast also
enhances the proposal representations by sharpening
the discriminativeness of object instances, it primarily
emphasizes feature alignment among distinct views of
the instance for LiDAR-based 3D object detection in
outdoor scenarios like Waymo Open Dataset [15] and
KITTI. Our method emphasizes feature alignments
among proposals originating from the same instance

within scanned indoor scenes. Consequently, our
approaches do not require data augmentation,
whereas ProposalContrast incurs additional time
costs for data augmentation and corresponding
computations. Additionally, our method differs
from GroupFree3D, which selects proposals based
on high objectness. The fundamental concept of
our approach revolves around aligning both complete
and incomplete/noisy proposals utilizing contrastive
learning to effectively enhance feature encoding.

Having the proposals belonging to the same
instance which are not only incomplete but also
structurally unclear and contain much noise, we
compute the contrasts of the proposals from the
same instance to align the features by instance-
level contrastive learning (ICL) module. The
proposal representations are thus encouraged to
gather instance-aware properties. However, objects in
indoor scenes usually have the same semantic category
but differ in shape and structure. The contrasts of
instance have a limit in aligning the features within
the category. Therefore, we introduce the category-
level contrastive learning (CCL) module to capture
inherent object invariance within the same category
and semantic-aware common patterns of the category.
Contrasts in the same category reserve the intrinsic
property and thus learn the features by pulling the
proposals with the same category label close and
pushing the proposals in different categories apart.
Both of the contrasts help the detector align the
features and thus facilitate the semantic recognition
of objects.

Additionally, in order to extract more
comprehensive and informative features for
contrastive learning, we introduce an Enhanced
Feature Aggregation Module to aggregate the features
of the proposal. The module computes the max-
pooled features and uniform features to preserve
both crucial and general information. Therefore,
the module can provide more detailed and richer
geometric and semantic features through feature
aggregation.

In summary, the contributions of this paper
include:
• We propose a contrastive learning framework

named EFECL for indoor 3D object detection
that does not rely on data augmentation. The
method computes instance-level and category-
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level contrasts to facilitate feature alignment of
proposals. Based on the two different contrasts,
the approach encourages the network to capture
instance-specific characteristics and semantic-
aware common patterns.

• We introduce an Enhanced Feature Aggregation
Module to aggregate informative features for
proposals.

• Our method is straightforward yet effective.
The proposed method achieves improvements
of 12.3% and 7.3% in terms of mAP@0.5 on
the ScanNet V2 and SUN RGB-D datasets,
respectively.

2 Related work

Point cloud based indoor 3D object detection.
Directly detecting 3D objects from point clouds
poses challenges due to their sparse, unordered, and
irregular point distribution. Recent advancements
in 3D object detection can be categorized into two
main approaches: voxel-based or grid projection
methods [6, 9, 16–20] and point-based methods
[4, 5, 7, 8, 10, 11, 21–23]. Voxel-based or grid
projection methods are commonly employed in
outdoor autonomous driving scenarios. They involve
projecting 3D volumes onto 2D grids to detect bird’s-
eye view (BEV) bounding boxes or converting points
into voxels and utilizing 3D ConvNets for 3D box
generation. However, these projection/voxelization-
based methods all suffer from large memory and
computational cost.

After PointNet [24] and PointNet++ [25] having
been proposed to learn features of point clouds, point-
based methods are widely used to process point clouds
directly and predict 3D bounding boxes in indoor
scenes. Most of these methods assign a group of
points to each object candidate (proposal) and then
compute object features from each point group.

VoteNet is a point-based method that first groups
the points to each object candidate (proposal)
according to their voted center and extracts the
object features from the groups. The approach
with high performance and few computational
costs has achieved great success. Consequently,
lots of follow-up works [5, 8, 10–12, 26, 27] have
been proposed. MLCVNet incorporates multi-level
contextual information for voting and classification.

BRNet back-traces the representative points from
the vote centers and also revisits complementary
seed points around these generated points to capture
the fine local structural features. GroupFree3D
computes the feature of an object from all the points
with the help of an attention mechanism in the
Transformers [28] to generate more accurate object
detection results. DisARM [10] introduces a plug-
and-play module for most detection methods which
improves the performance of detection by encoding
the weighted relations between objects and relation
anchors as context information.

Most of these point-based methods deliver
impressive results but are constrained by their design.
While these methods strive to generate high-quality
proposals or extract high-level features for proposals,
they continue to encounter challenges with incomplete
proposals. Therefore, we propose the EFECL
framework for 3D object detection, which leverages
contrast learning at the instance and category levels
to align proposal features.

Contrastive learning in 3D object detection.
Self-supervised learning (SSL) has gained popularity
in various vision tasks as it enables the learning of
expressive feature representations without manual
annotations. Consequently, contrastive learning-
based SSL algorithms [14, 29–33] have demonstrated
impressive results across a wide range of downstream
tasks. Lots of 2D image tasks benefit from the
availability of free supervision signals derived from
the data itself, enabling representations in tasks such
as video representations [34], object detection [35–42],
image generation [43], scene boundary detection [44],
and so on.

However, the extent of its usefulness in
3D point cloud understanding remains largely
unexplored. Recently, contrastive learning has
emerged as a successful approach for learning 3D
feature representation. CrossPoint [45] facilitates
establishing a correspondence between 3D and 2D
representations of objects by employing cross-modal
contrastive learning to maximize the agreement
between point clouds and 2D images for 3D object
classification.

The learned representations in 3D detection
also show excellent performance. PointContrast
[46] proposes a self-supervised method to build
representations of scene-level point clouds which relies
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on the complete 3D construction of a scene with point-
wise correspondences between the different views of a
point cloud. Inspired by PointContrast, Contrastive
Scene Contexts [47] explores data-efficient learning
by making use of both point-level correspondences
and spatial context contrasts in a scene for limited
data or supervision. FAC [48] constructs region-level
contrast to enhance the local coherence and better
foreground awareness in the learned representations
for segmentation tasks. RondomRooms [49] learns the
3D scene representation only by applying object-level
contrastive learning on two random scenes generated
from the synthetic objects to improve the performance
of detection. ProposalConstrast devises a pre-training
framework for LiDAR-based detection which sharps
the discriminativeness of proposals across objects and
clusters in different views.

Different from objects in outdoor autonomous
driving scenarios, instances in indoor scenes exhibit
diverse shapes and complex structures, and they
are densely arranged. The presence of similar and
incomplete objects frequently leads to false detections.
Moreover, the discriminability of individual instances
is limited. To address these issues, we enhance feature
encoding by minimizing feature agreement between
instances and categories through the utilization of
contrastive learning.

3 Method

3.1 Overview

In this section, we introduce the proposed EFECL in
detail. The overall pipeline is shown in Fig. 2. Firstly,
we briefly describe our baseline 3D object detection
model and the detection tasks in Section 3.2. Then
we propose an Enhanced Feature Aggregation Module
to compute informative and general features for
proposals in Section 3.3. Subsequently, we introduce
two different contrastive learning components to
explore the instance-level discrimination (Section 3.4)
and category-level discrimination (Section 3.5) to
capture the instance-aware properties and semantic-
aware patterns, respectively. Finally, the joint
optimization of detection and contrastive learning
is formulated in Section 3.6.

3.2 Preliminaries

Inputs and goals. The input is a point cloud X ∈
RN×3 of size N × 3 with 3D coordinate for N points,
where each point is described as xi = [xi, yi, zi]T, i ∈
{0, · · ·, N}. The detection goal is to produce a set of
3D (oriented) bounding boxes B with categorization
scores to cover all ground-truth objects. Each box
b ∈ B is associated with a category label lb ∈ C, a
center cb = [cx

b , c
y
b , c

z
b ]T ∈ R3 in a world coordinate

Fig. 2 Framework of EFECL. Taking proposals generated by the backbone as input, we first compute the informative and general features for
proposals by Enhanced Feature Aggregation Module. The module consists of a uniform feature extractor and feature aggregation function. For
each of proposals, we compute the LICL loss and LCCL loss. Specifically, we construct positive pairs from the same instance and negative pairs
from different objects for ICL to compute contrast and align the features of proposals. At the same time, we construct positive pairs within the
same category and negative pairs from different classes for CCL to compute contrast which captures the common pattern of the category. At
last, the two different level contrastive learning and detection tasks are together optimized to help the network better understand and recognize
the objects.
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system, the size of bounding box sb = [sx
b , s

y
b , s

z
b ]T ∈

R3, and an orientation angle θb in the xy-plane of the
same world coordinate system.

Proposal generation. Given the input point
cloud, we adopt VoteNet as the baseline detection
method. Firstly, The approach leverages PointNet++
as the backbone to sample seeds and extract high-
dimensional features for the seeds. VoteNet then
takes the seed points with extracted features as input
to the voting module to regress object centers which
simulate the Hough Voting procedure. Clusters are
then generated by grouping votes around the cluster
centers to form object candidates (proposals). To
compute the feature of the proposal, votes from each
cluster are processed by an MLP before being max-
pooled to a single feature vector and passed to another
MLP where information from different votes is further
combined. As a result, each proposal in {pi}M

i=1
consists of its geometric position zi ∈ R3 in the 3D
space and extracted feature fi ∈ RC .

At last, proposals are leveraged to generate 3D
bounding boxes and be classified through detection
head as Eq. (1), where σ is a detection function
implemented by utilizing multi-layer perceptrons
(MLP).

{li, ci, si, θi} = σ(pi), pi = [zi,fi]T (1)

Classification and box regression. The loss
Ldet in the detection head consists of objectness,
bounding box estimation, and semantic classification
losses. Objectness loss Lobj is supervised for the
proposals that are located either close to a ground
truth object center. Lreg decouples the box loss to
center regression, heading angle estimation, and box
size estimation. For semantic classification, VoteNet
uses the standard cross-entropy loss. After that, a
3D IoU procedure is operated on the estimated boxes
to compute the final detection results.

3.3 Enhanced feature aggregation module
for proposal

Although VoteNet has achieved great success in 3D
detection by processing point clouds directly and
outputting the bounding boxes of the objects. The
features of proposals extracted by VoteNet are coarse
and lack general information on surrounding points.
As mentioned in Section 3.2, VoteNet conducts a
max-pooling operation on the votes to aggregate
the features to retain remarkable signals. However,

Fig. 3 EFAM architecture. To capture informative features for
proposals, we compute the max-pooled feature fi and uniform feature
f ′i through max-pooling and mean operations. Subsequently, the
features are concatenated by adopting the function ϕ. Finally, the
aggregated feature faggr is obtained through the MLP network G2
and a normalization operation.

the points in indoor scenes usually contain much
noise. As a result, some votes in a cluster can be
unessential or belong to other objects, and then
the max-pooling operation collects inappropriate
information for the proposal. The feature aggregated
with this inappropriate information makes it more
difficult for the network to understand the object.
To extract more general proposal representations, we
leverage an Enhanced Feature Aggregation Module
(EFAM) to capture the more uniform features and
aggregate informative features for proposals.

We take the votes generated by VoteNet as input.
A vote cluster is denoted as C = {vq} with q =
1, · · ·, v, where each vote vq consists of its location
information and feature. Different from VoteNet, we
conduct mean operations on votes within the cluster
to compute a uniform feature that represents the
average distribution of votes in terms of geometric
and feature space. The uniformed feature f ′i of
proposal i is obtained by Eq. (2), where G1 is
a perception function given by an MLP network.
Note that the uniform feature is used to enrich the
feature representations, which provides the general
information of the proposal.

f ′i = mean
q=1,···,v

{G1(vq)} (2)

Therefore, we aggregate the informative feature
by concatenating the max-pooled feature fi and
the uniform feature f ′i together and projecting the
concatenated feature to l2-normalized embedding
space as Eq. (3) showing, where ϕ is a function which
concatenates the two feature in channel-wise, and G2
aggregates the features which are given by an MLP
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network. As a result, the aggregated informative
feature of proposal pi is computed by faggr.

faggr = G2(ϕ(fi,f
′
i))

‖G2(ϕ(fi,f ′i))‖
(3)

3.4 Instance-level contrastive learning

Lots of proposals are generated during the detection
process, exhibiting a range of qualities. Some
proposals contain significant noise points originating
from the wall, clutter, and floor, while others capture
only a portion of the object or incorporate points
from multiple objects. In an effort to produce high-
quality proposals, many methods employ complex
network architectures and additional supervision
signals. However, these approaches also inevitably
generate incomplete proposals.

Therefore, we propose instance-level contrastive
learning (ICL) and category-level contrastive learning
(CCL) to leverage contrasts at different levels for
aligning proposal features and enhancing feature
encoding. In this section, we first introduce ICL.
The key insight is that the network may generate
multiple proposals for an object, some of which may
only contain partial patches of the object. These
incomplete proposals with partial structures are
similar to other objects, which can confuse the
detector. For instance, a proposal that only includes
the lower part of a chair may resemble a table.
Figure 4(a) provides a visualization of this example.
To address this, we associate each proposal with
positive proposals from the same instance, thereby
providing additional information about the object
to facilitate feature alignment. Additionally, we
pair the proposal with negative proposals from other

categories to compute discrimination, enabling the
detector to differentiate the incomplete proposal from
other similar objects.

Positive and negative pairs construction.
Specifically, given the proposals with their features,
we try to enforce the features of positive samples to
be close and the features of negative samples to be
distant. Firstly, we construct one positive pair and N
negative pairs for each proposal. Note that we follow
Ref. [50] and only consider one positive pair. For
proposal pi, we sample the proposal that is closest
in 3D space and has the same category label to form
the positive set Ppos

i = {p+
i }. The sampled positive

p+
i and the proposal pi belong to the same instance.

We then take ones with different category labels as
negative set Pneg

i = {p−in
}N . The computation of the

pairs is detailed in Algorithm 1.
Feature projection. After constructing the

positive and negative pairs, we then adopt a
projection layer to project all proposal pairs to
l2-normalized embedding space. As a result, the
projected positive set D+

i and projected negative set
D−i are calculated in Eq. (4) and Eq. (5).

D+
i =

{
gproj(p+

i )
‖gproj(p+

i )‖

}
, p+

i ∈ P
pos
i (4)

D−i =
{

gproj(p−in
)

‖gproj(p−in
)‖

}
, p−in

∈ Pneg
i (5)

Here gproj is an MLP network consisting of linear
transformation layers and activation function.

ICL loss. At last, the ICL loss is designed in
the form of the InfoNCE loss [50]. As shown in
Eq. (6), where yi, y+

i , y′ denote the projected feature

Fig. 4 Illustration of the importance of ICL and CCL. We visualize the detection results of VoteNet and EFECL on the ScanNet V2 dataset.
The proposals containing part of the chair in (a) are mistaken as table by VoteNet. With the help of ICL which captures the instance-specific
characteristics and provides richer information about the objects by instance-aware contrasts, the network recognizes the proposals and regresses
the bounding of boxes accurately as shown in (b). In addition, the objects with incomplete structures, e.g., tables in (a) and desk in (c), are
hard to be detected. Our method can detect objects correctly as well. Note that the cabinet in (c) with a small size which is different from the
other cabinets is similar to table which confuses VoteNet. However, our approach captures the semantic-aware common patterns of the cabinet
category for the object. As a result, we recognize the cabinet accurately in (d).
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Algorithm 1 General framework of EFECL
Input: propoals P = {pi}M .
for i ∈ {1, · · · ,M} do

//Construct the pos/neg pairs for ICL

sample instance aware positives Ppos
i = {p+

i }:
p+

i = ( arg min
p+∈P,p+ 6=pi

dist(pi,p+)) ∨ (li == l+)

sample negatives Pneg
i = {p−in

}N :
{p−in

} = {( random
p−

in
∈P−{pi,p+

i
}

p−in
) ∨ (li 6= ln)}

//projection

yi = norm(gproj(pi))
D+

i = {y+
i } = {norm(gproj(p+

i ))}
D−i = {y−in

}N = {norm(gproj(p−in
))}

//Construct the pos/neg pairs for CCL

sample category aware positives Ppos′
i = {p+′

i }:
p+′

i = ( arg max
p+′∈P,p+′ 6=pi

dist(pi,p+′ )) ∨ (li == l+
′ )

sample negatives Pneg′
i = {p−

′

in
}N ′ :

{p−
′

in
} = {( random

p−
′

in
∈P−{pi,p+′

i
}

p−
′

in
) ∨ (li 6= ln′ )}

//projection

D+′
i = {y+′

i } = {norm(gproj(p+′
i ))}

D−
′

i = {y−
′

in
}N ′ = {norm(gproj(p−

′

in
))}

end for
compute ICL loss: LICL;
compute CCL loss: LCCL.

of proposal pi, projected feature of corresponding
positive proposal p+

i , and projected feature of
proposal in the union of D+

i and D−i , respectively.
D set collects the projected feature of proposal pi

and M indicates the number of proposals. τ is a
temperature hyper-parameter.

LICL = − 1
M

∑
yi∈D

log exp(yi · y+
i /τ)∑

y′∈D+
i ∪D

−
i

exp(yi · y′/τ)
(6)

3.5 Category-level contrastive learning

We argue that contrasts between proposals of the
same category are also crucial. Different from objects
in some outdoor scenes, objects in indoor scenes
exhibit diversity and complexity. Many objects
share the same category label but differ in terms
of their structures, size, and component details.
These distinctive characteristics of indoor objects pose
challenges for the detection network. For instance, as
illustrated in Fig. 4(c), a small-sized cabinet can be
easily misclassified as a table. The limited contrasts
between instances of the same object fail to capture
the general rules within the category. Furthermore,
it is challenging for the network to directly learn the
semantic-aware common patterns.

Therefore, to further release the power of the
category-level information, we propose category-level
contrastive learning (CCL) module by which the
object representations from the same category are
aligned and the features from different categories are
pushed away.

Different pairs construction. Similar to the
ICL, we first construct one positive pair and N ′

negative pairs. The difference is that we form
the positive set Ppos

i
′ = {p+′

i } for proposal pi

by sampling the proposal with a same category
label and largest distance in 3D space. The
operation ensures that the two proposals do not
come from the same instance. After that, we
take the proposals with different category labels
as negatives Pneg

i
′ = {p−

′

in
}N ′ . The sampled

positive and negative pairs thus provide the category-
level information for the network to explore the
semantic-aware common pattern within the same
class and discrimination between different categories.
Projection and normalization are then conducted
on the features of positive proposals and negative
proposals to construct the sets D+′

i and D−
′

i ,
respectively. Note that the weights in the projection
layer are shared between ICL and CCL.

CCL loss. The CCL loss is formulated as Eq. (7),
where y+′

i , y′′ denote the projected features of the
corresponding positive proposal p+′

i and the projected
feature of proposal in the union of D+′

i and D−
′

i . τ ′ is
the temperature hyper-parameter for category-level
contrasts.

LCCL = − 1
M

∑
yi∈D

log exp(yi · y+′
i /τ ′)∑

y′′∈D+′
i ∪D

−′
i

exp(yi · y′′/τ ′)
(7)

3.6 Joint optimization of EFECL

The property of contrast learning, together with
the motivation to help the detector better
align the features of the same instance or
same category, inspires us to perform contrast
learning simultaneously during the detection training
procedure. The joint optimization thus helps the
network enhance the feature encoding in a fine-
tuned way. Therefore, the overall object function is
defined by detection target and contrastive learning
considering both instance-level contrast and category-
level distinction. The total loss L is defined in
Eq. (8), where α and β are the balancing coefficients,
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respectively. We show the analysis of the effectiveness
of the optimization in Section 5.3.

L = Ldet + αLICL + βLCCL (8)

4 Implementation details

4.1 EFECL’s main learning algorithm

We have described the purpose, methodology, and
formulation of ICL and CCL in Section 3. To more
intuitively elaborate the design, we summarize the
whole procedure in Algorithm 1 which contains
positive and negative pairs construction, feature
projection, and loss computation for each contrast
learning task.
4.2 Network architecture and training details

To evaluate the efficacy and versatility of our
approach, we investigate the performance of EFECL
on VoteNet as 3D detection backbone architecture.
We take the M = 256 output proposals of VoteNet
with 128-dimensional features as the input of ICL
and CCL. The projection gproj is realized with two
linear layers output size of 256, 256, and a ReLU
as activation function. The number of negative
proposals N and temperature parameter τ in ICL
are set to 20 and 0.2, respectively. Hyper-parameter
N ′ and τ ′ in CCL are set to 15 and 0.3, respectively.
The coefficients α and β in Eq. (8) are set to 1 and
0.1, respectively.

We first train VoteNet with our EFAM to generate
informative features of proposals for 36 epochs. The
initial learning rate is 0.008. The decay steps are 24
and 32. After that, we fine-tune the entire network
by objective function Eq. (8) with the pre-trained
model equipped with EFAM for 80 epochs. The initial
learning rate is 0.008. The decay steps are 56 and
68. EFECL is optimized by adopting the Adam [51]
optimizer with the batch size of 8. We implement our
method on MMDetection3D [52] which is an open-
source 3D object detection toolbox with one NVIDIA
TITAN V GPU.

5 Experiments

5.1 Dataset and metrics

ScanNet V2 dataset. We utilize the widely
adopted ScanNet V2 dataset, which offers extensive
3D indoor scenes. ScanNet V2 is a dataset consisting
of RGB-D video recordings capturing indoor scenes,

and it provides rich annotations of 3D reconstructed
meshes. The dataset comprises approximately
1.5k scans that are annotated with both semantic
segmentation and object instance labels, covering
a total of 18 categories. Point clouds are sampled
from the reconstructed meshes following the approach
introduced in Ref. [4].

SUN RGB-D dataset. The SUN RGB-D dataset
[2] is a well-known public dataset specifically designed
for single-view RGB-D scene understanding tasks. It
comprises approximately 5000 training images that
are annotated with oriented 3D bounding boxes and
semantic labels across 10 categories. To process the
point data in our method, we adopt the approach
presented in Ref. [4] to convert the depth images
into point clouds by utilizing the camera parameters
provided with the dataset. Furthermore, we assess
the performance of our method on this challenging
dataset, known for its significant occlusion challenges.

Metrics. Average precision is employed as the
evaluation metric to assess the accuracy of the
detected object bounding boxes against the ground
truth bounding boxes. In our experiments, we
utilize two IoU thresholds: 0.5 and 0.25. The mean
average precision (mAP) is calculated as the macro-
average of the average precision values across all
test categories. The mAP values computed using
the two thresholds are referred to as mAP@0.5 and
mAP@0.25, respectively.

5.2 Comparisons

In this section, we evaluate our method with previous
approaches on the ScanNet V2 dataset in Table 1 to
demonstrate its effectiveness, such as VoteNet and its

Table 1 3D object detection results on ScanNet V2 dataset.
Notations: Ours1 indicates that we only apply the LCCL and LICL
to baseline method. * denotes the average performance of training
and test trial in GroupFree3D. We show the results of GroupFree3D
as reported in MMDetection3D

Method mAP@0.25 mAP@0.5
VoteNet 58.7 33.5

PointContrast 59.2 38.0
RandomRooms 61.3 36.2
DepthContrast 64.0 42.9

Ours 64.3 45.8
BRNet 66.1 50.9

Ours1 (BRNet) 66.7 51.7
GroupFree3D (L6, O256) 66.3 (65.7*) 47.8 (47.7*)

Ours1 (GroupFree3D (L6, O256)) 66.8 50.1
GroupFree3D (L12, O256) 66.6 (66.2*) 48.2 (49.0*)

Ours1 (GroupFree3D (L12, O256)) 67.4 50.5
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successors BRNet and GroupFree3D. To demonstrate
the generalization on different indoor scenes, we also
show the results on the SUN RGB-D dataset in
Table 3.

Quantitative results. The detection results of
ScanNet V2 are shown in Table 1. Taking VoteNet
as the baseline model, our EFECL achieves 64.3
on mAP@0.25 and 45.8 on mAP@0.5, which is 5.6
and 12.3 higher than the performance of VoteNet
without designing complex network architectures
and augmenting any additional data. Note that we
also compare the performance with PointContrast,
RandomRooms, and DepthContrast [53]. The three
excellent works also take VoteNet as a baseline
method and introduce contrastive learning for
detection. EFECL outperforms the approaches on
both mAP@0.25 and mAP@0.5 which demonstrates
the effectiveness of our two different contrasts.

We then take BRNet and GroupFree3D as the
harder baselines which extract more abstract features
for proposals, and our approach also obtains 0.6,
0.5 improvements on mAP@0.25 and 0.8, 2.3
improvements on mAP@0.5 respectively. Note
that the harder baselines have different proposal
generation modules. Therefore, we only equip the
baselines with our αLICL + βLCCL but also improve
the performances on them. The larger improvements
on mAP@0.5 demonstrate that EFECL helps the

detectors to learn the representations of objects more
precisely.

As presented in Table 3, our method is evaluated
on the SUN RGB-D dataset. In this evaluation,
EFECL outperforms the baseline method with
improvements of 3.8 in mAP@0.25 and 7.3 in
mAP@0.5. These results highlight the effectiveness of
our proposed two-level contrastive learning approach,
which facilitates feature alignment in incomplete
proposals and enhances the distinction between
category representations.

Table 8 presents the results for the 10 categories
in terms of mAP@0.25 and mAP@0.5. Our method
exhibits improved performance in mAP@0.25 for most
categories, specifically 9 out of 10. Furthermore, when
compared to VoteNet, our method outperforms across
all categories in terms of mAP@0.5, demonstrating
its superiority. Significantly, we achieve over 10%
improvement in mAP@0.5 for the sofa category,
characterized by larger structures where proposals
often contain parts of the objects. These results
underscore the ability of EFECL to enhance feature
encoding for objects, even in cases where they are
incomplete.

Notably, our method works well on both datasets,
which indicates its outstanding generalization ability
for different detection scenarios with different
detectors.

Table 2 3D object detection results on ScanNet V2 dataset with mAP@0.5. Notations: Ours1 indicates that we apply both LCCL and LICL
to the baseline method; we utilize bounding boxes to mark the numbers and indicate the categories that each component or combination of
components excels at processing

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

VoteNet 8.1 76.1 67.2 68.8 42.4 15.3 6.4 28.0 1.3 9.5 37.5 11.6 27.8 10.0 86.5 16.8 78.9 11.7 33.5

CCL 17.6 78.2 72.7 75.2 50.4 24.7 14.7 38.9 3.8 27.6 44.9 24.2 31.6 17.2 87.0 36.4 89.9 19.8 41.9

ICL 22.1 81.1 73.2 78.7 50.8 23.5 15.6 46.2 3.9 29.1 44.4 19.8 30.7 33.7 82.9 28.4 92.1 21.6 43.2

Ours1 18.8 80.2 72.1 75.9 52.9 25.3 15.8 48.9 4.9 33.4 45.2 29.2 33.9 36.5 87.0 35.4 86.6 23.3 44.7

Table 3 EFECL with different components. The first row indicates the baseline method (VoteNet) without our components. We denote the
CCL, ICL, and EFAM as the baseline method adopting our LCCL, LICL, and the enhanced feature aggregation module respectively

CCL ICL EFAM
ScanNet SUN RGB-D

mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

× × × 58.7 33.5 57.7 32.9

X 63.5 (+4.8) 41.9 (+8.4) 60.9 (+3.2) 39.1 (+6.2)
X 63.5 (+4.8) 43.2 (+9.7) 61.1 (+3.4) 39.2 (+6.3)

X X 64.2 (+5.5) 44.7 (+11.2) 61.0 (+3.3) 39.6 (+6.7)
X 63.6 (+4.9) 43.4 (+9.9) 61.3 (+3.6) 39.6 (+6.7)

X X X 64.3 (+5.6) 45.8 (+12.3) 61.5 (+3.8) 40.2 (+7.3)
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Qualitative results. In Fig. 6 and Fig. 8, we
visualize the representative 3D object results from
our method and the baseline method (VoteNet) on
ScanNet V2 dataset and SUN RGB-D dataset. These
results demonstrate that applying our EFECL to
the baseline method achieves more reliable detection
results with more accurate bounding boxes. The other
furniture in the first row with the partial structure
of objects is mistaken as cabinet by VoteNet but
recognized correctly by our method. We attribute
the success to the instance properties captured by
ICL. The patches of the wall in the second row are
classified as door by VoteNet which does not learn
the common pattern of the door category, such as
the average size and the handle component of the
door. EFECL with CCL helps the network deal with
incomplete objects by the contrasts from categories.
Note that VoteNet even treats the proposal containing
noise points in the third row as cabinet. All these
results prove that our method can help the detector
recognize and localize the objects more effectively.
5.3 Ablation study

We conduct extensive ablation experiments to analyze
the effectiveness of different components of EFECL.
All experiments are trained and evaluated on the
ScanNet V2 dataset and take VoteNet as the baseline
method.

Analysis on each component of EFECL. We
evaluate the contribution of each component in Table 3.
The proposed LCCL and LICL both help detectors
obtain better performance. Although LICL is more
effective in improving performance on mAP@0.5, the
contrasts provided by it with instance properties
are not enough for the objects in the indoor scene.
Together with LCCL, the detector achieves higher
performance. The results demonstrate that LICL and
LCCL provide different concepts of information by
instance-level and category-level contrasts.

Compared to VoteNet, our EFAM module also
obtains better results on the ScanNet V2 dataset
and SUN RGB-D dataset in terms of mAP@0.25 and
mAP@0.5. We attribute the success to the EFAM
collecting more general features of the proposal which
provides richer information than the VoteNet only
adopting the MaxPooling function. Applying all the
modules of EFECL, we get the best results.

The impact of CCL, ICL, and CCL+ICL on the 18
categories is illustrated in Table 2. CCL significantly

improves the performance for curt, toil, and sink. This
can be attributed to the inherent challenges faced
by categories with limited samples and low-quality
point cloud representations, making it difficult for
the detector to learn common patterns within these
categories. However, CCL effectively provides class-
aware information through category-level contrasts.
Furthermore, ICL outperforms CCL in terms of
performance for cab, bkshf, and showr. These objects
are characterized by their large structures, and
the proposals typically include parts of the objects.
The observed improvements can be attributed to
the instance-specific characteristics facilitated by
instance-level contrasts. Leveraging both CCL and
ICL leads to improved performance in most categories,
including tabl, door, cntr, and others. These results
highlight the different contrasts provided by ICL and
CCL, and the combined utilization of both contrasts
enables the network to achieve superior results.

To further analyze why EFECL can help the
detector improve its performance, we draw the curves
of loss with different detection tasks on the ScanNet
V2 dataset in Fig. 5. EFECL performs better in
center regression and objectness classification tasks
which demonstrates that EFECL helps the detector
focus on the target object by exploring the instance-
specific characteristics. Good convergence also can be
found in semantic classification tasks which indicates
that EFECL helps the detector understand and
recognize the objects in terms of the contrast from
categories. Besides, EFECL not only has an effect
in semantic aware tasks but also has effectiveness in
box regression tasks.

Hyper-parameters in ICL. The effectiveness
of each hyperparameter in LICL is analyzed, as
presented in Table 4. Through multiple experiments,

Table 4 Ablation studies of hyper-parameter settings in ICL module.
Notations: τ denotes the temperature parameter in Eq. (6) and N

denotes the number of negative pairs

Setting mAP@0.25 mAP@0.5
τ = 0.2, N = 10 62.8 42.5
τ = 0.2, N = 12 63.0 42.5
τ = 0.2, N = 15 63.2 43.3
τ = 0.2, N = 20 63.5 43.2
τ = 0.2, N = 32 63.1 41.9
τ = 0.07, N = 20 62.9 41.0
τ = 0.1, N = 20 63.3 41.2
τ = 0.2, N = 20 63.5 43.2
τ = 0.3, N = 20 63.3 42.5
τ = 0.5, N = 20 63.0 42.8
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Fig. 5 Loss curves of center regression, semantic category classification, box size regression, and objectness classification tasks for VoteNet
and EFECL on ScanNet V2 dataset.

Fig. 6 Qualitative results on ScanNet V2 dataset. The first column is ground truth and the rest columns are detections of our EFECL and
VoteNet. Best viewed on screen.
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Fig. 7 Mean average precision curves of different weights of LICL and LCCL on ScanNet V2 dataset. Notations: We plot the results of
evaluation on the validation set after each training epoch.

Fig. 8 Qualitative results on SUN RGB-D dataset. The first column is ground truth and the rest columns are detections of different methods.
Best viewed on screen.

it is found that the number of negative pairs should
not be too small. Instance-level contrast provides
strong signals for features and representations, and
a smaller number of negatives hinders effective
discrimination computation and limits information
retention. Furthermore, an excessive number of
negative pairs hampers the network’s ability to
accurately recognize objects. Additionally, the

results demonstrate that an excessively high value
of the temperature hyperparameter, τ , causes the
network to overlook samples that are challenging to
distinguish. In the case of instance-level contrast,
smaller temperature hyperparameters are necessary
to prioritize the most similar and challenging
samples, enabling the computation of more robust
representations.
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Hyper-parameters in CCL. The effectiveness
of different numbers of negative pairs for each
proposal and various values of the temperature
hyperparameter, τ ′, is demonstrated in Table 5.
It is important to note that the provision of
more negative samples does not necessarily result
in a higher number of contrasts across different
categories. On the contrary, an abundance of negative
proposals complicates the learning process and leads
to confusion for the detector. The role of the
temperature hyperparameter, τ ′, is to regulate the
attention given to challenging samples. In the case of
category-level contrast, objects from different classes
may exhibit similar representations. Consequently,
several challenging negative samples may possess
potentially related features. Overly compelling
feature extractors to separate proposals from such
difficult samples would result in a loss of underlying
semantic information. Therefore, it is advised not
to set the temperature coefficient too small, as it
may compromise the ability to effectively capture the
distinctions between challenging samples.

Analysis of the weights of different contrasts.
As shown in Table 7, we evaluate the different weights
of LICL and LCCL mentioned in Eq. (8). As shown
in Table 2, ICL and CCL have different contributions
on different categories and they also can be leveraged
together to obtain better results. However, we find
that ICL achieves better performance than CCL on
the mean average precision of the categories. The
result shows that ICL provides principal contrasts and
plays a more important role. CCL further improves
the performance by computing a different contrast.
Therefore, we first set α as 1.0 and observe the effects
on different weights of LCCL. Increasing the value

Table 5 Ablation studies of hyper-parameter settings in CCL module.
Notations: τ ′ denotes the temperature parameter in Eq. (7) and N ′

denotes the number of negative pairs

Setting mAP@0.25 mAP@0.5
τ ′ = 0.3, N ′ = 10 62.8 40.6
τ ′ = 0.3, N ′ = 12 62.1 41.0
τ ′ = 0.3, N ′ = 15 63.5 41.9
τ ′ = 0.3, N ′ = 20 63.0 40.5
τ ′ = 0.3, N ′ = 32 62.9 40.2
τ ′ = 0.07, N ′ = 15 62.2 40.6
τ ′ = 0.1, N ′ = 15 61.6 40.0
τ ′ = 0.2, N ′ = 15 62.8 41.2
τ ′ = 0.3, N ′ = 15 63.5 41.9
τ ′ = 0.5, N ′ = 15 62.2 40.6

Table 6 Efficiency of different components and methods

Module Params (M) GFLOPs
EFAM 0.117 0.288

αLICL + βLCCL 0.033 0.0

Method Params (M) GFLOPs
VoteNet 0.93 5.78

Ours 1.04 (+0.11) 5.79 (+0.01)

Table 7 Comparison of efficiency for different weights of LICL loss
and LCCL loss. Notations: α denotes the weight of LICL and β

denotes the weight of LCCL

Setting mAP@0.25 mAP@0.5

α = 1.0, β = 0.1 64.2 44.7
α = 1.0, β = 0.5 62.6 40.6
α = 1.0, β = 1.0 61.5 40.2
α = 0.1, β = 1.0 61.6 41.5
α = 0.5, β = 0.5 61.5 40.4
α = 0.8, β = 0.2 63.3 43.7
α = 0.9, β = 0.1 64.8 42.5

of β, the performances on mAP@0.25 and mAP@0.5
gradually decrease which suggests that much category-
aware contrast will distract the network from learning
the representations of objects and only attempt to
find the difference between the categories.

We also plot the curves of mAP@0.25 and
mAP@0.5 during training in Fig. 7, and the curves
with setting β = 0.1 reaching the highest points also
prove our conclusion. Therefore, to take advantage
of both contrastive losses, we set a lower CCL weight.
We also set the values of α and β with the constraint
of α+β = 1.0. Although we obtain the best result on
mAP@25 in the last row of the table, the experiment
with setting α = 0.9, β = 0.1 does not perform well
on both metrics. Note that we give lower weights to
CCL which does not demonstrate the category-aware
contrast is useless. On the contrary, the contrast
captured by CCL is different from the instance-aware
characteristics which is also important for the feature
encoding enhancement.

Training parameters and computational
complexity. Table 6 presents the efficiency of each
component and various methods. To ensure a
fair comparison, all experiments are conducted on
a single Titan V GPU workstation utilizing the
MMDetection3D toolbox. Initially, we evaluate the
efficiency of each component in EFECL. EFAM
and the two contrastive learning modules have
only 0.117M and 0.033M training parameters,
respectively. Furthermore, the contrastive learning
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Table 8 3D object detection results of 10 categories on SUN RGB-D val dataset with mAP@0.25 and mAP@0.5

Method bathtub bed bkshf chair desk drser nigtstd sofa table toilet mAP@0.25

VoteNet 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
Ours 79.7 86.8 34.4 78.5 30.3 33.1 65.7 67.8 49.3 89.2 61.5

Method bathtub bed bkshf chair desk drser nigtstd sofa table toilet mAP@0.5

VoteNet 47.0 50.1 7.2 53.9 5.3 11.5 40.7 42.4 19.5 59.8 33.7
Ours 53.3 56.8 12.8 58.6 9.5 19.7 49.9 54.1 23.2 64.6 40.2

modules do not incur any additional computational
cost (0 GFLOPs) on the GPU. We also present a
comparison of efficiency between the baseline method
and EFECL. Our proposed method is highly effective,
requiring only a slight increase in training parameters
(0.11M) compared to the backbone method (VoteNet)
and incurring an extremely small computational
cost (0.01 GFLOPs) while achieving significant
performance improvements (5.6% and 12.3%). These
findings demonstrate that our lightweight modules
offer substantial performance enhancements for 3D
object detection.

6 Conclusions

This paper presents a novel contrastive learning
framework aimed at enhancing the performance
of indoor 3D object detection. Unlike previous
methods that heavily rely on multi-view data
augmentation and solely focus on learning contrasts
between identical instances, our approach computes
diverse contrasts for proposals without employing
any augmentation. Firstly, to extract highly
informative proposal features for contrastive learning,
we introduce an Enhanced Feature Aggregation
Module that combines uniform features and max-
pooled features. Subsequently, we compute both
instance-level and category-level contrasts for the
proposals. The network is guided by these contrasts
to align proposal features by learning instance-specific
characteristics and semantic-aware common patterns.
Our method enables the detector to more accurately
recognize incomplete proposals that only contain
partial objects and noise points. Experimental
evaluations conducted using diverse benchmarks
and datasets demonstrate the effectiveness and
generalizability of our approach.

Limitation. Our approach is more applicable to
objects within indoor scenes. Furthermore, our
method captures the common patterns shared among

objects of the same category, which exhibit complexity
and diversity. However, objects of the same category
in certain outdoor scenes, such as autonomous driving
scenes, exhibit similar structures and sizes. This
similarity poses a challenge for the detector to learn
category-level contrasts. For instance, this is evident
with cars, pedestrians, cyclists, and other similar
objects. In future work, we aim to explore a more
comprehensive contrastive learning framework that
encompasses both indoor and outdoor scenes.
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