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Abstract Semantic segmentation is an important
sub-task for many applications. However, pixel-level
ground-truth labeling is costly, and there is a tendency
to overfit to training data, thereby limiting the
generalization ability. Unsupervised domain adaptation
can potentially address these problems by allowing
systems trained on labelled datasets from the source
domain (including less expensive synthetic domain)
to be adapted to a novel target domain. The
conventional approach involves automatic extraction
and alignment of the representations of source and
target domains globally. One limitation of this approach
is that it tends to neglect the differences between
classes: representations of certain classes can be more
easily extracted and aligned between the source and
target domains than others, limiting the adaptation
over all classes. Here, we address this problem by
introducing a Class-Conditional Domain Adaptation
(CCDA) method. This incorporates a class-conditional
multi-scale discriminator and class-conditional losses
for both segmentation and adaptation. Together, they
measure the segmentation, shift the domain in a class-
conditional manner, and equalize the loss over classes.
Experimental results demonstrate that the performance
of our CCDA method matches, and in some cases,
surpasses that of state-of-the-art methods.
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1 Introduction

Semantic segmentation is an important visual
scene-understanding task with a wide range of
applications, particularly in autonomous and assisted
vehicle systems [1]. Recent deep network approaches
(e.g., Refs. [2–4]) have achieved impressive results, but
they require large training datasets with precise pixel-
level ground-truth annotations. This may also lead
to poor generalization ability due to the large domain
shifts in appearance, viewpoint, and lighting between
the source training and target testing domains [5].

These issues can potentially be addressed using
the unsupervised domain adaptation method that
attempts to identify and correct for a shift in the
appearance of visual input between different domains.
This is achieved by training a semantic segmentation
model with a large number of synthetic source domain
images that do not perfectly represent the appearance
of real scenes but have easily obtainable ground-
truth labels, as well as real-world target domain
images whose ground-truth labels remain unknown.
Therefore, a successful domain adaptation method
will not only improve generalization but also avoid the
time-consuming annotation for pixel-level multi-class
segmentation of real-world scenes.

A common approach to solve the “domain
shift” problem for deep network systems is to
modify the weights of the network to render
representations of target domain images more similar
to the representations of source domain images. By
minimizing the distance between the distributions
of certain representations in both domains, a well-
generalized model can be obtained. Some existing
works have focused on representations in the
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prediction space [6, 7], while others have focused
on representations in feature (latent) space [8, 9].
Representational dissimilarity can be assessed
using correlation distances [10] or maximum mean
discrepancy [11]. However, recent studies have
focused on generative adversarial methods [12] for
unsupervised domain adaptation. This adversarial
principle has become prominent since it achieved
promising results in pixel-level prediction tasks [6, 13].

One limitation of previous studies on unsupervised
domain adaptation for semantic segmentation is
that they tend to measure feature extraction and
alignment globally while ignoring the influence
of different classes [14, 15]. The representation
extraction and alignment ability of different classes can
be affected by the occurrence frequency or appearance
similarity between domains. An underlying tendency
can be observed in that representations on classes with
higher frequency can be easily extracted for segmentation,
and representations on classes with higher appearance
similarity between domains can be easily adapted.
Therefore, the network may fail to extract meaningful
feature representations from some classes using global
segmentation prediction measurement. In addition,
the global alignment of representations may cause
the representations of some classes not to be fully
adapted during training or cause the representations
of classes that are already easily aligned to be mapped
to incorrect classes.

To address the above issues, we propose a novel
Class-Conditional Domain Adaptation (CCDA) method,
which considers both adaptation and segmentation
in a class-conditional manner. It comprises a
class-conditional multi-scale discriminator and class-
conditional loss functions for both segmentation
and adaptation. Our class-conditional multi-scale
discriminator encourages the network to align feature-
level representations in a class-wise manner on both
fine (pixel-level) and coarse (patch-level) spatial
scales. For the coarse-scale branch, class-conditional
adaptation is considered flexibly by requiring the
discriminator to retain semantic information within
each patch. It allows the adaptation on each class
to be measured separately without neglecting any
class. For the fine-scale branch, the class-conditional
adaptation loss is equalized over classes to ensure that
equal attention is paid to the alignment of each class.
Moreover, the design of class-conditional segmentation
loss function assists the network to fairly evaluate the

segmentation performance on each class.
In summary, our proposed CCDA approach

comprises three novel contributions:
• We propose a novel class-conditional multi-scale

discriminator, which allows adaptation to be
learnt in a class-wise manner.

• By equalizing class-conditional losses over classes
for both segmentation and adaptation, the CCDA
system pays equal attention to different classes.

• Experimental results demonstrate that the
observed performance matches, and in some cases,
surpasses that of state-of-the-art algorithms on
several domain adaptation scenarios.

2 Related work

Domain adaptation: Research on domain adapta-
tion for image classification has been conducted for
many years, with a focus on solving the “domain
shift” problem between different datasets on image-
level representations. In the early stages, traditional
distance minimization methods were proposed to
reduce the distance between image representations
from the source and target domains. For example,
Ref. [16] used the maximum mean discrepancy
(MMD) loss, and Ref. [17] applied coral loss. With
the development of generative adversarial networks,
many recent studies have achieved domain adaptation
by minimizing the distance between representations
using generative adversarial methods, which achieve
better performance [18, 19].

Domain adaptation for semantic segmentation:
Although substantial progress has been made in
domain adaptation for image classification, pixel-
level tasks are more challenging because of their
direct dependence on local appearance. Nevertheless,
increasing activity in autonomous vehicle applications
has driven interest in domain adaptation for pixel-
level segmentation of road scenes [8, 20]. Currently,
the most popular approach to domain adaptation for
pixel-level segmentation relies on adversarial learning,
which is widely used for image generation [12, 21]
and translation [22–24].

For domain adaptation, adversarial learning
employs a discriminator on the segmentation network
to align the source and target representations at
either the prediction level [6, 14] or feature level
[8, 9, 20]. Tsai et al. [6] employed an adversarial
network to align pixel-level representations for
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adaptation. Vu et al. [14] then employed an
indirect entropy minimization technique to improve
the prediction-level adaptation. Luo et al. [9]
used an information bottleneck to help remove
task-independent information from feature-level
representations during adaptation. Shan et al. [15]
fused multi-level features for both segmentation
and adaptation to allow gradients to flow into low-
level CNN layers along a shorter path. Zhou et
al. [13] performed domain adaptation on the affinity
relationship between adjacent pixels to leverage the
co-occurring patterns during adaptation.

In addition, the self-training approach can select
pseudo ground-truth labels for target domain
images to help supervise adaptation and improve
performance [25–28]. The source-free method [29, 30]
focuses on adaptation using only a well-trained
source model and unlabeled target domain data.
Additional techniques, such as image translation,
can be combined with representation adaptation
methods. Image translation focuses on narrowing
down the domain shift between the source and target
domains at the input image level by generating
translated source domain images with target styles
[27, 31]. However, most existing domain adaptation
methods for semantic segmentation tended to
measure segmentation and adaptation globally, while
ignoring the influence of different classes, which may
affect their performance.

Region-wise/class-wise domain adaptation:
Adversarial approaches like Refs. [32, 33] tend
to boost the domain adaptation performance for
different classes or regions of the image. This suggests
that a region- or class-wise domain adaptation
approach is required to achieve good adaptation
across all classes. Luo et al. [32] applied a co-training
strategy to increase the weight of adaptation for
poorly-aligned regions with inconsistent semantic
predictions. Yang et al. [34] iteratively perturbed
the intermediate feature maps with several attack
objectives, which helps treat the information at each
position evenly during adaptation. Tsai et al. [7]
clustered patches based on spatial patterns and used
cluster information as a guide to achieve better
adaptation for each patch. However, these methods
are still unable to equally and separately measure
the segmentation and adaptation of each class, which
may still limit their performance.

To achieve explicit class-wise adaptation, Chen et
al. [8] applied 19 sub-discriminators during training,
where each sub-discriminator is specially trained to
measure the alignment of one class. Du et al. [33]
further improved this framework by separating an
entire feature into 19 sub-features based on the
pseudo class label and inputting each sub-feature into
the corresponding sub-discriminator for independent
class-wise adaptation. Because the memory of the
sub-discriminators varies linearly with the number
of classes, it is less efficient to apply 19 sub-
discriminators during training and may not be flexible
when applied to datasets with more classes.

Here, we propose our CCDA method, which
is a more holistic solution that entails one class-
conditional multi-scale discriminator and class-
conditional loss functions for both segmentation
and adaptation. Using the class-conditional multi-
scale discriminator, we allow the adaptation to be
learnt in a class-wise manner. Equalizing the loss
over classes for both segmentation and adaptation
also helps pay equal attention to all classes.
Meanwhile, by forcing the discriminator to maintain
the semantic information while adversarially aligning
the distributions between domains for each class,
we can avoid using multiple sub-discriminators that
apply one sub-discriminator to each class. Compared
with the framework proposed by Du et al., our method
is more efficient and flexible because we only require
a single discriminator and still manage to separately
and equally measure the adaptation for each class.

3 Methods

First, we describe the basic domain adaptation
framework for pixel-level semantic segmentation.
Next, we explain the innovations of our CCDA system
in detail. It comprises two major components: class-
conditional domain adaptation and class-conditional
segmentation. In Section 3.2, we describe our class-
conditional multi-scale discriminator, which contains
both fine- and coarse-scale branches. In Section 3.3,
we describe our class-conditional segmentation part.
Figure 1 shows an overview of our CCDA system.
3.1 Basic domain adaptation architecture

We employed an adversarial learning approach to
achieve unsupervised domain adaptation for semantic
segmentation. The basic structure of this approach
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Fig. 1 Overview of our proposed Class-Conditional Domain Adaptation system. It consists of three parts: Feature Encoder E, Segmentation
Decoder S, and Discriminator D. Orange arrows indicate the flow for the source domain, green arrows indicate the flow for the target domain,
and grey arrows represent the flow for both domains. Given a source image Is and target image It, we first pass them through E and S to obtain
their feature-level representations Fs, Ft and pixel-level segmentation predictions Ps, Pt. Then, Fs and Ft from the two domains are input
into D for feature-level representation alignment. To fairly measure the segmentation prediction for each class, we propose a class-conditional
segmentation loss to supervise Ps of Is based on its ground-truth label Ys. To measure the feature alignment in a class-wise manner, we
designed a class-conditional multi-scale discriminator. The fine-scale branch of D uses class-conditional adaptation loss to pay equal attention
to the pixel-level alignment for each class, while the coarse-scale branch allows patch-level adaptation on each class to be separately and flexibly
measured. More details of the coarse-scale branch in D are shown in Fig. 2.

typically consists of three modules: a feature encoder
E, segmentation decoder S, and discriminator D.
The image data consist of source and target data.
Each source image Is ∈ R3×H×W is paired with
ground-truth pixel-level segmentation label Ys ∈
RC×H×W , H,W are the height and width of the
image, respectively, and C = 19 denotes the number
of semantic classes. The target image It ∈ R3×H×W

is assumed to have no ground-truth data available
for training.

Our goal is to train the feature encoder E and
segmentation decoder S to output a good pixel-
level segmentation prediction Pt ∈ RC×H×W for
the target domain image. This is achieved through
two processes: training E and S to output a good
segmentation prediction Ps ∈ RC×H×W for the
source image Is with the associated label Ys, and
using the discriminator D to align the feature-level
representations Fs and Ft output by the feature
encoder E for the two domains.

The first process (segmentation) is trained by
minimizing the segmentation cross-entropy loss as
Eq. (1):

Lseg = − 1
N

∑
h,w

∑
c

Ys[c, h, w]log(Ps[c, h, w]) (1)

where (h,w) denotes pixel position, and c ∈
{1, 2, · · · , C} represents a semantic class. N =

H ×W denotes the number of pixels. Ys[c, h, w] and
Ps[c, h, w] are the ground-truth and predicted state
for class c at pixel (h,w). Ps = S(Fs) = S(E(Is)) is
the output of the segmentation decoder S.

The second process (alignment) is trained
adversarially to generate domain-invariant features.
The discriminator module D attempts to distinguish
feature representations from the source and target
domains, minimizing
LD1 = λsdLbce(D(Fs), 0) + λtdLbce(D(Ft), 1) (2)

where Lbce is the binary cross-entropy domain
classification loss. The output channel of this basic
discriminator D is 1 because it is for two classes
(source and target domains). The source and target
domain samples are assigned labels of 0 and 1,
respectively. Normally, D(F ) outputs a prediction
that retains the resolution of the input feature
representation instead of a prediction with one single
value at the global image level. Therefore, adaptation
can be measured more precisely by calculating the
average loss over all positions in the input feature.
Concurrently, the feature encoder E attempts to
confuse D, minimizing
Ladv1 = λsaLbce(D(Fs), 1) + λtaLbce(D(Ft), 0) (3)
This basic structure extracts the semantic

representations and produces an alignment of the
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features globally among all classes. It does not
consider that different classes may have different
influences on the segmentation and adaptation. This
tends to cause predictions on some lower-frequency
classes that do not contribute substantially to
the cross-entropy loss, or representations on some
classes that are not fully adapted owing to the
dissimilar appearance between domains. This could
also deconstruct the existing alignment and cause
regions that belong to classes that have already
been well adapted to be mistakenly adapted to
other classes. Meanwhile, because the feature map
computed by the feature encoder E is spatiotopic
but its resolution is reduced relative to the input
image, the alignment achieved by this process is
at a specific intermediate scale of the feature map,
which may not capture the domain shift at smaller
or larger scales. These observations motivate our
class-conditional multi-scale discriminator and class-
conditional segmentation.
3.2 Class-conditional multi-scale discriminator

Our proposed class-conditional multi-scale discri-
minator is composed of fine- and coarse-scale branches
(Fig. 1). The fine-scale branch measures alignment at
the pixel level based on the basic architecture with
modified loss functions. It captures spatially-detailed
domain shift phenomena in a class-wise manner. The
coarse-scale branch measures the class-conditional
alignment at the patch level, which is coarser than
the feature scale with equal class information. First,
we describe how to perform this class conditioning by
explaining the design of the coarse-scale class label.
Then, we elaborate on the structure of the class-
conditional coarse-scale discriminator branch as well
as the fine-scale branch.
3.2.1 Coarse-scale class label
We define a coarse-scale binary class label W with
length C that indicates the presence or absence of
each class within a rectangular patch of the image.
It should be noted that a patch may contain multiple
classes. For the source image, Ws is computed by
analyzing the pixel-level ground-truth label Ys within
the image back-projection of a patch. For a patch at
position (j, k), if any pixel within the back-projected
region of the image has class c, we set Ws[c, j, k] = 1;
otherwise, we set Ws[c, j, k] = 0.

For the target domain image, we do not have
ground-truth label. Instead, we assign the coarse-

scale class label based on the projected pixel-level
prediction Pt of our segmentation module S for the
patch. In particular, for the patch at position (j, k),
given a confidence threshold thw, if any pixel (h,w)
within the back-projected region of the image contains
Pt[c, h, w] > thw, we set Wt[c, j, k] = 1; otherwise,
we set Wt[c, j, k] = 0.

Note that binarizing the patch-based class label
W equalizes the class information at the patch level:
W [c, j, k] = 1 if the patch (j, k) contains any pixels
of class c, regardless of the number. This has the
benefit of maintaining semantic information in our
discriminator without neglecting any classes in a
patch. It also applies equal attention to all the classes
that a patch contains and boosts the adaptation
performance in a class-wise manner.
3.2.2 Class-conditional coarse-scale branch
In standard feature-level domain adaptation, the
discriminator output for each patch indicates the
domain of the entire patch (in our case, 0 for
source domain, 1 for target domain). To apply class-
conditional adaptation, Du et al. designed a sub-
discriminator system with 19 sub-discriminators,
each specially trained for one corresponding class,
and achieved good performance. By contrast, the
class-conditional discriminator we designed consists
of both semantic classification and adaptation. It
maintains semantic information while measuring the
class-wise adaptation adversarially, which avoids
the usage of sub-discriminators. The output of our
class-conditional coarse-scale discriminator branch
consists of two vectors, Os and Ot, each of length
C. Os[c, j, k] estimates the probability that the patch
(j, k) contains one or more pixels drawn from class c
of the source domain, while Ot[c, j, k] estimates the
probability that the patch (j, k) contains one or more
pixels drawn from class c of the target domain.

The advantage of this two-vector representation
is that it allows us to multiplex both domain
and class information, informing both adversarial
adaptation loss based on the class and non-adversarial
classification loss (Fig. 2). In particular, to determine
the non-adversarial classification loss, we form
the vector Oc = σ (Os +Ot), where the sigmoid
function σ(·) is applied separately for each class.
Therefore, Oc[c, j, k] estimates the probability that
the patch (j, k) contains one or more pixels drawn
from class c. We calculate the classification loss
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Fig. 2 Details of our class-conditional discriminator on the coarse-scale branch. (a) Overview. (b) Details for one patch (j, k) from source
domain as an example. For better understanding, pc = Oc

s [c, j, k] is the estimated probability that the patch (j, k) from the source domain
contains one or more pixels belonging to class c. qc = Ost

s [c, 1, j, k] represents the estimated probability that pixels of class c in patch (j, k)
belong to the source domain. Ost

s [c, 2, j, k] = 1− qc indicates the probability that pixels of class c in patch (j, k) belong to the target domain.
Here, the usage of class-conditional domain vectors Os

s and Ot
s (Os and Ot for source domain) allows multiplexing of both domain and

class information, informing an adversarial adaptation loss based on class and a non-adversarial classification loss. Oc
s is supervised by the

corresponding class label Ws for maintaining semantic information, while Ost
s is supervised by domain label for class-wise adaptation with Ws

as weights. Therefore, it allows a flexible and separate feature alignment for each class.

for both domains using a binary cross-entropy loss
Lbce(Oc,W ) averaged over all classes, because each
patch can contain multiple classes. Including this
classification loss in the discriminator encourages
the feature-level domain alignment to preserve the
segmentation class information for patches from both
the source and target domain images. Because of the
binary nature of the coarse-scale class label vector
W , we prevent the discriminator from neglecting any
classes with a small number of pixels in a patch.

To obtain the adversarial adaptation loss, we form
a C × 2 matrix Ost = f ([Os, Ot]) for each patch,
where f(·) is the softmax operation over rows (with a
channel number of 2, where the first C×1 is for source,
and the second is for target). Therefore, for patch
(j, k), Ost[c, 1, j, k] represents the probability that the
pixels of class c in this patch belong to the source
domain, and Ost[c, 2, j, k] represents the probability
that the pixels of class c in this patch belong to
target domain, Ost[c, 1, j, k] +Ost[c, 2, j, k] = 1. Ost

indicates that for each class, the probability that
any pixels of this class present in a patch are drawn
from the source versus target domains. Therefore, it
allows the adaptation of each class that occurs within
the patch to be measured separately with only one
discriminator.

To form the final class-wise discriminator domain
adaptation loss for the coarse-scale branch, we average
the class-conditional loss over the classes present
in a patch. This means weighting the sum of the

losses using ground-truth patch-level class label Ws
for the source domain and predicted patch-level class
prediction Oc

t (Oc for the target sample) for the target
domain, and then dividing by the sum of the weights.
Combined with the non-adversarial classification loss,
the total patch-level discriminator loss is
LD coarse = Lbce(Oc

s ,Ws) + Lbce(Oc
t ,Wt)

− λsd

M

∑
j,k

∑
c Ws[c, j, k]log(Ost

s [c, 1, j, k])∑
c Ws[c, j, k]

− λtd

M

∑
j,k

∑
c O

c
t [c, j, k]log(Ost

t [c, 2, j, k])∑
c O

c
t [c, j, k]

(4)
where Ost

s is the output Ost for the source domain
image, Ost

t is the output Ost for the target domain
image, and M is the number of patches. Here, the
discriminator is trained to precisely distinguish the
features from both domains for each class. Therefore,
we expect it to predict Ost

s [c, 1, j, k] = 1 for the source
domain and Ost

t [c, 2, j, k] = 1 for the target domain.
The generative component of the adversarial loss

is symmetrically defined as
Ladv coarse = Lbce(Oc

s ,Ws) + Lbce(Oc
t ,Wt)

− λsa

M

∑
j,k

∑
c Ws[c, j, k]log(Ost

s [c, 2, j, k])∑
c Ws[c, j, k]

− λta

M

∑
j,k

∑
c O

c
t [c, j, k]log(Ost

t [c, 1, j, k])∑
c O

c
t [c, j, k]

(5)
Here, we expect it to predict Ost

s [c, 2, j, k] = 1 for the
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source domain and Ost
t [c, 1, j, k] = 1 for the target

domain to confuse the discriminator.
3.2.3 Class-conditional fine-scale discriminator
Coarse-scale class-conditional adaptation can capture
larger-scale domain shift effects but may not capture
shifts in finer detail. Thus, we employ a class-
conditional fine-scale discriminator operating at the
pixel level. The scale of the feature representations in
this fine-scale discriminator branch remains, and the
output is upsampled to produce a fine-scale domain
classification Us ∈ R1×H×W for Is and Ut ∈ R1×H×W

for It that match the original input size. For this
fine-scale discriminator branch, we do not need to
retain semantic information, but we still evaluate the
performance of the adaptation in a class-wise manner
using a designed class-conditional loss that equalizes
the performance among all classes.

For the source domain, we employ the ground-
truth class label Ys to calculate the loss for each
class and equally average over the classes to form a
class-conditional binary cross-entropy loss:
Lcbce s(Us, Ys, ld) =

1
C∗

∑
c

∑
h,w Ys[c, h, w]Lbce(Us[h,w], ld)∑

h,w Ys[c, h, w] + ε

(6)
where C∗ is the number of classes present in the
source image. The ground-truth domain label ld is
set to ld = 0 when training the discriminator D and
ld = 1 when training the encoder E and segmentation
decoder S, to confuse the discriminator. ε is a small
constant that prevents division by 0 for the classes that
do not appear in the ground truth within an image.

For the target domain image, we do not have a
ground-truth class label; therefore, we employ pixel-
level class prediction Pt instead to form a pseudo label
Ŷt by selecting the class with the highest prediction
value:

Ŷt[c, h,w] =

1, if c = arg max
c

Pt[c, h,w]

0, otherwise
(7)

For some pixels, Pt may have low entropy, which
means that the network is confident and the pseudo
labels on these pixels may be a good estimate of the
ground truth class. For other pixels, Pt may have
high entropy, which can be considered as a sign that
the domain shift may be interfering with classification.
Thus, the adaptation loss for pixels with uncertain
predictions can be upweighted to improve adaptation

to the domain shift. In particular, we designate these
ambiguous pixels using the label At ∈ R1×H×W :

At[h,w] =

1, if max
c
Pt[c, h,w] < tha

0, otherwise
(8)

where tha is a threshold constant for selecting the
uncertain pixels. We then add a term to the fine-scale
domain adaptation loss that serves to upweight these
regions during feature alignment.

Thus, the final class-conditional binary cross-
entropy loss for the target domain images becomes
Lcbce t(Ut, Ŷt, ld) =

1
C∗ + 1

(∑
c

∑
h,w Ŷt[c, h,w]Lbce(Ut[h,w], ld)∑

h,w Ŷt[c, h,w] + ε

+ λn

∑
h,wAt[h,w]Lbce(Ut[h,w], ld)∑

h,wAt[h,w] + ε

)
(9)

where C∗ denotes the number of classes present in
the target domain image, as predicted by Ŷt. It uses
ld = 1 to train D and ld = 0 to train E and S, to
confuse the discriminator.

The fine-scale class-conditional discriminator loss
for both the source and target domain images is then
LD2 = λsdLcbce s(Us, Ys,0)+λtdLcbce t(Ut, Ŷt,1) (10)
The generative component of the adversarial

fine-scale loss trained on feature encoder E and
segmentation decoder S is symmetrically defined
as
Ladv2 = λsaLcbce s(Us, Ys, 1) + λtaLcbce t(Ut, Ŷt, 0)

(11)
For stability, we blend these class-conditional fine-

scale losses with the conventional losses defined in
Eqs. (2) and (3) to obtain the adaptation loss for the
fine-scale branch:

LD fine = βLD1 + (1 − β)LD2 (12)
Ladv fine = βLadv1 + (1 − β)Ladv2 (13)

where β is a weight to combine the losses.
Therefore, the overall discriminator and adver-

sarial losses of our class-conditional multi-scale
discriminator combine the losses from both fine-scale
and coarse-scale branches:

LD all = LD fine + LD coarse (14)
Ladv all = Ladv fine + Ladv coarse (15)

3.3 Class-conditional segmentation loss

The conventional loss employed for pixel-level
semantic segmentation is pixel-level cross-entropy loss.
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This means that the segmentation predictions are
measured globally among the entire image, regardless
of the class information. However, this method
has a drawback in that some classes tend to be
less frequent among the datasets or have objects
with smaller sizes at the pixel level, which do not
contribute substantially to the loss function. This
conventional global segmentation loss has an additional
consequence for the domain adaptation system in
that the system may never learn how to align
representations across domains for these classes.

Here, we introduce a modified class-conditional loss
for segmentation that serves to distribute the loss
more evenly across classes. Specifically, we employ
the concept of dice loss [35] to train the segmentation
network. Dice loss is widely used in medical image
segmentation [36, 37] and has the form in Eq. (16):

Ldice = 1− 1
C

∑
c

( 2
∑

h,w Ys[c, h, w]Ps[c, h, w]∑
h,w(Ys[c, h, w] + Ps[c, h, w])+ε

)
(16)

Note that the loss is similar in spirit to intersection-
over-union and can equalize the contribution of each
class to measure segmentation performance. ε is a
small constant that prevents division by 0 for classes
that do not appear in the ground-truth and prediction.

Dice loss can measure segmentation by class, which
tends to increase the weight of loss in rare classes.
However, this may also introduce instability during
training. Therefore, we employ a combination of the
dice loss and cross-entropy loss (Eq. (1)) to form our
segmentation prediction loss:

Lpred = αLseg + (1− α)Ldice (17)
where α is a weight to combine the losses.
3.4 Complete training loss

Following Refs. [14, 34, 38], we also add a regular
entropy minimization loss Lent for the segmentation
prediction of the target domain image, which
encourages our model to produce predictions with
high confidence:

Lent = − λent

log(C)N
∑
h,w

∑
c

Pt[c, h, w]log(Pt[c, h, w])

(18)
where λent is a weight to balance the losses.

In summary, the complete training process com-
bines class-conditional segmentation loss (Eq. (17)),
class-conditional domain adaptation discriminator
loss (Eq. (14)), adversarial loss (Eq. (15)), and
entropy minimization loss (Eq. (18)):

min
D
LD all (19)

min
E,S

Lpred + Ladv all + Lent (20)

4 Experiments

4.1 Datasets and implementation details

Following most domain adaptation for segmentation
methods, we evaluated our class-conditional domain
adaptation method on semantic segmentation using
two synthetic source domain datasets (GTA5 [39]
and SYNTHIA [40]) and a real-world target domain
dataset (Cityscapes [41]). This defines two adaptation
tasks: GTA5 → Cityscapes and SYNTHIA →
Cityscapes. The GTA5 dataset comprises 24,966
images, while the SYNTHIA dataset comprises 9400
images. Both synthetic datasets include pixel-level
ground-truth semantic segmentation labels. The
Cityscapes dataset contains 2975 training images
and 500 validation images. To train the proposed
domain adaptation model, we employed both images
and ground-truth labels from either the GTA5 or
SYNTHIA dataset as the source domain, and only
the images (not the labels) from the Cityscapes
training set as the target domain. We evaluated
our model on the Cityscapes validation set over 19
classes for GTA5 → Cityscapes task and over 13 and
16 classes for SYNTHIA → Cityscapes task, as per
convention [6, 26].

We implemented our training and evaluation in
PyTorch on a single GeForce RTX 2080 Ti GPU with
11 GB of memory. We used the DeepLab-v2 [42]
framework with a small pre-trained VGG16 [43]
model as the backbone for our feature encoder E
and segmentation decoder S. For the discriminator
module D, the fine-scale branch has a structure
similar to that in Ref. [6]. For the coarse-scale branch,
we share the first two convolution layers with the fine-
scale branch and then apply three convolution layers
with channel number {256, 512, C × 2} and a kernel
size of 3 and stride of 2 for downsampling. Except for
the last convolution layers in both branches, each
convolution layer in our discriminator module is
followed by a Leaky-ReLU [44] layer with a slope of
0.2 for negative inputs. We also applied a two-stage
training strategy using a self-training process, which
is also used in Refs. [7, 25]. In stage 1, we trained
an initial CCDA model first for 100k iterations, and
in stage 2, we further fine-tuned our entire CCDA



Class-conditional domain adaptation for semantic segmentation 9

model with another 100k iterations as well as adding
self-training on the target domain.

To train our feature encoder E and segmentation
decoder S, we used a Stochastic Gradient Descent
(SGD) optimizer [45] with a momentum of 0.9 and
weight decay of 5×10−4. The initial learning rate was
set to 2.5×10−4 and decayed during training. For the
discriminator module D, we applied the ADAM [46]
optimizer with β1 = 0.9 and β2 = 0.99. The initial
learning rate was set to 1× 10−4 and decayed using
the same policy as SGD. Our model was trained using
batch size of two with one source domain image and
one target domain image, and we resized the input
images as H ×W = 512× 1024, which is the same as
in Ref. [9]. Therefore, the number of patches for the

coarse-scale discriminator branch M = H

64 ×
W

64 =

8 × 16. We set the thresholds thw = 0.4, tha =
0.95. We also set λsa = λta = 0.0003, λsd = λtd = 0.5
across all loss functions, and α = 0.5, β = 0.4, λn = 3,
λent = 0.05 for the blend losses.

4.2 Comparison with state-of-the-art methods

Tables 1 and 2 summarize the performance of our
overall CCDA method compared with state-of-the-

art methods on the two transfer tasks GTA5 →
Cityscapes and SYNTHIA→ Cityscapes, respectively.
For a fair comparison, we compared our method
with the state-of-the-art methods using the same
VGG16 backbone. These methods include adaptation
on prediction-level representation methods (A-P):
AdaptSeg [6], ADVENT [14], DPR [7], SSP [15],
APO [34], ASA [13], TTDA [47]; adaptation
on feature-level representation methods (A-F):
FCNsW [20], Cross-city [8], SIBIN [9], OCE [38],
SSF-DAN [33]; adaptation on both prediction-
and feature-level representation method (A-PF):
CLAN [32]; self-training (ST) methods: CBST-
SP [25], CDA [26]; and source-free (SF) methods:
SFDA [29], UBNA [30]. Here, almost all adaptation
on representation methods apply adversarial learning
as our method does, except for OCE. We also
present visual comparisons in Fig. 3 and Fig. 4.
However, because only a few state-of-the-art methods
provide the available code and pretrained models, we
could not obtain the predicted segmentation maps
of all methods. Therefore, we only present visual
comparisons with methods that have available code
and pretrained models, as well as better performance,
in these two figures.

Table 1 Adaptation from GTA5 to Cityscapes. We present the per-class and mean IoU. Here, “A” represents adaptation on representation
methods, “-P” represents adaptation on prediction-level representation, and “-F” represents adaptation on feature-level representation. “ST”
and “SF’ represent self-training and source-free methods, respectively. We highlight the best and second-best results in each column in red and
blue, respectively
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CDA

ST
72.9 30.0 74.9 12.1 13.2 15.3 16.8 14.1 79.3 14.5 75.5 35.7 10.0 62.1 20.6 19.0 0.0 19.3 12.0 31.4

CBST-SP 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1
SFDA

SF
81.8 35.4 82.3 21.6 20.2 25.3 17.8 4.7 80.7 24.6 80.4 50.5 9.2 78.4 26.3 19.8 11.1 6.7 4.3 35.9

UBNA 79.9 29.9 78.1 21.1 16.5 33.8 29.7 20.6 75.6 18.4 78.0 58.4 14.6 79.4 14.8 13.0 5.8 14.6 10.6 36.5

AdaptSeg

A-P

87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
ADVENT 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

SSP 87.7 30.8 78.5 23.2 20.3 25.8 24.5 14.1 80.2 30.1 73.6 48.9 11.8 82.2 24.1 22.5 0.7 13.7 1.4 36.5
ASA 86.9 32.5 79.0 22.8 23.1 20.7 22.0 12.6 80.0 32.2 68.5 43.6 11.9 81.3 20.8 9.6 4.2 16.9 8.5 35.6
DPR 87.3 35.7 79.5 32.0 14.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 15.5 4.1 37.5
APO 88.4 34.2 77.6 23.7 18.3 24.8 24.9 12.4 80.7 30.4 68.6 48.9 17.9 80.8 27.0 27.2 6.2 19.1 10.2 38.0

TTDA 88.7 38.6 80.2 26.0 21.5 22.3 25.0 14.7 83.2 32.3 77.0 53.0 17.5 81.1 21.3 21.5 0.0 21.5 7.8 38.6
CLAN A-PF 90.4 40.2 80.6 25.1 21.8 27.6 24.2 19.6 83.1 33.9 74.1 47.7 9.5 83.9 27.0 27.1 3.4 17.5 0.9 38.8

FCNsW

A-F

70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
SIBIN 83.4 13.0 77.8 20.4 17.5 24.6 22.8 9.6 81.3 29.6 77.3 42.7 10.9 76.0 22.8 17.9 5.7 14.2 2.0 34.2
OCE 86.0 13.5 79.4 20.4 18.5 21.5 27.6 15.2 80.8 21.9 72.6 46.3 18.1 80.0 16.9 13.1 1.0 14.6 2.0 34.2

SSF-DAN 88.7 32.1 79.5 29.9 22.0 23.8 21.7 10.7 80.8 29.8 72.5 49.5 16.1 82.1 23.2 18.1 3.5 24.4 8.1 37.7
Ours 91.1 45.1 81.1 29.8 23.2 30.1 31.2 19.7 81.3 29.4 74.5 54.0 15.6 81.4 21.3 20.3 3.8 21.7 6.0 40.0
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Table 2 Adaptation from SYNTHIA to Cityscapes. The table is annotated the same as Table 1, while mIoU and mIoU* are averaged over 16
and 13 classes, respectively

SYNTHIA → Cityscapes
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CDA
ST

57.4 23.1 74.7 0.5 0.6 14.0 5.3 4.3 77.8 73.7 45.0 11.0 44.8 21.2 1.9 20.3 29.7 35.4
CBST-SP 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1

UBNA SF 71.5 27.3 72.9 2.5 0.3 32.0 12.7 16.7 74.6 75.4 47.1 13.6 61.4 8.5 8.3 29.2 34.6 41.0

AdaptSeg

A-P

78.9 29.2 75.5 — — — 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 — 37.6
ADVENT 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6

ASA 72.6 24.2 74.2 8.6 0.6 21.3 6.1 12.6 73.7 77.0 42.3 13.0 67.9 19.1 6.0 14.3 33.3 38.7
DPR 72.6 29.5 77.2 3.5 0.4 21.0 1.4 7.9 73.3 79.0 45.7 14.5 69.4 19.6 7.4 16.5 33.7 39.6
APO 82.9 31.4 72.1 — — — 10.4 9.7 75.0 76.3 48.5 15.5 70.3 11.3 1.2 29.4 — 41.1

TTDA 82.3 40.8 77.0 8.8 1.1 23.5 8.9 15.4 79.2 77.8 43.4 14.3 64.0 26.5 5.9 17.6 36.7 42.5
CLAN A-PF 82.0 33.7 79.8 — — — 6.4 8.9 78.7 82.5 49.1 12.9 75.9 21.9 5.1 13.3 — 42.3

FCNsW

A-F

11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 22.9
Cross-city 62.7 25.6 78.3 — — — 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 — 35.7

SIBIN 70.1 25.7 80.9 — — — 3.8 7.2 72.3 80.5 43.3 5.0 73.3 16.0 1.7 3.6 — 37.2
OCE 78.3 30.1 78.0 1.7 0.1 24.1 12.0 14.6 79.7 79.1 51.4 15.5 74.4 23.7 9.1 22.7 37.1 43.7

SSF-DAN 87.1 36.5 79.7 — — — 13.5 7.8 81.2 76.7 50.1 12.7 78.0 35.0 4.6 1.6 — 43.4
Ours 83.3 35.3 77.9 5.2 0.4 27.4 12.3 12.6 79.9 81.7 41.4 12.4 71.3 22.6 5.4 25.5 37.2 43.2

Fig. 3 Qualitative results of semantic segmentation on the GTA5 → Cityscapes task. For each target image, we show the corresponding
ground-truth map and the results of AdaptSeg, SSF-DAN, and our proposed CCDA method. We highlight some improved predictions with
white dashed boxes.

GTA5 → Cityscapes: Table 1 shows that our
proposed CCDA method performs much better on
average than all state-of-the-art methods on the
GTA5 → Cityscapes task. This advantage is derived
from improvements over a wide range of classes. We
achieved the best or second-best performances for

nine classes, while for other classes, we were still
able to reach results that are comparable to those of
other methods. We also present visual comparisons
of the proposed method with two other methods on
this task in Fig. 3. This shows that, compared with
the other methods, our method can not only provide
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Fig. 4 Qualitative results of semantic segmentation on the SYNTHIA → Cityscapes task. For each target image, we show the corresponding
ground-truth map and the results of OCE and our proposed CCDA method. We highlight some improved predictions with white dashed boxes.

cleaner predictions of more frequent classes, such as
sidewalks and roads, but also improve the detection
of less frequent classes, such as signs and lights.
This demonstrates the effectiveness of the proposed
CCDA method with a class-conditional multi-scale
discriminator and class-conditional segmentation loss.

SYNTHIA→Cityscapes: Table 2 shows that our
proposed CCDA method outperformed all methods
in terms of mIoU over 16 classes on the SYNTHIA→
Cityscapes transfer task. However, it achieved a
slightly lower performance than SSF-DAN and OCE
in terms of mIoU over 13 classes. Compared with
the GTA5 dataset, the SYNTHIA dataset has fewer
training images and may be more divergent from
the Cityscapes dataset. Therefore, the SYNTHIA →
Cityscapes transfer task was more difficult than the
GTA5→ Cityscapes transfer task. To achieve explicit
class-wise adaptation, the SSF-DAN method first
separates the features into 19 parts for 19 classes
and then applies 19 sub-discriminators, each of which
can separately align features from each class. It is
possible that the independent training of separate
discriminators for each class performed by SSF-DAN
makes it slightly better than our method (with a
0.2% improvement in mIoU* over 13 classes) for this
more difficult task with a larger shift. However, this
strategy requires the training of 19 sub-discriminators
for 19 classes in the Cityscapes dataset. Because

the model size of each sub-discriminator is normally
approximately 9 MB, the overall model size of
the 19 sub-discriminators in SSF-DAN could be
approximately 170 MB. By contrast, our proposed
class-conditional discriminator with two branches can
employ a single discriminator system for all classes
and occupy a much more economical 15 MB, which
facilitates training and expansion to more categories.
Therefore, the proposed CCDA method can be more
efficient during training. It may also be more flexible
than the sub-discriminator-based system of SSF-DAN
for datasets with more categories because we need
only change the number of output channels in the
coarse-scale branch of the proposed class-conditional
discriminator.

OCE also slightly outperformed our method in
terms of mIoU* over 13 classes on the SYNTHIA →
Cityscapes transfer task. It achieved feature
alignment using contrastive learning, which aims to
maximize the distance between different classes in the
feature space. This strategy could achieve promising
results for this more challenging transfer task by
better distinguishing classes with lower frequency
or smaller objects, such as motorbikes and riders.
However, it outperformed our method by only 0.5%
in terms of mIoU* over 13 classes on the SYNTHIA→
Cityscapes task, while for mIoU over 16 classes on
the SYNTHIA → Cityscapes task, OCE was 0.1%



12 Y. Wang, Y. Li, J. H. Elder, et al.

worse than our proposed method. This suggests
that consistently superior results for mIoU* and
mIoU for this transfer task could be achieved by
incorporating contrastive learning into our class-
conditional adaptation system, which could be a
promising topic for future work.

Compared to OCE, our method performed better
on 9 out of 16 classes for the SYNTHIA →
Cityscapes task. For the GTA5→ Cityscapes transfer
task, OCE was 5.8% worse than our method in
mIoU over 19 classes and achieved worse results
than our method on almost all classes. We believe
that this large improvement is primarily because
our method applies the class-conditional approach
for both feature extraction and feature alignment,
which generally improves the overall performance. In
addition, our proposed CCDA method may have
a better generalization ability for different transfer
tasks and classes compared to OCE. On the
SYNTHIA → Cityscapes transfer task, the proposed
method achieved the best or second-best performance
for two classes compared with other state-of-the-
art methods. Our method also achieved results
comparable to those of the other methods over a
large range of classes for this transfer task, which
led to a better overall performance. We also present
a visual comparison of our method with OCE on
this task in Fig. 4. This indicates that our method
provides cleaner predictions on more frequent classes,
such as sidewalks and roads, and improved detection
on less frequent classes, such as bicycles.

In general, we observe that compared with other
methods that boost the performance for a few
classes while sacrificing the performance for other
classes, our class-conditional method often boosts the
performance of almost all classes. Thus, although
our method may not achieve the best performance
among all classes, it ultimately achieves the capacity
to generate higher mean IoU performance overall.

Complementarity with image translation:
Meanwhile, we noticed that the image translation
technique, which lowers the image style differences
between domains, is complementary to methods with
adaptation on representation. This has been applied
to several recent state-of-the-art domain adaptation
methods [27, 48] to generate translated source domain
images in the target style to further alleviate the shift
between the two domains at the input image level.

Although our method focuses primarily on domain
adaptation on representation, we also conducted
experiments on the GTA5 → Cityscape task to
demonstrate the complementarity of the proposed
CCDA method with an image translation technique.
For simplicity, we adopted the translated GTA5
images generated by Ref. [27] together with the
original GTA5 images as the source domain input
images to train our model. Meanwhile, we applied
two rounds of self-supervised learning following
Refs. [27, 28, 49] to enhance the performance. All
other settings in this experiment were the same as
those described in Section 4.1.

We compared our method with six state-of-the-
art methods using image translation techniques:
BDL [27], SEDA [50], LTIR [28], ITRA [48],
CRA [31], and DPL [49]. Here, LTIR and CRA
combine their proposed structures with existing image
translation techniques (e.g., BDL), while others
train their own image translation modules. The
quantitative results of our method (“Ours+IT”) with
these state-of-the-art methods using VGG16 as the
backbone are listed in Table 3. Note that we used
image translation in a very simple manner. We did
not use two types of style-transferred source domain
images like LTIR does, and we did not use a teacher-
student network that requires larger memory and
computational costs during training, like SEDA does.
Our proposed CCDA with image translation still
outperformed most state-of-the-art methods, which
demonstrates the complementarity of the proposed
CCDA method with image translation.

Our performance was only worse than that of DPL
because DPL applies a dual-path learning strategy
by training two image translation networks with two
corresponding segmentation networks. By training
the image translation and segmentation networks
instead of directly using translated images from
an existing method as ours does, the translated
images generated by DPL are more suitable
for its segmentation networks. Meanwhile, DPL
requires two image translation networks to not
only generate translated source domain images
with target style, as BDL and ITRA do, but also
produce translated target domain images with the
source style. Therefore, using the translated images
from the two domains definitely helps to better
alleviate the shift between the two domains, which
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Table 3 Adaptation from GTA5 to Cityscapes with extra image translation (IT) technique. We present the per-class and mean IoU, and we
highlight the best result in each column in bold font
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BDL 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
SEDA 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5
LTIR 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3
ITRA 89.2 43.4 80.0 30.1 19.4 27.8 27.1 13.3 80.5 35.8 71.2 50.6 20.7 80.2 26.8 33.4 0.0 17.7 11.9 39.9
CRA 89.1 42.0 81.2 28.9 23.1 13.9 29.3 17.0 83.6 36.6 81.7 56.2 25.5 81.9 26.0 32.0 0.2 26.8 19.7 41.8

Ours+IT 92.9 56.6 82.5 31.0 27.1 31.0 36.2 27.0 80.8 32.1 73.9 57.3 21.5 82.1 18.5 21.8 10.4 22.6 12.1 43.0
DPL 89.2 44.0 83.5 35.0 24.7 27.8 38.3 25.3 84.2 39.5 81.6 54.7 25.8 83.3 29.3 49.0 5.2 30.2 32.6 46.5

largely improves its performance compared with
other methods. Additionally, the dual-path learning
framework allows complementary information to
interact between the two paths. However, this
requires the training of two different image translation
networks and two different segmentation networks for
two paths, which significantly increases the memory
and computational costs during training. During
testing, DPL also requires the generation of translated
target domain images with the source style in advance.
The translated target domain images are then used as
inputs to obtain the segmentation predictions. This
helps to further improve the performance; however,
it also affects the efficiency of DPL during testing.

4.3 Ablation studies

Ablation study on different components: To
better understand the impact of each component
of our adaptation model, we conducted an ablation
study by selectively deactivating each component
and measuring the effect on the performance of the
GTA5 → Cityscapes transfer task. Specifically, we
defined four nested subset models:

(1) B: Using the basic domain adaptation archi-
tecture in Section 3.1 with segmentation loss (Eq. (1))

and a fine-scale basic discriminator for adaptation
(Eqs. (2) and (3)). This means that we set α = 1 and
β = 1 in the blend losses.

(2) B + Sc: Adding class-conditional loss for seg-
mentation in Section 3.3, where α = 0.5 in Eq. (17).

(3) B + Sc + Dc: Further adding the class-conditional
discriminator in Section 3.2, including the coarse-
scale branch loss (Eqs. (4) and (5)) and the class-
conditional fine-scale branch loss by setting β = 0.4
in Eqs. (12) and (13).

(4) Ours: Our final model with the extra entropy
minimization loss in Eq. (18).

The results are presented in Table 4 showing
that our overall CCDA system resulted in a
performance gain of 3.1% over the basic domain
adaptation architecture in mIoU. The class-conditional
segmentation loss alone was responsible for a 1.5%
improvement, the class-conditional discriminator
produced an additional 1.3% improvement, and the
entropy minimization loss provides a slight 0.3%
improvement. This verifies the importance of both
the class-conditional segmentation and discriminator
components of our CCDA approach. Examples of
qualitative segmentation are shown in Fig. 5.

To analyze the impact of each component on the

Table 4 Ablation study of our CCDA method on GTA5 → Cityscape task. The numbers above all classes are the indexes of frequency in
descending order for Cityscapes. We highlight the best result in each column in bold font
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B 86.7 37.8 79.6 30.3 21.7 29.0 26.8 17.1 79.2 20.8 72.6 50.0 5.8 79.6 23.2 18.9 0.0 19.6 2.5 36.9
B + Sc 85.1 37.6 79.8 25.6 21.1 29.2 32.0 23.2 78.7 21.3 71.7 54.4 14.6 79.6 19.9 17.2 7.1 23.7 8.8 38.4

B + Sc + Dc 90.6 45.6 80.8 26.6 23.5 30.2 31.9 21.8 79.1 24.4 74.3 55.0 16.1 81.1 20.4 20.3 5.9 20.7 5.7 39.7
Ours 91.1 45.1 81.1 29.8 23.2 30.1 31.2 19.7 81.3 29.4 74.5 54.0 15.6 81.4 21.3 20.3 3.8 21.7 6.0 40.0
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Fig. 5 Qualitative results of ablation study on the GTA5 → Cityscapes task. For each target image, we show the corresponding ground-truth
map and the results of each subset model in the ablation study. We highlight some improved predictions with white dashed boxes.

different classes more effectively, we also present the
frequency of each class in the Cityscapes dataset
in descending order in Table 4. Measuring the
segmentation prediction in a class-wise manner
in “B + Sc” tends to improve the performance
on some less frequent classes, such as lights
and bikes. This is reasonable because using class-
conditional segmentation loss may increase the weight
of the loss on classes with lower frequencies or
objects with smaller sizes. This improves the overall
performance and prevents the model from neglecting
these classes during adaptation. However, it may
also sacrifice performance in more frequent classes,
such as roads and skies. By further adding our class-
conditional discriminator as in “B + Sc + Dc”, it
promotes a class-wise adaptation with the design
of our coarse- and fine-scale branches. This achieves
improvements on both more frequent classes, such
as roads and sidewalks, and less frequent classes,
such as riders and buses. “Ours” with the extra
entropy minimization loss further helps to balance
the performance on different classes and slightly
improve the overall performance. Compared to the
basic model “B”, our overall CCDA system (“Ours”)
achieved improvements on almost all classes.

Figure 5 also proves the effectiveness of each com-
ponent of our CCDA system. Compared to “B”,
“B + Sc” performed better on some smaller objects
and less frequent classes, such as signs and lights.
However, for some larger objects and more frequent
classes, such as sidewalks and roads, the performance
of “B + Sc” may not be improved or even become
worse. “B + Sc + Dc” can further improve the
performance on some less frequent classes, such
as terrain, while achieving improvements on some
larger objects and more frequent classes compared
to “B + Sc”. “Ours” can further slightly improve

the results by balancing the performance among
different classes. Therefore, our overall CCDA
system enhances the performance through general
improvements on various classes.

Ablation study on thresholds: We apply
two thresholds in our method: thw and tha. To
avoid neglecting any classes that occur in each
target domain patch for achieving the coarse-scale
class labels used in the class-conditional coarse-scale
discriminator branch, we set the threshold thw = 0.4.
To avoid ignoring any ambiguous pixels in the target
domain images for the class-conditional fine-scale
discriminator branch, we set the threshold tha = 0.95.
To explore the sensitivity of the two thresholds, we
conducted experiments on the GTA5 → Cityscapes
task by setting different thw and tha. The results
are presented in Tables 5 and 6, which show that
by setting these thresholds within reasonable ranges,
the overall performance of the proposed method is
not significantly affected.

4.4 Limitations and future work

As illustrated by the previous experimental results
(Fig. 3 and Fig. 4), the proposed CCDA method
performs well in most situations. However, it still
has some limitations; for example, it may fail to
detect some objects with very small size, or it may be

Table 5 Sensitivity analysis of threshold thw

GTA5 → Cityscapes task

thw 0.2 0.3 0.4 0.5 0.6

mIoU 39.7 39.8 40.0 39.6 39.4

Table 6 Sensitivity analysis of threshold tha

GTA5 → Cityscapes task

tha 0.80 0.85 0.90 0.95 0.98

mIoU 39.6 39.7 39.9 40.0 39.6
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unable to predict clear edges for large objects under
complicated scenarios. Therefore, in future work, we
will investigate how to improve the performance by
training our model with the help of multiple related
tasks, such as depth estimation, object detection,
and boundary detection. These related tasks can be
beneficial to the segmentation model by providing
additional information. For example, an object
detection task [51, 52] may assist the network in
maintaining semantic information for smaller objects,
while boundary detection [53] can be helpful for
learning a clearer contour for each object. Moreover,
video segmentation [54, 55] is a challenging task,
and we plan to investigate how our proposed class-
conditional method can be extended to video semantic
segmentation in an unsupervised manner, as well as
more applications with various datasets.

5 Conclusions

We developed a novel approach to solve an important
problem for domain adaptation for semantic
segmentation in that the different abilities for
representation extraction and alignment for different
classes may affect the adaptation performance.
The solution hinges on the introduction of class-
conditioning at multiple points in the model,
including a class-conditional segmentation loss and
class-conditional multi-scale discriminator, which
measure the segmentation prediction and adaptation
in a class-wise manner. The experimental results
of the ablation study demonstrate that our overall
CCDA method improves performance for almost all
classes and boosts overall performance. Extensive
experimental results demonstrate the effectiveness of
our method by reaching comparable results, and in
some cases, outperforming state-of-the-art methods.
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