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Abstract We introduce a novel end-to-end deep-
learning solution for rapidly estimating a dense spherical
depth map of an indoor environment. Our input is a
single equirectangular image registered with a sparse
depth map, as provided by a variety of common capture
setups. Depth is inferred by an efficient and lightweight
single-branch network, which employs a dynamic gating
system to process together dense visual data and sparse
geometric data. We exploit the characteristics of typical
man-made environments to efficiently compress multi-
resolution features and find short- and long-range
relations among scene parts. Furthermore, we introduce
a new augmentation strategy to make the model robust
to different types of sparsity, including those generated
by various structured light sensors and LiDAR setups.
The experimental results demonstrate that our method
provides interactive performance and outperforms state-
of-the-art solutions in computational efficiency, adaptivity
to variable depth sparsity patterns, and prediction
accuracy for challenging indoor data, even when trained
solely on synthetic data without any fine tuning.

Keywords machine learning; image processing and
computer vision; vision and scene
understanding; 3D stereo scene analysis

1 Introduction

Integrated visual and depth capture of indoor
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environments is a key enabling component for a
wide range of applications, including autonomous
navigation, mobile augmented reality, indoor
mapping, and 3D reconstruction. In most situations,
synchronized high-resolution depth and color data
for the widest possible coverage around the viewer
should be fed with low latency to further processing
and analysis modules [1, 2].

Depth estimation is a fundamental problem for
which a variety of active and passive solutions have
been proposed over the past decades. While classic
approaches exploit the correlation among multiple
views, acquired simultaneously (e.g., stereo) or over
time (e.g., video), single-shot capture and depth
estimation has also attracted a lot of attention, since
it ensures the lowest latency, reduces system hardware
and synchronization burden, and offers basic building
blocks for multi-view methods [3, 4].

As current 360◦ cameras offer viable low-cost
and energy-efficient solutions for omnidirectional
single-shot indoor capture [5], many research efforts
are currently being focused on generating 3D
from panoramic images. However, even with
the full context provided by 360◦ capture, depth
generation from monocular input remains inherently
ambiguous, and is particularly complex in indoor
settings characterized by large texture-less surfaces,
abundance of clutter, and severe occlusions [2].
Despite the very significant recent advances in this
field, especially with emerging deep-learning solutions
that exploit hidden relations discovered in large data
collections [6–8], monocular depth estimation remains
extremely challenging.

Depth can also be measured with depth-sensing
devices. Current depth sensors exhibit, however,
speed, cost, and resolution limitations that hamper
their direct usability for full-frame dense 360◦ capture
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in interior scenes. In particular, stereo cameras
require large baselines and tend to fail in texture-less
indoor environments, and structured-light sensors are
at lower resolution than comparable visual cameras,
are very sensitive to illumination variations, and suffer
from short ranging distance. Longer ranging LiDAR
sensors are more robust and accurate, but can only
provide extremely sparse measurements at real-time
rates [10]. Figure 1 shows typical depth information
provided by different low-latency techniques.

In view of these limitations, many research
efforts have been devoted to exploit the coarse
information coming from depth sensing to improve
the performance of depth prediction from RGB [10].
Sparse depth input, in particular, has shown to be
very useful to provide supervision at training time to
pipelines that infer depth from visual data [11–14].
More and more often, it is used at inference time
[15, 16] for guided and non-guided depth completion
[10]. However, the sparse output from various
kinds of sensors imposes fundamental challenges on
machine learning methods, since data relevance is not
uniform and further processing is required to either
reconstruct or ignore missing regions [17].

Because of this imbalance, depth prediction from
dense RGB input and depth completion from sparse
depth input have often been treated separately, and
solved with different methods [18–20]. The few
state-of-the-art solutions that try to jointly tackle
completion and prediction target outdoor planar
[21] or small field-of-view (FOV) perspective [22]
projections, are not efficiently applicable to 360◦
indoor capture (Sections 2 and 4).

In this work, we introduce an end-to-end deep-
learning solution to jointly perform real-time dense
depth prediction and completion from single-shot
indoor 360◦ captures. This method, the first to

work directly on equirectangular images of indoor
environments, combines and extends state-of-the-
art end-to-end deep-learning solutions, introducing
several specific novelties. Our input is a single
equirectangular image registered with a sparse depth
map, as provided by a variety of common capture
setups. We do not make assumptions on the
sparsity structure of the input depth, which can
range from the few dense stripes produced by LiDAR
solutions to the regular and irregular point sampling
produced by other active and passive vision-based
approaches. We expect, however, the images to
be approximately gravity-aligned, as in all common
datasets available [23–28]. This condition is a de-
facto standard for practically all indoor static and
mobile acquisition setups, as they are equipped with
automatic georeferencing and alignment systems [7, 8,
29–31]. It is worth noting that we can accommodate
for large tolerances in gravity alignment. In our
results (Section 4), we demonstrate how our system
even works in the case of a backpacked LiDAR
acquisition system with variable vertical tilt.

Assuming a rough gravity alignment allows us
to optimize our network design. The network
is constituted by a single-branch encoder–decoder,
which jointly processes dense visual data and sparse
geometric data in an efficient way. The initial
residual encoder takes as input simultaneously 4
channels (i.e., RGB + sparse depth), and, through
a gating system, returns fused visual and geometric
features at different resolutions. Such features are
efficiently compressed and flattened in an asymmetric
way, by exploiting the intrinsic characteristics of
gravity-aligned equirectangular projections of indoor
scenes [8, 32]. In fact, since gravity plays an
important role in the design and construction of
interior environments, vertical and horizontal features

Fig. 1 Different kinds of sparse depth. First image (from the left): depth map captured by structured-light sensors (Matterport Pro 3D
camera) has lots of missing areas when rooms are large, surfaces are shiny or thin, and strong lighting is abundant. Second image: a depth
map captured by a LiDAR setup (two Velodyne VPN-16 shifted of the vertical direction with different direction) has lots of valid information
but only for a few stripes. Third image: depth information may also come from triangulated features in purely image-based pipelines; indoor
environments, however, have lots of flat textureless surfaces, and reliable features, here detected from SIFT, may be very sparse. Fourth image:
a typical input from low-cost structured light sensors with sparse measurements only for a small subset of the captured camera pixels; for
synthetic training, a typical approach is to use a Bernouilli distribution to sparsify inputs [9].
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have different characteristics in most, if not all, man-
made environments. Moreover, most 360◦ capture
setups have a much more regular coverage along
the horizontal than on the vertical direction because
of masking effects [23]. As a result, we can exploit this
anisotropy by compressing more on the vertical than
on the horizontal direction. The resulting flattened
features are refined through a lightweight self-
attention module [33], which, acting as a bottleneck,
exploits the wide context provided by omnidirectional
capture in order to find the short- and long-range
relations between parts of the scene which are
typical of man-made environment. Decoding proceeds
symmetrically to the encoder, but without need for
gating, to reach the final output resolution.

Our contributions are summarized as follows:
• We introduce a novel residual encoder for the

sparse-to-dense image-driven problem, which
exploits lightweight gated convolutions [34] to
process dense visual data and sparse geometric
data together in a single branch at very little cost
(Section 3.1). This design results in a much faster
and more versatile network, with respect to the
current approaches that process the data using
multi-branch architectures and interconnections
at various levels of the network [18, 26, 35–37].
Our encoder combines the advantages of a gating
system, to handle different types of input in a
single encoder, and of a residual architecture [38],
allowing us to use deeper networks with respect to
common inpainting solutions [36, 39], thanks to
the efficient fusion and propagation of features at
various resolutions and depth, without using skip
connections that would increase the computational
burden of the network [36]. As a result, the
method meets real-time constraints even for the
highest image and depth resolutions (Section 4.2).

• We introduce asymmetric feature compression and
flattening for depth completion of gravity-aligned
indoor panoramic imaging (Section 3.2), exploiting
the intrinsic characteristics of equirectangular
projections of indoor scenes [7, 8]. While gravity-
aligned features have been employed earlier for
depth estimation [8], they have not been used
for designing depth completion networks. In
this setting, this type of encoding remarkably
maximizes the visual and geometric information
gathered from a panoramic input, allowing, at
the same time, the gathering of multi-resolution

features and the use of a lightweight self-attention
module (i.e., 1 layer, 4 heads) as bottleneck. Such
an attention module allows the network to find
the short- and long-range relations between parts
of the scene, typical of man-made environment
and panoramic images [32], relating features both
spatially and at various levels of network depth
(Section 3.1). Other state-of-the-art approaches,
instead, employ dilated convolutions [36] as
bottleneck, which are common in visual inpainting
[39], renouncing to exploit deep-level features and,
thus, losing part of the long-term information.

• We show how our approach is capable to handle
a large variety of sparsity patterns and delivers
excellent results when trained on synthetic data
and applied to various real-world configurations
with or without fine tuning (Section 4). In order
to increase the robustness to various sampling
patterns, we also complement approaches based
on theoretical noise models for moderately dense
and uniform RGB-D capture [10, 40] with a data
augmentation module designed to model LiDAR
behavior (Section 3.3.1). Such an augmentation
is fundamental to increase the performance of our
model in the LiDAR case, and increases also the
performance of other methods, whose advertised
accuracy was instead related to a specific capture
pattern (Section 4.3).

We evaluated our approach on a variety of
panoramic indoor scenes, ranging from commonly
available panoramic indoor benchmarks [23, 26, 41]
to novel real-world captures with mobile devices. Our
results demonstrate that our approach outperforms
current state-of-the-art solutions in terms of speed
and accuracy (Section 4).

2 Related work

Depth estimation and completion from monocular
input and indoor 3D reconstruction have a long
history, and have recently attracted renewed interest
with the emergence of deep-learning techniques. Here,
we focus on the approaches most closely related to our
work, referring the reader to recent surveys [2, 3, 10]
for a general coverage.

2.1 Monocular depth estimation from RGB

Monocular depth estimation is a classic task in
computer vision. While early solutions used various
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combinations of feature detection, matching, and
geometric reasoning, in recent years, a large body
of deep-learning methods are being proposed for
handling this traditional ill-posed problem under less
restrictive constraints [4]. The FCRN architecture,
proposed by Laina et al. [42], has become a common
baseline. A variety of other solutions have been
later proposed for improving inference for perspective
images [12, 43–49]. However, it has been shown that,
without specific adaptations, the direct application
of these solutions to 360◦ depth estimation of
indoor environments produces sub-optimal results
[50]. For this reason, research has started focusing on
methods to exploit the wide geometric context present
in omnidirectional images. Several approaches
convert equirectangular images to cubemaps and
then make specific adaptation to methods designed
for perspective images [51]. To make the network
aware of the distortion, spherical convolution methods
have been also proposed [50, 52–55]. Wang et al. [6]
proposed instead a two-branch network, respectively
for the equirectangular and the cubemap projection,
based on a distortion-aware encoder [50] and the
FCRN decoder [42]. Recent state-of-the-art data-
driven solutions for panoramic depth estimation in
indoor spaces [7, 8] have proposed to work directly
on equirectangular images, as well as to leverage the
concept of gravity-aligned features to reduce network
size [8, 32]. While these concepts were applied
to uniformly dense input for the depth estimation
task, we extend them to efficiently handle both the
image and sparse depth features, compressing them
to gather visual and geometric information at various
resolution and depth to the decoder, together with
short- and long-range relations among parts of the
scene (Section 3.1).

2.2 Guided monocular depth completion

Sparse-to-dense depth completion with the support
of a guiding RGB image has been the focus of
much research [10]. The majority of works focus,
however, on small-FOV perspective poses [22] or
planar projections for outdoor acquisitions [16, 56].
We discuss here only the approaches that can be
directly applied or easily adapted to panoramic indoor
environments.

In order to upsample and complete a sparse
depth signal, generic scene methods that rely on
registered RGB-based appearance as guidance either

devise custom convolutions and propagate confidence
to consecutive layers [57], or use content-dependent
and spatially-variant guiding convolutions [58].
Alternative sources of information that are exploited
for depth completion may also include confidence
masks and object cues [59]. Cross-guidance between
the RGB and depth encoders [60] has also been
used. Moreover, to avoid the depth mixing typically
induced by the standard MSE loss, a binned depth
representation trained using a cross-entropy loss has
been shown to be beneficial [15]. Recently, BIPS [61]
proposes a bi-modal (RGB-D) panorama synthesis
framework to jointly synthesize panoramic RGB and
depth. Similar to our work, BIPS considers different
kinds of sparsity patterns in depth input. However, the
goal of BIPS is to provide realistic image inpainting
and a complete 3D model for many applications (i.e.,
including layout), jointly synthesizing color and depth
from partial input, rather than focusing on depth
prediction and completion.

Even though deep learning has been widely used
for inpainting of indoor scenes, extensions of those
networks to color guided depth completion are still
uncommon [16]. One of the main reasons is that
large-scale training sets are not readily available for
captured indoor RGB-D images paired with dense
depth images. As a result, most methods for depth
estimation have been classically trained and evaluated
only for pixels that are captured by commodity
RGB-D cameras [62]. From this data, they can,
at best, learn to reproduce observed depths, but
not complete depths that are unobserved, which in
indoors have significantly different characteristics.
To address this issue, Zhang and Funkhouser [26]
introduced a new dataset based on the large-scale
Matterport3D [23], which provides 105k RGB-D
images aligned with dense depth images computed
from multi-view reconstructions in 72 real-world
environments, and proposed a hybrid solution to
estimate surface normals and solve for indoor depth
via a final global optimization. The method, however,
has speed limitations and does not scale for different
kinds of sparsity (see Section 1).

More recently, pure deep-learning solutions have
been proposed for color guided depth completion.
Cheng et al. [63] proposed an approach in which
a low-FOV dense depth camera is registered with
an omnidirectional camera, and the dense depth
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from the limited FOV is extended to the rest
of the recorded omnidirectional image through a
convolutional network. We tackle, instead, the
more general problem of omnidirectional sparse-to-
dense depth estimation without any region in which
a dense estimation is provided. This problem is
tackled by several recent works. Huang et al. [36]
exploited an inpainting self-attention network [64]
to generate the dense depth map and a dedicated
U-Net [65] to preserve depth boundary information.
Skip connections [65] are also used in their method to
adapt the generic inpainting network to the specific
depth prediction task and to better recover fine-
grained details. We handle more general sampling
patterns, and propose a much faster solution. Park
et al. [18] proposed an interactive Non-Local Spatial
Propagation Network (NLSPN) that predicts non-
local neighbors for each pixel and then aggregates
relevant information using the spatially-varying
affinities. To maximize the utility from the sparse
source, Huang et al. [17] proposed a Sparse Signal
Superdensity (S3) framework, tested for stereo
sparse-guidance, for which expands the depth value
from sparse cues while estimating the confidence of
expanded region. Specifically targeted for guided
monocular depth completion, Guizilini et al. [35]
introduced Sparse Auxiliary Networks (SANs) to
process the sparse signal separately from the dense
RGB signal. Their pipeline consists of two parallel
branches for the two signals, connected at encoder
and decoder level by direct feature fusion. With a
similar decoupled design, Liu et al. [66] advanced
the pure depth prediction network RectNet [50] to
support an SLAM-based reconstruction system where
the scattered data are SLAM-SfM features. The
method, however, costs 311 GFLOPs for a 512× 256

image, while our solution takes 38.2 GFLOPs for a
1024× 512 image.

These recent purely data-driven methods achieve
state-of-the-art performance mainly on perspective
views and at the cost of a significant computational
cost (see Table 1). We propose, instead, a much
leaner indoor solution for panoramic images, showing
how our design can cope with a variety of dense
sampling patterns and density and can achieve high
accuracy even without any fine-tuning after a training
on synthetic data.

3 Network architecture and training

Our network is designed to directly infer a panoramic
depth map from a single equirectangular image
registered with a sparse depth map. Figure 2
illustrates its structure for a 512× 1024 input map.
The architecture, is, however, fully scalable with
respect to input resolution (Section 4).

The network input is given by the concatenation of
the 3×512×1024 RGB image with the 1×512×1024
sparse depth map. On input, the RGB image is dense
and contains a color value for each pixel. Valid pixels
in the sparse depth map contain the distance from the
camera in metric scale, while invalid pixels contain a
zero.

The feature extraction is performed by 5 layers,
each one having a residual architecture inside [38].
In order to process dense visual data and sparse
geometric data together, each block is built around
specific gated convolutions. The indoor panoramic
format is also specifically handled through spherical
padding and ELU activations. Encoding layers are
described in Section 3.1. Similarly to other state-of-
the-art solutions for 3D from RGB data [7, 8, 32, 67],

Fig. 2 Network architecture. Our network is constituted by a single-branch encoder–decoder, which processes together the dense visual
and sparse geometric data. A residual-gated encoder takes as input 4 channels (RGB + sparse depth) returning fused features at different
resolution. Multi-resolution features are compressed, flattened, and passed to an MHSA-single layer module (i.e., bottleneck). Decoding proceeds
symmetrically to the encoder, but without using gating, to reach the final output resolution.
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we start from the assumption that, in architectural
indoor spaces, vertical and horizontal features have
different characteristics along and across the gravity
direction. We apply such concepts in our context by
compressing the extracted features (i.e., 4 deeper
feature maps) through an anisotropic contractive
encoding that preserves the horizontal dimension
and compresses the vertical one (Section 3.2). The
resulting 4 feature maps, containing information at
different spatial and depth levels, are flattened and
concatenated in a single, sequential latent feature of
feature dimension×sequence length. The encoding
of the latent feature as a sequence allows the
network to use a multi-head self-attention module
(MHSA) [33] as bottleneck, leveraging complementary
features in distant portions of the image and depth
measurements rather than only local regions to
support reconstruction. This makes it possible to
cope with large changes due to occlusions and to
take into account the short- and long-range relations
between parts of the scene typical of man-made
environment. As a result of these design choices,
decoding proceeds very fast and without the need for
skip connections, as it can just consist of a series of
convolutions, upsampling, and activations until the
output resolution is reached.

Our model is trained end-to-end supervised by
sparse-dense depth map couples (Section 4.1),
without specific assumptions on sparsity patterns,
which are learned from training data. In addition
to use variable depth density for RGB-D situation,
we introduce a LiDAR-specific augmentation module
that generates parametric LiDAR capture patterns
at run-time during training (Section 3.3.1).

3.1 Feature extraction

The joined feature encoding of the mixed RGB+depth
input is performed by a cascade of 5 blocks, i.e.,
1 convolution-pooling block followed by 4 residual
blocks. Given the spherical nature on the image,
we adopt circular padding along the horizon for
convolutions, to overcome the longitudinal boundary
discontinuity, and reflection padding to alleviate the
singularities at the poles [68].

Each residual block follows the ResNet scheme,
involving two convolutions and one upsampling layer
[38]. Here, for each convolution layer, we introduce a
dynamic gating approach to efficiently process dense
visual data and sparse geometric data together.

In a generic (vanilla) convolutional layer, for each
pixel located at (y, x) in an input feature map Fn

having n channels, the same filters are applied to
produce the output for a generic convolutional filter.

However, the sparse depth channel does not contain
all valid pixels, but for single channel tasks, like
pure inpainting without RGB guidance, partial [69]
convolutions can be adopted to make the convolution
dependent only on valid pixels. Indeed, such solution
is not very efficient for our problem, since, essentially,
partial convolutions act as single-channel hard-gating,
heuristically classifying each spatial location to be
either valid or invalid, and setting to zeros or ones
the mask in next layer no matter how many pixels
are covered by the filter range in previous layer [39].

In our case, instead, we introduce a multi-channel
gated convolution approach, where a multi-channel
soft mask is automatically learned from data, taking
decisions that jointly consider the sparse depth and
the dense color channel. While gated convolutions are
often adopted for pure image synthesis combined with
dilated convolutions [39, 70, 71], here we use such a
soft masking to model a kind of implicit confidence
for multi-source features.

For each gated convolutional layer, gated features
F ′m are

Gm = conv(Wg1, conv(Wgk, Fn))
Fm = conv(Wf , Fn) (1)
F ′m = σ(Gm)� ψ(Fm)

where σ is the Sigmoid function, whose output values
are within [0, 1], ψ is an activation function (in this
paper we use ELU [72] to remove the need for batch
normalization), Wg1, Wgk, and Wf are different sets
of convolutional filters, used, respectively, to compute
the gates (Wg1, Wgk) and features (Wf), and Fn is
the input feature map.

In terms of computational complexity, the use of
gated convolution should almost double the number
of parameters in comparison to a standard, vanilla
convolution [39]. To cope with this problem, we
adopt here a lightweight solution, also called depth-
separable convolution [34], which reduces the number
of parameters and processing time while maintaining
the effectiveness. Thus, we decompose a gated
convolution soft mask Gm with kh × kw × n×m into
a depth-wise convolution [34] (i.e., kh × kw kernel)
followed by a 1× 1 kernel convolution. Such solution
has only kh × kw × n+ n×m parameters, resulting
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in a less overall computational cost for all the encoder
without measurable loss in efficiency for our problem
(Section 4.4).

Our encoder returns 4 feature maps having
different depth and spatial size (Fig. 2), gathering
fused information from both visual and geometric
input. Beside data fusion, propagating these levels
avoids using skip connections between encoders and
decoders, such as those used by several other methods
[18, 36, 73] to retrieve fine-grained details, drastically
reducing the computational complexity (see Table 1).
At the same time, propagating this information
together in a deep architecture is not simple and
requires an efficient compression system. To this
end, we introduced a specific compression process
described in Section 3.2.

3.2 Feature compression and decoding
In order to support an efficient gathering of
information from the extracted features, taking
into account the peculiar characteristics of indoor
environments, we perform a specifically designed
feature compression exploiting our knowledge of
preferential directions. We start from the assumption
that gravity plays an important role in the design
and construction of interior environments, so world-
space vertical and horizontal features have different
characteristics in most, if not all, man-made
environments. Moreover, the amount of information
contained in the spherical equirectangular projection
degrades significantly going towards the poles, and
even disappears completely in the input depth due
to the hardware limitations of the instrument.

According to these assumption, we perform
an anisotropic contractive encoding that reduces
the vertical direction while keeping the horizontal
direction unchanged, so that separated vertical
features can be better preserved. Specifically, we
reduce the vertical dimension by a factor of 8 through
an asymmetric convolution module with stride (2, 1),
applied 3 times, that contains a 2D convolution and
an ELU module. We apply such a compression for
each encoded feature map (i.e., 4 maps, Section 3.1).
Finally, compressed features are reshaped to the
same size and joined in a flattened latent feature,
Ls = (l0 . . . ls), as a sequence of s feature vectors of
dimension l (i.e., s horizontal size of the less deep
feature map—s = 256 and l = 1024 for a 512× 1024
input).

Such a compressed representation contains a variety
of information about the geometry of the scene, both
local and non-local, which can be exploited to recover
missing depth samples. In our case, we aim to
leverage complementary features in distant portions
of the image rather than only local regions, to support
both depth completion and recovery. To do that, we
adopt a single-layer multi-head self-attention (MHSA)
scheme [33]. Our self-attention module takes the
latent features L ∈ Rs×l as input, and outputs a
self-attention weight matrix A ∈ Rs×s:

A = softmax
(

(LWq)(LWk)T

√
l

)
(2)

where Wq,Wk ∈ Rl×l are learnable weights. The
MHSA module has a particularly lightweight design
with 4 heads and only 1 inner layer. We have verified
experimentally that increasing the number of layers
and heads does not affect performance.

Once passed to the MHSA module, the decoding
of the latent feature (1 × 1 × s in Fig. 2) is very
fast, through convolutions, upsampling modules, and
ELU activations, until we reach the target output
resolution (1× h× w in Fig. 2).

3.3 Training strategy

During the training phase, we compute the weights of
the network using a supervised training approach that
exploits databases matching indoor equirectangular
images with their correspondent sparse and dense
depth maps (Section 4.2 for dataset details).
3.3.1 Coping with variable distributions of sparse

depth samples
The distribution of the samples of the sparse
maps can vary considerably depending on the
acquisition methods. While sparse-dense datasets
from structured-light sensors are available [26], it
is not so for LiDAR data, even if these sensors
are increasingly used also in indoor environments
(Section 1). Generating those sampling patterns
cannot be simply done by generic noise models (e.g.,
Refs. [10, 40]), but must take into account striping.

To this end, we adopt a sparsity simulation module
to produce, under parametric control, different types
of LiDAR patterns starting from a dense ground
truth. Such a module can be used to generate
specific, defined capture setup (e.g., 1 scan with fixed
parameters), or to randomize sparsity at training
time, thus augmenting the data to make the model
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more robust to different inputs. Such a module
extends existing generators [74–76] to provide run-
time sparse samples extracted from ground truth
dense depth maps.

Our sparsity simulator is driven by a limited
number of parameters, that can be eventually
randomized to augment data: the number of heads
(sensors) and their position and orientation, and
for each sensor, the horizontal aperture (i.e., 360
degrees), the vertical aperture, and the number of
laser beams (e.g., 16 for a Velodyne16-like device),
etc. Furthermore, a small 3D random noise is applied
to simulate real-device noise. Head aperture and
beam parameters are bounded to match to realistic
setups (e.g., beams are multiple of 16).

It should be noted that even a 0-beam case is
contemplated during augmentation. This case allows
the network to work even if there is no geometric
input. In this case the prediction performance is
aligned with that of recent state-of-the-art image-
based methods [7, 8] (Section 4).

Using this augmentation module as a complement
to those based on noise models, in addition to increase
robustness, allows us to avoid locking the training
to a specific device sampling pattern, since sparse
data is generated from ground truth dense maps. In
particular, as we will see in Section 4, differently
from most previous work, we can train the model on
purely synthetic datasets, and apply it to real-world
data captured with a specific device even without any
fine-tuning.
3.3.2 Loss function
Independently from the type of sparse depth
distribution, learning is driven by a loss function
combining two data terms:

Ldata = Ld + Lss (3)
where Ld is the robust Adaptive Reverse Huber Loss
(BerHu) [77], which has proven to be effective in many
recent works for panoramic depth estimation [6–8].
To further take into account structural information, we
add the structural loss Ls, based on the Structural
Similarity Index Measure (SSIM) [78], which measures
the preservation of highly structured signals with strong
neighborhood dependencies. Since SSIM is higher
if the two compared images are more structurally
similar, we define Lss = 1−SSIM(Dgt,Dp), where Dgt
is the ground truth dense depth and Dp is the final
inferred depth.

4 Results

Our approach is implemented with PyTorch 1.5.1 and
has been tested on a large number of indoor scenes.

Source code and models will be available to the
public at https://github.com/crs4/PanoDPC.

4.1 Benchmark datasets

Real-world capture of indoor environments is usually
performed using a variety of settings, including
panoramic cameras aligned with LiDAR-based setups
(e.g., Velodyne) or stitching of structure-light-based
sensors (e.g., Matterport). The limitations of these
devices for indoor use [10] makes it difficult to find
data corresponding to all the various use cases coupled
with reliable full-frame ground truth data.

For training purposes, we employ in this paper
the standard Matterport3D-SD (i.e., Matterport 3D
sparse depth) [26] as well as a new dataset created
on purpose that builds on Structured3D [25], dubbed
S3D-SD (i.e., Structured 3D sparse depth).
4.1.1 Training and testing with Matterport3D-SD
Matterport3D was the first one to provide full-view
indoor poses with paired sparse and dense depth
maps, and for this reason, it has become a popular
benchmark in recent papers and surveys [10, 18, 36].
For the sake of comparison with other results, and
to show the behavior of our method on high-quality
structured-light data, we thus include an analysis of
our performance by training and testing our method
on Matterport3D-SD compared to state-of-the-art
works that use it. This dataset, however, is limited
to a single kind of device operating in reasonably
cooperative environments that ensure rather dense
capture, so that even classical infilling or hybrid data-
driven solutions may be adopted with some success
[10]. Figure 3 shows representative examples. For
this reason, we complement the dataset with much
more challenging examples that cover other setups
and less cooperative interiors.
4.1.2 Training and testing with S3D-SD
In order to cover a large variety of use cases, we
created a novel dataset leveraging on synthetic data
generated by sampling the large-scale Structured3D
[25] photo-realistic synthetic dataset, containing 3.5k
house designs created by professional designers with
a variety of ground truth 3D structure annotations,
including 21,000 photo-realistic full-panoramic (i.e.,

https://github.com/crs4/PanoDPC
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1024 × 512 equirectangular format) indoor scenes.
The main advantage of such a synthetic dataset
is that it provides a fully accurate dense ground
truth for color and depth, which is not available
with other common large-scale datasets, such as
Matterport3D [23] or Stanford2D3DS [24], whose
completeness, even if based on multi-view, is still
limited by visibility and sensor limitations. For
training purposes, we associate to each panoramic
image and ground truth dense depth a sparse depth
created through a sampling process that simulates
a variety of setups. 50% of the depths simulate
LiDaR setups, 25% RGB-D setups, and 25% data
coming from SfM/stereo pipelines. The LiDaR setups
emulate multi-beam mobile devices, selecting with
equal probabilty 0, 16, 32, 48, 64, 80, and 96 beams on
a rotating platforms. LiDaR simulation is performed
by a parametric sampling process [75, 76, 79], using
configurations mimicking Velodyne devices with 30◦–
40◦ vertical FOV. The 0-beam case is included to
simulate pure visual capturte, while for the other
multi-beam setups the depth coverage ranges from
16 beams (6% of pixels having depth values) to
96 beams (38%). As an extreme case, we also
include a case where we have no depth input (i.e.,
data are purely visual, and depth maps have 0%
valid pixels. Representative examples are included
in Fig. 4. Moreover, to evaluate the method on
different kinds of sparsity patterns, we simulate data
coming from low-cost depth cameras using Bernouilli
sampling [40] and input from SfM/stereo pipelines
using an SIFT detector to place samples at feature
locations. Training data are, thus, augmented with two
parameterizations of Bernoulli samplings (24.68% and
6.17% of visible pixels having a depth), as well as with

two different SIFT settings (with 0.91% and 2.99%
valid depth pixels). Each of these 4 configurations
comprise 12.5% of the training data. Representative
examples are included in Fig. 5.

In order to validate the generalization capabilities of
the model and the suitability of training on synthetic
data, models trained on this dataset are tested both
on S3D data and on completely novel data coming
from other capture setups, including real-world ones.
4.1.3 Validating on novel real-world captured data
Furthermore, as another important point of our work,
we tested our model with a real-world sparse and
challenging capture campaign, not included in any
of the training datasets, but supporting a dense
capture as dense ground truth. Thus, we produce a
novel dataset from a real LiDAR RGB-D acquisition
(i.e., mobile device with 2 Velodyne VLP-16 and
a registered Garmin spherical camera, Fig. 7) and
a ground truth dense depth acquisition through a
FaroFocus3DX330TLS. Each sparse scan takes
about 300 ms and produces about 16% of pixels
with valid depth. We have acquired, in a multi-floor
and multi-room environment, about 150 scenes in
equirectangular format aligned with dense ground
truth and sparse depth maps. Note that the gravity
alignment of the poses is directly the one provided
by the tracking tools in the mobile device and has
not been corrected through dense depth registration.
This choice results in tilted sparse-dense pairs, which
also provide us with a real-world benchmark to
evaluate the robustness of our system to misalignment
with respect to gravity direction (see Section 1). We
use such a real-world benchmark for testing without
any fine tuning, after training on S3D-SD, also
demonstrating transfer-learning capabilities.

Fig. 3 Qualitative results on Matterport3D-SD dataset [26]. Masked samples in the results are missing samples in the ground truth.
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Fig. 4 Qualitative performance on S3D-SD with a LiDAR configuration with 32 beams and on real mobile LiDAR indoor capture. Qualitative
results with the same setup of Table 2. Our results are compared to the Huang et al. [36] approach trained with the same equirectangular
augmented S3D-SD dataset with varying sparsity patterns.

Fig. 5 Qualitative performance on S3D-SD with different input depth sparsity patterns. Qualitative results using simulated input from
low-cost depth cameras using Bernouilli sampling and simulated input from SfM/stero pipelines, using an SIFT detector to place samples. Our
results are compared to the Huang et al. [36] approach trained with the same equirectangular S3D-SD dataset.

4.2 Experimental setup and computational
performance

We trained the network using the Adam optimizer
[80] with β1 = 0.9, β2 = 0.999, on four NVIDIA RTX

2080Ti GPUs (11 GB VRAM) with a batch size of
8 and a learning rate of 0.0001. For all benchmarks
we adopt their original splits. Our new real-world
dataset is not used for training, but for testing after
training on synthetic data. With the given setup the
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best valid epoch was around 170 epochs for S3D-SD
and Matterport3D-SD. The average training speed on
4 GPUs is about 105 ms for each 512 × 1024 input
image and depth pair.

Table 1 shows our computational complexity stats,
compared with several state-of-the-art methods for
the inference of a 512× 1024 image and depth map.
Our computational cost, in terms of GFLOPs, is
significantly lower than for competing solution. Note
that this increased performance is also with respect to
networks with a lower number of parameters but with
a far more complex structure. Moreover, our method
produces depth maps directly from equirectangular
inputs without pre- or post-processing steps and can
thus be directly integrated in production systems
without additional overhead.

As a result, the inference performance of our
network guarantees a low-latency generation of
dense depth, and we can therefore support full
instantaneous frame-by-frame depth map generation
directly at acquisition. In our case, starting from a
512× 1024 image and depth map, we infer depth in
under 16 ms on a single NVIDIA RTX 2080Ti, which
is much faster than a single rotation of typical LiDARs

Table 1 Computational cost and performance. Our method is
compared to the best performing state-of-the-art competitors

Method Size Param FLOPs↓ ms/frame↓
Ma et al. [81] 512× 1024 26.10 M 765.1 G 137
GAENet [82] 512× 1024 4.06 M 60.12 G 39
PENet [83] 512× 1024 131.67 M 487.4 G 167
packNet+SAN [35] 512× 1024 76.99 M 304.7 G 149
NLSPN [18] 512× 1024 26.23 M 829.86 G 167
Huang et al. [36] 512× 1024 13.10 M 1624.9 G 105
Our 512× 1024 22.11 M 38.2 G 16
Our 1024× 2048 44.14 M 211.7 G 67
Our 2048× 4096 132.22 M 1319.3 G 384

covering a 360◦ view (e.g., 50–200 ms per rotation
for a Velodyne VLP-16). The lean network structure
also leads to a good scalability, as demonstrated by
results with larger images included at the bottom
of Table 1. We can, in particular, generate 2k×4k
depth images from equally-sized inputs in less than
0.4 s.

4.3 Quantitative and qualitative evaluation

We evaluated our method with the same error metrics
which are common to prior depth prediction and
completion works and surveys [10, 26, 35, 36, 84]:
mean absolute error (MAE), mean squared error
(MSE), root mean square error of linear measures
(RMSE), and three relative accuracy measures δn

(n = 1, 2, 3), defined as the fraction of pixels where
the relative error is within a threshold of 1.25n. For
MAE, MSE, and RMSE, smaller is better (i.e., unit
is meter), while for δn larger is better.

We compare our results with state-of-the-art
solutions for both indoor or generic scenes, for which
the full code was available [18, 35, 36, 81–83] and an
end-to-end training with equirectangular format was
possible. The methods were adapted with minimal
modifications to equirectangular images. We use
1024× 512 for all tests.

Table 2 summarizes our performance and
comparisons with related works using the augmented
S3D-SD dataset to train every baseline compared (see
Section 4.1), and LiDAR-specific examples for the
inference. To select the training and the testing set,
we adopt the official Structured3D split [25].

For synthetic tests, we considered all the simulated
LiDAR configurations (i.e., 16–96 beams and various
FOVs) discussed in Section 4.1. In Table 2, for clarity,
we summarize only the results and comparisons for a

Table 2 Quantitative comparison on S3D-SD/LiDAR and real LiDAR capture. We show our performance evaluated on standard metrics and
compared to the recent state-of-the-art approaches which are comparable with us. Here we present results simulating a 360◦ capture with 40◦

vertical FOV (−30 to 10 degrees) and 32 active beams in the synthetic dataset, and results using a real mobile device with 2 Velodyne VLP-16
and a registered Garmin spherical camera with ground truth obtained using a Faro Focus3D X 330 TLS (see Section 4.1)

Method
S3D-SD / LiDAR 32 beams Mobile LiDAR 16+16 beams

MSE↓ MAE↓ RMSE↓ SSIM↑ δ1↑ δ2↑ δ3 ↑ MSE↓ MAE↓ RMSE↓ SSIM↑ δ1 ↑ δ2 ↑ δ3 ↑
GAENet [82] 0.086 0.394 0.160 0.149 0.466 0.753 0.889 0.041 0.472 0.105 0.202 0.230 0.555 0.748
packNet+SAN [35] 0.052 0.286 0.125 0.614 0.596 0.867 0.954 0.027 0.404 0.078 0.539 0.278 0.603 0.842
Ma et al. [81] 0.044 0.286 0.104 0.591 0.587 0.895 0.964 0.018 0.366 0.051 0.434 0.424 0.723 0.895
PENet [83] 0.028 0.210 0.090 0.595 0.671 0.930 0.976 0.010 0.252 0.035 0.512 0.578 0.835 0.969
NLSPN [18] 0.023 0.185 0.084 0.840 0.723 0.943 0.982 0.011 0.260 0.035 0.746 0.610 0.841 0.937
Huang et al. [36] 0.017 0.138 0.068 0.830 0.824 0.960 0.987 0.009 0.197 0.030 0.745 0.763 0.886 0.947
Our 0.003 0.038 0.022 0.944 0.982 0.993 0.997 0.003 0.088 0.024 0.822 0.922 0.986 0.997
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40◦ vertical FOV and 32 active beams case, since other
S3D-SD/LiDAR tests follow the same performance
trend (see Fig. 8).

We also include results on the real-world scenes
acquired with the mobile LiDAR system (i.e.,
here named mobileLiDAR16+16), compared to
ground truth dense depth acquisition through a
FaroFocus3DX330TLS (i.e., all models trained
with S3D LiDAR).

Both the real-world benchmark and the synthetic
data limited to LiDAR are used only as a testing set,
without any fine-tuning, thus providing evidence of
transfer learning capability.

Despite our lower computational complexity,
already discussed in Section 4.1, our method
outperforms competitors for every condition, showing
that simply adapting general purpose pipelines to
the specific panoramic indoor problem leads to
unsatisfactory results.

Figure 4 presents qualitative results using the
S3D LiDAR and mobile LiDAR test-sets adopted
in Table 2. Here, we compare our method with
the method of Huang et al. [36], which is the
best performing among competitors in terms of
quantitative results. In this case, with only a
few stripes available from the scanner, our method
benefits from its specific compression and information
gathering features (Section 3.1) to recover more
details in the final depth map.

Figure 6 shows additional experiments, where
geometric visualization is obtained by unprojecting
the depth map into 3D point clouds. Following
the same setup of Table 2 and Fig. 4, we show,
respectively: the RGB input (Fig. 6(a)); the sparse
input depth as a point cloud (Fig. 6(b)); the point

cloud predicted by the best competitor [36] (Fig. 6(c));
our prediction (Fig. 6(d)); and the ground truth point
cloud (Fig. 6(e)). The illustrations complement the
other qualitative and quantitative results with an
easy-to-read illustration of the 3D reconstruction
of the scene from a reference point of view. The
performance improvement offered by the proposed
approach is especially visible in regions where clear
geometric structures (walls, ceilings or floor) are
present.

Figure 7 shows instead examples of scenes acquired
with the mobile backpacked device. Numerical data
are presented in Table 2). As for the experiments
Fig. 4, our method successfully completes the map,
with better accuracy than competitors. Furthermore,
it is also visually evident that the data acquired with
the mobile backpacked device present a significant
misalignment with respect to the direction of gravity,
also variable along the user’s trajectory, which results
in a distortion of the equirectangular projection. The
consistent results also in this case show that our
method is robust with respect to such an inclination,
tested in a real and mobile user-case. Note that,
in practice, such inclinations can be reduced before
entering the depth estimation pipeline, by using on-
board IMUs as well as by aligning successive poses.
We show here uncorrected results, to also demonstrate
the possibility of using the pipeline we present
for frame-by-frame inference, without any latency
connected to the integration of multiple frames or the
need for assistance from external sensors.

For completeness, we performed a further
comparison of performance for different sparsity
patterns. Table 3 summarizes the results obtained
by emulating the pattern of low-cost structured

Fig. 6 Qualitative performance on S3D-SD by point cloud (PC). In these examples, 3D point clouds are obtained by unprojecting depth maps,
using the same setting of Table 2, and visualizing them from a standard point of view. Note how the proposed approach improves reconstruction
especially in regions where clear geometric structures from the architectural layout are present.
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Table 3 Quantitative comparison on S3D-SD with Bernoulli and SIFT sparsity. We show our performance, compared to ground truth and
other approaches, testing two different sparsity patterns: Bernoulli pattern with 1.97% of visible pixels, and SIFT detector pattern with 0.1
contrast, 5 edge threshold, and no more than 8k extracted features, thus resulting in 0.91% of visible pixels (see Section 4.1)

Method
S3D-SD/Bernoulli sparsity S3D-SD / SIFT sparsity

MSE↓ MAE↓ RMSE↓ SSIM↑ δ1 ↑ δ2 ↑ δ3 ↑ MSE↓ MAE↓ RMSE↓ SSIM↑ δ1 ↑ δ2 ↑ δ3 ↑
GAENet [82] 0.093 0.410 0.161 0.149 0.465 0.748 0.885 0.093 0.410 0.161 0.149 0.465 0.748 0.885
packNet+SAN [35] 0.021 0.183 0.091 0.622 0.723 0.953 0.986 0.070 0.352 0.149 0.673 0.471 0.787 0.915
Ma et al. [81] 0.049 0.280 0.102 0.441 0.679 0.895 0.954 0.005 0.044 0.024 0.938 0.981 0.993 0.996
PENet [83] 0.036 0.248 0.109 0.416 0.629 0.894 0.969 0.040 0.259 0.118 0.499 0.557 0.859 0.960
NLSPN [18] 0.018 0.162 0.054 0.834 0.813 0.961 0.985 0.037 0.235 0.096 0.814 0.697 0.903 0.963
Huang et al. [36] 0.003 0.043 0.021 0.911 0.979 0.994 0.997 0.025 0.177 0.084 0.774 0.766 0.931 0.974
Our 0.002 0.025 0.018 0.946 0.991 0.997 0.998 0.003 0.035 0.020 0.943 0.987 0.995 0.998

Fig. 7 Mobile RGB+LiDAR setup. To test our approach on a real-
world panoramic RGB+LiDAR acquisition, we exploit a backpacked
mobile scanner equipped with a full-view panoramic camera for the
RGB capture and two LiDAR heads for sparse depth capture. Ground-
truth dense depth for each pose is provided by reprojecting data coming
from multiple poses of a static scanner.

light sensors (by a Bernoulli distribution [40]) and
the pattern of an SIFT detector, emulating the
typical sparse input that can be received from
an SfM pipeline. Some qualitative examples with
these patterns are illustrated in Fig. 5. Even in
this situation our method demonstrates consistent
performance, proving to be a versatile approach even
when heterogeneous inputs vary.

Figure 8 summarizes the results of our experiments
on the ability to cope with different levels of
sparsity, tackling both purely visual input and seveal
multi-beam LiDAR configurations. We illustrate our
performance in comparison with the competitor
method [36] that best performed in our experiments.
We show the results on four different sparsity cases,
ranging from no depth information to a full vertical
FOV scan with 96 beams (38% pixel coverage, see
Section 4.1 for details). For clarity, only the δ1 metric
is included in the graph, since the other metrics have,
as shown in Table 2, a similar behavior.

The continuous lines illustrate the performance of
the models when trained on the augmented S3D-SD
dataset (i.e., the same setup of experiments in Table 2).

The results indicate that our model, together with the
proposed augmentation strategy, guarantees good
performance for every type of sparsity. For the
extreme case of a pure visual input, results are in-
line with dedicated state-of-the-art [7, 8] approaches
for panoramic depth estimation. On the other hand,
the performance of the other approach [36] strongly
depends on the number of available geometric samples.
When training the model without data augmentation
(dotted lines in the figure), but simply including in
the training set the configuration used for testing,
the performance of both models rapidly decays when
moving away from the sampling used for training,
even though our method remains superior at all
sparsity levels. This experiment highlights how other
methods can also benefit from our augmentation
strategy, as it increases generalization without effects
on use-case-specific performance.

For completeness, Table 4 summarizes our
performance on Matterport3D-SD [26], compared to
the results of other state-of-the-art approaches on the
same benchmark [10, 26, 85, 86].

Fig. 8 Performance with variable sparsity level. The graph depicts
the value of δ1 as a function of input depth sparsity for our method
and for the best competing method [36]. Continuous lines represent
models trained with our augmentation strategy. Dotted lines show
the same models but trained without augmentation (i.e., 40 degrees
sparse coverage with 32 active beams).
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Table 4 Quantitative comparison on Matterport3D-SD. We show
our performance evaluated on standard metrics and compared to the
recent state-of-the-art approaches on the indoor dataset provided by
Zhang and Funkhouser [26]. We compare against the competitors
best performance using their original perspective baselines, without
considering additional error due to post-processing and stitching

Dataset Method MAE↓ RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑
MRF [85] 0.618 1.675 0.651 0.780 0.856
AD [86] 0.610 1.653 0.688 0.754 0.868

M3D Zhang and 0.461 1.316 0.781 0.851 0.888
Funkhouser [26]

SD [26] Huang et al. [36] 0.342 1.092 0.850 0.911 0.936
Xiong et al. [10] 0.462 0.866 0.863 0.930 0.942
Our trained S3D-SD 0.464 0.803 0.834 0.908 0.942
Our trained M3D

0.332 0.555 0.936 0.961 0.973
SD [26]

As discussed in Section 4.1, such a benchmark
presents a low-challenging sparsity distribution. The
majority of the state-of-the-art solutions which
adopted this benchmark are not end-to-end deep-
learning networks, but hybrid pipelines [26], mainly
focused on small-view perspective depth infilling [87].
Due to their hybrid nature, a direct computational
complexity comparison is not feasible. It is also
difficult, to create omnidirectional pipelines without
major modifications to the code. In order to provide
a uniform and fair evaluation in terms of prediction
accuracy, we adopt here their official baselines and
pre-trained models for perspective views, testing
them with the original perspective viewports provided
by Zhang and Funkhouser [26], and comparing the
results for our code by extracting from the single
equirectangular image we produce the perspective
views required for testing. It should be noted that
the exposed results for compared methods, thus, do
not include the additional error due to the subsequent
process of stitching the results necessary to obtain
the final omnidirectional view, or other effects due
to pipeline modifications in the case of adaptation to
equirectangular projections.

We show our performance in the last two rows of
Table 4. The bold row provides results obtained by
training with Matterport3D-SD [26] training set, as
for the compared methods, while, to also demonstrate
our transfer learning capabilities, the other row
summarizes the results obtained by inferring depth
using the model trained with S3D-SD, with no
fine-tuning. In both cases, our method provides
consistent performance, well in line or outperforming
other baselines that have been designed for this

use-case. Although not directly comparable with the
perspective results of the other pipelines (see Table 4),
we show in Fig. 3 some qualitative results on the
Matterport3D-SD dataset [26].

4.4 Ablation study

Our ablation experiments are presented in Table 5,
with our configuration highlighted in bold. To
test the key components of the approach, we use
results obtained with S3D-SD, using for testing the
LiDAR configuration with 3D beams (i.e., the same
configuration of Table 2, 32 beams). The variations
discussed in the ablation study are within the design
space of our approach. For example, the use of gating
in the encoder is essential for the model to work. Not
using it leads to inconsistent results.

The first row of Table 5 presents a case without
using some key-solutions of our model: multi-
resolution features (MRF), asymmetric feature
compression (AFC), multi-head self-attention feature
refinement (MHSA), structural-similarity loss (SSIM),
and data augmentation (AUG). Here we use the
deeper layer of the residual feature encoder (see
Section 3.1), and we perform a standard symmetric
compression along the horizontal and vertical
directions. This first case, which represents a common
gated encoder–decoder scheme, demonstrates how
this design is not sufficient to guarantee adequate
performance without the subsequent contributions
we have introduced. In the second row, we show
the performance obtained by introducing multi-
resolution features (MRF), which hallows gathering
of information without using skip connections
[35, 36]. Such a solution, without an efficient feature
compression results in a significant increase of

Table 5 Ablation study performed on S3D-SD, using the LiDAR 32
beams confuguration for testing. MRF: multi-resolution features; AFC:
asymmetric feature compression; MHSA: MHSA encoder; SSIM: SSIM
loss; AUG: sparse data augmentation; LWGC: light-weight instead of
standard gated convolution

MRF AFC MHSA SSIM AUG LWGC Param GFLOPs MAE RMSE δ1

X 13.10 112.92 0.954 2.233 0.748
X X 20.01 188.21 0.765 1.877 0.821
X X X 20.01 43.15 0.312 1.384 0.877
X X X X 22.11 38.16 0.121 0.084 0.951
X X X X X 22.11 38.16 0.075 0.066 0.978
X X X X X X 22.11 38.16 0.038 0.022 0.982
X X X X X 31.86 61.62 0.035 0.021 0.985
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computational complexity. The third row shows the
benefits of asymmetric vertical compression (AFC),
both in terms of lower computational complexity and
in terms of accuracy. The fourth row shows instead
the effects or using or not the MHSA module, without
using specific losses or augmentation. It should be
noted that MHSA feature refinement has a very low
computational cost, but with a tangible increment
of performance. The fifth and sixth rows show the
increment in performance using augmentation, that
limits overfitting.

At last, the seventh row shows that, in a setup using
standard gated convolution instead of our light-weight
choice (Section 3.1), performance is not improved
despite the noticeable increment of computational
cost.

4.5 Limitations and future works

In our experiments, we experienced that the worst
results are for datasets that do not closely match
the assumptions of a closed indoor space, which are
used in our design to construct an efficient network
architecture (see Section 1). Figure 9 illustrates an
example from a real-world capture. In this case, the
sparse samples from the outdoor part, not properly
masked, also negatively affect the reconstruction of
the surrounding indoor parts.

It should be noted that the method has been
specifically designed to exploit features in indoor
structures. This behavior is mainly due to asymmetric
feature compression and flattening of gravity-aligned
indoor panoramic imaging (Section 3.2), which, in
addition to providing efficient information gathering,
allows the use of a transformer (MHSA) to retrieve
the wide panoramic context. Without such indoor
assumptions, compression, flattening, and self-
attention are poorly effective. This design provides
advantages in the prediction of depth for interior
structures, as demonstrated by our results, while
limiting the applicability of the method to scenes
matching the assumptions.

Since such a domain-specific network design
has shown to provide significant performance
improvements with respect to more generic solutions,
it is interesting to further extend this work by
exploiting domain-specific constraints. One direction
for future work would be to further exploit the
indoor-specific design, e.g., by incorporating indoor-
specific loss functions designed for architectural
structures composed of large smooth surfaces, not
necessarily planar, joining at possibly sharp edges
[67]. Another direction would be, instead, to use the
same concepts to design networks for other specific
application contexts (e.g., outdoors, industrial plants),
incorporating knowledge on plausible structures (e.g.,
presence of pipes) into the network representation and
loss functions.

5 Conclusions

We have presented a novel end-to-end deep-learning
solution for rapidly estimating a dense spherical
depth map of an indoor environment starting from a
single image and a sparse depth map. To realize
a lightweight and efficient single-branch network,
we combine and extend several technical solutions
to offer a novel way to solve this specific problem.
We adopted a residual encoder with a dynamic
gating system to extract multi-resolution features
from hybrid visual-geometric input. In order to
efficiently gather such amount of information and to
avoid onerous interconnections between encoder and
decoder, we introduced a specific compression and
feature flattening which exploits the characteristics
of typical man-made environments and panoramic
view. End-to-end training was instead carried
out by introducing a data augmentation scheme
capable of making it robust and versatile as the
sparsity changes. As a result, our compact network
outperforms in terms of speed and accuracy current
solutions for color-guided sparse depth prediction and
completion.

Fig. 9 Bad case. Results on almost-outdoor environment. Sparse samples from outdoor part, not properly masked, negatively affect the whole
reconstruction.
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Availability of data and materials

The benchmarks presented are already based on
publicly available datasets, that, where relevant, we
have augmented with sparse depth information.
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