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Abstract In this study, we present a new and
innovative framework for acquiring high-quality
SVBRDF maps. Our approach addresses the limi-
tations of the current methods and proposes a new
solution. The core of our method is a simple hardware
setup consisting of a consumer-level camera, LED
lights, and a carefully designed network that can
accurately obtain the high-quality SVBRDF properties
of a nearly planar object. By capturing a flexible
number of images of an object, our network uses
different subnetworks to train different property maps
and employs appropriate loss functions for each of
them. To further enhance the quality of the maps, we
improved the network structure by adding a novel skip
connection that connects the encoder and decoder with
global features. Through extensive experimentation using
both synthetic and real-world materials, our results
demonstrate that our method outperforms previous
methods and produces superior results. Furthermore,
our proposed setup can also be used to acquire physically
based rendering maps of special materials.

Keywords acquisition setup; SVBRDF acquisition;
material capture; global skip connection

1 Introduction

The spatially varying bidirectional reflectance
distribution function (SVBRDF), modeled as a
function of 6-dimensional space (light-view directions
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(4D) and spatial location (2D)), describes how
incident light is distributed in various exit directions
after being reflected by a particular surface. Under
the assumption of the Cook–Torrance BRDF model
with a GGX normal distribution function, which is
mostly used in physical-based rendering, SVBRDFs
can be parameterized using four parameter maps:
diffuse, specular, normal, and glossiness. The
traditional acquisition of these SVBRDF parameters
tends to be densely sampled over a 6D space to obtain
plausible results, but their procedures are inefficient
and often limited by expensive hardware [1–3].

Recent studies have demonstrated how deep
learning can be conveniently applied to obtain
SVBRDF parameters [4–10]. These studies aimed to
recover the reflectance properties of a material from
one or more flash photographs captured using a cell
phone camera. Such methods make estimations based
on prior knowledge that the network has received
and show that photographs of the same material
captured under different illuminations may lead to
contrasting results. Figure 1 shows reconstruction
using the method of Guo et al. [8] under different
illuminations.

As a critical factor in the acquisition task,
illumination always changes: indoor or outdoor,
sunny or cloudy, noon, night, etc. Therefore, owing
to miscellaneous illumination, the results of these
studies could only meet the entertainment needs of
ordinary users while failing to meet the needs of
professional designers who have strict requirements
for the accuracy of reconstructing the SVBRDF maps
of the material. To delve into the relationship between
acquisition quality and lighting, it is necessary to
establish a stable illumination environment. Recently,
Kang et al. [11] proposed a framework for the joint
acquisition of physicallly based rendering (PBR)
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Fig. 1 Examples of SVBRDF acquisitions under different illuminations. The first three rows show the results generated by the same method
using cell phone cameras. The 4-th row shows our result with stable illuminations. The bottom-left shows the photo of the real material
captured by an SLR camera under the standard illumination of a D65 light box in a dark room.

maps and the shape of the 3D model. The device
can generate a stable illumination environment by
controlling different LEDs. However, the setup of
their method requires 24,576 white LEDs and an
Intel Cyclone 10 FPGA, which makes the hardware
complex and expensive.

In this study, we propose a consumption-level
setup to obtain high-quality SVBRDF maps and
develop a novel network to delve into the effects
of different lighting conditions. First, we designed
easy-to-use equipment to control the stray light
interference. With this setup, the photographs were
taken under stable illumination. This provides a
considerable advantage for the input: the testing
illuminations are almost the same as the training
illuminations. Thus, our network can learn the
illumination from all the training samples. By using
prior knowledge of illumination, our network can
generate a rather accurate inference result. We
then analyzed the characteristics of the different
maps using the rendering function. Based on these

analyses, we built our network as four independent
networks to eliminate the entanglements between
maps trained with properly designed loss functions.
We also propose a novel skip connection structure
to learn the local and global features. Extensive
experiments were performed using both synthetic and
real data. The results show that our method performs
better than the previous methods, even at a resolution
of up to 3072× 3072. Moreover, we investigated the
acquisition quality with different numbers of inputs
using our proposed setup.

The main contributions of this study are as follows:
• We propose a novel simple setup for high-

quality SVBRDF acquisition. Using our setup,
the illuminations between the training and test
samples can be maintained, which helps to study
the relationship between acquisition quality and
the number of input images.
• We design a novel skip connection that passes

the global information learned from encoders to
decoders. Global skip connection makes up for
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the shortcomings of general skip connection that
can only pass local information.
• We perform extensive studies on the reconstructed

results with different numbers of input images.
Using our proposed hardware setup, we can get
up to 24 images under different illuminations. We
test and analyze the effect of different number of
image inputs on the reconstruction results and
give a relevant comparison.

2 Related work

Depending on the subject of interest, SVBRDF
map acquisition can be classified into two categories:
nearly planar and 3D objects. Studies on early plane
objects can be further classified into single-image-
based methods and multi-image-based methods,
according to the number of inputs. In this section,
we briefly review related works on single-image-
based near-plane appearance acquisition, multi-
images based nearly-plane appearance acquisition,
and 3D object appearance acquisition.

2.1 Nearly-plane object appearance acquisi-
tion

Single-image-based methods input only one image
into a network. Thus, the choice of photography
method is important for obtaining the final result.
It is common to select an image captured under a
flashlight emitted by a handheld device [4, 5, 8, 12].
Under these lighting conditions, the entire material
is illuminated, and the light and shadow information
on the surface is recorded in a photo. At the same
time, the input image can be easily obtained through
a mobile phone. Owing to the limitations of the
input information, single-image-based methods often
show less accuracy than multi-image methods and
sometimes fail to produce plausible results.

Multi-image-based methods require several images
to be captured under different illumination conditions
[6, 13, 14]. It is more complicated than single-
image estimation, but works better in terms of
accuracy. Deschaintre et al. [6] demonstrated that
their method obtained better results with an increase
in the number of input images. In addition to deep-
learning methods, traditional optimization methods
benefit from the addition of images. Gao et al. [14]
and MaterialGAN [13] also performed better with
more images as optimization targets.

Optimization methods place high demands on
users because they must record many complicated
parameters of light and cameras [13–15]. Albert
et al. [16] proposed a method that utilizes videos
to estimate these parameters. However, this requires
large amounts of storage space. In addition, deep-
learning methods fail when the captured light does
not match the training images.
2.2 3D object appearance acquisition

In addition to acquiring the appearance of nearly
planar objects, methods have been proposed for 3D
objects. To address this problem, a special device
such as a camera with a specific linear polarizer
[17, 18] or an RGB LED array [19] is used. Holroyd
et al. [1] designed a spherical gantry equipped
with a projector–camera pair on two mechanical
arms using phase-shift patterns for 3D geometry.
Tunwattanaponget et al. [20] built a structure with
an LED arm that rapidly orbits to create continuous
spherical illumination with harmonic patterns and
obtained SVBRDF parameters of the object. Other
similar dome structures of multiple cameras have
also been proposed using structured light patterns
for 3D geometry and representing reflectance as a
bidirectional texture function (BTF). To eliminate
the dependence on structural light, Nam et al. [21]
used conventional 3D reconstruction techniques,
including SfM, MVS, and mesh reconstruction. Xia
et al. [22] proposed the recovery of the 3D shape
and isotropic SVBRDF parameters from a captured
video sequence of a rotating object. Recently, Kang
et al. [11] proposed the construction of a cube-shaped
device light stage to capture several photos under
different light fields and designed a deep-learning-
based framework to capture both the reflectance
and 3D shape of the object. However, the proposed
device is complex and contains thousands of LEDs
and complex control circuit boards. In contrast,
in this study, we designed a simpler device that
contained only several LEDs to form an illumination
environment.

3 Proposed method

3.1 Problem overview

A spatially varying material can be rebuilt using the
pixel-level reflectance properties stored in SVBRDF
maps. Assuming the Cook–Torrance microfacet
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specular shading model and GGX normal distribution
function, the reflectance model used in this study was
formulated as fr:

fr(v, l, ρ, α, n, F0)

= ρ

π︸︷︷︸
Pd

+ D(v, l, α)G(v, l, n)F (v, l, F0)
4(v · n)(l · n)︸ ︷︷ ︸

Ph

(1)

where v and l are the unit vectors of the camera and
light directions, respectively; and ρ, α, n, and F0 are
the spatially varying diffuse albedo, roughness, and
normal, and specular albedo of the material surface,
respectively. fr has two terms: the first term is
the diffused part Pd and the second term is the
highlighted part Ph. Our goal was to estimate ρ,
α, n, and F0 from a set of images I = {Ii}.

Illumination significantly influences photo Ii. From
Eq. (1), it is clear that the light and viewing
directions are two significant factors for image Ii. Our
observations show that different illuminations cause a
well-trained network to fail, yielding erroneous results.
Figure 1 shows a failed example by highlight-aware
network [8]. Because of illumination mismatch, the
diffuse map generated by the network is darker and
uneven in brightness. Because it is highly affected by
color variance, the predicted normal diverges from
reality. Our solution to these problems is to provide
a stable illumination in the capture environment. By
fixing v and l between the training samples, we expect
our network to concentrate more on estimating the
SVBRDF maps (ρ, α, n, and F0). Thus, our problem
is simplified to estimate the SVBRDF parameters
from a reflectance model, modeled as
fr(ρ, α, n, F0) = Pd(ρ) + Ph(D(α)G(n)F(F0)) (2)

As image Ii is the combined effect of lights and all
four SVBRDF maps, multiple sets of SVBRDF maps
might reach the same radiance under special lighting
conditions, making it insufficient to infer an accurate
map from a single image. Mutual complementary
information contained in multiple images of the
same material under different lights is essential to
alleviate the ambiguities in this problem. Experiments
were conducted to demonstrate the effect of the
number of input images on the training results in
Section 4.3. In our method, we define the number of
images |I| as N . Our task is to determine the generator
network G:

{ρ̂, α̂, n̂, F̂0} = G({I1, ..., IN}) (3)

By training network G, we expect to find an optimal
network weight θopt that minimizes loss L:
θopt = argminθ

∑
i=1
L(G({Ii1, ..., IiN}, θ), ρi, αi, ni, F i0)

(4)

3.2 Acquisition setup

As shown in Fig. 2, our capture system is a
combination of a 20 mega-pixel industrial camera,
a material stage, and LED lights distributed on a
hemispherical shell with a 225 mm radius.

The hemispherical shell provides a fixed position
for the LEDs and cameras. It also minimizes light
interference from the outside, ensuring that only
LEDs light the material. The material stage is at the
center of the hemisphere and provides a flat surface
for the real material. The camera is placed vertically
on top of the hemispherical shell facing the material
stage.

Figure 3 shows an example of the captured images
of a leather material. The LED positions in the
equipment are shown in Fig. 4. The LEDs were
distributed at three different levels on a hemispherical
shell. In the polar coordinate system originating at
the center of the hemisphere, eight equidistant LEDs
were installed at each level, with the angle between
each level being 22.5◦. When the system starts
working, the LEDs are lit up to create illumination in
different directions. Meanwhile, the camera captures
the material on the stage when an LED is turned on.
By the end of the capture procedure, we obtained 24
images, each illuminated by a single LED.

A bottom LED was used at the material stage.
It turns on to provide blue or green light to the
material stage when the material is transparent.
When the LED at the bottom was in operation, it first
emitted green light, allowing the camera to capture

Fig. 2 Appearance of our acquisition device.
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Fig. 3 Images of a leather material captured by our device under the 24 LED lights.

Fig. 4 Positions of lighting LED.

an image of the material with a green background.
Subsequently, blue light was emitted to capture an
image on a blue background. In Section 4.5, we
explain how to determine the transparency of a
material using these two special images. The material
stage scatters the light emitted by the bottom LED,
thereby evenly illuminating it.

Prior to acquisition, we calibrated the camera in
our setup with an X-Rite ColorChecker Passport
to guarantee high color accuracy during capture.
The light intensity was also adjusted between the
hardware and the rendering environment using an
18% gray card. By minimizing the L1 distance
between the captured photo and its corresponding
rendering image, we get a scale parameter, to a total
of 24 parameters. Color and light intensity calibration
can further narrow the illumination gap between the
training and testing dataset.

3.3 Proposed network

Our property map generation networks leverage the
classical U-net [23] as the baseline owing to its ability
to solve image-to-image problems. Figure 5 presents
an overview of our acquisition method, with the
top half showing our training procedure and the
bottom half showing how we make inferences using
real materials. In the training phase, pairwise training
samples (R1, ..., Rn) for our supervised learning
network were generated by rendering with known
ground-truth SVBRDF parameters (denoted as dt,

Fig. 5 Overview of our proposed method.
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st, gt, and nt) under the same light settings as our
acquisition equipment using the reflectance model
defined in Eq. (2): When making inferences about real
materials, captured images of the material (I1, ..., In)
under different light positions by our acquisition
device are input to four different networks (Gd, Gs,
Gg, and Gn) to generate the corresponding SVBRDF
maps (dp, sp, gp, and np). In the following section,
we introduce the details of our network architecture
and loss functions.
3.3.1 Separated generation networks for four maps
A key distinguishing feature of our framework
compared with other works is that we employ four
independent networks to generate four different maps
separately. Many recent works have adopted the “one-
to-four” architecture [8, 12] for the acquisition task of
SVBDRF by having a shared encoder for extracting
compact features from input images and four separate
decoder branches to recover the per-pixel diffuse
albedo, specular albedo, normal, and roughness from
the learned features. The rationale behind this network

design pattern is straightforward. Because the four
maps have different emphases on different features, the
synthesis of different maps requires four decoders to
decode the feature maps differently.

However, this architecture has several limitations.
First, in our experiments, we noticed that the
four maps could hardly achieve accurate results
simultaneously. Because the four decoders share
the same encoder, the gradients received by the
encoder are related to all the four maps. Suppose
a network has already learned to correctly predict
three of the four maps. In this case, the nonzero
gradient produced by the rest will impose changes
on the encoder, indirectly affecting the correctness of
the other maps. Second, because the four decoders
decode from the same feature maps, the gradients of
the four branches tend to reward the encoder that
extracts the features required by all four branches.

In summary, this network architecture results in
a high degree of entanglement in the feature space.
Accordingly, we suggest using a separate network for

Fig. 6 Comparison between one network strategy and 4 networks strategy. For each example, from top to bottom, the first row shows the
reference maps; the second row shows the maps generated with the one network strategy; the third row shows the maps generated with the 4
networks strategy.
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each map because each network can better predict
a specific map. To mitigate the inconsistencies in
different maps, we used a render loss calculated from
the estimated map and ground truth maps during
the training of the networks. Figure 6 compares the
maps generated using one and four networks.

Figure 7 shows the average feature maps over
the channels of the four encoders in the second
downsampling layer. As shown in the figure, our
diffuse network Gd tends to extract features that
follow the material pattern, thereby eliminating
the interference caused by height changes and
uneven light. Similarly, the features extracted by
our glossiness network Gg were immune to height
differences, presenting the map in a nearly flat
manner. By contrast, because the network is most
sensitive to changes in height, the normal network

Fig. 7 Feature maps generated by the four networks.

pays more attention to the information extracted
from moving shadows and brightness. Unlike the
other three models, specular network Gs focuses more
on the microreflection highlights on the fabric surface.
These results further prove the different emphases on
the features of the four maps.

The details of the proposed network architecture
are presented in Fig. 8. Before being input to
the encoder, the N captured images I1, ..., IN are
stacked as 72-channel inputs. Subsequently, a single
convolution layer is utilized to map the 72-channel
input layer into an abstract feature map with the
same resolution as the captured images I, but with
64 more condensed (compressed) channels.

Our downsampling block consists of three
consecutive 3 × 3 convolution layers activated by
LeakyRelu. We performed downsampling in the first
convolution layer with a stride of 2. In this layer,
we increased the number of feature channels by 32
and reduced the feature size by half. We set the
stride of the following two convolution layers to one
and maintained the number of feature channels and
their size. Symmetrical to the downsampling block,
keeping the last two convolution layers the same, our
upsampling block replaces the first convolution layer
with a transposed convolution with a stride of two.
It also reduces the number of feature channels to the
same number as the corresponding encoder layer and
doubles the size of the feature maps.

To fully exploit the features at different scales, our
generation network downsamples the input images

Fig. 8 Architecture of our network with global feature skip connections. Four maps are generated through separate networks, and this figure
only shows one of them as an example. The four networks share a similar architecture with only a slight difference at the final convolutional
layers. Gd and Gs have no additional processing modules to the network structure shown in the figure. In contrast, both Gg and Gn nets
undergo an extra layer of convolution with the sigmoid and tanh functions as active functions, respectively.
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seven times through a series of seven downsampling
blocks and recovers the SVBRDF maps at the same
resolution as I with seven upsampling blocks. An
additional middle convolution layer (bottleneck layer)
is employed between the encoder and decoder to
refactorize the features learned from the encoder.

Skip connections [23] are made between the encoder
and decoder at the same depth to preserve the details
at different scales. However, our experiments revealed
that skip connections via concatenation were not
sufficiently capable of producing pleasant results,
leaving unevenness on the generated maps. A skip
connection with a global feature learning block was
introduced to mitigate this problem by learning
common features that span the planar material. The
design details and further analysis of the structure
are described in Section 3.3.2.
3.3.2 Global skip connection
Although a plain skip connection [23] between the
encoder and decoder layers through concatenation can
produce generally acceptable results, our observations
show that unevenness in brightness can pollute the
generated maps, leaving stains on them even if the
material surface has evidently uniform reflectance
properties (see Fig. 9). The concatenation fusion
mechanism between the lower-level features from
the encoder and high-level features from the decoder
potentially produces a semantic gap [24]. Inspired by
Hu et al. [25], we introduced a newly designed global
feature skip connection to U-net to address this issue.
These connections allow the decoder to be aware of
information from other regions. In this manner, some
information-lacking regions can infer their information
through the data of the information-full regions.

Fig. 9 Three examples of the glossiness map generated w/ or w/o
global skip connections.

Table 1 RMSE comparisons between glossiness map generated w/
and w/o global skip connections (GloSkip)

w/o GloSkip w/ GloSkip

RMSE 0.052626 0.040709

Our global feature skip connection starts by
abstracting a condensed channel-wise global feature
vector from the encoder Ei at level i using
global average pooling. Subsequently, a multi-layer
perceptron with one layer of hidden units activated
by SeLU is leveraged to blend the condensed features
at different channels before expanding back to their
original size by a broadcast operation, as illustrated in
Fig. 10. The final output of this module is later fused
with the corresponding layer from the decoder Di

using element-wise addition. With Di and Ei being
the ith layers in the decoder and encoder, respectively,
this process can be expressed by Eq. (5):

Di+1 = U (Fc (M (Ei)) +Di, Ei) (5)
where U(·) indicates an up-sample operation, Fc(·)
indicates a full connection, and M(·) represents the
global average pooling.

Although it achieved outstanding performance in
generating clear and uniform results, global skip
connections were not employed to generate normal
maps after careful consideration. By broadcasting an
average value across the plane and enforcing such a
feature on the decoder, global skip connections blur
the final result, especially for normal maps, as their
estimation requires high-frequency information.
3.4 Loss function

Having four generation networks to reproduce
SVBRDF maps in high quality, we carefully designed
specialized joint loss functions Ld, Ls, Ln, and Lg,

Fig. 10 Comparison of the general skip connection and our global
skip connection. The encoder features are first compressed to a value
with unit size, and the global skip connection broadcasts it to a
complete map. In a general skip connection (left), every field in the
decoder can only get information in the corresponding encoder field.
It only passes local information, but our global skip connection (right)
broadcast the global information to every field in the decoder.
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respectively, for Gd, Gs, Gn and Gg, depending on
the different characteristics of the maps they generate.
Sharing some common regularizing terms in all loss
functions, the loss functions for all four maps consist
of a map loss Lm and a rendering loss Lr calculated
by averaging the mean absolute error between the
images rendered with the predicted material maps
and the ground truth map using N novel lightings.

This is slightly different from a conventional
rendering loss because the SVBRDF parameters in
our method are generated separately by four networks.
The rendering loss for each network Gx uses one
predicted map and three other ground-truth maps,
as shown in Eq. (6) where the ground-truth maps
θ = {dt, st, gt, nt} and x ∈ {d, s, g, n}.

Lr,x =
N∑
i=1

MAE(Rl,v((θ\{xt})∪{xp}),Rl,v(θ)) (6)

The map loss Lm in our method is computed as the
l1 norm between the predicted maps and the ground-
truth maps using the MAE, denoted as L1. Finally,
two weighted factors, λm and λr, were applied to the
map and rendering losses, respectively, which were
set to 1 and 1/24 in our experiments. At this stage,
we formally define four joint loss functions, Ld, Ls,
Ln, and Lg as Eqs. (7)–(10):

Ld = L1(dt, dp) + Lr,d + (1− SSIM(dp, dt)) (7)
Ls = L1(st, sp) + Lr,s (8)
Lg = L1(gt, gp) + Lr,g (9)
Ln = L1(nt, np) + Lr,n + Lc (10)

where xp represents one of the predicted maps and
xt represents one of the ground truth maps for

x ∈ {d, s, g, n}. xt and SSIM(·) are the SSIM values
between the two maps.

As a directional value, we use an additional cosine
loss Lc to evaluate the orientation difference between
the predicted normal np and the ground truth
normal nt:

Lc = − nt

|nt|
· np

|np|
+ 1 (11)

4 Experiments

4.1 Dataset and training

In this study, we collected 352 real materials including
cloth, leather, fabric with a metallic luster or
pattern, and fluorescent materials. We first generated
SVBRDF maps of these real materials using a
commercial material scanner device X-Rite TAC7
Appearance Scanner [26], and then calibrated these
maps by professional technical artists under standard
illumination in a D65 light box in a dark room. We
also expanded the dataset by mixing SVBRDF maps
from public datasets. Finally, the newly constructed
dataset consisted of 3184 examples. Each example
contains SVBRDF maps and 24 rendered images. To
obtain the 24-rendered images, we used 3D software to
create a virtual digital twin model of our acquisition
device, as shown in Fig. 2, and then generated 24
images using Blender Cycles [27] for each example.
The resolution of the SVBRDF maps and virtual
images is 512 × 512. In our experiments, we used
2184 for training and 1000 for testing.

We implemented our method using TensorFlow

Fig. 11 SVBRDF maps of two real materials generated by our method. The left-bottom is a photo of the material captured by an SLR
camera under the standard illumination in D65, while the right-bottom shows the rendering result using the generated maps. The resolution of
the maps is 3072 × 3072.
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version 2.4. We used the Adam optimizer [28].
The learning rate was started at 10−4. All other
hyperparameters were set to their default values.
During training, the batch size was set to 4 for 2000
epochs. Figure 11 shows the results generated by the
proposed method.

4.2 Results

We conducted the experiment using two images
(Nos. 0 and 16) as inputs. Figure 12 presents an
example using the proposed method and those of
Deschaintre et al. [6], Guo et al. [13], and Guo
et al. [8]. Our method yields results closer to the
ground truth, especially for the normal map, whereas
the other methods generate incorrect normal results
(the normal maps of the flower shape of the cloth
are wrong), which leads to incorrect re-rendering
results. We conducted numerical experiments using
our dataset. For a fair comparison, we fine-tuned the
methods using our dataset. Table 2 lists the numerical
results for the synthetic data, and Table 3 for real
data. Compared to other methods, our method has a
significant advantage in terms of diffusion, normality,
glossiness, and rendering loss (both synthetic and
real). For specular maps, our results are not as good
as those of the method proposed by Deschaintre et al.

Table 2 RMSE comparisons on our dataset using two images as
input. Here, d, n, s, g, and r indicate the diffuse, normal, specular,
glossiness, and the rendered image, respectively

Deschaintre Guo J et al. Guo Y et al.
Ours

et al. (materialGAN)

d 0.082861 0.006006 0.054556 0.000306
n 0.004437 0.005079 0.005232 0.000791
s 0.007402 0.013387 0.010090 0.046552
g 0.088811 0.132340 0.095743 0.044373
r 0.077482 0.009083 0.044927 0.000602

Table 3 RMSE comparison between previous works and our method
on real materials with 2 images input. The first row shows the metrics
on re-renderings under 24 lights using our device, while the second
row is under novel light

Deschaintre Guo J et al. Guo Y et al.
Ours

et al. (materialGAN)

24 0.066352 0.017784 0.068793 0.013180
Novel 0.196887 0.087135 0.202598 0.053856

[6]. This was mainly because the materials used were
mostly fabrics, which have less prominent specular
properties. Therefore, the specular maps produced
by our method are not as accurate as those produced
by the method proposed by Deschaintre et al. [6].

As described by Deschaintre et al. [6] and
materialGAN [13], the recovered SVBRDF maps

Fig. 12 Reconstruction results using two images as input. Under the side lighting conditions, our rendering results can clearly see the shadow
texture generated by the surface bump. The other methods have only blurred dim or almost invisible surface shadows.
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improved with an increasing number of inputs.
We also conducted experiments and validated this
conclusion using our hardware setup and the proposed
method. We used the photos captured by our device
and trained our network on the training dataset using
24, 16, 10, 6, 3, 2, 1 photos as inputs (the numbers
of selected photos are listed in Table 4). The
RMSEs of the diffuse, glossy, normal, and specular
maps were computed using the test dataset. The
hyperparameters used for training were the same for
all inputs. The numerical results are drawn as line
graphs, as shown in Fig. 13. These four line graphs

Table 4 Image numbers we input in the experiment

Input No.

1 0
2 0, 16
3 0, 16, 23
6 0, 4, 8, 12, 16, 20

10 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
16 0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23

Fig. 13 RMSE in different numbers of inputs.

show that the RMSE decreases as the number of
input images increases. For the specular maps, the
curve oscillates when the input number is small, but
tends to decline steadily when the number increases.
The diffuse, normal, and glossiness maps showed
significant improvements at the beginning. When the
input number increases to 6, the decline in RMSE
slows. Thus, if only the quality of the maps is
considered, networks can be trained using as many
inputs as possible. The more images that are input,
the closer the details of the results are to the ground
truth. Figure 14 shows a comparison of the normal
maps using different numbers of images as inputs,
and we can observe that the details can be obtained
well when the number is larger than six. Thus, if the
training cost/quality ratio is considered, selecting 6
images as the input is a better choice.

4.3 Comparisons with more images as input

We compared our method with those proposed by
Deschaintre et al. [6], MaterialGAN [13], and Guo
et al. [8]. Because the inputs of Deschaintre et
al. [6] or materialGAN [13] are multiple images,
for fair comparison, we directly utilized the 24
rendered images (or the images cropped from the
photos captured by our device) as input. For the
method of Guo et al. [8], we traverse the results
of 24 images (or cropped photos captured by our
device for real materials) and choose the best
one for comparison. Qualitative and quantitative
experiments are conducted to evaluate the proposed
method using our dataset and real materials.
4.3.1 Comparisons on our dataset
Figure 15 presents an example of a comparison
using our dataset. The diffuse maps acquired by

Fig. 14 Comparisons of the normal maps with different numbers of input images.
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Fig. 15 An example of comparison with prior methods. The diffuse maps, specular maps, and rendering results are shown in Gamma space,
while the glossiness maps are turned to roughness maps for more clear visualization.

Deschaintre et al. [6] and Guo et al. [8] are darker than
the ground truth, resulting in darker re-rendering
results. By contrast, the diffuse maps acquired by
our method and MaterialGAN [13] were compatible
with the ground truth. For normal maps, our results
contain more details and are the closest to the ground
truth, whereas the results obtained by Guo et al. [8]
and materialGAN [13] tend to be flatter. For the
results obtained by Deschaintre et al. [6], the direction
of the edge changed significantly.

Note that materialGAN [13] must record the precise
parameters of the camera and illumination, making
obtaining SVBRDF maps become more complicated.
By contrast, our method does not require complex
parameters because the illumination of the input
images is under fixed control. Our network can learn
stable illumination between training samples and
use the learned parameters for inference. Thus, the
quality of the maps can be guaranteed by the stable
illumination provided by our device, which does not
require additional optimization.

Table 5 and Table 6 show numerical comparisons
of our dataset. The numerical results demonstrate
that our method achieves the best results in diffuse,
normal, and glossiness maps, whereas the method of

Table 5 RMSE comparisons on our dataset. d, n, s, g, and r

indicate the diffuse, normal, specular, glossiness, and the rendering
image, respectively

Deschaintre Guo J et al. Guo Y et al.
Ours

et al. (materialGAN)

d 0.102023 0.005124 0.054556 0.000423
n 0.006479 0.004360 0.005232 0.000247
s 0.033632 0.012154 0.010090 0.025878
g 0.102216 0.140183 0.095743 0.040709
r 0.087551 0.006833 0.044927 0.000301

Table 6 LPIPS comparisons on our dataset. d, n, s, g, and r

indicate the diffuse, normal, specular, glossiness, and rendering image,
respectively

Deschaintre Guo J et al. Guo Y et al.
Ours

et al. (materialGAN)

d 0.306619 0.133610 0.286742 0.063140
n 0.205903 0.246912 0.364797 0.151345
s 0.716021 0.692563 0.747934 0.721130
g 0.656656 0.579437 0.519371 0.495239
r 0.299803 0.179935 0.318218 0.130414

Guo et al. [8] has the lowest RMSE and Guo et al. [13]
has the lowest LPIPS in specular maps. Although our
method does not obtain the best results for specular
maps, it obtains the best diffuse and normal maps,
which have more important effects on re-rendering.
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4.3.2 Comparisons on real materials
We validated our method on 85 real materials
that were not included in our dataset. The input
photographs were captured using the proposed device.
We used 3 novel lights to evaluate the results and
captured photographs of real materials using an SLR
camera. We then rendered the materials using the
recovered SVBRDF maps in digital twin illuminations.
Figure 16 shows an example of our results. This
indicates that the normals generated by the methods
of Guo et al. [13] and Guo et al. [8] are incorrect. In
fact, the regions of the heart shapes were flat; however,
the normals recovered using these two methods were
concave. In addition, the recovered diffuse maps do
not contain the heart-shaped pattern, which means
that these two methods cannot distinguish the color
and shadow information of planar exemplar materials.
For the maps generated by Deschaintre et al. [6], the
recovered diffuse map is gray, while the color of the
material is white. Thus, the re-rendering results
were significantly different from those of the captured
photographs. Table 7 and Table 8 list the RMSE
and LPIPS comparisons of the rerendering results
with captured photos from previous studies and our

Table 7 RMSE comparisons between previous works and our method
on real materials. The first row shows the metrics on re-renderings
under 24 lights using our device, while the second row shows the
metrics under novel lights

Deschaintre Guo J et al. Guo Y et al.
Ours

et al. (materialGAN)

24 0.069047 0.013157 0.068793 0.012600

Novel 0.204769 0.072937 0.202598 0.067823

Table 8 LPIPS comparisons between previous works and our method
on real materials. The first row shows the metrics on re-renderings
under 24 lights using our device, while the second row shows the
metrics under novel lights

Deschaintre Guo J et al. Guo Y et al.
Ours

et al. (materialGAN)

24 0.470221 0.377422 0.498515 0.284123

Novel 0.630545 0.516387 0.611689 0.422746

method for 85 real materials, respectively. Figure 17
shows the numerical details. Because Guo et al.’s
method [8] is based on a single image, we did not
compare its performance with that of statistics. This
demonstrates that our method can achieve the best
results for SVBRDF acquisition of real materials.

Fig. 16 An example of a real material.
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Fig. 17 Statistics from 31 synthetic examples and 31 real materials. We computed the learned perceptual image patch similarity (LPIPS) on
the re-rendering images and the root mean square error (RMSE) on SVBRDF maps. In the metrics, a lower value indicates a higher accuracy.
Our outputs are more concentrated in the areas with lower values which means that we get more accurate results on most examples.

4.3.3 Performance
We evaluated the runtime performance on a PC
with a 3.0 GHz Intel Core i7 processor and an
NVIDIA GeForce RTX 3090 GPU. For an input image
with a resolution 512× 512, it takes approximately
0.11 s using the method of Guo et al. [8] because it
only takes one image as the input. For the input
from 2 to 24 images, our method takes between
0.300 and 0.480 s, whereas it takes approximately
2.93 s using the method proposed by Deschaintre et
al. [6]. In comparison, materialGAN [13] required
approximately 660 s with the same input on the same
platform because of its lengthy optimization.

4.4 Ablation study

As discussed in Section 3.3.1, gradients received by
the encoder in a one-to-four architecture are related to
all four decoders. Gradients from the other three maps
could have affected the accuracy of the one that was
correct. We performed ablation studies to validate
the performance of the single-encoder architecture. In
addition, we compared the performances of our global
skip connection and global track [5] to prove the
superiority of our method. The results are presented
in Table 9.

Table 9 RMSE comparisons of the ablation study

1 encoder Global track Ours

d 0.017557 0.021936 0.011774
s 0.019679 0.022555 0.018615
n 0.023288 0.036720 0.020182
g 0.037449 0.052994 0.032916

4.5 Acquisition of special materials

In addition to leather and fabric, our simple hardware
setup can be used to acquire PBR maps of special
materials, such as mesh, metallic, and fluorescent
materials, as shown in Figs. 18 and 21.

An alpha map α was required to simulate the hollow
mesh. As illustrated in Fig. 4, the hardware contained
a bottom LED light. Before capturing the transparent
material, the light stage emits blue and green light,
and the camera captures the background images Bb
and Gb. Images of materials Bc (with blue light) and
Gc (with green light) were captured. According to
Alvys’ method [29], we have{

Bc = αF + (1− α)Bb

Gc = αF + (1− α)Gb
(12)

where F denotes the color of the object. As
Bb, Gb, Bc, and Gc are known, by solving Eq. (12),
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α can be obtained. Figures 18 and 21 show the alpha
maps reconstructed using our method.

For materials with a metallic luster or pattern,
we trained the networks using the same proposed
method with a metallic workflow (rendered by the
base color, metallic, normal, and roughness maps).
Figures 18 and 19 show two examples of reconstructed
metallic maps. For fluorescent materials, the emissive
map can be obtained in a similar manner. Two
examples of reconstructed fluorescent materials are
shown in Figs. 20 and 21. It should be noted that

the displacement map was converted from a normal
map during reconstruction.

4.6 Comparisons with handheld devices

Compared with handheld devices such as mobile
phones, our setup can achieve better results, albeit
with a slightly more complex setup. Using our setup,
we can generate alpha maps of the materials by
controlling the bottom LED, which is not possible
using mobile phones. Figure 22 shows the differences
in the maps generated using photos taken with our

Fig. 18 Reconstruction of a mesh material with metallic patterns. The first row shows the maps obtained using our device and method.

Fig. 19 Reconstruction of a fabric material with metallic patterns. To better express the metallic luster of materials, the workflow for
reconstructing such materials employs the metallic workflow.
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Fig. 20 Reconstruction of a fluorescent material.

Fig. 21 Reconstruction of a mesh-fluorescent fabric.

setup versus those captured by a handheld device.
The left image features a mesh fabric, and the
second row demonstrates the maps and renderings
captured by the mobile phone. Without our device,
it is impossible to calculate alpha maps, and the
background color cannot be seen through the hole in
the mesh.

Furthermore, when using deep-learning methods, it
is challenging to ensure consistency in the generated
maps across different illumination conditions for the
same material on handheld devices. This difficulty

arises because it is difficult to guarantee that
the illumination conditions in the photos captured
by handheld devices are consistent with those in
the training dataset. As demonstrated in Fig. 1,
inconsistent maps result from different illuminations
when capturing photos, using the deep-learning
method described by Guo et al. [8], which relies on
handheld devices. In addition, as an example of a
fabric with a cartoon-like pattern shown in Fig. 23,
our proposed method exhibits color bias without the
environmental control provided by our setup.
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Fig. 22 An example of a mesh fabric material. The right image is the reference mesh fabric captured using DLR under the D65 light box.
The first row shows the maps and re-rendered images generated using photos captured by a mobile phone. The second and third rows show the
maps and re-rendered results generated using our setup, with 2 and 24 captured images respectively.

Fig. 23 An example of a fabric with a cartoon pattern. The right image is the reference fabric captured using a DLR under the D65 light box.
The first row shows the maps and re-rendered images generated using photos captured by a mobile phone. The second and third rows show the
maps and re-rendered results generated using our setup, with 2 and 24 captured images respectively.

5 Conclusions
In this study, we propose a novel setup and network
for obtaining high-quality SVBRDF maps. We
highlighted the importance of stable lighting patterns
for deep-learning-based methods and delved into
studying the relationship between the acquisition
quality of different numbers of images as input. We
also described the necessity of separating generation
networks for each map. Then, we show that our
naive global skip connection can pass global and

local information between the decoder and encoder.
We also experimentally investigated the effect of the
number of input images. Our results show that our
method outperforms existing methods on both our
dataset and real materials. Our proposed method
can also reconstruct PBR maps for special materials
such as mesh, metallic, and fluorescent materials. We
believe that high-quality PBR maps of more types
of materials can be efficiently acquired using the
proposed hardware setup.
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