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Abstract Existing GAN-based generative methods
are typically used for semantic image synthesis. We
pose the question of whether GAN-based architectures
can generate plausible depth maps and find that
existing methods have difficulty in generating depth
maps which reasonably represent 3D scene structure
due to the lack of global geometric correlations.
Thus, we propose DepthGAN, a novel method of
generating a depth map using a semantic layout as
input to aid construction, and manipulation of well-
structured 3D scene point clouds. Specifically, we
first build a feature generation model with a cascade
of semantically-aware transformer blocks to obtain
depth features with global structural information.
For our semantically aware transformer block, we
propose a mixed attention module and a semantically
aware layer normalization module to better exploit
semantic consistency for depth features generation.
Moreover, we present a novel semantically weighted
depth synthesis module, which generates adaptive
depth intervals for the current scene. We generate the
final depth map by using a weighted combination of
semantically aware depth weights for different depth
ranges. In this manner, we obtain a more accurate
depth map. Extensive experiments on indoor and
outdoor datasets demonstrate that DepthGAN achieves
superior results both quantitatively and visually for the
depth generation task.
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1 Introduction
With the rapid development of the technologies
of computer vision and computer graphics, 3D
scene generation has become important in a variety
of downstream applications, such as virtual scene
construction, AR, and VR, etc.

However, existing 3D generation methods mainly
consider generating a single object, represented by
point clouds [1, 2], voxels [3], meshes [4, 5], or implicit
representations [6, 7]. Alternatively, they may
optimize scene layout of retrieved 3D models for scene
construction [8, 9]. The limited fitting capability of
3D generation methods and the complexity of object
relations in 3D scenes make it extremely challenging
to directly generate 3D representations of scenes
containing diverse objects. Moreover, optimizing
existing 3D models is computationally easier but lacks
flexibility. Hence, generating complex 3D scenes still
remains an open problem.

Compared to manually building 3D scenes with
multiple objects, visual designers typically prefer
controllable and simple input, such as 2D semantic
layouts [10, 11] or sketches [12–14]. However, due
to the lack of input information, it is impractical to
straightly construct 3D scenes from such simplified
2D inputs as above. Inspired by work on depth
estimation [15, 16], we believe the depth map to
be a viable 2.5D medium: it measures the distance
between the objects and the camera in stereoscopic
space, and it can be regarded as providing a transition
from 2D images to 3D scenes.

Therefore, we focus on a new task of generating
an accurate and reasonable depth map from a simple
semantic layout as input, to assist in constructing
a 3D scene for visual designers. To the best of our
knowledge, this is the first work to explore depth
generation only using a semantic layout as input for
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constructing a 3D scene. Given camera parameters,
a 3D scene can be precisely constructed once a
reasonable depth map has been generated, as shown
in Fig. 1. Since the depth map provides accurate
geometric relationships, the 3D scene can be fully
represented within this lower-dimensional space.

For this purpose, we first considered generating
depths using previous Conv-based conditional image
generation models, but this gave unsatisfactory
results, which included incorrect depth intervals
and improper depth structures. The receptive
field of the convolution architecture is limited to a
local scope [17] and feature aggregation is confined
to pixels inside the scope. Hence, most existing
Conv-based methods for depth generation cannot
accurately predict global geometric correlations

between different objects, making the generated
depths visually incoherent. Furthermore, existing
GAN-based conditional generative models adopt a
simple structure for convolution layers and nonlinear
activation to obtain the output image from generated
high-resolution features. Since depth maps have
more structural regularity than color images, such a
simple layer cannot fully model the depth distribution,
leading to stretched or squeezed depth intervals and
less-than-smooth depth maps.

Accordingly, to address the limitations above, we
propose DepthGAN, which redefines depth generation
as a feature generation and depth synthesis task.
In the feature generation part, to better generate
global features in the semantically-guided generation,
we propose a semantically aware transformer block
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Fig. 1 We manipulate an input semantic layout (top row), to generate different depth maps (second row; blue is closer to the viewer and red
is further). Given a fixed camera in the center of the room and the corresponding appearances of the scene and edited objects, we further
construct point clouds from the generated depth maps, coloring them either with class labels (third row) or visual appearances (bottom row).
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with mixed attention and semantically aware layer
normalization, efficiently improving the consistency
between the generated feature and the semantic input.
Furthermore, we replace the output layer in previous
generative methods by a semantically weighted depth
synthesis module to generate an accurate depth
map. We first predict the depth intervals within
a scene and then synthesize the final depth map via
weighted combination to integrate local and global
features with semantic information. Equipped with
the above modules, the proposed DepthGAN achieves
state-of-the-art results on both indoor and outdoor
scene datasets, demonstrating the effectiveness of
our approach to depth generation. Our DepthGAN
furthermore permits scene manipulation via simple
modification of the input, as shown in Fig. 1. We
generate the appearance using novel semantically
aware transformer blocks together with depth
generation. Thus, we can generate scenes from simply
handcrafted semantic input layout, as shown in our
video in the Electronic Supplementary Material (ESM).

Overall, our contributions are in summary:
• a novel generation–synthesis approach for a depth

generation task which uses only semantic layout
as input; our approach provides an effective and
controllable solution for 3D scene generation,

• a semantically aware transformer block with
mixed attention and semantically aware layer
normalization to take advantage of rich global
information about depth and semantic layout for
generating depth features, and

• a semantically weighted depth synthesis scheme
to generate the final depth map using as input
generated depth features; it provides superior
quantitative results and visual effects.

2 Related works

2.1 GAN-based semantic image synthesis
Generative adversarial networks [18] have achieved
impressive results in unconditional [19–21] and
conditional [22–24] image generation. Semantic image
synthesis is a task that takes a semantic layout as
input, which provides pixel-level class labels, and
outputs a natural image with semantic guidance.

Pix2Pix [22] was first to introduce an encoder–
decoder architecture and a patch-based discriminator
to handle this problem. SPADE proposed a method

to modulate the activations in the normalization
layers using the semantic input to guide generation,
which frees the encoder block, enabling coarse-to-
fine generation. Later works including Refs. [25–27]
learned normalization layers using style, semantic, or
instance input. CC-FPSE [28] predicted conditional
separated convolution kernels from the input semantic
layout, and introduced a feature pyramid semantic-
embedding discriminator for semantic alignment.
OASIS [29] re-designed the discriminator with
a semantic segmentation network for semantic
alignment. LGGAN [30, 31] proposed a local
class-specific and a global image-level generator to
learn local–global feature generation. SCGAN [32]
learned semantic vectors to parameterize spatially
conditional convolution and normalization. As depth
generation requires greater global feature awareness,
we introduce a cascade of transformer-based blocks
for coarse-to-fine depth feature generation.

2.2 Monocular depth estimation
A depth map measures the spatial structure of a
scene, a low-dimensional but efficient representation of
the 3D scene. Monocular depth estimation [33–36],
mainly focuses on regressing dense depth maps
from images. Poor edge quality and lack of global
information are common problems of CNN-based depth
estimation models. Ref. [37] explicitly introduced a
pre-trained semantic segmentation network to guide
depth boundaries, using the high quality of edges in the
semantic map. In addition to CNN-based structures,
generative models [38, 39] and vision transformers
[40] have also been applied to depth estimation tasks.
Recently, Refs. [41, 42] performed a global statistical
analysis on depth bins to further predict the depth
map in a classification–regression manner.

Using the output of depth estimation, a dense depth
map, we may reconstruct a 3D scene. However, a
color image is typically used as input to create this
dense depth map. It difficult to meet the requirements
of visual designers for simple, easily modified input
using such an approach. Instead, in our new approach,
we only use a semantic layout as input.

2.3 Vision transformers
The seminal work [43] proposed a pure transformer
[44]-based architecture for discriminative vision tasks;
it enables global feature aggregation and extraction
from images. CvT [45] introduced convolutions into
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vision transformers to enhance local attention. Swin
transformer combines local and global attention by
calculating attention in a local shifting window,
leading to a huge improvement in vision transformers.
Recently, researchers begin to explore using vision
transformers in GANs as a means to generating better
global features in complex images. Refs. [46, 47]
have rapidly improved image generation tasks due to
the superior global feature aggregation capability of
multi-head self-attention blocks (MSAs). However,
the generative quality of these methods is not
proportional to the time taken due to the quadratic
complexity by default of vision transformers, which
makes high-resolution generation difficult. Recent
works [48–50] have proposed calculating MSAs in
local windows, leading to linear computational
complexity. Ref. [51] demonstrated the feasibility
of using block-wise attention for unconditional
high-resolution image generation. In this work, we
observe that exploiting vision transformers with more
global information suits the new conditional depth
generation task.

3 Method

Figure 2 presents our novel depth generation
architecture, DepthGAN, which consists of a depth
feature generation stage (see Section 3.1) and a depth
map synthesis stage (see Section 3.2). Starting from a
one-hot semantic layout S ∈ N

H×W ×C , we first adopt
a cascade of semantically aware transformer blocks
to generate the depth feature F ∈ R

H×W ×E . Then

we utilize F to generate the adaptive depth interval
and apply a semantically-weighted combination to
obtain the final depth map D ∈ R

H×W , which is
semantically aligned with the semantic layout S.

3.1 Depth feature generation
3.1.1 Approach
Unlike appearance generation, depth map generation
mainly focuses on global features, particularly the
geometric and spatial structure within the scene. In
order to capture global information, we construct an
architecture comprising a series of Swin transformer
[49] blocks as our baseline to better generate global
attention features. It takes the downsampled low-
resolution semantic layout as its input and generates
the depth feature using upsampling in a coarse-to-fine
manner.

However, the baseline method cannot effectively
align the generated features with the input semantic
layout due to the lack of semantic constraints in the
generation process. To address this issue, we propose
a semantically aware transformer (SAT) block, which
introduces a semantic positional encoding (SPE), a
mixed attention module, and a semantically aware
layer normalization (SALN) module to guide feature
generation, as shown in Fig. 3(a).
3.1.2 Semantic positional encoding
In the SAT block, we first aim to better inform the
layers about the semantic position information at
each input scale. Thus, we utilize a learned semantic
embedding from the semantic layout as a positional
encoding, as shown in Fig. 3(a).

Fig. 2 DepthGAN. Our framework has two stages: (i) depth feature generation and (ii) semantically weighted depth synthesis. A cascade
of semantically aware transformer (SAT) blocks generates depth features with semantic alignment. An encoder–decoder then generates the
semantic weight map, and a DIWG module generates the depth interval and the depth weight map. Finally, the depth map is synthesized
through a semantically weighted combination.
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For the input feature maps F ∗ of shape
R

HF×WF×EF at each input scale, where EF, HF, WF

are the spatial resolution, we embed the one-hot
semantic input S of shape NH×W ×C at the same scale
as F ∗ by learned convolution kernels with different
stride parameters, denoted S∗:

S∗ = Conv(S) (1)
Thus the SPE adapts to different feature scales.
We then add the embedded semantic input S∗

to the input feature maps F ∗, enabling the SAT
block to perceive global semantic information at
each pixel. Unlike the learned positional encoding
in standard transformer blocks which encodes the
relative positions of pixels, our SPE can incorporate
semantic information and thus improve feature
generation quality and semantic alignment.
3.1.3 Mixed attention
Although the baseline utilizes self-attention by
calculating queries, keys, and values from the features,
this method ignores the interaction between features
and semantics. To address this problem, we propose
a simple yet effective strategy, mixed attention, as
shown in Fig. 3(b). Instead of calculating the
attention between tokens of features, we adopt
additional semantic queries:

MixedAttn = Softmax
(

(QF + QS)KT
F√

dk

+ E

)
VF

(2)
where QF, KF, VF represent the query, key, and value
matrices projected by the features, and QS is the

Fig. 3 (a) Semantically aware transformer (SAT) block. (b) Mixed
attention block. (c) Semantically aware layer normalization (SALN).

query matrix from the semantic input. The relative
positional encoding E is added as a bias term.

Unlike self-attention in Swin transformer, our
mixed attention enables feature aggregation between
features and semantics at the same time, leading to
more semantically aware outputs.
3.1.4 Semantic-aware layer normalization
To better match semantic features and depth features
in the SAT block, we propose semantically aware
layer normalization to learn a parameterized affine
transformation and fuse the semantic information
with the features, as shown in Fig. 3(c). Given the
input feature tokens FT, the output tokens F̂T are
calculated as

F̂T =
γ(ST)

σ
� (FT − μ) + β(ST) (3)

where γ, β are vectors learned by a simple MLP–
ReLU–MLP architecture with semantic tokens ST.
Here � denotes element-wise multiplication between
two vectors; μ and σ denote the mean and standard
deviation of FT, respectively.

With learned scaling and bias vectors γ, β, the
affine transformation adapts to the semantic input
and varies with respect to different token positions,
facilitating the matching of different features while
training remains stable.

3.2 Semantic weighted depth synthesis
A depth map typically has structural regularity in
its feature distribution. However, the simple output
approach of previous GAN-based image generation
methods lacks the capability to model an accurate
depth map. Inspired by Adabins from the depth
estimation task, we propose a semantically weighted
depth synthesis (SWDS) stage, which generates a
depth interval from the depth features of the previous
stage and performs semantically weighted depth
synthesis to obtain the final depth map, as shown in
Fig. 2.

In this stage, we first use a depth interval and weight
generation (DIWG) module to enable depth interval
and weight generation for the scene. Meanwhile, we
use an encoder–decoder architecture to compute a
semantic weight map W from S, to better utilize the
semantic input. Finally, we utilize a semantically
weighted combination module to fuse them, to
synthesize the final depth map.

As Fig. 4 shows, the DIWG module first embeds the
input feature F and the semantic input S into patches,
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Fig. 4 Depth interval and weight generation module. The module
takes the feature map and semantic map as input and outputs the
depth interval and depth weight map.

denoted FT and ST. Then we adopt two SAT blocks
to enable semantically aware feature generation. Note
that we do not add a global positional encoding here,
since the window size in the SAT block is set to be the
same as in the embedded feature map, so the relative
positional encoding here can be regarded as a global
one. The output embedding from each SAT blocks
is projected by a linear perceptron with Softmax to
yield an N -bin length vector b. As in Adabins, the
bin centers c(b) are calculated via a post-process:

c(bi) = dmin + (dmax − dmin)

⎛
⎝bi

2
+

i−1∑
j=1

bj

⎞
⎠ (4)

where c(bi) is the center depth of the ith bin. dmax

and dmin are the maximum and the minimum depths
in the dataset, respectively.

We obtain the depth weight map via a pixel-wise
dot product between the generated feature embedding
of another SAT block and the input feature F . Note
that the depth weight map contains rich local–global
feature similarities while serving for a key–query
process.

On the other hand, we compute the semantic weight
map W with the encoder–decoder architecture. We
then apply element-wise multiplication between W and
the depth weight map to obtain a semantically aware
depth weighted map, which aggregates additional
semantic information for weighted generation. Next,
the semantically aware depth weighted map is
converted to a weighted probability depth distribution
map P W using Softmax. Finally, the depth value

for each pixel is calculated by weighted combination
with the corresponding probability distribution: d̂ =∑

i c(bi)pW
i .

In the SWDS stage, we fuse the semantic
information with the depth map and disentangle bin
generation from depth weight map generation using
two separate SAT blocks, enabling more accurate and
reasonable depth maps.

3.3 Loss functions
The generator and the discriminator are trained
alternatively, adopting hinge loss in the discriminator
for distinguishing real from fake. The generator is
optimized by multiple losses, including hinge-based
adversarial loss, discriminator feature matching loss
LFM(x̂, x), and perceptual loss LP(x̂, x), following
Ref. [52]:⎧⎪⎪⎨

⎪⎪⎩
LD = −Ex,S[H(D(x, S))] − Ex̂,S[H(D(x̂, S))]
LG =−Ex̂,S[D(x̂, S)] + λPEx̂,SLP(x̂, x)

+λFMEx̂,SLFM(x̂, S)
(5)

where x is a real depth map, x̂ is a generated depth
map, and S is the semantic layout. λP, λFM denote
weights for perceptual loss and feature matching loss,
respectively. H is the hinge function; λ = 1 if I is a
real image and −1 if I is a generated image:

H(I) = min(0, −1 + λI) (6)

4 Experiments
4.1 Setting
4.1.1 Datasets
We benchmark our approach using Structured3D [53],
Stanford2D3D [54], and Visual KITTI (VKITTI) [55]
datasets, which are detailed below:
• Structured3D contains synthetic scenes rendered

as panoramic images. The geometric structure
is distorted in the panoramic images on the
sphere grid, and accurate depth generation is
difficult using conventional convolution kernels
[56]. Therefore, we re-project the panoramic
images in Structured3D to perspective views by
reverse gnomonic projection [57], as shown in
Fig. 5. Following the recommended split, we
use scenes 0–2999 for training, scenes 3000–3249
for validation, and scenes 3250–3499 for testing,
giving 109,494 training images and 10,122 testing
images of virtual indoor scenes.
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(a)  Panorama (b)  CubeMap

Fig. 5 Re-projection of Structured3D images. (a) Panoramic
image on a sphere grid. (b) Cubemap produced by reverse gnomonic
projection. Colored boxes in (a, b) highlight the same part of the
scene as spherical and perspective views.

• Stanford2D3D contains real-world scenes
scanned with RGB-D cameras, shown as both
perspective and panorama images. Following the
recommended split, we chose perspective images
in areas 1–4 and 6 for training and area 5 for
testing. Stanford2D3D contains 52,093 training
images and 17,593 testing images of real-world
indoor scenes.

• VKITTI is a photo-realistic synthetic video
dataset designed to learn and evaluate computer
vision models for several video understanding
tasks: object detection and multi-object
tracking, scene-level and instance-level semantic
segmentation, optical flow, and depth estimation.
We chose scenes 0, 2, 18, and 20 for training
and scene 6 for testing, giving 18,560 training
images and 2700 testing images of outdoor scenes.
Semantic labels were obtained from the provided
instance labels by the color mapping in each scene
provided in the dataset.

The minimum depth value was set to 0, while the
maximum depth value was 655.35 m for VKITTI,
and 10 m for the other indoor datasets.
4.1.2 Evaluation metrics
We adopt Fréchet Inception Distance (FID) [58]
to measure the Wasserstein-2 distance between
the distribution of generated depth maps and
corresponding ground truth. Seven standard metrics
for depth estimation tasks [59] were evaluated
for depth accuracy, including mean absolute error
(MAE), root mean square error (RMSE), absolute
relative error (AbsRel), square relative error (SqRel)
and threshold percentage (δn):

MAE =
1
N

N∑
i=1

|di − d̂i|

RMSE =

√√√√ 1
N

N∑
i=1

|di − d̂i|2

AbsRel =
1
N

N∑
i=1

|di − d̂i|/d̂i

SqRel =
1
N

N∑
i=1

|d2
i − d̂2

i |/d̂i

δn = percentage of pixels satisfying
max(di/d̂i, d̂i/di) < 1.25n, n ∈ {1, 2, 3}

where d and d̂ are ground truth depth and generated
depth respectively. Additionally, we calculate the
PSNR of the generated depth maps:

PSNR = 20log10
MAXd

RMSE
(7)

where MAXd is the maximum depth value of the
dataset used for depth generation.
4.1.3 Training and testing details
Different from the task of image generation, the depth
values are stored as 32-bit float values, which are then
normalized to [0, 255.0] by dividing by the maximum
scene depth value. During testing, FID is calculated
directly from the normalized depth values ranging
from 0 to 255.0, while other metrics are calculated
by re-scaling the generated float depth values back
to the original format of the dataset without loss of
accuracy.

For the discriminator, we apply the Spectral Norm
to all layers. We adopt the Adam optimizer [60] with
learning rate 0.0001 for the generator and 0.0004
for the discriminator following TTUR [58], and set
β1 = 0 and β2 = 0.999. The weight for the perceptual
loss is 10. Our models were trained on 8 TITAN RTX
24 GB GPUs, with a batch size of 32. The training
and generated resolution is 256×256 for Structured3D
and Stanford2D3D datasets, and 256 × 512 for the
VKITTI dataset. All results presented are obtained
after training for 50 epochs. During inferencing, it
takes 0.067 s to generate a sample.
4.1.4 Network architecture
The detailed model architecture for 256 × 256
resolution depth generation is as shown in Table 1.

4.2 Comparisons
In this section, we provide quantitative and
visual comparisons to demonstrate the effectiveness
of DepthGAN. We compare it to previous semantic
image synthesis methods including Pix2pixHD,
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Table 1 Architecture of DepthGAN. Input size and Dim are the
shapes of the input feature map and semantic embedding in the SAT
block. SAT-8 means an SAT block with input resolution 8 × 8. In
the SAT block, h is the number of heads in MSAs, d is the depth
of the SAT blocks, and w is the window size for mixed attention.
In the SWDS module, p is the patch size of the patch embedding
for both the feature map and the semantic layout, and MLP-256 is
the 256-dimensional MLP for the depth interval. We use bilinear
upsampling for the upsampling layers

Input size Dim Module Architecture Up
8 × 8 512 SAT-8 {h-16, d-2, w-8} �

16 × 16 512 SAT-16 {h-16, d-2, w-8} �
32 × 32 512 SAT-32 {h-16, d-2, w-8} �
64 × 64 256 SAT-64 {h-16, d-2, w-8} �

128 × 128 128 SAT-128 {h-8, d-2, w-8} �
256 × 256 64 SAT-256 {h-4, d-2, w-8}

256 × 256 64 SWDS
p-16

SAT-16, MLP-256
SAT-16

SPADE, CC-FPSE, LG-GAN, SEAN, OASIS, and
SAFM using the same training strategy. For OASIS,
we use the authors’ default setting without 3D noise
to avoid randomness in the generated depth map, to
improve accuracy.

Note that in the depth generation, we use a
one-hot semantic layout as input for accurate
evaluation, unlike the input noise map commonly

used in semantic image synthesis tasks for multi-
style generation. Thus we can learn a unique depth
distribution from an input semantic layout without
randomness. Furthermore, using a semantic layout
instead of noise as input permits fully controllable
depth generation. As shown in Fig. 1 and the video
in the ESM, the generated depth map only changes
the edited objects, while remaining parts remain
unchanged.
4.2.1 Quantitative comparison
Table 2 compares metrics for the depth maps
generated by our approach and its competitors on
the proposed new tasks. Our approach provides
a decisive improvement and performs consistently
better than previous approaches, which demonstrates
the effectiveness of the proposed approach. Using
a generate–synthesize strategy, we generate depth
maps with more accurate depth values and higher
PSNR. In particular, our method improves MAE
by around 20% and PSNR by around 5% over the
second-best competitor, averaged over the three
datasets: the proposed strategy is more capable
of generating accurate depth than the convolution-
nonlinear approach of previous methods. Moreover,

Table 2 Comparison to previous approaches on various datasets. Best results are in bold

Dataset Method MAE ↓ AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ PSNR ↑ FID ↓

Structured3D

Pix2pixHD 0.1587 0.1325 0.1162 0.2062 84.52 93.73 96.64 21.63 128.20
SPADE 0.1366 0.1447 0.0781 0.1536 86.61 94.51 96.93 22.42 119.59
CC-FPSE 0.0946 0.0903 0.0353 0.1297 91.46 97.68 99.04 27.19 87.62
LGGAN 0.1362 0.1229 0.0893 0.1489 88.03 95.63 97.56 23.41 114.02
SEAN 0.1037 0.0863 0.0481 0.1268 89.47 97.05 98.75 26.69 75.34
OASIS 0.1199 0.1173 0.0532 0.1631 87.47 95.83 98.12 24.40 166.51
SAFM 0.0981 0.0826 0.0419 0.1187 90.64 97.45 98.61 27.79 61.58
Ours 0.0613 0.0590 0.0228 0.0888 95.37 98.67 99.40 30.53 37.38

Stanford2D3D

Pix2pixHD 0.5424 0.2985 0.5507 0.7801 69.36 84.97 90.97 17.25 335.98
SPADE 0.5820 0.2981 0.3662 0.7910 60.54 83.07 92.10 19.37 201.53
CC-FPSE 0.3662 0.1822 0.1466 0.5385 76.66 92.70 97.20 23.88 185.87
LGGAN 0.3381 0.1866 0.1435 0.5637 77.65 92.92 97.25 22.23 254.65
SEAN 0.4208 0.2068 0.1883 0.6057 72.28 90.99 96.56 21.67 157.37
OASIS 0.4037 0.2441 0.2635 0.6252 71.23 89.79 97.43 22.79 172.55
SAFM 0.3788 0.1927 0.1604 0.5559 74.17 91.86 96.98 22.19 238.06
Ours 0.2831 0.1380 0.1168 0.4898 83.90 95.21 98.19 23.95 130.45

VKITTI

Pix2pixHD 24.689 0.3989 31.784 53.373 52.47 81.16 92.92 21.74 668.24
SPADE 20.014 0.3384 13.675 38.607 55.64 80.95 91.49 24.60 510.08
CC-FPSE 18.760 0.2869 11.559 35.376 64.63 84.90 92.67 25.40 764.08
LGGAN 15.089 0.2605 12.331 34.091 67.45 88.34 94.26 25.70 470.11
SEAN 18.719 0.2996 16.393 38.919 66.52 84.48 91.21 24.55 569.56
OASIS 13.214 0.2657 8.439 30.263 64.40 86.71 93.17 26.68 493.30
SAFM 15.220 0.2548 10.754 31.702 64.17 87.15 93.42 26.40 454.41
Ours 10.973 0.2315 7.181 26.388 69.47 89.16 94.55 27.02 291.78
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our generated depth maps improve on the competitors
by 28% on the FID score, showing that the
distributions of generated depth maps are closer to
the ground truth distributions.
4.2.2 Visual comparison
Figures 6–8 compellingly show the ability of our
approach to generate more accurate depth maps with
reasonable structure correlation, and a better match

to the ground truth depth distribution. With the
global depth features generated by the SAT block,
our generated depth maps can better represent the
structure of complex scenes, such as the chairs in
the first scene of Fig. 7. Even for small and far
semantic regions, our approach can still generate
correct depth values: see the plants in the first scene
in Fig. 6 and the door in the second scene in Fig. 7.

Input GT Pix2pixHD SPADE

CC-FPSE OASIS SAFM Ours

Input GT Pix2pixHD SPADE

CC-FPSE OASIS SAFM Ours

Fig. 6 Depth map comparisons, for two scenes from the Structured3D dataset, showing input, ground truth, and output from various methods.
Blue is closer to and red further from the viewer.
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Input GT Pix2pixHD SPADE

CC-FPSE OASIS SAFM Ours

Ours

Input GT Pix2pixHD SPADE

CC-FPSE OASIS SAFM Ours

Fig. 7 Depth map comparisons for two scenes from the Stanford2D3D dataset, showing input, ground truth, and output from various methods.
Blue is closer to and red further from the viewer.

Moreover, since we generate the depth interval for
the scene and utilize a semantically aware weighted
combination, our generated depth maps show more
accurate geometric correlation and can better capture
depth variation within the semantic region: see the
second scene in Fig. 6 and the depths of trees in
Fig. 8.

4.3 Ablation and alternatives
We conducted experiments on the Structured3D
dataset to verify the effectiveness of each component
of our method.
4.3.1 Overview
As shown in Table 3, starting from a cascade of
Swin blocks as our baseline method, we gradually
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Fig. 8 Depth map comparison for a scene from VKITTI, showing input, ground truth, and output from various methods. Dark blue is closer
to and yellow further from the viewer.

Table 3 Ablation study. Starting from the baseline architecture,
we demonstrate the effectiveness of each proposed component of our
network

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
Baseline 0.1709 0.2086 17.65 307.16

+ SPE 0.1382 0.1749 20.81 226.94

+ SALN 0.0843 0.1015 26.90 77.24

+ Mixed Attn 0.0755 0.0826 29.58 50.11

+ SWDS (ours) 0.0613 0.0590 30.53 37.38

add each component to the framework. Compared
to the baseline, adding semantic position embedding
(SPE) at each scale brings improvements because it
encodes extra semantic positions. The semantically
aware layer normalization (SALN) greatly improves

performance and training stability by matching
semantic and depth features. The mixed attention
module enables feature aggregation among different
features at the same time. Finally, replacing the
output layer by semantically weighted depth synthesis
(SWDS) makes the generated depth values more
accurate.
4.3.2 Discriminator
In Table 4, we explore choice of discriminator for
depth generation. We obtain quantitatively better
results using a multiscale design. FPSE and OASIS
perform worse because the pixel-wised semantic
alignment in the discriminator leads to clear semantic
boundaries while introducing a drastic change in the
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Table 4 Choice of discriminator

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
Multiscale 0.0613 0.0590 30.13 37.38

FPSE 0.0736 0.0739 29.02 52.39

OASIS 0.9640 0.0878 26.59 66.41

depths of adjacent objects, as shown in the first scene
of Fig. 6.
4.3.3 SWDS
In Table 5, we replace the output layer in various
semantic image synthesis approaches by our proposed
SWDS. The improvements indicate the effectiveness
of the SWDS module. Furthermore, we observe that,
the worse the performance of the original approach,
the greater improvement SWDS provides.
4.3.4 Adabins
We next compare our proposed SWDS to the original
Adabins design for depth synthesis.

We note that there are two main differences. On
the one hand, we disentangle bin generation from
depth weight map generation. In detail, we utilize
an SAT block and the following MLP to generate
the depth interval and use another SAT block to
generate the depth map. Adabins simply uses a
transformer to predict both depth bins and weights,
which leads to entanglement of different features.
We also use a semantic weight map in the encoder–
decoder architecture for semantically weighted depth
synthesis. The semantic weight map is especially
suitable for synthesizing depth maps using semantic
layout as input, which is not so for Adabins. As
a result, our generated depth maps provide more
accurate depth intervals, and thus better depth
evaluation metrics, as shown in Table 6. Moreover,
the proposed semantically weighted synthesis also
enhances the quality of semantic alignment in the
generated depth maps, giving a better FID score.

Table 5 Replacing the output layer of various methods by SWDS,
denoted †

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
SPADE 0.1366 0.1447 22.42 119.59

SPADE† 0.1225 0.1208 24.96 108.35

OASIS 0.1199 0.1173 24.40 166.51

OASIS† 0.1084 0.1145 25.82 104.67

SEAN 0.1037 0.0863 26.69 75.34

SEAN† 0.0921 0.0789 28.46 62.57

Table 6 Comparison of SWDS and Adabins

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
Adabins 0.0756 0.0671 29.69 48.24

SWDS 0.0613 0.0590 30.53 37.38

4.3.5 Loss functions
Various loss functions commonly adopted in depth
estimation tasks for depth generation were assessed as
alternatives: see Table 7. Replacing perceptual loss
by structural similarity loss [61] gives worse results
in our method: the local window size in SSIM loss
leads to block artifacts. Adding scale-invariant loss
[62] introduces a threadlike lack of smoothness during
adversarial training, again reducing quality.

4.4 Multiple outputs
We can readily extend our method to generate
both depth and appearance from semantic input.
Specifically, we first introduce appearance supervision
to our approach and train a model with two branches
for depth and appearance generation respectively.
Then, we simply adopt the same design for the two
branches with cascaded SAT blocks and upsampling.
As Fig. 9 shows, we share the SAT blocks used in

Table 7 Choice of loss function. Per, SSIM, and SI are perceptual
loss, structural similarity loss, and scale-invariant loss respectively

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
SSIM 0.0807 0.7781 28.69 45.89
Per 0.0613 0.0590 30.53 37.78
Per+SI 0.0781 0.0689 29.36 56.95

Fig. 9 Depth–appearance generation architecture. We take as
input a semantic layout and output a depth map and its appearance
simultaneously.
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low-resolution generation since the salient features
such as edges are mainly generated at low resolutions.
Finally, we use the SWDS module for depth synthesis
and a Conv-Tanh layer for appearance generation.
Figure 10 shows generated 3D point cloud scenes with
various appearances using only a simple semantic
layout as input, which is easy for visual designers
to use. Moreover, shared generation can supervise
the depth features with appearance features, also
helping improve the depth generation quality, as
shown in Table 8. More results using handcrafted
semantic layouts as input are shown in the video in
the ESM.

In addition, to further verify the influence of the
appearance branch on quality of the generated depth,
we tried different discriminators in the appearance
branch, with results shown in Table 9. The
multiscale discriminator in the appearance branch
provides better depth quality, while FPSE and
OASIS discriminators perform similarly to our single-
branch model (see Table 8) even with the help of
appearance. The reason is that over-emphasis on
semantic boundaries in the shared blocks leads to a
depth disparity at object edges (see Table 4). Using
the multiscale discriminator in the appearance branch
allows our depth generation approach to achieve more
continuous depth quality. The results also show
the difference between depth generation and image
generation.

4.5 3D scene generation
Apart from generating depth maps, our method
can generate the 3D scene point cloud, further
demonstrating the effectiveness of our depth
generation approach. Given the depth map of
a perspective view and a fixed camera intrinsic

Table 8 Performance for depth generation alone (D) and for depth–
appearance generation (D–A)

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
D 0.0613 0.0590 30.53 37.38

D–A 0.0598 0.0582 31.01 32.35

Table 9 Comparison of our appearance branch to other appearance
discriminators

Method MAE ↓ AbsRel ↓ PSNR ↑ FID ↓
FPSE 0.0614 0.0591 31.15 36.26

OASIS 0.0618 0.0596 31.25 36.47

Multiscale 0.0598 0.0582 31.01 32.35

parameter, we can simply generate a point cloud
using a pinhole camera model as shown in Fig. 1. For
better visualization, we project the generated depth
maps within a scene in the Structured3D dataset
back to the panorama image and then construct the
whole 360◦ scene with the given camera parameters.
The accurate geometric details and the flatness of the
walls in Fig. 11 show the compelling quality of our
generated depth maps.

4.6 Depth estimation versus depth generation
Here we explain the key differences between depth
generation and depth estimation. Depth estimation
models extract rich features from the input image and
utilize these features to guide depth prediction. But
with a semantic layout as input, they cannot extract
sufficient features. Thus adversarial training is needed
to guide the model to generate the features. We have
tried to retrain depth estimation models, such as
Adabins, Midas [63], and DPT using a semantic layout
as input, but failed to obtain satisfactory output.

Instead, depth generation is quite different from
depth estimation. We cannot use a depth estimation
model to predict a dense depth map from a semantic
layout. With the help of adversarial training, the
depth generation model can generate a depth map
from sparse features in the semantic layout in a coarse-
to-fine manner.

4.7 Limitations
For one thing, using 256 × 256 resolution depth
generation, the constructed sparse point clouds
contain 65,536 points. Generating point clouds with
higher resolution is time-consuming for training. For
another thing, the depth map measures the distance
between the surface of the objects and the camera.
Regions that are not visible to the camera cannot
be constructed by our method, resulting in partial
point clouds. To further address the occlusion issue
for 3D modeling, it would be interesting future work
to further include a point cloud completion module
taking as input the partial point clouds generated by
our method.

Another issue concerns the user interface: the
shapes of drawn objects may not match their standard
appearances in the training set, especially for indoor
objects. This will also lead to artifacts. In future
we hope to increase the robustness of the model to
irregular objects.
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Input Depth Appearance Point louds

Fig. 10 Using our two-branch model to generate appearance and depth at the same time. The point clouds are constructed with the generated
appearance. In the depth map, blue is close and red is far.

Fig. 11 Point clouds constructed from our generated depth maps. Appearances are taken from the dataset, with ceilings cropped for
visualization.
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5 Conclusions
We have proposed a novel method, DepthGAN,
to solve a proposed depth generation task whose
input is a semantic layout. It provides an effective
and controllable solution for complex 3D scene
generation for the first time. First, we build a
cascade of semantically aware transformer blocks
with semantically aware layer normalization and
mixed attention, enabling semantically-based depth
feature generation. The generated depth features
are then utilized to synthesize the depth map using
our proposed semantically weighted depth synthesis
module. Extensive evaluations on multiple datasets
verify both quantitatively and qualitatively that our
approach provides valid, meaningful depth maps and
3D scenes. Furthermore, our method permits scene
manipulation by simply editing the input layout,
which is crucial for visual designers. We hope to
explore generating further 3D representations such as
meshes and implicit functions from a semantic layout
in future work.
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