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Abstract Visual object tracking has been drawing
increasing attention in recent years, as a fundamental
task in computer vision. To extend the range of
tracking applications, researchers have been introducing
information from multiple modalities to handle specific
scenes, with promising research prospects for emerging
methods and benchmarks. To provide a thorough
review of multi-modal tracking, different aspects of
multi-modal tracking algorithms are summarized under
a unified taxonomy, with specific focus on visible-
depth (RGB-D) and visible-thermal (RGB-T) tracking.
Subsequently, a detailed description of the related
benchmarks and challenges is provided. Extensive
experiments were conducted to analyze the effectiveness
of trackers on five datasets: PTB, VOT19-RGBD,
GTOT, RGBT234, and VOT19-RGBT. Finally, various
future directions, including model design and dataset
construction, are discussed from different perspectives
for further research.

Keywords visual tracking; object tracking; multi-modal
fusion; RGB-T tracking; RGB-D tracking

1 Introduction

Visual object tracking is a fundamental task in
computer vision, which is widely applied in many
areas, such as smart surveillance, autonomous driving,
and human–computer interaction. Traditional tracking
methods are mainly based on visible (RGB) images
captured by a monocular camera. For targets suffering
from long-term occlusion or in low-illumination scenes,
the RGB tracker does not work well and may cause
tracking failure. With the easy-access binocular
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camera, tracking using multi-modal information such
as visible-depth, -thermal, -radar, and -laser, is
a prospective research direction that has become
popular in recent years. Many datasets and challenges
have been presented [1–6]. Motivated by these
developments, trackers with multi-modal cues have
been proposed with satisfying accuracy and robustness
against extreme tracking scenarios [7–11].

However, after the emergence of multi-modal
trackers, a comprehensive and in-depth survey has
not been conducted. To this end, we revisit existing
methods under a unified view and evaluate them on
well-known datasets. The contributions of this work
can be summarized as follows.
• A substantial review is provided for multi-modal

tracking methods from various aspects under a
unified view. We exploit the similarity of RGB-
D and RGB-T tracking and classify them in
a unified framework. The existing 61 multi-
modal tracking methods are categorized based
on auxiliary modality, tracking framework, and
related datasets with corresponding metrics. A
taxonomy with detailed analysis covers the main
knowledge in this field and provides an in-depth
introduction to multi-modal tracking models.

• A comprehensive and fair evaluation of popular
trackers is conducted on several datasets. We
evaluated 34 methods consisting of 15 RGB-
D and 19 RGB-T trackers on five datasets,
in terms of accuracy and speed, for various
applications. The advantages and drawbacks of
different frameworks were further analyzed in
qualitative and quantitative experiments.

• A prospective discussion for multi-modal tracking
is provided. The potential direction of multi-modal
tracking in model design and dataset construction
is presented, to provide prospective guidance to
researchers.
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The rest of the paper is organized as follows. In
Section 2, we introduce existing related basic concepts
and previous related surveys. Section 3 provides
a taxonomical review of multi-modal tracking. In
Section 4, following an introduction on existing
datasets, challenges and corresponding evaluation
metrics are described. In Section 5, the experimental
results on several datasets and different challenges
are reported. Finally, we discuss the future
direction of multi-modal tracking in Section 6.
All of the collected materials and analysis will
be released at https://github.com/zhang-pengyu/
Multimodal_tracking_survey.

2 Background

2.1 Visual object tracking

Visual object tracking aims to estimate the
coordinates and scales of a specific target throughout
a given video. In general, tracking methods can
be divided into two types based on the information
utilized: (1) single-modal tracking and (2) multi-
modal tracking. Single-modal tracking locates the
target captured by a single sensor, such as laser,
visible and infrared cameras, to name a few. In
recent years, the computational efficiency, ease of
accessibility, and high quality of RGB image tracking,
have made it increasingly popular, whereby numerous
methods have been proposed to improve tracking
accuracy and speed.

In RGB tracking, several frameworks, including
the Kalman filter (KF) [12, 13], particle filter (PF)
[14, 15], sparse learning (SL) [16, 17], correlation
filter (CF) [18, 19], and convolutional neural network
(CNN) [20, 21], have been utilized to improve
tracking accuracy and speed. In 2010, Bolme
et al. [18] proposed a CF-based method called
minimum output sum of squared error (MOSSE),
which achieves high-speed tracking with reasonable
performance. Thereafter, many researchers have
further developed the CF framework to achieve state-
of-the-art performance. Li and Zhu [19] realized scale
estimation and multiple feature integration on the
CF framework. Danelljan et al. [22] eliminated
the boundary effect by adding spatial regularization
to the learned filter at the cost of speed decrease.
Galoogahi et al. [23] provided another efficient
solution to solve the boundary effect, thereby

maintaining real-time speed. Another popular
framework is Siamese-based network, which was first
introduced by Bertinetto et al. [20]. Subsequently,
deeper and wider networks were introduced to
improve target representation. Zhang and Peng [21]
found that the padding operation in the deeper
network induces position bias, interfering with
network capability. To address this problem, they
improved the tracking performance significantly.
Some of the methods perform better scale estimation
by predicting segmentation masks rather than
bounding boxes [24, 25]. In summary, there have
been many efforts in this field. However, target
appearance, as the main cue from visible images,
is not reliable for tracking in extreme scenarios
including low illumination, out-of-view targets, and
heavy occlusion. To this end, more complementary
cues are added to handle these challenges. A visible
camera is assisted by other sensors, such as laser [26],
depth [7], thermal [10], radar [27], and audio [28], to
satisfy different requirements.

Since 2005, a series of methods using various multi-
modal information have been proposed. Song et al.
[26] conducted multiple object tracking by using
visible and laser data. Kim and Jeon [27] exploited
the traditional Kalman filter for multiple object
tracking of radar and visible images. Megherbi et
al. [28] proposed a tracking method by combining
vision and audio information using belief theory.
In this study, tracking of RGB-D and RGB-T
data, using a portable and affordable binocular
camera, is the focus. As shown in Fig. 1, thermal
images capture the target temperature and are not
sensitive to lighting conditions, rain, or fog, which
can make the tracker work day and night. Depth
data provide relative distance between targets and
camera and can easily detect target occlusion and
capture target boundaries. RGB-D data have been
used to detect heavily occluded and out-of-view
targets. In recent works, this auxiliary modality
has achieved 8.5%–31.3% relative improvement in
terms of tracking accuracy on corresponding datasets
[10, 29–31]. Thus, the complementary characteristics
of multi-modal data can significantly improve tracking
accuracy and robustness. Lan et al. [32] applied the
sparse learning method to RGB-T tracking, thereby
removing the cross-modality discrepancy. Li et al. [11]
extended the RGB tracker to the RGB-T domain,
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Fig. 1 Visualization of RGB-D and RGB-T pairs.

achieving promising results. Zhang et al. [10] jointly
modeled motion and appearance information, to
achieve accurate and robust tracking. Kart et al. [7]
introduced an effective constraint using a depth map
to guide model learning. Liu et al. [33] proposed
a mean-shift-based method which transformed the
target position to 3D coordinates using RGB and
depth images.

2.2 Previous surveys and reviews

In Table 1, existing surveys related to multi-modal
processing such as image fusion, object tracking, and
multi-modal machine learning are introduced. Some
methods focus on specific multi-modal information
or single tasks. Cai et al. [36] collected the
datasets captured by RGB-D sensors. These
datasets are used in many different applications,
such as object recognition, scene classification, hand

gesture recognition, 3D simultaneous localization
and mapping, and pose estimation. Camplani et
al. [37] focused on multiple human tracking with
RGB-D data and conducted an in-depth review
considering different aspects. Ma et al. [39] presented
a comprehensive and detailed survey on RGB-T image
fusion methods. Recently, a survey on RGB-T object
tracking [40] was also presented, analyzing various
RGB-T trackers and conducting quantitative analyses
on several datasets.

Other surveys provide a general introduction on
how to utilize and represent multi-modal information
among a series of tasks. Atrey et al. [34] presented a
brief introduction on multi-modal fusion methods and
analyzed different fusion types in 2010. Walia and
Kapoor [35] introduced a general survey on tracking
using multiple modality data in 2016. Baltrusaitis et
al. [38] provided a detailed review of machine learning
methods using multi-modal information.

Various differences and developmental approaches
are observed even among the most related works [35,
40]. In this study, first, we conduct a general survey
on methods of multi-modal information utilization,
especially RGB-D and RGB-T for visual object
tracking, under a unified view. In contrast to the
survey of Ref. [35], we focus on recent deep-learning-
based methods which had not been proposed in 2016.
Finally, compared with the literature [40] that only
focuses on RGB-T tracking, our study provides a
more substantial and comprehensive survey in a larger
scope, including RGB-D and RGB-T tracking.

Table 1 Summary of existing surveys in related fields

Index Year Reference Area Description Publication

1 2010 [34] Multi-modal fusion
This paper provides an overview on multi-modal
data fusion. MS

2 2016 [35] Multi-modal object tracking
This paper provides a general review of both
single-modal and multi-modal tracking methods. AIR

3 2016 [36] RGB-D dataset
This paper collects popular RGB-D datasets for
different applications and provides an analysis
on popularity and difficulty.

MTA

4 2017 [37] RGB-D multiple human tracking
This paper surveys the existing multiple human
tracking methods on RGB-D data from two
aspects.

IET CV

5 2019 [38] Multi-modal machine learning
This is a general survey covering representation,
translation, and fusion of multi-modal data with
regard to various tasks.

TPAMI

6 2019 [39] RGB-T image fusion
This paper provides a detailed survey on existing
methods and applications for RGB-T image
fusion.

IF

7 2020 [40] RGB-T object tracking
A survey of the existing RGB-T tracking
methods. IF



196 P. Zhang, D. Wang, H. Lu

3 Multi-modal visual tracking

This section provides an overview of multi-modal
tracking from three aspects: (1) Auxiliary modality:
how to utilize the information of auxiliary modality
to improve tracking performance. (2) Tracking
framework: the types of framework that trackers
belong to. (3) Dataset: the utilized datasets in RGB-
D and RGB-T tracking tasks. Note that in this study,
we mainly focus on visible-thermal (RGB-T) and
visible-depth (RGB-D) tracking, considering visible
modality as the main modality. Other sources such
as thermal and depth, are auxiliary modalities. The
taxonomic structure is shown in Fig. 2.
3.1 Auxiliary modality

First, we discuss the purpose of auxiliary modality
in multi-modal tracking. There are three main
categories: (a) feature learning: the feature
representation of the auxiliary modality is extracted
to help locate the target; (b) pre-processing: the
information from auxiliary modality is used prior
to target modeling; and (c) post-processing: the
information from auxiliary modality aims to improve
the model or refine the bounding box.

3.1.1 Feature learning
Methods based on feature learning extract information
from the auxiliary modality through various feature
methods, and then adopt modality fusion to combine
the data from different sources. Feature learning
explicitly utilizes multi-modal information, and
most corresponding methods consider the auxiliary
modality image as an extra channel of the model.
As shown in Fig. 3, these methods can be further
categorized into methods based on early fusion (EF)
and late fusion (LF) [34, 98]. EF-based methods
combine multi-modal information at the feature
level using concatenation and summation approaches,
whereas LF-based methods model each modality
individually and obtain the final result by considering
both decisions of modalities.

Early fusion. In EF-based methods, the features
extracted from both modalities are first aggregated
into a larger feature vector and then sent to the
model to locate the target. The workflow of EF-
based trackers is shown in the left part of Fig. 3.
For most trackers, EF is the primary choice for the
multi-modal tracking task, such that visible and
auxiliary modalities are treated alike by the same

Fig. 2 Structure of three classification methods and algorithms in each category.
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Fig. 3 Workflows of early fusion and late fusion. EF-based methods
conduct feature fusion and model them jointly; while LF-based
methods aim to model each modality individually and then combine
their decisions.

feature extraction methods. Camplani et al. [46]
utilized the histogram of oriented gradient (HOG)
feature for both visible and depth maps. Kart et
al. [50] extracted multiple features to build a robust
tracker for RGB-D tracking. Similar methods exist in
Refs. [2, 3, 45, 47, 51, 52, 57, 59, 61, 63]. However, the
auxiliary modality often indicates information that is
different from the visible map. For example, thermal
and depth images contain temperature and depth
data, respectively. The aforementioned trackers apply
feature fusion, ignoring the modality discrepancy,
which decreases the tracking accuracy and causes
the tracker to easily drift. To this end, some
trackers differentiate the heterogeneous modalities
by applying different feature methods. In Ref. [48],
the gradient feature is extracted in a depth map,
while the average color feature is used to represent
the target in the visible modality. Meshgi et al. [55]
used the raw depth information and many feature
methods (HOG, local binary pattern (LBP), and
Laplacian of Gaussian (LoG)) for RGB images. In
Refs. [32, 60, 67], the HOG and intensity features are
used for visible and thermal modalities, respectively.
To circumvent the increasing cost involved in feature
concatenation and misalignment of multi-modal data,

some methods tune the feature representation after
feature extraction by pruning [70] or re-weighting
[53, 75], which can compress the feature space
and exploit cross-modal correlation. In Ref. [70], a
feature pruning module is proposed to eliminate noisy
and redundant information. Liu et al. [53] introduced
a spatial weight to highlight the foreground area. Zhu
et al. [75] exploited modality importance using the
multi-modal aggregation network.

Late fusion. LF-based methods process both
modalities simultaneously, and independent models
are built for each modality to make decisions.
Subsequently, the decisions are combined by using
weighted summation [4, 77, 79, 81], calculating the
joint distribution function [8, 76, 80], and conducting
multi-step localization [78]. Conaire et al. [76]
assumed independence between multi-modal data and
multiplied the target likelihoods in both modalities
to obtain the result. A similar method has been
adopted in the literature [80]. Xiao et al. [4] fused
two single-modal trackers via an adaptive weight map.
In Ref. [78], data from multiple sources are used
step-by-step to locate the target. A rough target
position is first estimated by optical flow in the visible
domain, and the final result is determined by part-
based matching method with RGB-D data.
3.1.2 Pre-processing
The second goal of auxiliary modality is to transform
the target into 3D space before target modeling
via RGB-D data, using the available depth map.
Instead of tracking in the image plane, these types of
methods model the target in world coordinates, and
3D trackers are designed [7, 33, 41–44]. Liu et al. [33]
extended the classical mean shift tracker to 3D. In
Ref. [7], the dynamic spatial constraint generated by
the 3D target model enhances the discrimination of
DCF trackers in dealing with out-of-view rotation and
heavy occlusion. Although significant performance is
achieved, the computation cost of 3D reconstruction
cannot be neglected. Furthermore, the performance
is highly subject to the quality of depth data and the
accessibility of mapping functions between 2D and
3D spaces.
3.1.3 Post-processing
Compared with the RGB image that brings more
detailed content, the depth image highlights the
contour of objects, allowing segmentation of the
target from surroundings via depth variance. Inspired
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by the nature of the depth map, many RGB-D
trackers utilize the depth information to determine
the occurrence of an occlusion and estimate the target
scale [46, 49, 52, 82].

Occlusion reasoning (OR). Occlusion is a
traditional challenge in the tracking task because
dramatic appearance variations lead to model drift.
Depth cue is a powerful feature for detecting target
occlusion; thus, the tracker can apply a global search
strategy or model an updating mechanism to avoid
learning from the occluded target. In Ref. [46],
occlusion is detected when the depth variance is
large. Then, the tracker enlarges the search region
to detect the re-appearing target. Ding and Song
[47] proposed an occlusion recovery method, where a
depth histogram is recorded to examine whether an
occlusion has occurred. If an occlusion is detected, the
tracker locates the occluder and searches a candidate
around it. In Ref. [10], Zhang et al. proposed a
tracker switcher to detect occlusion based on the
template matching method and tracking reliability.
The framework of Ref. [10] is shown in Fig. 4. The
tracker can dynamically select the information used
for tracking between appearance and motion cues,
thereby improving the robustness of the tracker
significantly.

Scale estimation (SE). SE is an important
module in tracking, whereby drift is avoided by
obtaining a tight bounding box. CF-based trackers
estimate the target scale by sampling the search
region in multiple resolutions [99], thereby learning
a filter for scale estimation [100] to effectively adapt
to the target scale change. Both thermal and
depth maps provide clear contour information and
a coarse pixel-wise target segmentation map. With
such information, the target shape can be effectively

estimated [52]. In Ref. [49], the number of scales is
adaptively changed to fit the scale variation. SEOH
[52] uses space continuity-of-depth information to
achieve accurate scale estimation with negligible time
cost. The pixels belonging to the target are clustered
by applying the K-means method to the depth map,
and the sizes of the target and search regions are
determined by the clustering result.

3.2 Tracking framework
In this section, multi-modal trackers are categorized
based on the methods used in target modeling,
including generative and discriminative. The generative
framework focuses on directly modeling the
representation of the target. During tracking, the
target is captured by matching the data distribution
in the incoming frame. However, generative
methods only learn the representations for the
foreground information while ignoring the influence
of surroundings which suffer from background
cluttering or distractions [101]. In comparison, the
discriminative models construct an effective classifier
to distinguish the object from the surroundings.
The tracker outputs the confidence score of sampled
candidates and chooses the best matching patch as the
target. Various patch sampling methods are exploited,
e.g., sliding window [53], particle filter [41, 48], and
Gaussian sampling [11]. A crucial task is to utilize
powerful features to represent the target. Emerging
convolution networks have enabled more trackers to
be built via efficient CNNs. The various frameworks
are introduced in the following paragraphs.
3.2.1 Generative methods
Sparse learning (SL). SL has been popular in many
tasks including image recognition [102], classification
[103], and object tracking [104], among others. In

Fig. 4 Workflow of jointly modeling motion and appearance cues (JMMAC). The CF-based tracker is used to model the appearance cue,
while both camera and target motion are considered, thereby achieving substantial performance.
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SL-based RGB-T trackers, the tracking task can
be formulated as a minimization problem for the
reconstruction error based on the learned sparse
dictionary [1, 32, 59–61, 63, 66, 67]. Lan et al. [32]
proposed a unified learning paradigm to learn
by modality the target representation, reliability,
and classifier, collaboratively. Similar methods are
also applied in the RGB-D tracking task. Ma and
Xiang [54] constructed an augmented dictionary
consisting of target and occlusion templates, thereby
achieving accurate tracking even in the presence of
heavy occlusion. SL-based trackers achieve promising
results at the expense of computation cost. These
trackers cannot meet the requirements of real-time
tracking.

Mean shift (MS). MS-based methods maximize
the similarity between histograms of candidates and
the target template, conducting fast local search
using the mean shift technique. These methods
usually assume that the object overlaps itself in
consecutive frames [80]. In Refs. [33, 42], the authors
extended the 2D MS method to 3D for RGB-D data.
Conaire et al. [80] proposed an MS tracker that uses
spatiogram instead of histogram. Compared with
discriminative methods, MS-based trackers directly
regress the offset of the target, without considering
dense sampling. These methods with lightweight
features can achieve real-time performance although
the performance advantage is not obvious.

Other frameworks. Other generative methods
have been applied to tracking tasks. Coraire et
al. [76] modeled the tracked object via Gaussian
distribution and selected the best-matched patch

via a similarity measure. Chen et al. [56] modeled
the statistics of each individual modality and the
relationship between RGB and thermal data using the
expectation maximization algorithm. These methods
can model individual or complementary modalities,
providing a flexible framework for different scenes.
3.2.2 Discriminative methods
Particle filter. The PF framework is a Bayesian
sequential importance sampling technique [105]
consisting of two steps, i.e., prediction and updating.
In the prediction step, given the state observations
z1:t = {z1, z2, · · ·, zt} during the previous t frames,
the posterior distribution of the state xt is predicted
using the Bayesian rule as Eq. (1):

p (xt | z1:t) = p (zt | xt) p (xt | z1:t−1)
p (zt | z1:t−1) (1)

where p (xt | z1:t−1) is estimated by a set of N

particles. Each particle has a weight, wi
t. In the

updating process, wi
t is updated as

wi
t ∝ p

(
zt | xt = xi

t

)
(2)

In the PF framework, the restrictions of linearity and
Gaussianity imposed by the Kalman filter are relaxed,
thereby obtaining accurate and robust tracking [8].
Several works have improved the PF method for
the multi-modal tracking task. Bibi et al. [41]
formulated the PF framework in 3D, considering
both representation and motion models and proposed
a particle pruning method to boost the tracking
speed. Meshgi et al. [55] considered occlusion in the
approximation step to improve the occlusion handling
of PF. The framework of Ref. [55] is shown in Fig. 5.
Liu and Sun [67] proposed a new likelihood function

Fig. 5 Occlusion-aware particle filter (OAPF) framework. The particle filter method with occlusion handling is applied, whereby the occlusion
model is constructed against the template model. When the target is occluded, the occlusion model is used to predict the position without
updating the template model.
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for PF to determine the goodness of particles, thereby
promoting performance.

Correlation filter. The CF-based tracker learns
the discriminative template denoted as CF to represent
the target. Then, the online learned filter is used to
detect the object in the next frame. As circular
convolution can be accelerated in the Fourier domain,
these trackers can maintain acceptable accuracy with
high speed. In recent years, many CF-based variants
have been proposed, such as introducing spatial
regularization [106], temporal constraints [107], or
discriminative features [108], to increase the tracking
performance. The advantages of CF-based trackers
have motivated many researchers to build multi-
modal trackers within the CF framework. Zhai et
al. [68] introduced low-rank constraints to learn a
cross-modal correlation filters (CMCF), exploiting
the relationship between RGB and thermal data.
Hannuna et al. [49] effectively handled the scale
change based on the guidance of the depth map. Kart
et al. [7] proposed a long-term RGB-D tracker, which
is designed based on a channel and spatial reliability
discriminative correlation filter (CSRDCF) [109] and
applied online 3D target reconstruction to facilitate
learning robust filters. The spatial constraint is
learned from the 3D model of the target. When
the target is occluded, view-specific DCFs are used
to robustly localize the target. Camplani et al. [46]
improved the CF method for scale estimation and
occlusion handling in real time.

Deep learning (DL). CNN is widely used in the

tracking task because of its discriminative ability in
feature representation. Various networks provide a
powerful alternative to the traditional hand-crafted
feature, which is the simplest way to utilize CNN. Liu
et al. [53] extracted the deep features from VGGNet
[110] and used hand-crafted features to learn a robust
representation. Li et al. [71] concatenated deep
features from visible and thermal images, and then
adaptively fused them using the proposed FusionNet
to achieve robust feature representation. Some
methods aim to learn an end-to-end network for
multi-modal tracking. In Refs. [11, 70, 72], a similar
framework borrowed from MDNet [111] is applied
for tracking different structures to fuse cross-modal
data. The MDNet-based framework is shown in
Fig. 6. These trackers achieve obvious performance
advantages although the speed is low. Zhang et
al. [74] proposed an end-to-end real-time RGB-T
tracking framework with balanced accuracy. They
applied ResNet [112] as the feature extractor and
fused RGB and thermal information at the feature
level, for target localization and box estimation.
Attribute-driven representation network (ADRNet)
[29] and challenge-aware tracker (CAT) [113] were
proposed to exploit the effectiveness of attribute-
specific representation for object modeling. Both
trackers contain several individual branches to mine
attribute-specific properties, whereby those features
are fused to build a powerful representation for
accurate tracking.

Based on the vision transformer [114, 115], several

Fig. 6 Framework of modality adapter network (MANet). Generic adapter (GA) is used to extract the common information of RGB-T images.
MA exploits the different properties of heterogeneous modalities. Finally, instance adapter (IA) is used to model appearance properties and
temporal variations of a certain object.
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transformer-based multi-modal trackers have been
proposed [85–87] to exploit the complementary cues
in both modalities. In Ref. [86], the multi-modal
features are first sent to the self-attention module
and then cross-attention modules are applied to
fuse different branches. Finally, an extra cross-
attention module is added to achieve finer fusion. The
tracker displays the fusion ability of the transformer
framework, achieving state-of-the-art performance.
Xiao et al. [87] proposed attribute-based progressive
fusion network (APFNet), which aims to fuse
attribute-based representation with the proposed
enhancement fusion transformer (EFT). The EFT
contains three encoders and two decoders, with
the encoder enhancing the corresponding input
features and the decoder performing the interactive
enhancements between aggregated and modality-
specific features. As for RGB-D tracking, the SPT
tracker was proposed to extract unimodal features,
and feature fusion was realized via transformer
architecture. The tracker is based on STARK [115],
which introduces a transformer encoder for fusing
visible and depth information.

Other frameworks. Some methods use an explicit
template matching method to localize the object.
These methods find the best-matched candidate by
capturing the target in frames through a pre-defined
matching function [44, 78]. Ding and Song [47] learned
a Bayesian classifier and considered the candidate
with the maximal score as the target location, thereby
reducing model drift. In Ref. [90], a structured support
vector machine (SVM) [116] is learned by maximizing
a classification score, preventing labeling ambiguity in
the training process.

4 Datasets

With the emergence of multi-modal tracking methods,
several datasets and challenges for RGB-D and RGB-
T tracking have been released. We summarize the
available datasets in Table 2.

4.1 Public dataset
4.1.1 RGB-D dataset
In 2012, a small-scale dataset called BoBoT-D [48]
was constructed, consisting of five RGB-D video
sequences captured by the Kinect V1 sensor. Both
overlap and hit rate are used for evaluation, to indicate
the mean overlap between result and ground truth
and percentage of frames with overlap larger than
0.33. Song and Xiao [93] proposed the well-known
Princeton tracking benchmark (PTB) of 100 high-
diversity RGB-D videos, of which five are used for
validation and others without available ground truth
are used for testing. The dataset is for testing tracker
performance on occlusion handling and target re-
detection. The PTB dataset contains 11 annotations,
which are separated into five categories including
target type, target size, movement, occlusion, and
motion type. Two metrics are used to evaluate the
tracking performance: center position error (CPE)
and success rate (SR). CPE measures the Euclidean
distance between centers of the result and ground
truth, whereas SR denotes the average intersection
over union (IoU) during all frames and is defined as

SR = 1
N

N∑
i=1

ui, ui =
{

1, IoU(bbi, gti) > tsr

0, otherwise
(3)

where IoU(·, ·) denotes the IoU between the bounding
box bbi and ground truth gti in the i-th frame. If

Table 2 Summary of multi-modal tracking datasets

Name Seq. Num. Total frames Min. frames Max. frames Attr. Resolution Metrics Year

RGB-D

PTB 100 21.5k 40 0.90k 11 640 × 480 CPE, SR 2013
STC 36 18.4k 130 0.7k 10 640 × 480 SR, Acc., Fail. 2018

CTDB 80 101.9k 400 2.5k 13 640 × 360 F-score, Pr, Re 2019
DepthTrack 200 294.5k 143 4.0k 15 640 × 360 F-score, Pr, Re 2021
RGBD1K 1050 2.5M 500 3.0k 15 640 × 360 F-score, Pr, Re 2022

RGB-T

OTCBVS 6 7.2k 600 2.3k — 320 × 240 — 2007
LITIV 9 6.3k 300 1.2k — 320 × 240 — 2012
GTOT 50 7.8k 40 0.3k 7 384 × 288 SR, PR 2016

RGBT210 210 104.7k 40 4.1k 12 630 × 460 SR, PR 2017
RGBT234 234 116.6k 40 8.1k 12 630 × 460 SR, PR, EAO 2019

VOT-RGBT 60 20.0k 40 1.3k 5 630 × 460 EAO 2019
LasHeR 1224 734.8k 57 12.8k 19 640 × 480 SR, PR 2021
VTUAV 500 1.7M 196 27.2k 13 1920 × 1080 SR, PR 2022
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IoU is larger than the threshold tsr, the target is
considered to be successfully tracked. The final rank
of the tracker is determined by Avg. Rank, which is
defined as the average ranking of SR in each attribute.
The STC dataset [4] consists of 36 RGB-D sequences
and covers some extreme tracking circumstances, such
as outdoor and night scenes. This dataset is captured
by still and moving ASUS Xtion RGB-D cameras to
evaluate tracking performance under conditions of
arbitrary camera motion. A total of 10 attributes
are labeled to thoroughly analyze dataset bias. The
illumination of PTB and STC datasets are shown in
Fig. 7. The attribute description is provided in the
Electronic Supplementary Material (ESM).

The trackers are measured by using both success
rate (SR) and visual object tracking (VOT) protocols.
The VOT protocol evaluates the tracking performance
in terms of accuracy and failure. Accuracy (Acc.)
considers the IoU between ground truth and bounding
box, and failure (Fail.) keeps track of zero overlap,
whereby the tracker is re-initialized when there is
no overlap using the ground truth, and tracking is
continued. Color-and-depth general visual object
tracking benchmark (CTDB) [94], proposed in 2019,
contains 80 short-term and long-term videos. The
target is frequently out-of-view and occluded, and
the tracker needs to handle both tracking and re-
detection cases. The metrics used for evaluation are
precision (Pr), recall (Re), and overall F-score [117].
Precision and recall are defined as Eqs. (4) and (5)

Pr =
∑N

i=1 ui∑N
i=1 si

, ut =
{

1, bbi exists
0, otherwise

(4)

Re =
∑N

i=1 ui∑N
i=1 gi

, gt =
{

1, gti exists
0, otherwise

(5)

where ui is defined in Eq. (3). The F-score combines
both precision and recall through

F-score = 2Pr× Re
Pr + Re (6)

In 2021, Yan et al. [30] proposed an RGB-D dataset
for long-term tracking, namely DepthTrack which
contains 65 unique object categories and consists
of 100 training and 50 test sequences. DepthTrack
is captured with a mid-price RGB-D sensor (Intel
RealSense 415), and the images are stored using
640 × 360 resolution with a framerate of 30 fps.
All the frames are annotated using 15 attributes
extended from CTDB. The evaluation metrics are the
same as those used for CTDB. Recently, a large-scale
RGB-D tracking dataset (RGBD1K [85]) was released.
RGBD1K contains 1050 sequences (1000 sequences for
training and 50 sequences for evaluation) and more
than 100 object categories, significantly enlarging both
the number of sequences and object categories. The
training data are sparsely annotated, with bounding
boxes used for annotation of the first 600 frames for
each sequence. The same attribute annotation and
evaluation metrics of DepthTrack are applied.
4.1.2 RGB-T dataset
In previous years, two RGB-T people detection
datasets were used for tracking. The OTCBVS
dataset [95] has six grayscale-thermal video clips
captured from two outdoor scenes. The LITIV
dataset [96] contains nine sequences, considering
the effect of illumination in indoor captures. These
datasets with limited sequences and low diversity have
been depreciated. In 2016, for RGB-T tracking, Li et
al. constructed the GTOT dataset which consists of
50 grayscale-thermal sequences. The data are mainly
captured by a surveillance camera, covering different
scenarios and conditions, such as dark night, rainy
day, high illumination, etc. A new attribute for RGB-
T tracking is the thermal crossover (TC) label, which
indicates that the target has temperature similar to
that of the background. Inspired by Refs. [118, 119],
GTOT adopts success rate (SR) and precision rate
(PR) for evaluation. PR denotes the percentage

Fig. 7 Examples in RGB-D tracking datasets (PTB and STC datasets).
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Fig. 8 Examples and corresponding attributes in GTOT and RGBT234 tracking datasets.

of frames with CPE smaller than a threshold tpr,
which is set to five in GTOT to evaluate small
targets. Li et al. [2] proposed a large-scale RGB-T
tracking dataset, namely RGBT210, which contains
210 videos and 104.7k image pairs. The dataset
includes more challenging cases, such as thermal
crossover, small object, and fast motion, allowing
for a comprehensive evaluation of the tracker. This
dataset also extends the number of attributes to
12. The detailed description of attributes can be
found in the ESM. The metrics are the same as
those of GTOT, except that tpr is normally set to
20. In 2019, the researchers expanded the RGBT210
dataset and proposed RGBT234 [3], which provides
ground truths for each modality. Furthermore,
apart from SR and PR, expected average overlap
(EAO) is used for evaluation, to combine accuracy
and failure in a principled manner. In 2021, Li
et al. [97] proposed a large-scale RGB-T tracking
dataset, LasHeR, consisting of 1224 visible and
thermal infrared video pairs with more than 730k
frame pairs in total. Compared with GTOT and
RGBT234, LasHeR covers various object categories,
viewpoints, scenes, and environmental factors across
seasons such as the weather, day, and night. The
number of attributes is extended to 19, including
several new challenges into the data collection. MSR
and MPR are used for evaluation. Recently, Zhang
et al. [88] proposed the VTUAV benchmark, which is
designed for RGB-T unmanned aerial vehicle (UAV)
tracking. VTUAV contains nearly 1.7 million high-
resolution RGB-T image pairs with 500 sequences
for unveiling the power of RGB-T tracking. The
benchmark can be used for evaluating both short-
term tracking, long-term tracking, and tracking with
segmentation. Furthermore, sequence- and frame-
level attribute annotation is provided in VTUAV for
13 typical challenges, to exploit the power of challenge-
aware trackers.

4.2 Challenges for multi-modal tracking

Since 2019, both RGB-D and RGB-T challenges
have been held by the VOT Committee [5, 6]. In
the RGB-D challenge, trackers are evaluated on the
CDTB dataset [94] using the same evaluation metrics.
All the sequences are annotated on the basis of
five attributes, namely, occlusion, dynamics change,
motion change, size change, and camera motion. The
RGB-T challenge constructs the dataset as a subset
of RGBT234 with slight changes in ground truth.
The dataset consists of 60 RGB-T public videos and
60 sequestered videos. Compared with RGBT234,
VOT-RGBT utilizes different evaluation metrics, e.g.,
EAO, to measure trackers. In VOT2019-RGBT,
trackers need to be re-initialized upon detecting
tracking failure (the overlap between bounding box and
ground truth is zero). In addition, VOT2020-RGBT
introduces a new anchor mechanism to avoid a causal
correlation between the first reset and subsequent ones
[5] instead of the re-initialization mechanism.

5 Experiments

In this section, we conduct an analysis on both public
datasets and challenges for an overall comparison,
attribute-based comparison, and speed. For a fair
comparison on speed, we consider the device (CPU or
GPU), platform (M: MATLAB, MCN: Matconvnet,
P: Python, and PT: PyTorch), and settings (detailed
information on CPU and GPU). The available code
and detailed description of trackers are listed in the
ESM.

5.1 Experimental comparison on RGB-D
datasets

5.1.1 Overall comparison
PTB provides a website¬ for an online comprehensive

¬ http://tracking.cs.princeton.edu/
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evaluation of RGB and RGB-D methods. We
collected the results of 14 RGB-D trackers from
the website and sorted them based on rank. The
results are shown in Table 3. The Avg. Rank,
SR and corresponding rank of each attribute are
listed. The Avg. Rank is calculated by averaging
the rankings of all attributes. According to Table 3,
OTR, which is based on the CF framework without
deep features, achieves the best performance among
all competitors. The reason for the promising result is
that 3D construction provides a useful constraint for
filter learning. The same conclusion is obtained for
CA3DMS and 3DT, which construct a 3D model to
locate the target via mean-shift and sparse learning
methods. These trackers with traditional features
are competitive with deep trackers. DL-based
trackers (WCO, TACF, and CSR-RGBD) achieve
substantial performance, indicating the successful
discrimination of deep features. CF-based trackers
are the most widely-applied framework, and the
results differ such that the trackers based on original
CF methods (DMKCF, DSKCF, and DSOH) perform
significantly worse than those developed on improved
CF (OTR, WCO, and TACF). OTOD based on point
cloud does not exploit the effectiveness of CNN and
attains the 10th rank on the PTB dataset.
5.1.2 Attribute-based comparison
PTB provides 11 attributes and five features for
comparison. CF-based trackers, including OTR,
WCO, TACF, CSR-RGBD, and CCF, do not perform
well in tracking animals. As animal movements are
fast and irregular, these online trackers are fragile to

drift. When the target is small in size, CF can provide
precise tracking results. The occlusion handling
mechanism contributes greatly to videos with target
occlusion. The 3D mean shift method shows obvious
advantages in tracking targets with rigid shape and
no occlusion. OAPF achieves an above-average
performance in tracking small objects, which indicates
the effectiveness of the scale estimation strategy.
5.1.3 Speed analysis
The speed report of RGB-D trackers are listed in
Table 4. Most of the trackers cannot meet real-
time tracking requirements. Trackers based on the
improved CF framework (OTR [7], DMKCF [50],
CCF [83], WCO [53], and TACF [51]), are constrained
by their own speed. Two real-time trackers (DSKCF
[49] and DSOH [46]) have the original CF architecture.
The transformer-based tracker SPT, also achieves
favorable performance and real-time speed.

5.2 Experimental comparison of RGB-T
datasets

We selected 19 trackers as our baseline to perform
an overall comparison of the GTOT and RGBT234
datasets. As the code has been released for only
part of the trackers (JMMAC, MANet, mfDiMP), we
ran these trackers on the two datasets and recorded
the performance of the other trackers based on the
reports in the original papers. The overall results are
shown in Table 5.
5.2.1 Overall comparison
All high-performance trackers are equipped with
learned deep features. The transformer-based tracker

Table 3 Experimental results on the PTB dataset. The top three results are in red, blue, and green fonts

Algorithm
Target type Target size Movement Occlusion Motion type

Human Animal Rigid Large Small Slow Fast Yes No Passive Active
OTR 77.3 68.3 81.3 76.5 77.3 81.2 75.3 71.3 84.7 85.1 73.9
WCO 78.0 67.0 80.0 76.0 75.0 78.0 73.0 66.0 86.0 85.0 82.0
TACF 76.9 64.7 79.5 77.2 74.0 78.5 74.1 68.3 85.1 83.6 72.3

CA3DMS 66.3 74.3 82.0 73.0 74.2 79.6 71.4 63.2 88.1 82.8 70.3
CSR-rgbd 76.6 65.2 75.9 75.4 73.0 79.6 71.8 70.1 79.4 79.1 72.1

3DT 81.4 64.2 73.3 79.9 71.2 75.1 74.9 72.5 78.3 79.0 73.5
DLST 77.0 69.0 73.0 80.0 70.0 73.0 74.0 66.0 85.0 72.0 75.0
OAPF 64.2 84.8 77.2 72.7 73.4 85.1 68.4 64.4 85.1 77.7 71.4
CCF 69.7 64.5 81.4 73.1 72.9 78.4 70.8 65.2 83.7 84.4 68.7

OTOD 72.0 71.0 73.0 74.0 71.0 76.0 70.0 65.0 82.0 77.0 70.0
DMKCF 76.0 58.0 76.7 72.4 72.8 75.2 71.6 69.1 77.5 82.5 68.9
DSKCF 70.9 70.8 73.6 73.9 70.3 76.2 70.1 64.9 81.4 77.4 69.8
DSOH 67.0 61.2 76.4 68.8 69.7 75.4 66.9 63.3 77.6 78.8 65.7
DOHR 45.0 49.0 42.0 48.0 42.0 50.0 43.0 38.0 54.0 54.0 41.0
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Table 4 Speed analysis of RGB-D trackers

Tracker Speed Device Platform Setting

SPT 25.0 GPU PT
I9@3.6 GHz,

RTX3090
OTR 2.0 CPU M I7@3.6 GHz

WCO 9.5 GPU M & MCN
I7@3.4 GHz,
GTX Titan

TACF 13.1 GPU M & MCN I7@4.0 GHz
CA3DMS 63 CPU C++ I7@3.6 GHz

DLST 4.8 CPU M I5@3.10 GHz
OAPF 0.9 CPU M —
CCF 6.3 CPU M I7@3.4 GHz

DMKCF 8.3 CPU M I7@3.6 GHz
DSKCF 40 CPU M & C++ I7@3.10 GHz
DSOH 40 CPU M I7@3.10 GHz

LRMWT outperformed other trackers with a
large margin in terms of SR on both datasets,
demonstrating the potential of transformer tracking.
HMFT, which is trained on the large-scale benchmark,
also showed comparable results. The following
trackers which achieve satisfactory results are mainly
MDNet variants (CMPP, MaCNet, TODA, DAFNet,
MANet, DAPNet, and FANet). Compared with CF
trackers, MDNet-based trackers can provide precise
target position with higher PR, but are inferior to
the CF framework in scale estimation, as reflected by
SR. Trackers with sparse learning techniques (CSR,
SGT) are better than the L1-PF based on particle
filtering. Although mfDiMP utilizes a state-of-the-art
backbone, the performance is not positive. The main
reason may be that mfDiMP utilizes different training
data generated by image translation methods [120],

which may cause a gap between existing real RGB-T
data.
5.2.2 Attribute-based comparison
We conducted attribute-based comparisons on
RGBT234, as shown in Fig. 9. The improved MDNet-
based trackers achieve satisfactory performance in
the case of low-resolution, deformation, background
clutter, fast motion, and thermal crossover. Modeling
both camera motion and target motion, JMMAC
provides strengths in camera movement and partial
occlusion; however, the performance in tracking
fast-moving targets is inferior. This condition may
result from CF-based trackers having a fixed search
region. When the target moves outside the region, the
target cannot be detected, thereby causing tracking
failure. CMPP, which exploits inter-modal and
cross-modal correlations, provides great advantages
for low illumination, low resolution, and thermal
crossover. The appearance of these attributes are not
reliable, and CMPP can eliminate the gap between
heterogeneous modalities. The detailed attribute-
based comparison can be found in the ESM.
5.2.3 Speed analysis
For tracking speed, the platforms and settings are
listed in Table 5 for a fair comparison. Recently-
proposed trackers (LRMWT, HMFT, ADRNet) tend
to be real-time. DAFNet is based on a real-time
MDNet variant, achieving fast tracking with 23.0
fps. Although mfDiMP is equipped with ResNet-101,
it was the second fastest tracker because most of
the network is trained offline without online tuning.

Fig. 9 Attribute-based comparison on RGBT234.
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Table 5 Experimental results on the GTOT and RGBT234 datasets

Tracker GTOT (SR/PR) RGBT234 (SR/PR) Speed Device Platform Setting
LRMWT 75.3/91.1 61.6/82.5 24.6 GPU PT GTX 1080Ti
HMFT 74.9/91.2 56.8/78.8 30.2 GPU PT RTX Titan

ADRNet 73.9/90.4 57.1/80.9 25.0 GPU PT RTX 2080Ti
CMPP 73.8/92.6 57.5/82.3 1.3 GPU PT RTX 2080Ti

APFNet 73.7/90.5 57.9/82.7 — GPU PT GTX 1080Ti
JMMAC 73.2/90.1 57.3/79.0 4.0 GPU MCN RTX 2080Ti

CAT 71.7/88.9 56.1/80.4 20.0 GPU PT RTX 2080Ti
MaCNet 71.4/88.0 55.4/79.0 0.8 GPU PT GTX 1080Ti
TODA 67.7/84.3 54.5/78.7 0.3 GPU PT GTX 1080Ti

DAFNet 71.2/89.1 54.4/79.6 23.0 GPU PT RTX 2080Ti
MANet 72.4/89.4 53.9/77.7 1.1 GPU PT GTX 1080Ti
DAPNet 70.7/88.2 53.7/76.6 — GPU PT GTX 1080Ti
FANet 69.8/88.5 53.2/76.4 1.3 GPU PT GTX 1080Ti
CMR 64.3/82.7 48.6/71.1 8.0 CPU C++ —
SGT 62.8/85.1 47.2/72.0 5.0 CPU C++ —

mfDiMP 49.0/59.4 42.8/64.6 18.6 GPU PT RTX 2080Ti
CSR — 32.8/46.3 1.6 CPU M & C++ —

L1-PF 42.7/55.1 28.7/43.1 — — — —
JSR 43.0/55.3 23.4/34.3 0.8 CPU M —

Other trackers are constrained by their low speed and
cannot be utilized in real-time applications.

5.3 Challenge results on VOT2019-RGBD

The challenge results are listed in Table 6. Both
the original RGB tracker without depth information
and RGB-D tracker are merged for evaluation. The
trackers that secured the top three ranks on F-score,
precision, and recall, were designed with the same
components in the same framework. Unlike the
PTB dataset, DL-based methods perform well
on VOT-RGBD19, which is attributed to these
trackers utilizing deeper networks and large-scale
visual datasets for offline training. For instance,
the original RGB tracker with DL framework also
achieves excellent performance. Occlusion handling is

Table 6 Challenge results on VOT2019-RGBD dataset

Tracker Modality F-score Precison Recall
SiamDW-D RGB-D 0.681 0.677 0.685
ATCAIS RGB-D 0.676 0.643 0.712
LTDSE-D RGB-D 0.658 0.674 0.643
SiamM-D RGB-D 0.455 0.463 0.447
MDNet RGB 0.455 0.463 0.447
MBMD RGB 0.441 0.454 0.429
FuCoLoT RGB 0.391 0.459 0.340
OTR RGB-D 0.336 0.364 0.312
SiamFC RGB 0.333 0.356 0.312
CSR-rgbd RGB-D 0.332 0.375 0.397
ECO RGB 0.329 0.317 0.342
CA3DMS RGB 0.271 0.284 0.259

another necessary component of the high-performance
tracker because VOT2019-RGBD focuses on the long-
term tracking of frequently reappearing and out-
of-view targets. Thus, most of these trackers are
equipped with a re-detection mechanism. The CF
framework (FuCoLoT, OTR, CSR-RGBD, and ECO)
does not perform well, which may stem from online
updating using occlusion patches that degrade model
discrimination.

5.4 Challenge results on VOT2019-RGBT

For the VOT2019-RGBT dataset shown in Table 7,
JMMAC which exploits both appearance and motion
cues exhibits high accuracy and robust performance,
obtaining the highest EAO with a large margin.
Early fusion is the primary method in RGB-T fusion,
whereas the late fusion method JMMAC, which is
not fully utilized, has great potential in improving
tracking accuracy and robustness. All top six trackers

Table 7 Challenge results on the VOT2019-RGBT dataset

Tracker Modality EAO Acc. R.

JMMAC RGB-T 0.4826 0.6649 0.8211

SiamDW-T RGB-T 0.3925 0.6158 0.7839

mfDiMP RGB-T 0.3879 0.6019 0.8036

FSRPN RGB-T 0.3553 0.6362 0.7069

MANet RGB-T 0.3463 0.5823 0.7010

MPAT RGB 0.3180 0.5723 0.7242

CISRDCF RGB-T 0.2923 0.5215 0.6904

GESBTT RGB-T 0.2896 0.6163 0.6350
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are equipped with CNN as the feature extractor,
indicating the power of CNN. SiamDW, which uses a
Siamese network, is a general method that performs
well in both RGB-D and RGB-T tasks. ATOM
variants (mfDiMP and MPAT) are used to handle
RGB-T tracking.

6 Further prospects

6.1 Model design

6.1.1 Multi-modal fusion

Compared with tracking unimodal data, multi-modal
tracking can easily exploit the powerful data fusion
mechanism. Existing methods mainly focus on
feature fusion, as the effectiveness of other fusion
types has not been explored. Compared with early
fusion, late fusion eliminates the bias that exists
in learning heterogeneous features from different
modalities. Another advantage of late fusion is
that various methods can be utilized to model each
modality independently. As a better choice for multi-
modal tracking, the hybrid fusion method which
combines early and late fusion strategies, has been
used in image segmentation [121] and sports video
analysis [122].
6.1.2 Specific network for auxiliary modality
As a gap exists between different modalities, and
semantic information is heterogeneous, traditional
methods use different features to extract more useful
data [48, 60, 67]. Although sufficient studies have
been conducted on network architectures for visible
image analysis, the specific structure of depth and
thermal maps has not been deeply explored. Thus,
DL-based methods [11, 69, 70, 74] trade data in
auxiliary modality as an additional dimension of
the RGB image with the same network architecture
(e.g., VGGNet and ResNet) and extract the feature
at the same level (layer). A crucial task is to
design a network for multi-modal data processing.
Since 2017, the AutoML method, especially neural
architecture search (NAS), has been popular in
automatically designing the architecture, obtaining
highly competitive results in many areas such
as image classification [123] and recognition [124].
However, for multi-modal tracking, the researchers
do not pay as much attention to the NAS method,
which is a good direction to explore.

6.1.3 Multi-modal tracking with real-time speed
The additional modality increases computation,
causing difficulty for existing tracking frameworks
to achieve the requirements of real-time performance.
Thus, a speed-up mechanism such as feature selection
[70] or knowledge distillation technology needs to be
designed. Furthermore, Huang et al. [125] proposed
a trade-off method, whereby the agent decides on the
more suitable layer for accurate localization, which
provides a speed boost of 100 times.

6.2 Dataset construction

6.2.1 Large-scale dataset with high diversity
With the emergence of deep neural networks,
more powerful methods are equipped with CNN
and transformer to achieve accurate and robust
performance, thereby requiring numerous training
samples to unveil the power of large models. Recent
benchmarks [1, 3, 88] mainly focus on a single
application, such as surveillance or drone tracking,
and the target category is also limited. With the
popularity of multi-modal cameras, a new large-
scale dataset with high diversity should be set up
to promote the development of multi-modal tracking.
6.2.2 Modality registration
As multi-modal data are captured by different sensors
and the binocular camera has a parallax error that
cannot be ignored when the target is small and
resolution is low, registering the data in spatial
and temporal dimensions is essential. In the VOT-
RGBT challenge, the dataset ensures the precise
annotation in infrared modality, and the tracker
handles the misalignment of the RGB image. We
state that the image pre-registration process which
involves cropping the shared visual field and applying
an image registration method, is necessary during
dataset construction.
6.2.3 Metrics for robustness evaluation
In some extreme scenes and weather conditions, such
as rain, low illumination, and hot sunny days, visible
or thermal sensors cannot provide meaningful data.
The depth camera cannot precisely estimate distance
when the object is far from the sensor. Therefore, a
robust tracker needs to avoid tracking failure when
any of the modality data are unavailable for a certain
period. To handle this case, both complementary
and discriminative features have to be applied in
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localization. However, none of the datasets measure
tracking robustness in the presence of missing data or
adversarial attacks [126, 127]. Thus, a new evaluation
metric must be considered to track robustness.
6.2.4 Tracking in specific scenes and applications
Recent datasets are designed for generic object
tracking of various target categories and scenes.
However, these datasets cannot fully exploit the
potential of an auxiliary modality for existing trackers
with unimodal input to achieve reasonable results.
Tracking in specific scenes (dark night, rain, and
crowds) requires trackers to have stronger capabilities
for information fusion and modality switching to
facilitate the development of multi-modal tracking
frameworks.

7 Conclusions

In this study, an in-depth review of multi-modal
tracking is provided. First, we summarize multi-
modal trackers into a unified framework, and analyze
them from different perspectives, including auxiliary
modality, purpose, and tracking framework. Then, a
detailed introduction is presented on the datasets for
multi-modal tracking along with the corresponding
metrics. Furthermore, a comprehensive comparison
on five popular datasets is conducted, and the
effectiveness of trackers belonging to various types are
analyzed from the perspectives of overall performance,
attribute-based performance, and speed. Finally,
as an emerging field, several possible directions are
identified to facilitate the improvement of multi-
modal tracking. The comparison results and analysis
will be available at https://github.com/zhang-
pengyu/Multimodal tracking survey.
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