
Computational Visual Media
https://doi.org/10.1007/s41095-023-0340-x

Research Article

Multi-scale hash encoding based neural geometry representation

Zhi Deng1, Haoyao Xiao1, Yining Lang2, Hao Feng 2, and Juyong Zhang1 (�)

c© The Author(s) 2024.

Abstract Recently, neural implicit function-based
representation has attracted more and more attention,
and has been widely used to represent surfaces
using differentiable neural networks. However, surface
reconstruction from point clouds or multi-view images
using existing neural geometry representations still
suffer from slow computation and poor accuracy. To
alleviate these issues, we propose a multi-scale hash
encoding-based neural geometry representation which
effectively and efficiently represents the surface as
a signed distance field. Our novel neural network
structure carefully combines low-frequency Fourier
position encoding with multi-scale hash encoding. The
initialization of the geometry network and geometry
features of the rendering module are accordingly
redesigned. Our experiments demonstrate that the
proposed representation is at least 10 times faster for
reconstructing point clouds with millions of points.
It also significantly improves speed and accuracy
of multi-view reconstruction. Our code and models
are available at https://github.com/Dengzhi-USTC/
Neural-Geometry-Reconstruction.

Keywords neural geometry representation; hash
encoding; point cloud reconstruction;
multi-view reconstruction

1 Introduction

3D shape is fundamental in many problems in
computer graphics, computer vision, and robotics,
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as our physical world lies in 3D space. Unlike
images, which are usually represented as a regular
matrix in the digital world, 3D geometry employs
various representations according to the application.
Conventional representations such as polygon meshes,
point cloud, and voxel grids can directly model 3D
objects, but require excessive storage to represent
geometry at high precision. Parametric geometry
representations describe 3D objects via a series of
basis functions, but are limited by the expressive
ability of a low-dimensional parameter space.
Recently, MLP-based neural implicit representations
have been demonstrated to be effective and compact.
A coordinate-based MLP models 3D space as a
continuous implicit function by mapping a given
point to its corresponding scalar attribute, such as
occupancy and (un)-signed distance. The geometric
surface can be extracted from a specified level-set
using the marching cubes method [3].

In this paper, we particularly consider inferring
the signed distance field from an unorganized input
point cloud, or calibrated multi-view images. We aim
to learn a coordinate-based implicit function Φ(θ,x)
with learnable parameters θ ∈ Rd, which satisfies the
eikonal equation:
‖∇xΦ‖ ≡ 1, such that {Gk(Φ(θ,xi)),xi ∈ ∂Ω}i,k

(1)
where x ∈ R3 is a 3D point, Ω is a well-behaved
open set with boundary ∂Ω, and Gk(·) is a non-
linear constraint for geometry representation Φ. MLP-
based approaches [4, 5] first introduced the eikonal
equation to constrain the neural implicit function
to be a signed distance field given point cloud or
multi-view image input. However, as discussed in
Refs. [6, 7], simple coordinate-based MLPs with ReLU
activation have limited representation ability due to
the spectral bias of neural networks. In addition,
this geometry representation typically results in slow

1

https://github.com/Dengzhi-USTC/Neural-Geometry-Reconstruction.
https://github.com/Dengzhi-USTC/Neural-Geometry-Reconstruction.


2 Z. Deng, H. Xiao, Y. Lang, et al.

Fig. 1 Left, right: comparison of multi-view and point cloud reconstruction results using our method to the state-of-the art. It is 3.6 times
faster than NeuS [1], and provides significantly improved reconstruction accuracy. Compared to SIREN [2], our method is considerably faster
with improved point cloud reconstruction accuracy.

geometric reconstruction.
Many works have proposed how to improve

neural geometry representation capability. Some,
like SIREN [2], try to design more powerful
activation functions. Others focus on positional
encoding: encoding spatial location into a high-
dimensional space using a given set of sinusoidal
or spline functions [8–10]. These methods consider
how to represent the high-frequency details of a
given surface shape, but still fail to reconstruct
geometric details accurately and efficiently. To
tackle this problem, learnable positional encoding
was introduced to further encode local geometric
details around each given point using a predefined
voxel grid. In particular, learnable multi-scale
hash encoding [11] can efficiently obtain multi-
scale geometric information. However, reconstruction
artifacts may appear when directly applying this
encoding strategy to neural geometry reconstruction
tasks, for two reasons. Firstly, under weak supervision, it
does not satisfy eikonal constraints well; explicit discrete
grid-based neural geometry representations have poor
gradient continuity, leading to a poor approximation of
the signed distance field. Secondly, it requires careful
initialization to help network optimization.

We propose a novel geometry representation based
on multi-scale hash encoding to address these issues.
Specifically, we move the hash encoding to the
hidden layer as part of the input of the connected
layer, and introduce Fourier position encoding as
the input of the first layer to encode consecutive

spatial locations, enhancing the gradient continuity
of the geometric representation. We also initialize
the geometry network using a modified version of
SAL [12], in which optimization of the geometry starts
from an approximate sphere.

To verify the effectiveness of our geometry
representation in multi-view reconstruction, we use
NeuS [1] as a baseline framework for comparisons of
reconstruction accuracy and efficiency. In previous
volume rendering frameworks, geometric features of
points in 3D are extracted from the last layer of the
geometry network. Thus, hash encoding of geometry
representation encodes geometry features. This causes
the reconstructed geometry to be inconsistent with
the multi-view image rendered by the light field,
due to the fast learning ability of the hash encoding
operator. We thus move feature extraction to the
connection layer of the geometry network, so that
the multi-scale hash encoding only represents the
geometry.

Extensive experiments demonstrate that our neural
geometry representation outperforms the state-of-
the-art neural geometry representations in terms
of both speed and accuracy of reconstruction from
point clouds and multi-view images. Compared to
existing neural implicit function-based point cloud
reconstruction methods, our method is at least
10 times faster and significantly more accurate.
In multi-view image reconstruction, benefiting
from the modified rendering framework, our
approach can recover fine geometric detail at a



Multi-scale hash encoding based neural geometry representation 3

reconstruction speed at least 3.6 times faster than the
state-of-the-art.

2 Related work

2.1 Neural geometry representation

Recently, coordinate-based neural networks (Φ(θ,x),
x ∈ R3), which represent a 3D object as a con-
tinuous geometric shape, have attracted much
attention. Refs. [13–15] utilize a neural network
to represent the 3D shape as a (signed) distance
field (SDF), while Refs. [16, 17] represent it as
an occupancy field. Our work is closer to IGR [4],
which uses simple coordinate-based MLPs to recover
the SDF of a 3D shape. However, an implicit
representation using coordinate-based MLPs cannot
represent high-frequency details well, due to its
limited representation ability [8]. Many methods have
been proposed to address this issue. Xiao et al. [18]
give a more detailed consideration of representation.

SIREN [2] uses sin as the activation function
and suggests a suitable initialization method for
optimization. Some works [19–23] divide complex
shapes or large-scale scenes into regular subregions
and replace the global MLP with local MLPs,
so as to improve the geometric representation. It
has been shown that using sinusoidal positional
encoding can improve the performance of MLPs
with ReLU in radiance field fitting [7]. In following
work, Hertz et al. [9] propose a spatially adaptive
progressive encoding (SAPE) scheme based on
sinusoidal positional encoding, allowing an MLP-
based representation to better fit the target signals
with complex frequencies. As an alternative to
sinusoidal functions, uniform parametric spline basis
functions have also been utilized for position encoding
with the aim of improving local and high-frequency
geometric information [10].

Another strategy is to decompose the learnable
feature or domain based on an explicit 3D data
structure. To accelerate training, EG3D [24] encodes
the 3D position of geometric rendering features
by projecting it into a tri-plane with learnable
features. ACORN [25] applies tree subdivision to the
domain, with a large learnable auxiliary coordinate
encoder neural network trained to output dense
feature grids. Features in these dense grids are used
to represent the positional encoding of any point

in space. NGLOD [26] represents neural implicit
functions using an octree-based position encoding,
which adaptively fits shapes with multiple discrete
levels of detail (LOD).

2.2 Hash encoding-based methods

As an efficient encoding tool, hash encoding is
also widely used in geometry reconstruction. Voxel
hashing is utilized in Ref. [27] in an online system
for large, fine-scale volumetric reconstruction. A
dynamic spatially-hashed truncated signed distance
field is applied in Ref. [28] to contribute to a real-
time house-scale dense 3D reconstruction system.
Recently, a learnable multi-resolution hash encoding
framework [11] has been proposed which encodes 3D
position; it has been successfully applied to tasks
for fast training of neural radiation fields and SDF
fitting. In Ref. [29], a series of neural radiance fields
is learnt as a facial expression basis by hash encoding,
to enable semantic control over personalized semantic
NeRF.

2.3 Point cloud reconstruction

Given a point cloud (possibly with normals),
reconstructing the corresponding 3D shape is a
classical problem in digital geometry processing. A
parametric RBF representation may be utilized to
reconstruct the surface by point cloud fitting [30, 31].
A further widely used approach is Poisson surface
reconstruction [32], which solves a Poisson equation
on a discrete volume, based on the given points and
normals. Further related works can be found in the
survey in Ref. [33].

Recently, surface reconstruction based on
coordinate-based neural implicit representations has
achieved great progress. DeepSDF [13] utilizes a
neural implicit function to decode the SDF of 3D
position in a bounding volume. Points2Surf [34]
decomposes the neural geometry representation into
a global sign function and local absolute distance
function. Based on the eikonal equation, IGR [4]
provides a new paradigm for computing high-fidelity
implicit neural representations directly from raw 3D
points.

SALD [35] advocates a novel sign agnostic
regression loss, which incorporates both point-wise
values and gradients of the unsigned distance function.
Neural-Pull [36] uses the predicted signed distance
and gradient at query locations to train a high-quality
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neural geometry representation. To solve problems
unrestricted by topology or type of input 3D signal,
Chen et al. [37] propose a new data-driven approach
for mesh reconstruction based on dual contouring.

2.4 Multi-view image reconstruction

Traditional MVS algorithms focus on neighbor
view selection algorithms and photometric error
measures. Robust neighbor view selection and
visibility consistency algorithms are discussed in
depth in Refs. [38] and [39], respectively. A
currently popular MVS system, COLMAP [40],
jointly estimates depth and surface normal, uses
photometric and geometric priors for pixel-wise
view selection, and uses geometric consistency for
simultaneous refinement. We refer readers to Ref. [41]
for a comprehensive overview of classical multi-view
stereo reconstruction algorithms. Classical learning-
based MVS methods attempt to replace certain
components of the traditional MVS pipeline. Some
works learn to match 2D features across views [42–44]
or infer depth maps from multi-view images based
on a data-driven framework [45–47]. Others [48–51]
discuss in depth how to reduce memory needed by
3D convolution and how to increase inference speed
of the model.

Recently, inverse rendering-based approaches have
achieved great success in multi-view reconstruction.
DVR [52] proposes a differentiable rendering approach
to directly optimize the shape and texture of the
input RGB images. IDR [5] utilizes the neural
implicit function to simultaneously learn geometry
and camera parameters, while neural rendering
approximates the light reflected towards the camera.
Wang et al. [53] use priors to extend IDR to 3D
head reconstruction. NeRF [7] proposes a novel view
synthesis framework which optimizes an underlying
continuous volumetric scene function using multi-
view images. VolSDF [54] attaches volume rendering
techniques to IDR and eliminates the need for mask
information. UNISURF [55] proposes a new multi-
view framework in which implicit surface models and
radiation fields can be formulated in a unified way,
permitting surface and volume rendering from the
same model. NerfingMVS [56] proposes a multi-view
framework with learning-based priors to guide the
NeRF optimization process. NeuralRecon [57] offers
a neural network to directly reconstruct local surfaces
represented as sparse TSDF volumes for each video

fragment sequentially. MVSDF [58] jointly optimizes
an SDF and a surface light field appearance model,
directly supervised by geometry from stereo matching,
and refined by multi-view feature consistency and
fidelity of rendered images. DI-Fusion [59] proposes
a local implicit function based framework for online
3D reconstruction with a commodity RGB-D camera.
NeuS [1] proposes an unbiased density representation
to recover high-quality surface shape with the help
of differentiable volume rendering.

3 Method

3.1 Neural geometry representation

3.1.1 Background
The popular coordinate-based geometry representation
uses the SDF to represent 3D geometric shape:
Φ : R3 → R, SDF(x) = Φ(θ,x), where θ deno-
tes learnable parameters. Using this continuously
differentiable geometric representation, traditional
geometric reconstruction can be directly performed
using an end-to-end optimization framework, starting
from, e.g., point clouds or multi-view images. The
two most important aspects of a reconstruction
method are its accuracy and speed. The recent
NGP method [11] utilizes a learnable multi-scale
hash encoding enc(θh,x) to encode 3D positions
in space into the learnable features θh of a hash
table. This improves the expressive ability of geometry
representations and convergence speed of geometric
fitting tasks such as SDF fitting and neural radiance
field fitting. Thus, we introduce it for geometric
reconstruction tasks, under weak supervision.

Our geometry representation utilizes multi-scale
hash encoding enc(θh,x) derived from NGP.
Specifically, we first construct hash tables arranged in
L levels, with each level l containing up to Tl learnable
features of dimension F . Each level independently
and conceptually stores feature vectors at the vertices
of a grid of a given resolution. As in NGP, the
resolution at each level is progressively set to a
value between the coarsest and finest resolutions
[Nmin, Nmax]; Nmax is a predefined target resolution:

Nl = bNminb
lc, b = 2log2(Nmax/Nmin)/L

where b is the scale for the level. We set Nmax
and Nmin to be 2048 and 16 respectively in our
experiments.

For any point p ∈ R3 in space, we compute
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enc(θh,p) by first finding the corresponding position
on the grids at different levels through the predefined
mapping, and then extract the learnable features from
features stored in hash tables at different resolutions.
Specifically, consider the hash table at a single level
l. Point p is first scaled by the level’s grid resolution
and then rounded down and up bplc = bpNlc,
dple = dpNle. bplc and dple span a cell, whose 8
vertices are at integer coordinates in Zd. Then, the
bplc and dple are mapped into the hash-table using
mapping function h : Z3 → ZTl

. This maps each
point into the feature grid via a one-to-one mapping
when N3

l 6 Tl. At the fine level, due to storage
limitations, we use a hash function to determine
position in the feature hash table in a similar way to
the strategy used in NGP.

Finally, the feature vectors of the point p at
each level are obtained via tri-linear interpolation
according to the relative position of p within its
cell of the hash table. To improve continuity of
high-level features, we use a second-order continuous
interpolation weight function:

d(x) = 6x5 − 15x4 + 10x3

3.1.2 Baseline geometry representation (NGP)
Figure 2 provides motivation for our geometry repre-
sentation. Let us consider using the baseline network
structure in NGP for point cloud reconstruction. This
takes a hash encoding of a 3D point as input and
outputs a 1-dimensional scalar value with several
hidden layers. However, this leads to non-smooth
reconstruction results; the gradient of the geometry
representation has very poor continuity (also see
Table 4 later). The reconstructed snowflake curve
is wrong, resulting in a large difference between
the predicted SDF and ground truth. The obvious
cause is that here, supervisory information is much

Fig. 2 Neural geometry representation ability, demonstrated by
reconstructing a 2D point cloud sampled from a snowflake curve. Left
to right: input (2D point cloud with normals), GT (ground truth),
NGP (baseline hash encoding), our method without initialisation, our
method. Blue curves: zero level set extracted by marching cubes.
Color indicates the reconstructed implicit function value. In the last
three columns, the eikonal constraints Deik are 0.028, 0.0093, and
0.0041, with grad-error Dgrad-error of 0.29, 0.09, and 0.04.

weaker than in NGP, which has ground truth
supervision. This also greatly impacts multi-view
image reconstruction (see Fig. 11 later). However,
these observations have two deeper reasons. Firstly,
only using the weak supervision of the multi-scale
hash encoding neural network structure does not
permit easy minimization of the eikonal constraint.
Secondly, the neural geometry representation based
on an explicit grid has gradient discontinuities, made
worse by the high compression provided by hash map
h. See Fig. 3: while points p and q are adjacent
in space, due to the discontinuous nature of the
features on the grid, they are far away in feature space.
While it is straightforward to increase the number of
sampling points when computing the eikonal equation
constraint, this does not provide a good solution.
3.1.3 Our neural geometry representation
As Fig. 4(a) shows, based on the baseline network
(NGP), we first introduce the connected layer,
a hidden layer in the network used to connect
features between different layers. Next, we move
the hash-encoding enc(θh,x) to the middle layer
of the MLP as the input to the connected layer.
Then the low-dimensional Fourier position encoding
encff(x) is added as the input to the first layer,
to reduce the discontinuity of learnable features
caused by hash encoding. Finally, the modified
initialization from SAL [12] is utilized to initialize our
geometry network. As Fig. 5 shows, this initializes
our network parameters to give an approximately
spherical shape. As Fig. 2 and Table 4 show,
the final reconstruction results are smoother, and
the eikonal constraints are better satisfied. Our

Fig. 3 Two spatially adjacent points p and q obtain interpolated
features from the grid at level l. These features are different, due to
the discontinuous nature of features on the discrete grids.
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Fig. 4 Left: our geometry representation. Right: its application to geometric reconstruction. We combine Fourier position encoding and
multi-scale hash encoding for neural geometry representation. We extract the geometry features of the multi-view rendering framework from the
connected layer (inside the dashed box), so that hash encoding is avoided (for reasons of ambiguity) in geometry learning (the diagram for hash
encoding follows Ref. [11]).

final neural geometry representation is expressed as
Φ(θ, encff(x), enc(θh,x)).
3.1.4 Modification of geometry features
A neural rendering-based multi-view reconstruction
framework usually comprises a geometry network
and a color network (see Section 3.2.2). The color
network predicts the RGB value of a given point
with its geometric features, which are previously
extracted from the last layer of the geometry network.
In our geometry representation, due to the fast
learning ability of hash encoding, the hash encoding of
geometric features may encode rendering properties.
As a result, the geometry module and the color
module cannot be readily decoupled. Thus, the
reconstructed geometry may be inconsistent with the
rendered image, as we show in Section 5.3.2. To avoid
this problem, we directly extract the geometry features

Fig. 5 Initial results for NGP and our geometry network with default
initialization.

from the connected layer in the geometry network,
thus ensuring that hash encoding only encodes the
geometry (SDF) of the object: see Fig. 4(a).

3.2 Geometry representation applications

3.2.1 Neural point cloud reconstruction
Like Refs. [2, 13], we use our neural geometry
representation SDF (x) = Φ(θ, encff(x), enc(θh,x))
in the classical point cloud reconstruction task. Given
an input point cloud {pi|pi ∈ R3} with normals
{ni|ni ∈ R3} for an underlying surface S, the neural
point cloud reconstruction task aims to infer a neural
signed distance function of the surface S within
a bounded volume Ω ({pi} ⊂ Ω). As stated in
Eq. (1), the constraints {Gk(·)} encourage {xi} to
be on the surface; the gradient of the implicit surface
at {xi} should be identical with the given normal
{ni}. Specifically, we optimize our neural geometry
representation using the loss terms in Eq. (2):

L = Ldata + λ1Leikonal + λ2Loff (2)
where
Ldata =

∫
Ω0

|Φ(x)|+ λ3(|1− < ∇xΦ(x),n(x)) > |)dx

(3)
Leikonal =

∫
Ω

(‖∇xΦ(x)‖ − 1)2dx (4)

Loff =
∫

Ω\Ω0

ψ(Φ(x), β0)dx (5)
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Here, Ω0 represents the input point set {pi}, and the
function ψ(x, β0) can be formulated as exp(−β0|x|),
β0 � 1, and {λi}4i=1 are weights. The data term
Ldata constrains the implicit function Φ by using
oriented points sampled from the point cloud. The
off-surface term Loff encourages points off the surface
to have non-zero values.
3.2.2 Neural multi-view image reconstruction
Given calibrated multi-view images, neural multi-view
reconstruction decouples geometry and appearance
from them, representing geometry and appearance
by implicit signed distance function (SDF) and a
light field, respectively. In our work, the SDF is
represented by our neural geometry representation
SDF(x) = Φ(θ, encff(x), enc(θh,x)). To optimize the
parameters of our geometry representation, we utilize
the state-of-the-art volume rendering framework
NeuS [1] to render the 2D images based on the
neural implicit SDF and light field, and then minimize
the difference between the rendered images and the
inputs. It should be noted that the volume rendering
framework contains a color network c : R3×S2 → R3,
which encodes the color associated with geometric
properties of a point x ∈ R3 and view direction
v ∈ S2.

We render the proposed geometry representation
with the corresponding light field to 2D images via a
volume rendering framework, and then measure the
difference between the rendered images and the input
images for network supervision. Specifically, given
a pixel from the input image It, we denote the ray
from the center of the camera through this pixel as
{r(s) = o + sv|s > 0}, where o is the center of the
camera and v is the unit direction vector of the ray.
We integrate color along the ray using:

Ĉ(r) =
∫ sf

sn

T (t)σ(r(t))c(r(t),v)dt (6)

M̂(r) =
∫ sf

sn

T (t)σ(r(t))dt (7)

where Ĉ(r) is the output color of this pixel, M̂(r)
is the sum of the transmittance weights along the
camera ray, sn and sf represent near and far bounds of

the ray r respectively. T (t) = exp
(
−
∫ t

sn

σ(r(u))du
)

denotes the accumulated transmittance along the ray,
and c(r(t),v) is the color at the point r(t) along with
the viewing direction v. We formulate σ(r(t)) to
be an unbiased and occlusion-aware function, as in

NeuS [1]. Finally, we use the loss functions in Eq. (8)
to optimize the network parameters of the geometry
module and the color module:

L = Lcolor + αLeikonal + βLmask + γLoff (8)
where α, β, and γ are weights, and the color term
Lcolor is defined as

Lcolor = 1
#R

∑
r∈R
‖M(r)(Ĉ(r)−C(r))‖1 (9)

where
R = R({Ki}, {Ti})

#R =
∑
r∈R

M(r)

Here, R({Ki}, {Ti}) represents the ray set
constructed based on the pixels from all images,
and {Ki}, {Ti} are the intrinsic and extrinsic
parameters of the camera, respectively. C(r) ∈ R3

and M(r) ∈ {0, 1} are ground truth color and object
mask value for the ray r, respectively.

The eikonal term, which regularizes the geometry
representation Φ(θ, encff(x), enc(θh,x)) to be an SDF,
is defined as

Leikonal = 1
#X

∑
p∈X

(‖∇xΦ(p)‖2 − 1)2 (10)

where X is the sample point set on rays of set
R({Ki}, {Ti}), and #X is the number of points in X .

The mask term Lmask is optional, and defined as

Lmask = 1
#R

∑
r∈R

BCE(M̂(r),M(r)) (11)

where BCE is the binary cross entropy loss.
The off-surface loss Loff is defined as

Loff = 1∑
x∈Ω

1
∑
x∈Ω

ψ(Φ(x), β0) (12)

where Ω is the bounding volume of the object. We
uniformly sample 500 points per iteration in Ω, ψ is
explained in Section 3.2.1, and β0 is 100.

4 Datasets and implementation

4.1 Datasets

For point cloud reconstruction, we evaluate our
approach and the baseline methods on the public
FAMOUS dataset released by Points2Surf [34],
with further cases from the Standard 3D Scanning
Repository at http://graphics.stanford.edu/
data/3Dscanrep/ and the online 3D data library
at https://www.turbosquid.com/, giving a total
of 19 models. To show high-quality point cloud

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://www.turbosquid.com/
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reconstruction results, we preprocess the original
meshes by subdividing each to give millions of points
with normals. We these normalize these point clouds
into [−1, 1]3.

For multi-view reconstruction, following Refs. [1, 5,
55], we evaluate our approach and baseline methods
on 15 scenes from the DTU dataset [60]. Each scene
is represented by 49 or 64 images from different
perspectives with corresponding extrinsic parameters
and a foreground mask provided by IDR [5]. The
resolution of each image is 1200 × 1600, and the
intrinsic camera parameters for each scene are
given. This dataset is particularly challenging for
reconstruction algorithms due to its diverse materials,
appearances, geometry, non-Lambertian reflectance,
and thin structures. We also conducted experiments
and evaluations on some challenging scenes from
the low-res set from the BlendedMVS dataset [61],
a large dataset containing multi-view images with
given camera extrinsic and intrinsic parameters. The
selected cases have 31–143 images with a resolution of
768×576 and corresponding masks. Some scenes from
a large multi-view face image dataset, FaceScape [62],
were also evaluated. For each scene, we selected
32 images with 900× 600 resolution; corresponding
camera parameters, and a manually annotated rough
foreground mask were also given.

4.2 Evaluation metrics

For point cloud reconstruction, to extract the fine
geometry, we set the volume resolution to 20483 and
used the marching cubes algorithm [3]. For each
scene, we evaluated the quality of the 3D surface
reconstruction result by calculating the chamfer-L2
distance between the 107 uniformly sampled points
on the reconstructed surface and the ground truth
point cloud:

Dscd(P,Q) = 1
#P

∑
p∈P

min
qt∈Q

‖p− qt‖22 (13)

Dcd(P,Q) = Dscd(P,Q) +Dscd(Q,P ) (14)

where P and Q are two point clouds, respectively.
The non-scale Laplace metric

Dlap({V,E}) =

∑
v∈V

‖
∑

u∈N (v)
ωv,uu− v‖22

ave-edge({V,E}) (15)

measures the non-scale smoothness of a triangle
mesh {V,E}), with vertex and edge sets V and
E respectively. Here, ave-edge({V,E}) represents

the average edge length of the triangle mesh, N (v)
represents the set of neighbors of vertex v, and ωv,u

are area weights of the discrete Laplacian operator
as defined in Ref. [63].

The further metrics

Deik(Φ) = 1
#X

∑
p∈X

(‖∇xΦ(p)‖2 − 1)2 (16)

Dgrad(Φ) = 1
#X

∑
p∈X
‖∇xΦ(p)−∇xΦ(p + δ)‖2

(17)
measure the degree of satisfaction of the eikonal
constraint and the continuity of the gradient of
the neural geometry representation Φ respectively,
X is the uniformly sampled point set in the
bounding volume Ω; it holds 20,000 points in our
experiments. δ = {10−3, 10−3, 10−3} represents a
small displacement.

To assess multi-view image reconstruction results,
we follow Refs. [1, 5, 55, 58] in choose 5123 as the
resolution used in the marching cubes algorithm
to extract the final geometry. We use the formal
surface evaluation script from the DTU dataset [60]
to evaluate 3D surface reconstruction results. We
further use a higher resolution 20483 to show details
of reconstructed results, and we synthesize novel view
images by performing volume or surface rendering
of the reconstructed geometry using the given novel
view parameters. For all methods, to measure the
reconstruction quality of the light field, we report
PSNR using pixels located within the predefined
masks linking the rendered images and the reference
images.

4.3 Implementations

4.3.1 Comparator methods
For the point cloud reconstruction task, we compare
our approach to several state-of-the-art neural point
cloud reconstruction methods, including IGR [8],
SIREN [2], SplinePE [10], EG3D [24], and SAPE [9].
We conducted all experiments using Pytorch [64] on a
GeForce RTX3090 GPU with 24 GB memory except
for SplinePE [10], whose reference implementation
requires a more powerful Tesla V100 GPU with 32
GB memory. For SAPE [9], we refer to the point
cloud reconstruction framework used in IGR [4], and
reproduce it for point cloud reconstruction. For
EG3D [24], we reproduce the second-order gradient
of the tri-plane position encoding operator using
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Pytorch and embed it as a learnable position encoding
in the geometry reconstruction framework. To obtain
a fair comparison with IGR [4], we add a Fourier-
position encoding [8] layer with encoding dimension
6 into their geometry network in the reference
implementation. For simplicity, we denote these three
reproduced methods EG3D*, SAPE*, and IGR(PE),
respectively.

For the multi-view image reconstruction task,
we compare our approach to IDR [5], NeuS [1],
UNISURF [55], VolSDF [54], and NeRF [7]. Again,
we conducted all experiments on a GeForce RTX 3090
GPU using their reference implementations.
4.3.2 Our approach
We use a hash encoding enc(θh,x) with 16 layers, and
the dimension of each grid feature in each layer is 2.
The frequency domain dimension of Fourier position
encoding encff(x) is 6. In addition, we modify the
network initialization strategy used in Ref. [12] and
apply it to initialize our geometry network. Following
NeuS [1], we use a hierarchical sampling strategy
to sample points on rays in the multi-view image
reconstruction task, and then use the mean of the
SDF of sampled points as a threshold to eliminate
various invalid sampled points on each ray.

5 Experiments

5.1 Neural point cloud reconstruction

5.1.1 Architecture
We use a 4-layer MLP with softplus activation
functions to represent the geometry network in all
neural point cloud reconstruction experiments. Each
hidden layer contains 128 units, and the parameters
of the softplus activation functions are set to β = 100.
The input to the first layer is the Fourier-position
encoding of spatial location encff(x), and the input
to the third layer concatenates the hash encoding
of spatial location enc(θh,x) and the output of the
second hidden layer.
5.1.2 Hyperparameters
We trained our neural network for 1500 iterations
with reconstruction loss Eq. (2). Following IGR [4],
on each iteration, we sampled 65,536 points from the
unorganized input 3D point cloud and 65,536 points
from the bounding volume uniformly to optimize our
network. In the objective loss functions in Eq. (2),
we set β0 and weights λ1, λ2, λ3 to 100, 0.1, 0.05,

and 1, respectively.
5.1.3 Point cloud reconstruction results
We assess reconstruction quality using the chamfer
distance metric and record the required training time
for each method. As Table 1 shows, in these selected
challenging cases, our approach achieves significantly
greater accuracy and a 10-time faster training speed.
A detailed qualitative comparison using the Thai
Statue is provided in Fig. 6. For IGR and SIREN,
modifying the activation function and the spatial
position encoding based on the ReLU-MLPs can
improve the accuracy to a certain extent. But for IGR,
the limited expressiveness of sinusoid functions results
in a generally smooth reconstruction result with fewer
details, and slow convergence. SAPE and SplinePE
adopt a novel progressive learning strategy from low-
frequency information to high-frequency information,
which can reconstruct more details, but takes a long
time to train. EG3D introduces great adaptability
for high-frequency and low-frequency information in
the reconstructed objects via the learnable position
encoding: its reconstruction results have rich details.
However, as highlighted in the blue rectangles in
Fig. 6, EG3D is prone to noise in high-frequency
details due to a lack of proper initialization and poor
continuity of the explicit discrete representation. Like
EG3D, our hash-encoded geometry representation
employs a learnable positional encoding with multiple
resolution layers, which is then compressed into a
hash table with learnable features. Our geometry
representation and initialization design give our
approach better performance.

5.2 Neural multi-view image reconstruction

5.2.1 Architecture
In the multi-view image reconstruction task, our
geometry network architecture is similar to that for
point cloud reconstruction, except that 6 MLP layers
are used. In addition, our light field c for color

Table 1 Reconstruction quality and computational cost using
different methods for point cloud reconstruction. CD = chamfer-
L2 distance. T = time. I = number of iterations. M = memory
usage

IGR (PE) SPAE* SplinePE SIREN EG3D* Ours

CD (10−6) 4.41 1.97 2.04 1.48 1.02 0.59

T (min) 18 50 1200 60 150 6

I (102) 500 500 200 400 500 15

M (GB) 6.6 11.31 6.8 13 6.2 6.0
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Fig. 6 Example results using different neural point cloud reconstruction approaches. GT = ground truth. Yellow boxes show close-ups to
better appreciate detailed differences. Our method clearly provides superior reproduction accuracy. Blue boxes highlight various anomalous
reconstruction results.

prediction is modeled using an MLP with 4 hidden
layers, each containing 256 units. The inputs for
the light field are the Fourier positional encoding
of view direction v, gradient n, and the geometry
feature vector output from the connected layer of the
geometry network.
5.2.2 Hyperparameters
Here, we set the weights α, β, and γ in Eq. (8) to
0.1, 0.1, and 5× 10−4, respectively.
5.2.3 Multi-view image reconstruction results
In the multi-view image reconstruction task, for each
scene, IDR and NeuS reconstruct the foreground
object only, with a given mask, while NeRF,
UNISURF, and VolSDF reconstruct the entire 3D
scene. We evaluate reconstruction quality using the
chamfer distance metric and the DTU dataset. We
refer directly to existing results for IDR, NeuS, NeRF,
UNISURF, and VolSDF, which were reported in
the original papers [1, 54]. Scores are reported in
Table 2, and show that our approach outperforms
other baseline methods for these selected scenes. In
addition, we compare the time and memory consumed
in training by our approach and baseline methods in
Table 3: it fairly and comprehensively shows that our
approach requires less memory and training is faster.

We also conducted qualitative comparisons on the
DTU and BlendedMVS datasets: see Fig. 7. NeuS,
IDR, VolSDF, and UNISURF perform poorly in
textureless areas of scene DTU40. Because of the
lack of direct constraints on volume density, the
geometry reconstructed by NeRF is relatively rough,
with obvious noise. Compared to the other baselines,
our approach has the ability to reconstruct more
geometric detail, which is evident in the results for
scenes DTU24, bmvs-clock and bmvs-stone.

We further compared our approach to NeuS [1]
on scene DTU106. Note how the bird’s feathers in
Fig. 8 show better high-frequency detail consistent
with the multi-view images when reconstructed by
our method.
5.2.4 Novel view synthesis results
Novel view synthesis is a direct application of
our neural multi-view image reconstruction frame-
work: after using the existing neural volume
rendering technique, we can synthesize a new image
corresponding to the new view. PSNR values
between reference images from the DTU dataset and
synthesized images rendered from the reconstructed
light field (for the foreground mask region only)
are given in Table 2. They indicate that the quality of
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Table 2 Multi-view reconstruction metrics for various methods, using from the DTU dataset

ScanID
IDR NeuS UNISURF VolSDF NeRF Our method

CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑
scan24 1.63 23.29 0.83 26.73 1.32 25.51 1.14 24.16 1.90 26.02 0.64 29.67
scan37 1.87 21.36 0.98 23.42 1.36 23.26 1.26 21.29 1.60 24.78 0.90 24.23
scan40 0.63 24.39 0.56 26.32 1.72 25.79 0.81 24.93 1.85 27.83 0.40 28.86
scan55 0.48 22.96 0.37 24.92 0.44 25.53 0.49 22.78 0.58 26.36 0.35 29.86
scan63 1.04 23.22 1.13 30.49 1.35 28.12 1.25 28.99 2.28 31.48 1.04 30.97
scan65 0.79 23.94 0.59 32.55 0.79 30.38 0.70 28.68 1.27 31.92 0.72 32.99
scan69 0.77 20.34 0.60 29.03 0.80 28.78 0.72 27.67 1.47 30.46 0.71 28.53
scan83 1.33 21.87 1.45 33.51 1.49 30.78 1.29 31.50 1.67 33.31 1.39 33.45
scan97 1.16 22.95 0.95 27.65 1.37 25.93 1.18 22.57 2.05 26.43 0.90 27.49
scan105 0.76 22.71 0.78 31.20 0.89 30.83 0.70 30.56 1.07 31.07 0.76 31.63
scan106 0.67 22.81 0.52 32.13 0.59 30.68 0.66 29.50 0.88 32.26 0.47 33.53
scan110 0.90 21.26 1.43 28.85 1.47 29.03 1.08 27.11 2.53 28.19 1.01 29.77
scan114 0.42 25.35 0.36 28.42 0.46 28.06 0.42 26.60 1.06 29.08 0.36 29.40
scan118 0.51 23.54 0.45 34.97 0.59 32.31 0.61 28.60 1.15 34.86 0.49 36.58
scan122 0.53 27.98 0.45 34.81 0.62 33.03 0.55 31.60 0.96 32.95 0.57 35.91
Mean 0.90 23.20 0.77 29.66 1.02 28.53 0.86 27.11 1.49 29.80 0.72 30.85

Table 3 Computational costs of different methods of multi-view
image reconstruction

IDR NeuS UNISURF VolSDF NeRF Ours

Time (h) 5.2 7.2 21 9 9.1 1.8

Rays 2048 512 1024 1024 1024 512

Iterations (103) 128 300 400 128 200 120

Memory (GB) 6.5 7 6 13.8 8 5

our reconstructed images are significantly better than
those of other neural multi-view image reconstruction

methods. Our results are also better than the results
from the state-of-the-art novel view synthesis method,
NeRF.

Focusing on novel view synthesis, we visually
compare results of our approach to those of NeuS
and NeRF for scene DTU55 (rabbit) in Fig. 9. We
observe that our results are more realistic and detailed
than those of NeuS, and even better than NeRF’s, as
shown by the fine-grained texture. In some places,
such as for the yellow light in the background, NeRF’s

Fig. 7 Example reconstruction results provided by various methods, using multi-view images from the DTU and MVS-blender datasets.
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Fig. 8 Multi-view image reconstruction of DTU106 by NeuS and
our method. Left, right: renderings of the reconstructed light field
and geometry.

output displays evident artifacts due to incorrect
learned geometry, while our approach still works well.
In addition, our training time is 1/5 of that needed
by NeRF.

5.3 Ablation study

5.3.1 Network structure for geometry representation
We next conduct a thorough ablation analysis for
the effectiveness of our geometry representation. As
explained in Section 3.1, the geometry representation,
which only uses learnable hash features as a positional
encoding (NGP), is unable to satisfy the constraints
of the eikonal equation well under weak supervision,
and it is prone to providing a non-smooth solution
to the point cloud reconstruction and multi-view
image reconstruction tasks. Table 4 gives comparative
numerical results for network structure design; they
indicate that NGP’s fitting accuracy to the point
cloud is very high, but the reconstructed surface
is very rough. Specifically, the non-scale Laplace
metric Dlap({Vori, Eori}) of original mesh is 0.132,

Table 4 Ablation of geometry representation network structure:
processed point cloud datasets (contained 19 original models before
upsampling). S: original point cloud. T: reconstructed mesh.
Dscd(S, T) and Dscd(T, S) values are to be multiplied by 10−7 and
10−4, respectively

Dscd(S, T) ↓ Dscd(T, S) ↓ Dlap Deik ↓ Dgrad ↓

NGP 4.060 1.640 0.166 0.023 0.27

Ours (no init) 3.962 1.630 0.145 0.009 0.11

Ours (full) 3.242 0.758 0.129 0.002 0.06

is the closest to the result reconstructed by our
method. In particular, with regard to the continuous
metric of the neural implicit representation in the
whole space, the eikonal constraint Deik and the
spatial gradient continuity Dgrad of NGP are both
poor. The reason for the discontinuity of the spatial
gradient of the geometry representation is that the
features exist on discontinuous explicit grids, as
shown in Fig. 3. To alleviate the above issue, we
introduce Fourier position encoding [8] as input to
the first layer of the geometry network to encode
3D position information in space, improving the
continuity of geometry representation. We further
use the network initialization from SAL [12] in
our network to better satisfy eikonal constraints.
Figures 10 and 11 show how using Fourier positional
encoding and the learnable hash positional encoding
together in our geometry representation results in
smoother reconstruction results.
5.3.2 Framework for neural volume rendering
In most existing neural rendering frameworks, such as
Refs. [1, 5, 7], estimating the light field of each input
3D point p ∈ R3 requires the geometry feature and

Fig. 9 Comparison of different methods on novel view synthesis. It shows the continuous interpolation of randomly selected two views to
synthesize an unknown view image for DTU55. From the first column to the sixth column are the synthesis image of different novel views. The
last column is a partial enlargement of the blue box in the first column of images.
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Fig. 10 Ablation study of geometry network designs for point
cloud reconstruction. Left to right: ground truth, baseline with
hash encoding (NGP), Fourier position encoding added, properly
initialization also added (our full method). Above: zero level set
extracted by marching cubes. Below: slice view of SDF, with eikonal
constraints Deik = 0.012, 0.006, and 0.00091 from columns 2 to 4,
and values of Dgrad = 0.22, 0.10, 0.005. Note that the NGP result
has a double-layer structure.

Fig. 11 Improvements in multi-view image reconstruction by using
Fourier positional encoding and learnable hash positional encoding.

density, which are generated by the geometry network.
Usually, the geometry feature is a part of the output of
the last network layer. However, it is easy for the hash
encoding to participate in learning color attributes in
the multi-view geometry reconstruction task, which
makes optimization of geometric density ambiguous.
The main reasons are its strong expressiveness and
speed of learning. As indicated in Table 5, encoding
only geometric properties can improve geometry
reconstruction and quality of rendering. Thus, in our
geometry representation, we extract the geometry
feature from the connected layer of our geometry
network, where the hash encoding is exclusively
used to represent the geometry (SDF) of objects.
This avoids ambiguity and achieves more consistent
geometric results with multi-view images, so our
reconstructed geometry is in better agreement with
the rendered image, as shown in Fig. 12.

Table 5 Assessment of whether hash encoding only encodes geometry
(SDF), using multi-view reconstruction on the DTU dataset. Ours−
and Ours extract the geometry feature without modification and
modified as per our design, respectively

NGP Ours− Ours
CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑

Mean 0.94 29.45 0.86 29.89 0.72 30.85

Fig. 12 Effect of location of geometric features in the rendering
module of the neural multi-view framework. Left: reference image.
Center: usual feature extraction location. Right: result when changing
the extraction location to the connected layer.

5.3.3 Initialization of the geometry network
In neural geometry reconstruction, reasonable
initialization plays a critical role in optimization
of the network, as discussed by the authors of
NeuS and IDR. Table 4 shows that initialization
of the geometry representation is a crucial module.
Figure 13 shows how using a geometry network
without proper initialization leads to poor results
in complex areas, e.g., with highlights or rapidly
changing geometry.

Fig. 13 Benefit of initialization strategy on multi-view reconstruction.
Left: reference. Center: with. Right: without.

6 Discussion

Although our method moderately improves the
reconstruction accuracy of textureless regions for the
neural multi-view reconstruction tasks, it still needs
further improvement to better cope with shadows
and highlights. This is mainly due to the fact that
the rendering representation cannot be perfectly
decoupled from the geometry representation. Thus,
it is crucial to design a more powerful rendering
representation, and decoupling method to solve
these problems; see Refs. [65, 66]. In addition,
it is worth exploring how applying our ideas to
dynamic geometry reconstruction and single-image
based geometry reconstruction can improve speed
and precision; see Refs. [67–69].

7 Conclusions

In this work, we have proposed a hash encoding-
based neural geometry representation, and applied it
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to recovery of the surface’s signed distance function
from an input point clouds or multi-view images.
In our geometry network, we further combine our
method with low-dimensional Fourier positional
encoding and network initialization from SAL [12].
Meanwhile, for multi-view reconstruction, we redesign
extraction of geometry features to avoid confusion
between geometries and color values. Extensive
experimental results have demonstrated that our
method can achieve at least 10 times speedup for point
cloud-based surface reconstruction, and significantly
improve the accuracy and efficiency of multi-view
reconstruction.
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