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Abstract Template matching is a fundamental task
in computer vision and has been studied for decades.
It plays an essential role in manufacturing industry
for estimating the poses of different parts, facilitating
downstream tasks such as robotic grasping. Existing
methods fail when the template and source images
have different modalities, cluttered backgrounds, or
weak textures. They also rarely consider geometric
transformations via homographies, which commonly
exist even for planar industrial parts. To tackle
the challenges, we propose an accurate template
matching method based on differentiable coarse-to-
fine correspondence refinement. We use an edge-aware
module to overcome the domain gap between the
mask template and the grayscale image, allowing
robust matching. An initial warp is estimated using
coarse correspondences based on novel structure-aware
information provided by transformers. This initial
alignment is passed to a refinement network using
references and aligned images to obtain sub-pixel
level correspondences which are used to give the
final geometric transformation. Extensive evaluation
shows that our method to be significantly better than
state-of-the-art methods and baselines, providing good
generalization ability and visually plausible results even
on unseen real data.
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1 Introduction

Template matching aims to find given templates
in captured images (source images), and is a
fundamental technique for many computer vision
tasks, including object detection, visual localization,
pose estimation, etc. Numerous approaches have
been proposed to overcome the difficulties and
challenges in template matching, and the problem
may seem to be solved. Nevertheless, this problem is
a critical step in automatic processing on industrial
lines, and in real scenarios, various challenges
remain, including domain gap, size variance, and
pose differences between template and source image.
The above challenges motivate our approach of
accurate template matching based on differentiable
correspondence refinement.

Classic methods of template matching [1–4]
generally calculate a similarity score between the
template and a candidate image patch. Linemod-2D
[1] utilizes gradient spreading and gradient orientation
similarity measures, achieving real-time detection

Fig. 1 Our template matching method. (a) Template T and image I.
(b) Coarse matching. (c) Matching refinement. (d) Template warped
to the image using the estimated geometric transformation.
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with high accuracy and robustness for untextured
objects and is widely used in industry. However, its
performance degrades significantly in the presence of
cluttered backgrounds, image blurring, or non-rigid
deformation between template and source; these are
all common in real-world applications.

Deep learning has shown great potential to
overcome such distractors, providing significant
improvement for many similar tasks. Related work
[5–8] has designed new network structures or
similarity metrics based on deep features to improve
the robustness of template matching. However, these
works all aim to determine the bounding box of
the target object, rather than accurate pixel-level
matching and pose of the template. Bounding boxes
are insufficient for tasks requiring high precision: for
example, robot manipulators need a precise object
pose to decide the best grasping direction. Rocco
et al. [9] estimate such transformations, but their
method fails in cross-modal scenarios where templates
are mask images and observed images are in color or
grayscale.

Thus, our work considers the design of an automatic
pipeline for determining a high-quality transformation
between the template mask and source image. To
allow for the domain difference between a template
mask and a grayscale image, an edge translation
module is used to convert them to the same modality.
To achieve a high-quality transformation estimate,
we propose a novel structure-aware outlier rejection
approach based on coarse-to-fine correspondence
refinement. As a result, the proposed method not
only tolerates different modalities in matching, but
also deals with occlusion to some degree as well as
complex deformations.

In feature correspondence matching, many recent
works [10–13] have made remarkable progress in deep
feature matching; e.g., LoFTR [13] uses transformers
for this task and omits the feature detection step.
However, there are limitations when applying LoFTR
directly to template matching problems. Firstly,
it tends to fail on cross-modal images, when mask
images and grayscale images lie in very different in
feature spaces. Secondly, the structural consistency
of templates and images is not exploited, yet it is
critical for accurate matching. More importantly,
LoFTR cannot provide sufficiently accurate and
reliable correspondences for untextured regions, or

when large deformations exist, as in the cross-modal
template matching problem.

Motivated by the challenges, we propose a
differentiable structure-aware template matching
pipeline. To address the modality difference between
the template and the source image, we use a
translation module to convert both of them to edge
maps. We believe that structural information is
particularly important for fast and robust template
matching: the template mask has a specific structure
(shape) and correct correspondences between the
template and the image should satisfy a specific
transformation relationship. Therefore, we fully
exploit template contour information and consider
compatibility of angles and distances between
correspondences. Specifically, we apply three
strategies in our model to better use the structural
information of templates and images. Firstly, in order
to focus the network on valid areas, we only sample
contour regions of the template as the input. Then the
transformer [14] using relative positional encoding
[15] is used to explicitly capture relative distance
information. A method based on distance-and-angle
consistency rejects soft outliers.

In pursuit of high-quality template matches, the
transformation between the template and the source
image is estimated in a coarse-to-fine style. In
the coarse-level stage, we use transformers [14] to
encode local features extracted by the convolutional
backbone and then establish feature correspondences
using a differentiable matching layer. By assigning
confidences to these coarse-level matches based on
feature similarity and spatial consistency, we obtain
a coarse estimate of the geometric transformation,
a homography. This coarse matching overcomes
differences in scale and large deformations between
the source and template image, which is critical for
accurate matching at the fine level. We apply the
coarse spatial transform [16] to coarsely align the
source image, which then provides an updated source
image for the fine level. A refinement module is used
at the fine-level to obtain global semantic features
and to aggregate features at different scales. We
then adopt a correlation-based approach to determine
accurate dense matches at the sub-pixel level. These
final correspondences are more accurate, and no
outlier rejection is needed. All correspondences are
used to calculate the final homography. Compared



Learning accurate template matching with differentiable coarse-to-fine correspondence refinement 311

to other recent matching methods [10–13], our
correspondences have many fewer outliers, allowing
our method to provide robust and accurate template
matching without relying on RANSAC [17].

We use a linear transformer [18] in our pipeline
to reduce computational complexity. Farthest point
sampling (FPS) is applied to the template image to
reduce the input data while retaining its structure.
To solve the problem of insufficient training data,
GauGAN [19] is adopted to generate synthetic images
of industrial parts for network training.

We have evaluated the proposed method on three
datasets, including two newly-collected industrial
datasets and a dataset based on COCO [20]. Our
approach provides significantly improved homography
estimates compared to the best baseline, as we show
later.

Our main contributions can be summarized as
• An accurate template matching method, robust

in challenging scenarios including cross-modality
images, cluttered backgrounds, and untextured
objects.

• A structure-aware, fully differentiable, template
matching pipeline, avoiding the use of RANSAC
found in other feature matching approaches; it
achieves state-of-the-art accuracy.

• Two new datasets with accurate ground truth, of
potential benefit to future research on learning-
based template matching.

2 Related work

2.1 Template matching

Traditional methods of template matching mostly
rely on comparing similarities and distances between
the template and candidate image patch, using
such approaches as sum of squared differences
(SSD), normalized cross-correlation (NCC), sum of
absolute differences (SAD), gradient-based measures,
and so on. Linemod-2D and the generalized
Hough transform (GHT) [2] are widely applied in
industry. Such approaches degrade significantly in
the presence of cluttered backgrounds, image blurring,
or large deformations. Deep learning-based template
matching algorithms [5–9] can handle more complex
deformations between the template and source image.
They usually adopt trainable layers with parameters
to mimic the functionality of template matching.

Feature encoding layers are assumed to extract
the features from both inputs; these deep feature
encoders dramatically improve template matching
results. While these methods still rely on the rich
textures of input images. However, deep learning
methods are prone to fail with cross-modal input and
are typically unable to provide an accurate pose for
the target object.

Motivated by these challenges, our method predicts
a homography transformation, and uses an edge-
aware module to eliminate the domain gap between
the mask template and the grayscale image for robust
matching.

2.2 Homography estimation

Classical homography estimation methods usually
comprise three steps: keypoint detection (using, e.g.,
SIFT [21], SURF [22], or ORB [23]), feature matching
(feature correlation), and robust homography
estimation (using, e.g., RANSAC [17] or MAGSAC
[24]). However, RANSAC-like approaches are non-
differentiable. Furthermore, differentiable RANSAC
algorithms [25, 26] hinder generalization to other
datasets. Other methods, such as the seminal Lucas–
Kanade algorithm [27], can directly estimate the
homography matrix without detecting features. The
first deep learning-based homography estimation
model was proposed in Ref. [28]. Its network
regresses the four corner displacement vectors of the
source image in a supervised manner and yields the
homography using a direct linear transform (DLT)
[29]. Many unsupervised approaches [30–32] have
been proposed to minimize the pixel-wise photometric
error or feature difference between the template and
source image.

These methods are likely to fail under large
viewpoint change, when textures are lacking, and
for differing input modalities. Our work uses the
template’s structural (shape) properties and samples,
valid region features in the template to learn the
correlation with the source image. An edge-aware
module is used to translate the source image and
template mask to bypass the effect of modality
differences between two inputs.

2.3 Feature matching

Before the era of deep learning, hand-crafted local
features such as SIFT, SURF, and ORB were
widely adopted. Deep learning-based methods [33–35]
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significantly improve the feature representation,
especially in the cases of significant viewpoint and
illumination changes. SuperPoint [33], D2-Net [34],
and ASLFeat [36] propose joint learning of feature
descriptors and detectors; most computations of
the two tasks are shared for fast inferencing using
a unified framework. A significant improvement in
feature matching was achieved by SuperGlue [12],
which accepts two sets of keypoints with their
descriptors, and updates their representations with
an attentional graph neural network (GNN). Drawing
inspiration from GNN, more methods [37–40] further
improve the accuracy and efficiency of graph-based
feature matching. Recently, several works [11, 13, 41]
have attempted to adopt transformers to model the
relationship between features and provide impressive
results. In this work, we build on the success of
transformers and learn accurate template matching
with coarse-to-fine correspondence refinement.

2.4 Vision transformers

Transformers [14] were initially proposed in natural
language processing (NLP). Vision transformers [42]
have attracted attention due to their simplicity and
computational efficiency for image sequence modeling.
Many variants [18, 43–45] have been proposed for
more efficient message passing. In our work, we utilize
self and cross attention to establish larger receptive
fields and capture structural information from the
inputs. In particular, linear transformers [18] with
relative positional encoding are adopted to ensure
low computational costs and more efficient message
passing.

3 Overview

In industrial template matching, it is usual for
the template to be represented as a binary mask
indicating only the shape of the source object.
In contrast, the source image is often grayscale.
Thus, we first use an edge-aware translation
module before feature extraction to eliminate
the domain difference between these two images:
see Section 4.2.1. We propose a differentiable
feature extraction and aggregation network with
transformers in Sections 4.2.2 and 4.2.3. The
whole matching pipeline is performed in a coarse-
to-fine style. At the coarse level, to estimate the
homography from matched features, we combine

spatial compatibility and feature similarity for soft
outlier filtering: see Section 4.3; this is RANSAC-free
and differentiable. A coarse homography is obtained
from the coarse correspondences. Then, we apply
the spatial transform [16] to the source image to
provide a coarsely-aligned image. At the fine-level, we
combine global semantics and local features to achieve
sub-pixel dense matching and obtain an accurate
homography estimate, as explained in Section 4.4.
The final correspondences are precise between the
template mask and source image, ensuring a plausible
template matching result. Inspired by LoFTR, we
adopt a coarse-to-fine matching pipeline, as shown
in Fig. 2. Note that unlike LoFTR, our approach
takes full advantage of the geometric properties
of the template and spatial consistency between
the template and the object. In addition, our coarse-
to-fine matching process is fully differentiable via
a spatial transform connection, while LoFTR’s
coarse-to-fine strategy only enhances correspondence
accuracy and is not fully differentiable.

4 Method

4.1 Task

Given a binary template image T and a source search
image I, our method aims to estimate a homography
transformation between T and I to provide the precise
position and pose of the object in the image I. For
applications whose scenes have multiple objects and
multiple candidate templates, the coarse stage of our
method may be performed first to estimate the initial
homography for selecting the correct template for
each object. We then use the refinement stage to
obtain the precise position and pose.

4.2 Feature extraction and aggregations
4.2.1 Edge translation
Unlike some other template matching and
homography estimation tasks, the case considered
here has a domain difference between the template T
and source image I. The former is a binary mask,
and the latter is a grayscale image; their features
are too different to use common image matching
approaches. Grayscale images may furthermore
exhibit strong reflections if the material is glossy.
Matching based on photometric similarity are not
applicable in such cases. Firstly, to ensure domain
consistency of the template and source image, and
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Fig. 2 Pipeline: the proposed method has five steps. (1) Translation module: convert the source image I and template mask T into edge
maps (Section 4.2.1). (2) Feature extraction: extract coarse-level feature maps and fine-level feature maps (Section 4.2.2). (3) Coarse matching:
two sets of coarse-level features are aggregated by interleaving self and cross attention layers to provide the initial homography transformation
Hc (Section 4.3). (4) Fine-level matching: global and local features are fused to give the set of sub-pixel level matches Mf (Section 4.4.1).
(5) Homography estimation (Section 4.4.2).

to avoid complications from reflections, we adopt a
translation network to convert both into edge maps.
In this step, we adopt PiDiNet [46], a lightweight and
robust edge detector, to compute the edge maps. This
conversion is crucial to permit later feature matching.
4.2.2 Feature extraction
We use a standard convolutional architecture similar
to SuperPoint to extract features at different scales
from both images after translation. SuperPoint has
a VGG-style [47] encoder trained by self-supervision
and shows leading performance in many vision tasks
[12, 48, 49]. We only retain the encoder architecture
of SuperPoint as our local feature extraction network.
Given an input image of size H × W , our feature
extraction networks produce feature maps at four

resolutions; we save the second layer feature map
(F̂ ∈ RH/2×W/2×D) and the last layer feature map
(F̃ ∈ RH/8×W/8×C). Thus, F̃T and F̃ I are the coarse-
level features, F̂T and F̂ I are the fine-level features.
4.2.3 Feature aggregation with transformers
Since edge images are not richly textured, the
features extracted by the local convolutional neural
network are inadequate for robust feature matching.
Structural and geometric features are more significant
[50]. Therefore, we adopt transformer blocks [14] to
encode F̃T and F̃ I to produce more global, position-
aware features denoted F̃Ttr and F̃ Itr. A transformer
block consists of a self-attention layer to aggregate the
global context and a cross-attention layer to exchange
information between two feature sets.
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Patch sampling. Unlike previous work [11, 13]
which passes all patches of the image into the
transformer module, we only keep meaningful feature
map patches in F̃T . Specifically, we use furthest
point sampling [51] to sample Np patches in which
edge pixels exist, both to reduce computational cost
and increase the efficiency of message passing. F̃T
henceforth denotes the feature map after sampling.
We do not drop any patches of the source image
I: every location in I could be a potential match.
We perform experiments to show the effect of
patch sampling with various numbers of patches in
Section 5.5.1.

Positional encoding. In transformers, all inputs are
fed in simultaneously, and furthermore, do not encode
any information concerning input ordering (unlike
RNNs). We must encode positional information for
the tokens input into transformers in order to make
available the order of the sequences. Previous feature
matching work using transformers [11, 13] uses a
2D extension of the standard absolute positional
encoding, following DETR [42]. In contrast, Refs. [15,
52] showed that relative positional encoding is a better
way of capturing the positional relationships between
input tokens. We employ a rotary position embedding
[53] proposed in natural language processing for
position encoding which has recently been successfully
adopted for point cloud processing [52]. We apply it
to 2D images as it can express a relative position in
a form like absolute position encoding. Furthermore,
it can be perfectly incorporated in linear attention
[18] at almost no extra cost. In order to obtain the
relative positional relationship of the local features
between the template and image, we thus use relative
positional encoding in a linear transformer. For a
given 2D location n = (x, y) ∈ R2, and its feature
fn ∈ RC , the relative positional encoding is defined as

P(n, fn) = Θ(n)fn =


M1

. . .
MC/4

 fn
where

Mk =


cosxθk −sinxθk 0 0
sinxθk cosxθk 0 0

0 0 cosyθk −sinyθk
0 0 sinyθk cosyθk


θk = 1

100004(k−1)/C , k ∈ [1, · · ·, C/4]

and C is the number of feature channels.

Rotary position embedding satisfies:
(Θ(m)fm)T (Θ(n)fn) = fTmΘ(n−m)fn (1)

and Θ(n−m) = Θ(m)TΘ(n). Thus, relative position
information between features fn and fm can be
explicitly revealed by taking the dot product in
the attention layer. This position encoding is more
suitable in our application than absolute positional
encoding, since relative positional relationships
between template T and image I is crucial. Θ(·)
is an orthogonal operation on features, which means
that it only changes the directions but not the
lengths of feature vectors. Therefore, rotary position
embedding stabilizes and accelerates the training
process [52], facilitating downstream feature matching
tasks. An experimental comparison to absolute
positional encoding can be found in Section 5.5.1.

Self-attention and cross-attention layers. The key
to the transformer model is attention. We use self
and cross attention alternately in our pipeline. The
input vectors for an attention layer are query vector
Q, key vector K, and value V , and a basic attention
layer is given by

Attention(Q,K, V ) = Softmax(QKT )V
Suppose Q and K have length N , and their feature
dimensionality is C. Then the computational cost
of the transformer grows as the square of the length
of the input. The length of the source image T ’s
input token makes a basic version of the transformer

Fig. 3 Architecture of encoder and attention layers. Left: encoder.
Right: squared (O(N2) complexity) attention layer and linear (O(N)
complexity) attention layer.
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impractical for local feature matching. Following
Ref. [13], we adopt a more efficient variant of the
attention layer, linear transformer [18]. We use a
kernel function sim(Q,K) = φ(Q)φ(K)T to replace
the softmax calculation, where φ(·) = elu(·) + 1. The
computational cost is reduced from O(N2) to O(N)
when C � N . Following RoFormer [53], we do not
inject rotary position embedding in the denominator
to avoid the risk of dividing by zero. Differing from
Refs. [52, 53] as well as query Q and key K, the
value V is also multiplied by Θ(·), since we consider
the position information to be important auxiliary
information for value V . Experiments justifying this
approach are described in Section 5.5.1.

Overall, each token in a linear transformer with
relative positional encoding is given by

Attention(Q,K, V )m =∑N
n=1

(
Θ(m)φ(qm)

)T (Θ(n)φ(kn)
)(

Θ(n)vn
)∑N

n=1 φ(qm)Tφ(kn)
4.3 Coarse matching

4.3.1 Establishing coarse matches
We establish coarse matches using the transformed
features F̃Ttr and F̃ Itr. An optimal transport (OT)
layer is adopted as our differentiable matching layer.
We first calculate a score matrix S using dot-product
similarity of the transformed features:

S(i, j) =
〈
F̃Ttr (i), F̃ Itr(j)

〉
This score matrix S is used as the cost matrix in a
partial assignment problem, following Refs. [12, 13].
This optimization problem can be efficiently solved
with the Sinkhorn algorithm [54] to obtain the
confidence assignment matrix C.

To obtain more reliable matches, the mutual nearest
neighbor (MNN) criterion is enforced, and only
matching pairs with confidence values higher than a
threshold θc are preserved. The set of coarse-level
matches Mc is thus:
Mc = { (i, j) | ∀ (i, j) ∈ MNN(C), C(i, j) > θc}

Another matching layer approach is based on dual-
softmax (DS) [55, 56]. It applies softmax to both
dimensions of S to get the probability of a mutual
nearest neighbor match. A comparison of OT and
DS methods can be found in Section 5.5.1.
4.3.2 Confidence weights based on spatial consistency
The differentiable matching layer provides a tentative
match setMc based on feature dot-product similarity.

In this way, two irrelevant points may be regarded
as a matching pair due to similarity of appearance.
To prevent this, we add a new constraint, based
on the observation that template matching, has
an essential property: correct correspondences
(inliers) have similar geometric transformations, while
transformations of outliers are random.

RANSAC and its variants [57, 58] are widely
adopted for outlier rejection. However, such methods
are slow to converge and may fail in the cases of
high outlier ratios. In contrast, spectral matching
(SM) [59] and its variants [60–63] significantly
improve results for rigid point cloud registration, by
constructing a compatibility graph which preserves
angle or distance invariance between point pairs. In
contrast, our model assumes a non-rigid deformation
in which pairwise distances between far points are
more likely to vary than between closer ones. We thus
extend SM and propose a method based on distance-
and-angle consistency for non-rigid deformation
outlier rejection.

Let β denote the distance compatibility term
measuring the change in lengths of matched pairs.
To allow for scale differences, we first normalize the
distances between matching points on the template
and image separately. Then for two coarse matches
a = (i, i′) and b = (j, j′), β is defined as

β(a,b) =
[
1− (dij/di′j′ − 1)2

/σ2
d

]
+

where dij is the normalized pairwise distance between
i and j, [·]+ means max(·, 0), and σd is a distance
parameter controlling sensitivity to changes in relative
length. Changes in directions are also penalized using
a triplet-wise angle. Inspired by Ref. [64], we compute
angular compatibility from triplets of coarse feature
points. For a matching pair a = (i, j) with positions
pi and pj , we first select the k nearest neighbors Ni of
pi. For each px ∈ Ni, the angle cxi,j = ](4i,x,4i,j),
where4i,j = pi−pj . To improve robustness, we select
the maximum value cij among the k nearest neighbors
as the angle property for a matching pair (i, j). As
for distance compatibility β, we now formulate the
angular compatibility α as

α(a,b) =
[
1− (cij − ci′j′)2

/σ2
α

]
+

where σα is the angular parameter controlling the
sensitivity to changes inn angle. Figure 4 illustrates
the computation of distance and angular consistency.

The final spatial compatibility of matches a and b
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Fig. 4 Given two matching pairs a = (i, i′) and b = (j, j′),
we calculate both their distance compatibility and their angular
compatibility. Green nodes represent k-nearest neighbors.

is defined as
E(a, b) = λcα(a,b) + (1− λc)β(a,b)

where λc is a control weight. E(a, b) is large only
if the two correspondences a and b are highly
spatially compatible. Following Refs. [59, 60], the
leading eigenvector e of the compatibility matrix E
is regarded as the inlier probability of the matches.
We use the power iteration algorithm [65] to compute
the leading eigenvector e ∈ Rk of the matrix E.
4.3.3 Initial homography estimation
Naturally, the inlier probability e together with
feature score s must be combined to give the final
overall inlier probability, where s is the corresponding
element of the feature confidence matrix C. We
simply compute wk = sk · ek: intuitively, wk takes
into account how similar the feature descriptors are
(sk) and how much the spatial arrangement is changed
(ek) for a matching pair k. Finally, we use the
confidence wk as a weight to estimate the homography
transformation Hc, using the DLT formulation [29].
A weighted least squares solution is found to the
linear system. The matches-with-confidence make our
coarse-to-fine network differentiable and RANSAC-
free, enabling end-to-end training. The effectiveness
of confidence weights is explored in Section 5.5.1.
4.3.4 Coarse-level training losses
Following Ref. [13], we use negative log-likelihood
loss over the confidence matrix C returned by either
the optimal transport layer or the dual-softmax
operation to supervise the coarse-level network. The
ground-truth coarse matches Mgt

c are estimated
from the ground-truth relative transformations
(homographies). Using an optimal transport layer,

the loss is
Lc =− 1∣∣∣Mgt

c

∣∣∣
∑

(i,j)∈Mgt
c

log(i, j)

− 1
|I|

∑
(i,j)∈I

log(i, j)

where (i, j) ∈ I means that i or j does not have
any reprojection in the other image. With the dual-
softmax operation, we minimize the negative log-
likelihood loss in Mgt

c :

Lc = − 1∣∣∣Mgt
c

∣∣∣
∑

(i,j)∈Mgt
c

log(i, j)

4.4 Fine-level matching

A coarse-to-fine scheme is adopted in our pipeline, a
scheme which has been successfully applied in many
vision tasks [10, 13, 66–69]. We apply the obtained
coarse homography Hc to the source image I to
generate a coarsely-aligned image Iw. We roughly
align the two images, then use a refinement network to
get sub-pixel accurate matches, and finally, a better-
estimated transformation matrix is produced from
the new matches.
4.4.1 Fine-level matching network
For a given pair of coarsely aligned images (warped
image Iw and template T ), sub-pixel level matches
are calculated by our fine-level matching network
to further enhance the initial alignment. Although
Refs. [10, 56] claim that local features significantly
improve matching accuracy in feature matching when
refining, we find that local features are insufficient to
achieve robust and accurate matching in untextured
cases. Instead, we combine the global transformer and
local transformer for feature aggregation to improve
fine-level matching, as shown in Fig. 2.

The global transformer is first adopted to aggregate
coarse-level features as priors. In detail, for
every sampled patch pair (̃i, j̃) at the same
location on template T and warped image Iw, the
corresponding coarse-level features are denoted F̃T (̃i)
and F̃ Iw(j̃), respectively. A global transformer
module with Nf self- and cross-attention layers
operates on these coarse-level features to produce
transformed feature (F̃Ttr (̃i), F̃ Iw

tr (j̃)). Note that,
for efficiency we only consider those patches which
coarse matching sampled. To deeply integrate
global and local features, F̃Ttr (̃i) and F̃ Iw

tr (j̃) are
upsampled and concatenated with corresponding local
(fine-level) features F̂T (̃i) and F̂ Iw(j̃), respectively.
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Subsequently, the concatenated features are used
as inputs to a 2-layer MLP to reduce the channel
dimensionality to the same as for the original local
features, yielding the fused features. The effectiveness
of this module is demonstrated in Section 5.5.1.

For every patch pair (̃i, j̃), we then locate their
all finer positions (i,j) where i lies on the edge. As
fused feature maps, we crop two sets of local windows
of size w × w centered at (i, j) respectively. A local
transformer module operates Nf times within each
window to generate the final features (FT (i), F Iw(j)).
Following Refs. [13, 49], the center vector of FT (i) is
correlated with all vectors in F Iw(j) resulting in a
heatmap that represents the matching probability for
each pixel centered on j with i. Using 2D softmax to
compute expectation over the matching probability
distribution, we get the final position j′ with sub-
pixel accuracy matching i. The final set of fine-level
matches Mf aggregates all matches (i, j′).
4.4.2 Fine-level homography estimation
For each match (i, j′) in Mf , we use the inverse
transformation of Hc to warp j′ to its original position
on image I. After coarse-to-fine refinement, the
correspondences are accurate without obvious outliers
(see the last column of Fig. 5 later). We obtain the
final homography H by wighted least squares using
the DLT formulation, based on all matching pairs.
The final homography H indicates the transformation
from the template T to the source image I, precisely
locating the template object.
4.4.3 Fine-level training losses
While training the fine-level module, the coarse-level
module is fine-tuned at the same time. The training
loss L is defined as L = λLc + Lf . In Lf , we
use ground-truth supervision and self-supervision
together for better robustness. For ground-truth
supervision, we use the weighted loss function from
Ref. [49]. For self-supervision, we use L2 similarity
loss [70, 71] to minimize the differences between local
appearances of the warped image Iw and template T .
Lf is formulated as

Lf = 1
|Mf |

∑
(i,j′)∈Mf

1
σ2(i) ‖j

′ − j′gt‖

+
∑

(i,j′)∈Mf

(mi∗ ‖PTi − P
Iw
j′ ‖)

where for each query point i, σ2(i) is the total variance
of the corresponding heatmap, PTi denotes a local

window cropped from template image T with i as the
center, mi is a local area mask indicating presence of
an edge pixel. Experiments on L2 similarity loss are
presented in Section 5.5.1.

5 Experiments

After introducing the datasets used in our
experiments (Section 5.1) and implementation details
(Section 5.2), estimated homographies are compared
for our proposed method and baselines (Section 5.3).
Applications of our approach in industrial lines are
shown in Section 5.4, while Section 5.5 considers
the effectiveness of the components of our strategy.
Further experimental details can be found in the
Appendices.

5.1 Datasets

Here we outline the datasets used for testing.
Further details are given in Appendix A.3, to ensure
reproducibility.
5.1.1 Mechanical Parts
Obtaining poses of industrial parts is essential for
robotic manipulator grasping on automated industrial
lines. We collected a dataset based on hundreds
of varied planar mechanical parts. To enrich the
dataset while avoiding laborious annotation, we used
GauGAN to generate an extra 40k pairs of matching
data for training. The test dataset consisting of 800
samples was collected from an industrial workshop
with human-labeled ground truth. It was used
to quantitatively evaluate our method for single
template and single object scenes, and to visually
demonstrate the application of our approach to multi-
template and multi-object scenes in Section 5.4.
5.1.2 Assembly Holes
Locating and matching assembly holes can help
determine whether the product parts have been
machined in the correct position. Thus, we collected
data for dozens of different assembly holes in vehicle
battery boxes, giving about 45k image pairs. Each
sample contains a binarized template image, a gray
image to be matched, and a human-labeled mask.
To simulate a real industry scenario, we randomly
scaled the template size and perturbed the image
corners to simulate possible hole deformation or
camera disturbance. We randomly selected 700 image
pairs containing all hole types for testing, and the
remainder for training and validation.
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Fig. 5 Qualitative matching results for the three test datasets. Compared to SuperGlue, COTR, and LoFTR, our method consistently obtains
a higher inlier ratio, successfully coping with large viewpoint change, small objects, and non-rigid deformation. Red indicates a reprojection
error beyond 3 pixels for the Mechanical Parts and Assembly Holes datasets and 5 pixels for the COCO dataset. Further qualitative results can
be found in the Availability of data and materials section.

5.1.3 COCO
Going beyond industrial scenarios, we also performed
tests using the well-known computer vision dataset
COCO [20] that contains common objects in natural
scenes. Since COCO was not devised for template
matching, we generated the image and template pair
by selecting one instance mask and applying various
kinds of transformations, including scaling, rotation,
and corner perturbation. We randomly selected 50k
and 500 images for training and testing from the
COCO training and validation set, respectively.

5.2 Implementation details

For training and testing, all images were resized
to 480 × 640. We use Kornia [72] for homography

warping in the coarse alignment stage. Parameters
were set as follows: window size w = 8, numbers
of transformer layers: Nc = 4 and Nf = 2, match
selection threshold σ = 0.2, loss weight λ = 10 is
set to 10, maximum number of template patches
Np = 128, spatial consistency distance parameter
σd = 0.4, angular consistency parameter σα = 1.0,
weight control parameter = 0.5, and the number of
neighbors k = 3.

5.3 Evaluation

5.3.1 Evaluation metrics
Following Refs. [12, 13, 31], we compute the
reprojection error of specific measurement points
between the images warped with the estimated
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Table 1 Homography estimation on the Mechanical Parts dataset. The AUC of the measurement point error is reported as a percentage.
SuperGlue−− and SuperGlue use the pre-trained SuperPoint and our fine-tuned SuperPoint for keypoint detection, respectively

Category Method
Homography est. AUC ↑

@3 px @5 px @10 px

Overall similarity measure
Linemod-2D 14.7 28.6 52.0
GHT 1.7 3.5 6.5

Keypoints + MNN

SURF RANSAC 0.1 0.1 0.2
SURF + MAGSAC 0.1 0.3 1.0
D2Net + RANSAC 4.5 8.3 15.1
D2Net + MAGSAC 20.6 36.5 58.2
ASLFeat + RANSAC 7.5 14.3 26.5
ASLFeat + MAGSAC 24.8 35.9 60.7
SuperPoint + RANSAC 1.3 3.2 9.3
SuperPoint + MAGSAC 12.0 25.7 50.1

Learning matchers

SuperGlue−− ∗ + RANSAC 18.4 35.2 60.3
SuperGlue−− ∗ + MAGSAC 18.7 35.7 61.2
SuperGlue + RANSAC 34.5 55.4 76.6
SuperGlue + MAGSAC 32.2 53.3 75.5
COTR + RANSAC 26.1 44.3 76.1
COTR + MAGSAC 26.4 44.9 76.3
LoFTR + RANSAC 40.0 60.9 80.0
LoFTR + MAGSAC 40.6 61.4 80.2
Ours 58.8 74.7 87.3

Table 2 Homography estimation on the Assembly Holes dataset. The AUC of the measurement point error is reported as a percentage.
SuperGlue−− and SuperGlue use the pre-trained SuperPoint and our fine-tuned SuperPoint for keypoint detection, respectively

Category Method
Homography est. AUC ↑

@3 px @5 px @10 px

Overall similarity measure
Linemod-2D 24.7 37.1 53.2
GHT 18.7 31.2 49.3

Keypoints + MNN

SURF + RANSAC 0.2 0.5 2.0
SURF + MAGSAC 0.8 2.1 7.5
ORB + RANSAC 0.2 0.5 2.0
ORB + MAGSAC 0.5 1.0 2.7
D2Net + RANSAC 7.6 13.1 24.7
D2Net + MAGSAC 19.9 31.8 49.1
ASLFeat + RANSAC 16.4 28.2 40.3
ASLFeat + MAGSAC 23.9 35.7 53.2
SuperPoint + RANSAC 15.6 26.8 44.6
SuperPoint + MAGSAC 17.2 31.1 52.0

Learning matchers

SuperGlue−− + RANSAC 15.1 26.2 43.6
SuperGlue−− + MAGSAC 16.8 27.9 44.7
SuperGlue + RANSAC 41.6 58.9 76.4
SuperGlue + MAGSAC 41.5 58.9 76.3
COTR + RANSAC 31.4 50.1 71.7
COTR + MAGSAC 31.5 50.1 72.0
LoFTR + RANSAC 54.3 68.8 81.8
LoFTR + MAGSAC 54.3 68.7 81.8
Ours 69.1 81.0 90.4

and the ground-truth homography. We then report
the area under the cumulative curve (AUC) up to
thresholds of [3, 5, 10] pixels for industrial datasets,
and [5, 10, 20] pixels for the COCO dataset. To ensure
a fair comparison, we sampled 20 points uniformly
on each template boundary as measurement points
for use throughout the experiments.

5.3.2 Baselines
We compared our method to three kinds of methods,
based on: (i) overall similarity measure-based
template matching, including Linemod-2D and
generalized Hough transform (GHT), which are
widely used for industrial scenes, (ii) keypoint
detection with MNN search, including SURF, D2Net,
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ASLFeat, and SuperPoint, and (iii) matching learning,
including SuperGlue, COTR [11], and LoFTR (state-
of-the-art feature matching networks).

For overall similarity measure-based methods which
cannot deal with perspective transformation, we
apply a more tolerant evaluation strategy. Specifically,
we generate templates at multiple scales (step size =
0.01) and orientations (step size = 1◦) for matching.
We use the centroids of generated templates as
measure points and select the template with the
best score as the final result. For SURF, we use the
PiDiNet edge detector to preprocess the input images.
In SuperGlue, we choose SuperPoint for keypoint
detection and descriptor extraction. All learning-
based baselines were fine-tuned on each dataset until
convergence, based on the parameters of the source
model. Further details of training setup are provided
in Appendix A.2.

We adopted RANSAC and MAGSAC for outlier
rejection for all correspondence-based baselines when
estimating the homography transformation, following
Ref. [31]. Direct linear transformation (DLT) is
applied directly in a differentiable manner to our
method, assuming matches have high inlier rates and
trustworthy confidence weights.
5.3.3 Qualitative comparison
We provide qualitative results in Figs. 5 and 6. In
both figures, the first three rows use the Mechanical
Parts dataset, the next three, the Assembly Holes
dataset, and the last three, COCO. Figure 5 shows
that, compared to SuperGlue, COTR, and LoFTR,
the correspondences of our method are more accurate
and reliable. While the correspondences predicted
by SuperGlue and COTR, like ours, lie on the
contour of the object, they contain more outliers.
LoFTR yields more correspondences even in the blank

Fig. 6 Qualitative registration results for the three test datasets. The green area represents template mask placed in the input image using
the estimated homography. For Linemod-2D, we selected the template with the best match from the set of templates. MAGASAC was used for
outlier rejection for SuperGlue, COTR, and LoFTR.
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area. However, these matching pairs tend to become
inaccurate when further from the object. Instead,
our method effectively uses contour information by
focusing the matching points on the contour. With
more correct matches and fewer mismatches, our
approach does not need RANSAC or its variants
for post-processing, which are essential for other
methods. The second example from the COCO
dataset demonstrates our method’s superior ability
to stably match small target objects.

In Fig. 6, we qualitatively compare our registration
results to those of a classic template matching method,
Linemod-2D, and three deep feature matching methods.
Linemod-2D is susceptible to cluttered backgrounds.
Learning-based matching baseline methods perform
better but are prone to unstable results, especially for
small objects. Our method produces a warped template
with more pixels aligned in all these scenarios. Figure 7
shows that our approach provides much more accurate
registration when examined in fine detail.

Fig. 7 Close-ups of registration results from SuperGlue, COTR, LoFTR, and our method. Our method accurately focuses on the contours of
objects.

Table 3 Homography estimation on the CoCo dataset. The AUC of the measurement point error is reported as a percentage. SuperGlue−−
and SuperGlue use the pre-trained SuperPoint and our fine-tuned SuperPoint for keypoint detection, respectively

Category Method Homography est. AUC ↑
@3 px @5 px @10 px

Overall similarity measure Linemod-2D 26.2 47.5 64.2
GHT 1.8 4.5 10.1

Keypoints + MNN

SURF + RANSAC 0.1 0.1 0.3
SURF + MAGSAC 0.1 0.2 0.8
D2Net + RANSAC 0.5 2.4 3.7
D2Net + MAGSAC 1.3 3.5 7.2
ASLFeat + RANSAC 1.3 3.4 7.6
ASLFeat + MAGSAC 2.5 5.3 10.8
SuperPoint + RANSAC 0.1 1.4 1.2
SuperPoint + MAGSAC 0.5 1.8 4.4

Learning matchers

SuperGlue−− + RANSAC 2.7 6.5 11.9
SuperGlue−− + MAGSAC 4.8 9.4 14.6
SuperGlue + RANSAC 14.5 21.7 31.3
SuperGlue + MAGSAC 14.7 22.2 32.1
COTR + RANSAC 19.1 33.5 47.4
COTR + MAGSAC 22.4 36.3 48.6
LoFTR + RANSAC 26.9 47.2 62.8
LoFTR + MAGSAC 28.0 48.5 64.0
Ours 32.4 51.5 66.2
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5.3.4 Baselines using edge maps
As extracting edges of input images may reduce
the impact of modality differences on initial feature
extraction, we performed further experiments on the
Mechanical Parts dataset to evaluate competitive
learning-based baseline methods using edge detection
as pre-processing. For a fair comparison, we use
PiDiNet to extract edge maps from the template
and source images for all methods. Training settings
remained the same as for the training process without
edge extraction. As Fig. 8 shows, edge detection
preprocessing worsens the results of these baseline
methods, especially SuperGlue and COTR. We note
that these methods tend to provide correspondences
with lower accuracy for low-texture scenes, and edge
detection results in images with little texture.

Fig. 8 Accuracy of various methods with (solid lines) and without
(dashed lines) edge detection preprocessing of the input images. The
homography estimation accuracy is reported for pixel thresholds [3, 5, 10].

5.4 Application

We now describe a challenging application of our
method to real industrial lines, illustrated in Fig. 9.
For each batch of industrial parts, the task is to
select the correct template from a set of candidates
templates for each part and to calculate its accurate
pose. This is now an N -to-N template matching
problem. We first pre-process the original scene using
a real-time object detection network [73] to roughly
locate each part and crop it into a separate image.
For each candidate template, we first conduct coarse
matching to select the optimal template: we use the
correspondences with weighted confidences obtained
by coarse matching to get an initial homography.
Based on that homography, the template containing
the most inlier correspondences is regarded as optimal.
We then apply fine matching to accurately obtain the
pose of the object using the selected optimal template.

To quantitatively evaluate our algorithm in multi-
template scenarios, besides the correct template, we
randomly add extra 9 noisy ones to the candidate
template set. We tested 284 scenarios with 2445 test
samples and achieved a recognition accuracy of 98.8%,
when taking an inlier rate of more than 80% as correct
recognition using the estimation matrix. In addition,
our method runs at a competitive speed since we
adopt the strategy of only using coarse matching for
template selection. Further details of runtimes are
presented in Appendix A.1.

We further note that our model generalizes well to

Fig. 9 Application of our method in an industrial line. Above left: best matching template for an object. Above right: set of candidate
templates. Below: final matches to selected templates. The coarse matching inlier rate using every template is used as a basis for template
selection.
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unseen real scenarios after training only on synthetic
data. We provide the link to video demonstrations
in the Availability of data and materials section.

5.5 Analysis and discussion

5.5.1 Design study
To better understand our proposed method, we
conducted seven comparative experiments on different
modules, using the Mechanical Parts dataset. The
quantitative results in Tables 4 and 5 validate our
design decisions and show that they have a significant
effect on performance. The choices considered are
• Matching-layer: dual-softmax vs. optimal

transport. Both the dual-softmax operator and
optimal transport achieve similar scores, and either
would provide effective matching layers in our
method.

• Position-encoding: absolute vs. relative. Replacing
relative positional encoding by absolute positional
encoding results in a significant drop in AUC.
Relative position information is important in
template matching.

• Homography estimation: RANSAC vs. consistency
confidence. Since our method provides high-quality
correspondences with confidence weights based on
consistency, the differentiable DLT outperforms
MAGSAC. An example is shown to demonstrate
the advantages of DLT with consistency weights
over RANSAC in Fig. 10. Inliers and outliers are
explicitly distinguished by the RANSAC estimator,
so correspondences with insufficient accuracy are
directly discarded or fully adopted to estimate

the final transformation matrix. Instead, our
consistency module provides confidence weights,
and we observe that the confidence weights
estimated by the proposed method are consistent
with ground-truth reprojection errors. Our
method effectively assigns higher weights to more
accurate correspondences and suppresses outliers.
Therefore, in the case of high-quality matches,
our consistency module can efficiently utilize
correspondence information and so outperforms
RANSAC.

• Value & position. Multiplying the value token
by the positional embedding in the transformer
module provides better results.

• Translation module: Canny [74] vs. translation
network. Accuracy using the translation network
is better than using Canny edge detection.

• Feature fusion. In the refinement stage, deep
fusion of local features and global features leads
to a noticeable performance improvement.

• One stage vs. coarse-to-fine. The coarse-to-fine
module contributes to the estimation accuracy
significantly by finding more matches and refining
them to a sub-pixel level.

• Self-supervision loss. Using self-supervision
loss (L2 similarity loss) brings a significant
performance boost in fine-level training.

• Maximum number of sample patches. See Table 5.
As the maximum number of samples based on the
contour increases, accuracy of our method tends
to improve. However, without sampling and using
the entire template image as input, performance

Table 4 Evaluation of design choices using the Mechanical Parts dataset. Strategies marked with ? are the ones adopted in our method

Design aspect Method
Homography est. AUC ↑

@3 px @5 px @10 px

Matching-layer
Dual-Softmax 58.7 74.7 87.3
Optimal transport ? 58.8 74.7 87.3

Position-encoding
Absolute 53.0 70.9 85.4
Relative ? 58.8 74.7 87.3

Homography estimation
MAGSAC 53.8 71.3 85.6
Consistency ? 58.8 74.7 87.3

Value & position
w/o position 57.9 74.1 86.9
w position ? 58.8 74.7 87.3

Translation module
Canny 57.6 73.9 86.8
Translation network ? 58.8 74.7 87.3

Feature fusion
Local feature 51.2 69.4 84.6
Local–global feature fusion ? 58.8 74.7 87.3

One stage vs. coarse-to-fine
One stage 45.9 65.8 82.8
Coarse-to-fine ? 58.8 74.7 87.3

Self-supervision loss
w/o self-supervision 55.0 72.2 86.0
w self-supervision ? 58.8 74.7 87.3
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Table 5 Effects on speed and accuracy of varying the number of
patches sampled. ? indicates the number used in our method

Number of patches
Homography est. AUC ↑

Runtime (ms) ↓
@3 px @5 px @10 px

8 22.0 40.9 66.0 99.3
16 37.7 58.0 78.6 99.8
32 50.5 69.0 84.2 107.6
64 57.4 73.7 86.8 112.2

? 128 58.8 74.7 87.3 115.8
256 60.0 75.5 87.7 125.1
512 60.1 75.5 87.7 175.3

Unsampled 52.0 70.2 85.0 218.4

is somewhat lower than achieved by sampling
with the best number of patches. We believe
that edge-based sampling allows our method to
more efficiently perceive the template structure
and aggregate local features. We set the maximum
number of patches to 128 as a trade-off between
accuracy and runtime.

5.5.2 Understanding attention
To better understand the role of attention in our
method, we visualize transformed features with t-SNE
[75], and self- and cross-attention weights in Fig. 11.
The visualization shows that our method learns a
position-aware feature representation. The visualized
attention weights reveal that the query point can
aggregate global information dynamically and focus
on meaningful locations. Self-attention may focus
anywhere in the same image, especially regions with
obvious differences, while cross-attention focuses on
regions with a similar appearance in the other image.

5.5.3 Limitations and future work
Our method utilizes an existing edge detection
network to eliminate the domain gap between
templates and images, which is convenient for our
approach. However, we believe that jointly training
the translation network is a promising avenue for
further improving performance. Another interesting
follow-up is to design a one-to-many template
matching algorithm that does not rely on any pre-
processing.

6 Conclusions

We have presented a differentiable pipeline for
accurate correspondence refinement for industrial
template matching. With efficient feature extraction
and feature aggregation by transformers, we obtain
high-quality feature correspondences between the
template mask and the grayscale image in a coarse-
to-fine manner. The correspondences are then used
to get a precise pose or transformation for the target
object. To eliminate the domain gap between the
template mask and grayscale image, we exploit a
translation network. Based on the properties of the
cross-modal template matching problem, we design a
structure-aware strategy to improve robustness and
efficiency. Furthermore, two valuable datasets from
industrial scenarios have been collected, which we
expect to benefit future work on industrial template
matching. Our experiments show that our method
significantly improves the accuracy and robustness of

Fig. 10 Comparison of using RANSAC, or consistency, for homography estimation. Above: correspondences provided by coarse matching.
Below: template registration results. Confidence is indicated by line colour from green (1) to red (0). In RANSAC, inliers have a confidence of
1, and outliers, 0. For the ground-truth, the reprojection error represents confidence.
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Fig. 11 Transformed features using t-SNE, and self- and cross-attention weights during coarse matching.

template matching relative to multiple state-of-the-
art methods and baselines. Video demos of N -to-N
template matching in real industrial lines show the
effectiveness and good generalization of our method.

Appendix

A.1 Speed

We have tested the runtime of our method and other
baselines on the Assembly Holes dataset, and report
average values using an NVIDIA RTX 3080Ti. Coarse
matching in our method takes 63 ms to match one
pair; full matching takes 105 ms. LoFTR takes 87
ms, while COTR is much slower at 17 s. GHT and
Linemod-2D take 4.9 and 2.2 s respectively: using
multiple templates for different scales and poses is
time-consuming. For a scene with 10 objects and 10
candidate templates, our method takes about 6.7 s to
locate and identify all objects, and provide accurate
poses.
A.2 Training details

Our network was trained on 2 NVIDIA RTX 3090
GPUs using a batch size of 16. Although end-to-end
training is feasible, we found that a two-stage training
strategy yielded better results. The first stage trained
coarse-level matching using the loss term Lc, until
the validation loss converged. The second stage
trained the whole pipeline using both Lc and Lf until

the validation loss converged. Using the Mechanical
Parts/Assembly Holes/COCO datasets, we trained
our network for 15/15/30 epochs respectively for the
first stage using Adam, with an initial rate of 10−3,
and 18/15/12 epochs for the second stage using Adam,
with an initial rate of 10−4. We loaded pre-trained
weights for the translation network and local feature
CNN provided by Refs. [33, 46], and fixed the local
feature CNN parameters in the second stage.

We also loaded pre-trained parameters for other
learning-based baseline methods and retrained them
until the validation loss converged. Numbers of
training epochs used for the different learning-based
baseline methods are shown in Table 6 for each
dataset. For better performance, for the keypoints
methods (D2Net, ASLFeat, and SuperPoint), we only

Table 6 Number of training epochs used for different learning-
based baseline methods, for the three datasets Mechanical Parts (MP),
Assembly Holes (AH), and COCO. For SuperGlue−− and SuperGlue,
we respectively used the pre-trained SuperPoint and our fine-tuned
SuperPoint in the keypoint detection phase

Category Method MP AH COCO
D2Net 20 20 20
ASLFeat 15 15 15Keypoint
SuperPoint 10 10 10
SuperGlue−− 30 30 30
SuperGlue 10 + 30 10 + 30 10 + 30
COTR 100 100 90

Matching

LoFTR 12 12 35
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used the edge points on the template to construct
the ground-truth matching pairs when training the
network. For COTR, we followed its three-stage
training strategy to fine-tune the network. Since there
is no recommended training method for SuperGlue,
we trained it based on the code at https://github.
com/gouthamvgk/SuperGlue_training.

A.3 Data and ground-truth generation

A.3.1 Mechanical Parts dataset
We used GauGAN to generate further image pairs for
various shape parts. The manually adjusted image
pairs provided by Linemod-2D served as training
data for GauGAN. We discovered that GauGAN
can learn well even from somewhat noisy data,
and can provide high-quality ground-truth. Using
arbitrarily distributed mask images (templates), we
used GauGAN to generate synthetic industrial part
images of size 480 × 640 for our network training.
For each pair of generated images, we first moved
the template mask to the center of the image, then
randomly scaled the synthetic image by a factor in
the range [0.8, 1.2] and rotated it through an angle
in the range [−15◦, 15◦].
A.3.2 Assembly Holes dataset
The ground-truth of the Assembly Holes dataset was
annotated by humans: we segmented the outer circle
of the part to give the mask for the image. The
scaling range was [0.75, 1.25].
A.3.3 COCO dataset
We used the instance mask as the template T and the
original image as the search image I for the COCO
dataset [20]. We first filtered out masks near the
image boundary because these masks tend to be the
image background. Among the remaining masks, we
chose the mask with the largest area as the template.
The selected image pairs were resized to 480× 640,
the scaling range set to [0.9, 1.1], and the rotation
range to [−30◦, 30◦].
A.3.4 All datasets
To simulate possible object deformation or camera
disturbance, we randomly perturbed the four corners
of the image by values within the range [−32, 32]
pixels for all datasets.

Availability of data and materials

The well-known CoCo dataset is available from

https://cocodataset.org/. Our two industrial datasets
can be freely downloaded from https://drive.google.com/
drive/folders/1Mu9QdnM5WsLccFp0Ygf7ES7mLV-
64wRL?usp=sharing. Our code and video demos
are available at https://github.com/zhirui-gao/Deep-
Template-Matching.
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