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Abstract  Hierarchical multi-granularity image
classification is a challenging task that aims to tag
each given image with multiple granularity labels
simultaneously. Existing methods tend to overlook
that different image regions contribute differently
to label prediction at different granularities,
also insufficiently consider relationships between the
hierarchical multi-granularity labels. We introduce a

sequence-to-sequence mechanism to overcome these two

and

problems and propose a multi-granularity sequence
generation (MGSG) approach for the hierarchical
multi-granularity image classification task. Specifically,
we introduce a transformer architecture to encode
the image into visual representation sequences. Next,
we traverse the taxonomic tree and organize the
multi-granularity labels into sequences, and vectorize
them and add positional information. The proposed
multi-granularity sequence generation method builds
a decoder that takes visual representation sequences
and semantic label embedding as inputs, and outputs
the predicted multi-granularity label sequence. The
decoder models dependencies and correlations between
multi-granularity labels through a masked multi-head
self-attention mechanism, and relates visual information
to the semantic label information through a cross-
modality attention mechanism. In this way, the proposed
method preserves the relationships between labels
at different granularity levels and takes into account
the influence of different image regions on labels
with different granularities. Evaluations on six public
benchmarks qualitatively and quantitatively demonstrate
the advantages of the proposed method. Our project is
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1 Introduction

Recently, there has been increasing interest in applying
and processing multi-granularity images [1-4] in
the computer vision and multimedia communities.
Research on hierarchical multi-granularity images
plays a crucial role in bridging the gap between vision
and semantics, since multi-granularity images naturally
contain hierarchical label semantic information and
visual feature representations at different granularity
levels. Among the many related tasks, hierarchical
multi-granularity image classification [5-7] is a
fundamental and challenging task that simultaneously
identifies each given image belonging to labels at
different granularity levels.

Our investigations indicate that there are two
significant difficulties in hierarchical multi-granularity
image classification. Firstly, labels with different
granularities have different effects on learning other
granular features. As Chang et al. claim, coarse-
level label prediction exacerbates fine-grained feature
learning, yet fine-level features improve the learning
of coarse-level classifiers. The essence of this problem
lies in the loss of the relationships between the
hierarchical multi-granularity labels. The network
cannot rely on the relationships between the
hierarchical multi-granularity labels for training and
prediction. Secondly, hierarchical multi-granularity
image classification involves the hard subtask of
fine-grained image recognition. Fine-grained image
recognition is challenging due to subtle inter-class
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differences and significant intra-class variance. Labels
of different granularity correspond to different
semantics, and the image regions they correspond
to are likely to be different. Therefore, in the case of
parallel learning of multi-granularity labels, there
may be interactions between features and labels
at different granularity levels. The essence of this
problem is that the modalities of the label and the
image are different, so it is impossible to directly
find an appropriate regional expression in the image
through the hierarchical multi-granularity label.
Existing methods wusually use a particular
mechanism to solve these problems:
backbone extracts features and then different

A common

classification heads are used to predict labels at
different granularity levels. As Fig. 1 shows, existing
methods usually divide different categories vertically
into different granularity levels, in this case, family,
subfamily, genus, and species, and then assign

a classification header to each granularity level.

These methods use different classification heads
to separate labels at different granularity levels,
thereby minimizing the impact of labels at different
granularity levels on learning other granularity
features. However, this mechanism often overlooks
that different image regions contribute differently
to label prediction at different granularities and
fails to take into account relationships between the
hierarchical multi-granularity labels.

Looking at Fig. 1, we see that starting from the
root node of the taxonomic tree and traversing to

some leaf node will naturally generate a sequence.

This sequence not only effectively preserves the
relationships between the various categories but
also maintains the granular level information of the
categories by position. Based on this observation,
we introduce a sequence-to-sequence mechanism to
overcome the limitations of existing methods, and
propose a multi-granularity sequence generation
approach for the hierarchical multi-granularity image
classification task.

Specifically, we first encode the image into a visual
representation; the encoding methods may include
different types of convolutional neural networks
Without loss of
generality, the encoding process is introduced using a
vision transformer as an example. The given image is
first reshaped into a patch sequence without overlap

or vision transformer structures.
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and then linearly mapped to the sequential tokens.
We build a stack of transformer encoder layers to
encode given sequential image tokens into a visual
representation sequence. Each transformer encoder
layer contains a multi-head self-attention module, a
multilayer perceptron, and a residual structure. We
exploit pre-trained transformer-based vision models’
excellent feature expression ability to obtain a more
discriminative visual feature representation. Next, we
traverse the taxonomic tree and organize the multi-
granularity labels into sequences. These text label
sequences are vectorized by initializing a series of
label embeddings. Then we add location information
to these label embeddings to maintain the granularity
of labels. We build a stack of transformer decoder
layers to decode the visual representation sequence
to generate hierarchical multi-granularity label
sequences. Each transformer decoder layer contains
a masked multi-head self-attention module, a cross-
modality attention module, a multilayer perceptron,
and a residual structure. The proposed multi-
granularity sequence generation method decoder
takes visual representation sequences and semantic
label embedding as input and outputs the predicted
multi-granularity label sequence. The decoder
preserves the dependencies and correlations between
hierarchical multi-granularity labels by applying the
masked multi-head self-attention mechanism to labels
of different granularity levels. The decoder maps
the visual information to the semantic information
of labels by applying the cross-modal attention
mechanism to the visual representation sequence and
semantic label embedding. In this way, the proposed
method preserves the relationships between labels at
different granularity levels and considers the influence
of different image regions on labels with different
granularities.

To verify the effectiveness of our method, we
have conducted extensive experiments on popular
benchmarks for the hierarchical multi-granularity
image classification task. They demonstrate that the
proposed method achieves results competitive with
state-of-the-art approaches. Qualitative experimental
results also demonstrate the effectiveness of the
method for modeling label relationships at different
granularities and finding different image regions for
different granularity labels.

In summary, we make two main contributions.
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Family Subfamily Genus Species
Catopsilia
. i ! Erate
Taxonomic ! Papilionidae ! Pierinae Eurema
tree : ; : Fieldii
: Coliadinae . Colias ;
Hyale
Gandaca
Lycaenidae Palaeno
Butterfly : ' Gonepteryx
Hesperiidae | i i
Danainae \;T \ Sylvester
Convert to | i Apaturinae | Parantica Tulliolus
sequence

(Butterfly, Nymphalidae, Danainae, Euploea, Sylvester)

(Butterfly, Pieridae, Coliadinae, Colias, Fieldii)

Collapsed node
Expanded node

Fig. 1 An example to motivate our approach. The tree shows the hierarchical multi-granularity structure of butterfly taxonomic. Existing
methods divide categories vertically, destroying the relationships between levels, but our method processes them horizontally to obtain sequences.

e We introduce a sequence-to-sequence mechanism
and propose a multi-granularity

generation approach for

sequence
hierarchical
granularity image classification. The proposed
method effectively models the dependencies and
correlations between multi-granularity labels and
strengthens the contribution of different image
regions to different granularity labels.

multi-

e Extensive quantitative and qualitative
experiments demonstrate the effectiveness of the
proposed method, which achieves performance
competitive with state-of-the-art approaches
on six public datasets. Visual results also
confirm that the proposed method effectively
models relationships between labels at different
granularities and selects appropriate image regions
to judge labels at different granularity levels.
The rest of this paper is organized as follows.

Section 2 reviews related work. Section 3 details

the proposed framework. Experimental results and

analysis are reported in Section 4. Finally, we have

a discussion in Section 5 and conclude the paper in

Section 6.

2 Related work

In this section, we review the most recent work on

hierarchical multi-label classification, fine-grained
image recognition, and the vision transformer
architecture, especially as it relates to our own work.
We also consider how our framework differs from

previous ones.

2.1 Hierarchical

classification

multi-granularity image

This section first discusses the relationship between
hierarchical multi-granularity image classification
and hierarchical multi-label classification, and then
elaborates on the characteristics of hierarchical multi-
granularity image classification. In hierarchical
multi-label classification, samples are assigned one
or multiple class labels organized in a structured
label hierarchy [8]. Typical hierarchical multi-label
classification problems are text classification [9, 10]
and bioinformatics tasks such as protein function
prediction [11] and gene function [12]. In the
computer vision and multimedia, tasks such as image
annotation [13], few-shot image recognition [14], and
semantic segmentation [15] are also treated as multi-
label classification problems.

Hierarchical multi-granularity image classification
is a particular type of hierarchical multi-label
classification. The general hierarchical multi-label
classification task implies that objects contain
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different aspects of attributes at different levels, while
the hierarchical multi-granularity image classification
task emphasizes different levels of image perception.
For example, in general hierarchical multi-label
classification, document classification, a document
containing the word football could be labeled both
with sport and outdoor activity at the same time. In
contrast, in the multi-granularity image recognition
task, an image in the CUB-200-2011 dataset should
first be recognized as a bird and then as a flamingo as
bird knowledge increases. However, most existing
works ignore this feature and only use different
classification heads to process labels of different
granularities simultaneously. Some work has explored
solutions to this problem. For example, Chang et
al. [6] propose that the ability to recognize labels
at different granularity levels can be increased by
combining different classification heads. Wang et
al. [7] propose to use a hierarchy transition matrix
to guide the classification head for training and
prediction. Chen et al. [5] propose to use an
attention mechanism to integrate the output of the
classification head, thereby improving the ability to
model multi-granularity label relationships. Although
these methods are successful, they still do not
explicitly model multi-granularity label relationships.
Many studies [16-19] on hierarchical classification
tasks have extensively explored how to exploit the
relationship between multi-granularity labels. Chen
et al. [16] propose a multi-granularity regularization
method to extract hierarchical structure, Wang et
al. [17] propose a deep fuzzy tree model to learn a
better tree structure, and Wang et al. [18] use deep
reinforcement multi-granularity learning to minimize
the risk of hierarchical classification errors. Like these
methods, we also used a tree structure to express the
relationships between multi-granularity labels. Unlike
these methods, our approach further transforms
the tree structure into a collection of multiple
sequences, and then models the relationships. In this
paper, we change the way to approach hierarchical
multi-granularity image classification, mimicking the
natural process of cognition, generating the coarsest-
grained labels first and then gradually generating fine-
grained labels. We model and preserve hierarchical
multi-granularity label relationships more efficiently
by constraining multi-granularity label relationships
using a sequence-to-sequence network structure.
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2.2 Fine-grained image recognition

In the
classification task, fine-grained image recognition
[20-27] is more complicated than coarse-grained
image recognition [28-30], due to subtle inter-class
differences and significant intra-class variance.
There are two prevailing paradigms in current
research into fine-grained image recognition: the
local approach, and the global approach. Local

hierarchical multi-granularity image

approaches focus on locating discriminative semantic
parts of fine-grained objects wusing supervised
[31, 32] or weakly supervised [20-22] mechanisms
to identify subtle differences between different
object categories. They then build intermediate
representations corresponding to these parts for
final classification. Inspired by such local methods,
we input patch-level features into the transformer
decoder of the proposed method to predict fine-
grained labels. Global approaches [23-27] typically
learn discriminative representations with a specific
distance metric so that samples of the same class are
close while samples of different classes are separated.

Global and local approaches have different
emphasis, and both can achieve satisfactory results
on fine-grained image recognition tasks. However, in
a hierarchical multi-granularity image classification,
while fine-grained features lead to better learning of
coarse-level classifiers, coarse-level label prediction
makes fine-grained feature learning more difficult, as
Chang et al. [6] point out. Therefore, we propose to
model labels with different granularities to reduce the
adverse effects of coarse-grained labels on fine-grained
feature learning.

2.3 Vision transformers

The transformer is an attention-based [33, 34]
encoder—decoder architecture, which was proposed
to deal with sequences in the field of natural
language processing (NLP) [35, 36]. Inspired by
breakthroughs provided by transformer architectures
in NLP, computer vision researchers have applied an
additional attention layer in either spatial [37, 38]
or channel domains [39, 40] to capture long-range
dependencies. Inspired by these ideas, Dosovitskiy et
al. [41] propose a pure transformer by using image
patches as input for image classification; it achieves
state-of-the-art results on many image classification

benchmarks. Subsequently, many recent works
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have applied transformers to computer vision tasks
with comparable results [42]. These include image
recognition [41, 43, 44], object detection [45, 46],
segmentation [47], and image super-resolution [48].
Transformer-based methods [49-54] have also
proved useful in fine-grained image recognition.
Specifically, He et al. [49] introduce a vision transformer
as a backbone and propose the TransFG approach to
select discriminative image regions with the attention
map. Chou et al. [54] propose a plug-in network that
can effectively extract discriminative and uninformative
areas in images, improving recognition accuracy.
TransFG and related subsequent work FFVT [52],
AFTrans [50], and RAMS-Trans [51] belong to the
the local method paradigm. Liu et al. [53] exploit the
transformer architecture using a peak suppression
module and knowledge guidance module, in an
approach belonging to the global method paradigm.
Inspired by the above methods, we introduce
a transformer architecture into hierarchical multi-
granularity image recognition and propose a
transformer decoder to generate a multi-granularity
label sequence, which provides a strong basis for
hierarchical multi-granularity image recognition.

3 Method

This section introduces our proposed framework,
a transformer architecture for hierarchical multi-
granularity image classification. Section 3.1 gives
an overview of the model, Section 3.2 details the
image encoder and label sequence construction, and
Section 3.3 describes the proposed multi-granularity
sequence generation approach.

3.1 Overview

As Fig. 2 shows,
transformer encoder and decoder architecture.

our framework has a clear

The transformer encoder takes images as input
and outputs representations of all tokens to the
transformer decoder. The transformer decoder takes
these representations as input, initially generates
the coarsest-grained labels, and then combines the
already generated labels to successively generate finer-
grained labels.

Before we give details, we must define some
necessary notation. Given the label space of g-level
granularity with L labels £ =1q,...,[; and an image
x, the task is to assign a subset y containing g labels in

the label space £ to . From the perspective of multi-
granularity sequence generation, the hierarchical
multi-granularity image classification task can be
formalized as finding an optimal multi-granularity
label sequence y* that maximizes the conditional
probability p(y|x), calculated as Eq. (1):

plylz) = [ pwilvs, - - yic1, ) (1)
i=1

Refer to Fig. 2. The given image x is encoded into
a series of feature representations by the transformer
encoder. These representations serve as the global
feature F for multi-granularity sequence generation.
The transformer decoder takes the global feature F
and the previous output state y;_1 of the decoder as
the inputs to produce the output state y; at time-step
t. Finally, the loss is calculated by comparing the last
output y; with the ground truth, and the network
parameters are updated by back-propagation.

3.2 Embedding methods

We next describe in Sections 3.2.1 and 3.2.2
respectively how to construct the input and output
required by the decoder of the multi-granularity
sequence generation method. For the input image, we
use the transformer encoder structure for encoding.
For the input label, we need to first convert the
label into a label sequence, and then align it for
vectorization.

3.2.1

Let z € R¥*XW denote a given training image of
resolution (H,W). The image x is reshaped into a
sequence of flattened 2D patches x, € REXP 2, where
the resolution of each image patch is (P, P), and
K = HW/P? is the resulting number of patches.
These patches are converted to a D-dimensional
embedding Eyaten € REXD a5 input tokens through

Transformer encoder

a trainable linear projection. The learnable position
embedding E,os € RE*P is added to the patch
embedding to retain positional information, and the
result is denoted Fy. The transformer encoder takes
this fused vector Fy as the initial input, and outputs
a feature representation with the same dimension
as the input. In detail, the transformer encoder
is composed of a stack of N, transformer encoder
layers. Each encoder layer consists of multi-head self-
attention (MSA) and multi-layer perceptron (MLP)
blocks. Layer normalization (LN) is applied before
each block and residual connections are applied after
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Fig. 2 Our framework. Here we visualize multi-granularity sequence generation given a training batch of butterfly images and corresponding

hierarchical multi-granularity label sequences.

each block. This process is shown in Eq. (2).
Fo = Epatch + Epos
F| = MSA(LN(F;—1)) + Fi-1,
Fi = MLP(LN(F})) + F/,

i=1,--, N,
i=1,--,Ne

(2)
It can be seen that the dimension of the final output
Fis (K x D).

8.2.2  Sequence construction

For a common hierarchical multi-granularity image
classification task, the multi-granularity labels are
built as a tree structure. In order to convert the tree
structure into sequences, for each image, we start from
the root node and traverse the entire tree to generate a
sequence corresponding to each leaf node. Therefore,
each image corresponds to a sequence of length g
from the coarsest-grained label to the finer-grained
labels. To facilitate parallelization of the transformer
decoder, we need to align the input sequence with
the output sequence. Therefore, we add beginning
and end of sequence markers (BOS) and (EOS) to
the head and tail of the label sequence respectively,
making the length of the input and output sequences
g + 1. To be able to more accurately express and
facilitate subsequent operations, we vectorize the
elements in each sequence into a label embedding
FElabel € RUTHXD: 6ach label embedding has the
same dimension as the transformer encoder output.
The learnable position embedding E},, € RFTD*D js
added to the label embedding to retain the sequence
context. The result is denoted Sy.
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3.3 Multi-granularity sequence generation

Section 3.3.1 describes how the decoder of the
proposed method builds the relationships between the
different granularity level labels, while Section 3.3.2
explains how we associate the visual embedding
sequence with the semantic multi-granularity label
embedding.

3.3.1 Relationships between labels

The transformer decoder takes the global features of
the images F and the label sequence embeddings S
as inputs, and outputs predicted values for labels at
different granularity levels of the image.

The transformer decoder is composed of a stack of
Nq transformer decoder layers. Each decoder layer
consists of MSA, cross modality attention (CMA),
and MLP blocks. We use residual connections and
layer normalization to avoid over-fitting during the
network training stage. To model the relationships
between labels at different granularity levels, we first
feed the label sequence embeddings into the multi-
head self-attention layer. This process is similar to
MSA in the encoder, but the self-attention layer in
the decoder only allows attention to earlier positions
in the output sequence. Therefore, we mask out the
sequences in Eq. (3) before the softmax step in the
self-attention computation.

Sz/ = MaskedMSA(LN(Si_l)) +8;_1,
S;=MLP(LN(S)))+S!,

i=1,---, Ng

i=1,---,Ng

®3)
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3.3.2  Visual-semantic modality fusion

The input to the decoder contains two parts: the
visual embedding obtained from encoding the image
patches and the semantic embedding obtained from
We
now introduce how we relate the visual embedding

vectorization of the multi-granularity labels.

sequences to the semantic embedding of multi-
granularity labels. The fusion of different modality
embeddings is a problem that has been widely
studied. Liu et al. [55] suggest that each modality
feature should be decomposed into a weighted sum
of multiple low-rank features. Then, element-wise
multiplication is performed to obtain fused multi-
modality features. This approach inspired our design
of the CMA module. However, rather than directly
using element-wise multiplication, the CMA module
uses attention between different modality features
to fuse them to obtain multi-modality features. In
order to solve the problem of different image regions
corresponding to labels at different granularity levels,
we apply the attention mechanism to all input image
token embeddings and label sequence embeddings.
However, there is a a semantic gap between multi-
granularity label embedding space and visual feature
space because of the modality difference. To solve
this problem, we map the multi-granularity label
embedding and image token embedding into a shared
space through a set of learnable shared parameters,
and then calculate their similarity and fuse them.

S;/:CMA(SZ"F)“I“SH ’é:l,"‘,Nd

S; = MLP(LN(S/))+ S8/, i=1,---,Nq
After performing multiple attention-based operations,
we output an embedding of the same size as the input,
followed by an MLP layer that outputs a likelihood
score for each category:

y = softmax(MLP (out)) (5)

where out denotes the class token vector of the output
of the last transformer decoder layer. We guide
network training by minimizing the cross-entropy
loss between y and ground-truth labels.

In the training phase, the masked MSA allows
the model to be trained in parallel to build the

(4)

relationships between hierarchical multi-granularity
labels. During inferencing, we can now automatically
regress to generate the output from the initial (BOS)
vector: in the process of continuous iteration, the
predicted label is used to replace the real label for

prediction, and finally a complete multi-granularity
label sequence is generated.

The proposed sequence
generation method builds a decoder that inputs a
sequence of visual representations and semantic label
embeddings, and outputs a predicted sequence of
multi-granularity labels.
the dependencies and correlations between multi-

multi-granularity

The decoder maintains

granularity labels through the masked multi-head
self-attention mechanism, solving the common label-
category relationship loss problem in hierarchical
multi-granularity image classification. The decoder
also associates visual information with semantic
information of hierarchical multi-granularity labels
through a cross-modal attention mechanism, solving
the problem that cross-modal information cannot be
effectively matched.

4 Experiments

4.1 Experimental setup

4.1.1  Datasets
We

experiments on

and quantitative
six publicly available

conducted qualitative
multi-
granularity datasets, including Butterfly-200 [5],
CUB-200-2011 [56], FGVC-Aircraft [57], Stanford
Cars [58], ISIA Food-200 [59], and ISIA Food-500
[60] datasets. Statistical details of these datasets
including the number of labels at each level and
numbers of training and test images are summarized
in Table 1. The label hierarchies for these datasets
are shown in Table 2.

4.1.2  Implementation details

We implemented the proposed method with Pytorch,
using four Nvidia V100 GPUs. The input images were
resized to 384 x 384. Following the setting used for
Swin Transformer [44], we used data augmentation,
including random cropping and horizontal flipping,
during the training procedure. Only center cropping
was performed during inferencing. The model was
trained for 50 epochs with stochastic gradient descent.
The batch size was set to 16 and momentum to 0.9
for all datasets. The learning rate was set to 5 x 10~4
initially, with a cosine decay schedule. We adopted
Swin Transformer pre-trained on ImageNet21k to
initialize the image encoder parameters in all our
experiments. We calculated the top-1 accuracy of
different granularity levels as the evaluation metric.
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Table 1 Multi-granularity datasets used to evaluate our proposed method

Dataset Level 1 Level 2 Level 3 Level 4 Training Testing
labels labels labels labels images images

Butterfly-200 5 23 116 200 5,135 15,009
CUB-200-2011 13 38 200 — 5,994 5,794
FGVC-Aircraft 30 70 100 — 6,667 3,333
Stanford Cars 9 196 — — 8,144 8,041
ISTA Food-200 11 52 200 — 118,210 59,287
ISTA Food-500 11 60 500 — 239,379 120,143

Table 2 Hierarchical structure of the six experimental datasets

Label level Butterfly-200 CUB-200-2011 FGVC-Aircraft Stanford Cars ISIA Food-200 ISIA Food-500
1 family order maker maker basic basic
2 subfamily family family model ingredient ingredient
3 genus species model — dish dish
4 species — — — — —
Table 3 Results of ablating the CMA component, using the CUB-200-2011 dataset
CUB-200-2011
Method Backbone
[1: order [2: family 13: species average
Without CMA 97.43 92.56 79.92 89.97
ResNet-50 (He et al.)
Full MGSG 97.43 92.82 80.13 90.13
Without CMA 99.35 97.67 90.10 95.71
trhou ViT (Dosovitskiy et al.)
Full MGSG 99.60 98.00 90.23 95.94
Without CMA . . 99.43 98.65 91.22 96.43
Swin-T (Liu et al.)
Full MGSG 99.66 98.65 91.84 96.72

4.2 Ablation and related analyses

We conducted a series of studies using the CUB-
200-2011 dataset in order to understand better the
working of the proposed multi-granularity sequence
generation approach. Quantitative experiments
were used to assess the influence of choice of
backbone network on classification performance, and
the influence of indiscriminately treating categories
at different granularity levels on classification
performance. Qualitative experiments were used
to analyze how the proposed method affected the

modeling of label relations.
4.2.1

In order to investigate the contribution of the CMA
component in the proposed method, we omitted
ResNet-50 [61],
Vision Transformer (Dosovitskiy et al. [41]), and
Swin Transformer [44]. We report the corresponding
recognition accuracies in Table 3. We see that omitting
the CMA module decreases average recognition
accuracy of multi-granularity labels in each case,
demonstrating the utility of CMA components for
hierarchical multi-granularity image classification.

Quantitative experiments

it, and used different backbones:

We also conducted experiments on feature learning

®
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using different prediction orders to explore the
effect of multi-granularity labeling on feature
learning at different granularities. Table 4 shows the
experimental results: both forward order and reverse
order sequential prediction are better than parallel
prediction. This implies that coarse-grained label
learning inhibits fine-grained feature learning in
parallel learning of multi-granularity labels, as claimed
by Chang et al. [6]. One possible reason is the failure
to model the relationship between multi-granularity
labels in parallel prediction. Unlike parallel prediction
methods, a sequential learning paradigm can better
exploit correlation between multi-granularity labels,
either using forward or reverse order prediction.
Coarse-to-fine forward prediction is slightly better than
reverse prediction, suggesting that in an asynchronous
learning paradigm, coarse-grained labels may instead
facilitate the learning of fine-grained features.

4.2.2

In addition to a quantitative analysis, we visualized

Visual assessment

proportional relationships between correct and
incorrect predicted labels, to assess the effectiveness
of the proposed method for hierarchical multi-
granularity label modeling.
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Table 4 Effect on accuracy (%, over all levels) of changing prediction
order, using the CUB-200-2011 dataset

Prediction CUB-200-2011

order [1: order 12: family 13: species Average
Parallel 99.31 98.65 90.66 96.04
Reverse 99.13 98.49 91.78 96.47
Forward 99.66 98.65 91.84 96.72

The CUB-200-2011 dataset has three hierarchical
levels. Therefore, we divided label prediction results
into four categories, as shown in Fig. 3: all correct,

one label wrong, two labels wrong, and all wrong.

In order to more clearly see differences, we took
the logarithms of all values. In this visualization,
our method does not differ much from the baseline
method in general.

Ignoring the all-wrong and all-right cases, which
are irrelevant to the experimental goal, we further

analyzed the cases with one or two labelling errors.

We first counted the number of correct labels at

each level when only one label is correctly identified.

The result is shown in Fig. 4. If only one label is
correct for the baseline method, it will most likely
be the coarsest-grained label, the order level label,
as one would expect. An interesting phenomenon
is that in some cases, the only correct labels are
the finest-grained labels, at species level; there are
no cases where the only correct label is at an
intermediate-level. This may mean that labels at
different granularity levels guide the network to learn
towards both ends, and is a topic requiring further
exploration in future. However, it is unreasonable
to correctly predict only the species level label but
not the higher level labels, which indicates that
the network ignores semantic relationships between

labels at different granularity levels during training.

Compared to the baseline method, in cases where
only one label is correctly predicted, the proposed

- All correct
- All wrong

- Two wrong
- One wrong

W

Baseline Ours

\

Fig. 83 Overall overview of the proportion of labels that were correctly
and incorrectly predicted. Best viewed in color.

- Order level

Family level

Species level

Baseline Ours

Fig. 4 Distribution of labels at each granularity level when only one

label is correct.

- Order level

Family level

Species level

Baseline Ours

Fig. 5 Distribution of labels at each granularity level when only one
label is wrong.

method is much more successful at predicting it at the
coarsest-grained level. In the two-label error case, the
proposed method outperforms the baseline method.

In the case of only one label in error, the results
of the proposed method are very different from the
baseline method. They are difficult to distinguish,
since fine-grained images have significant intra-
class differences and slight inter-class differences.
Therefore, for the baseline method, if only one label
is mispredicted, this label is likely to at the finest-
grained label, the species label. However, some of the
only wrong labels are at the order level or family level,
which means that the network model will incorrectly
predict the family label when the order and species
labels are correctly predicted.

In contrast, when only one label is wrongly
predicted, the wrong labels predicted by the proposed
method are all species-level labels, as Fig. 5 shows: if
the coarsest-grained label is wrong, the finer-grained
label will also be wrongly predicted, and if the finest-
grained label is correctly predicted, then coarser-
grained labels are also correct.

The results of the above two experiments show that
the baseline method loses the connections between
labels during training, whereas the proposed method
effectively models the relationships between labels,
maintaining semantic consistency between labels at
different granularity levels during training.
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4.3 Comparison to other methods

We have also compared our method to state-
of-the-art methods on the six publicly available
datasets, and used a multiple head prediction
(MHP) method as a strong baseline in order to
demonstrate the effectiveness of MGSG. The MHP
method uses the pre-trained transformer model as
the encoder, followed by three fully connected layers
as classification heads to classify labels at different
granularity levels. As can be seen from our earlier
description, the modules of our proposed method are
loosely coupled, so the proposed method can easily be
combined with pre-trained models for the hierarchical
multi-granularity image classification task.

4.3.1 CUB-200-2011

Here, we compare the proposed method to
state-of-the-art hierarchical multi-granularity image
recognition models, with experimental results shown
in Table 5. We conclude that:

(1) Overall,
better than the state-of-the-art fine-grained methods,
including the attention-based approach methods HSE
(Chen et al. [5]) and FGN (Chang et al. [6]). It is
worth noting that the proposed method with Swin
Transformer is better by 1.61% (90.23% vs. 91.84%)
on the sub-task of label classification at the finest-

the proposed method performs

grained level compared to the method using Vision
Transformer. This is understandable, as the sliding
window mechanism of Swin Transformer is beneficial
when extracting local information, which is crucial
for fine-grained image recognition.

(2) The choice of backbone greatly influences
the results; a strong backbone can significantly

improve classification accuracy. We implemented
FGN using Swin-T as the backbone to provide a fair
comparison to the proposed method. The results
show that the proposed method is still better than
the FGN method. The average classification accuracy
is improved by 0.78% (95.94% vs. 96.72%) when
switching the backbone from the pre-trained Vision
Transformer to the pre-trained Swin Transformer,
which demonstrates that the proposed method can
effectively exploit the expressive ability of the pre-
trained model.

(3) For labels
recognition accuracy of the network gradually

at increasingly finer levels,
decreases. For FGN using Swin-T as the backbone,
accuracy drops by 1.14% from the order to the family
level label and 7.21% from the family to the species
level label. For our method, these values are 1.01%
and 6.81%, respectively. This shows that although
coarse-grained labels hurt the learning of fine-grained
features, our method effectively mitigates this effect
by modeling labels with different granularities.

(4) To verify the effectiveness of the proposed
method, we tried different backbones, including
ResNet-50, PMG, ViT, TransFG,

Transformer. Note that we used the standard non-

and Swin

overlapping patch split when using transFG as the
backbone while not using contrastive loss, to maintain
consistency and fairness of the experiments. The
results on CUB-200-2011 in Table 5 show that,
when using ResNet-50 or PMG as the backbone,
our proposed method outperforms the state-of-the-
art FGN method by 1.89% and 1.08% in terms of
average accuracy, respectively. With ViT or TransFG

Table 5 Accuracy (%) achieved at each level by various methods, for the CUB-200-2011 dataset

Method Backbone

CUB-200-2011

[1: order 12: family 13: species Average
LHT (Wang et al.) 98.19 92.92 79.29 90.13
HSE (Ch: t al. 98.80 95.70 88.10 94.20
(Chen et al.) ResNet-50 (He et al.)
FGN (Chang et al.) 96.37 90.39 77.95 88.24
MGSG (ours) 97.43 92.82 80.13 90.13
FGN (Ch t al. 97.98 93.50 82.26 91.25
(Chang et al.) PMG (Du et al.)
MGSG (ours) 98.20 94.17 84.61 92.33
MHP 99.19 97.42 89.40 95.34
ViT (Dosovitskiy et al.)
MGSG (ours) 99.31 98.00 90.23 95.94
MHP 99.24 97.98 89.72 95.64
TransFG (He et al.)
MGSG (ours) 99.36 98.20 90.51 96.02
MHP 99.31 98.65 90.66 96.04
FGN (Chang et al.) Swin-T (Liu et al.) 99.63 98.49 91.28 96.46
MGSG (ours) 99.66 98.65 91.84 96.72
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as backbone, the proposed method outperforms the
baseline method MHP in terms of average accuracy.

4.8.2  Butterfly-200

The Butterfly-200 dataset is based on the hierarchical
taxonomy used in biology, with items in 200 species,
116 genera, 23 subfamilies, and 5 families. We used
this dataset to assess the proposed method when
As Table 6 shows,
our method still shows advantages on the Butterfly-
200 dataset, with accuracy 1.66% higher than the
current state-of-the-art method HSE. As we consider

using longer label sequences.

labels at the genus level to labels at the species
level, recognition accuracy of the HSE method drops
by 9.30%, while for the proposed method, it drops
by 7.54%, showing a clear advantage over the HSE
method. For the Butterfly-200 dataset with more
category levels, the proposed method also improves on
the average accuracy of the state-of-the-art method,

FGN, by 2.75% and 1.39%, respectively, when using
ResNet-50 and PMG as the backbone.

4.8.8 FGVC-Aircraft

The FGVC-Aircraft dataset has 10,000 images
covering 100 model variants. Table 7 reports the
performance of several methods on this dataset. The
third-level label of this dataset is model level (e.g.,
767-200, 767-300). Most pre-trained models based on
Transformer perform poorly on this dataset, as is our
method. It does not reach the state-of-the-art in this
particular case, but the method’s overall accuracy
is still good, with average accuracy performance
exceeding the state-of-the-art.

4.8.4  Stanford Cars

In order to further verify the effectiveness of the
proposed method at fewer granularity levels, i.e.,
short label sequences, we conduct experiments on the
Stanford Cars dataset, which has only two label levels.

Table 6 Accuracy (%) achieved at each level by various methods, for the Butterfly-200 dataset

Butterfly-200
Method Backbone utterty
[1: family 2: subfamily 13: genus 14: species Average
LHT (Wang et al. ) 98.21 96.37 92.40 81.54 92.13
HSE (Chen et al.) 98.90 97.70 95.40 86.10 94.53
ResNet-50 (He et al.)
FGN (Chang et al.) 96.16 94.04 88.92 76.82 88.99
MGSG (ours) 97.28 95.81 91.56 82.30 91.74
FGN (Ch t al. 98.12 94.98 91.66 82.34 91.78
(Chang et al.) PMG (Du et al.)
MGSG (ours) 98.37 95.60 94.13 84.56 93.17
MHP . o 99.07 97.83 95.25 87.64 94.95
ViT (Dosovitskiy et al.)
MGSG (ours) 99.12 98.27 95.71 88.27 95.34
MHP 99.19 98.42 95.98 88.13 95.43
TransFG (He et al.)
MGSG (ours) 99.22 98.95 96.21 88.38 95.69
MHP 99.24 98.62 95.12 88.44 95.36
FGN (Chang et al.) Swin-T (Liu et al.) 99.54 98.62 95.38 88.62 95.54
MGSG (ours) 99.66 99.06 96.78 89.24 96.19
Table 7 Accuracy (%) achieved at each level by various methods, for the FGVC-Aircraft dataset
FGVC-Aircraft
Method Backbone GVC-Aircra
[1: maker 12: family {3: model Average
LHT (Wang et al. ) 95.73 92.89 88.56 92.39
HSE (Chen et al. 95.12 92.03 88.23 91.79
(Chen et al.) ResNet-50 (He et al.)
FGN (Chang et al.) 93.04 90.73 88.35 90.71
MGSG (ours) 94.09 92.17 88.41 91.56
FGN (Chang et al.) 94.57 90.75 88.31 91.21
PMG (Du et al.)
MGSG (ours) 95.31 91.87 88.47 91.88
MHP 95.08 91.12 87.69 91.30
ViT (Dosovitskiy et al.)
MGSG (ours) 95.31 91.80 88.01 91.71
MHP 95.32 91.73 87.91 91.65
TransFG (He et al.)
MGSG (ours) 95.76 92.20 88.11 92.02
MHP 95.57 92.15 88.23 91.98
FGN (Chang et al.) Swin-T (Liu et al.) 95.83 92.53 88.46 92.27
MGSG (ours) 96.67 93.21 88.07 92.65
il ¥ £ ¥ it -
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Table 8 reports the accuracy of several methods on
the Stanford Cars dataset. Going from the maker
level labels to the model level labels, FGN recognition
accuracy drops by 5.37%, while the proposed method
drops by 4.63%: the proposed method can still protect
learning of fine-grained features when few label levels
are used.

4.8.5 ISIA Food-200

In order to further explore the scope of application
of our method, following Ref. [62], we explored
the hierarchical multi-granularity image classification
task on the ISTA Food-200 dataset. We re-organised
this dataset into a three-level label hierarchy with
11 major food categories (e.g., Cereals and cereal
products and Meat and meat products), 52 ingredient
categories (e.g., Bacon and Beef), and 200 dish

categories (e.g., Bacon and eggs and Beef pie).

These food images lack fixed spatial structure and

semantic patterns, and so it is challenging to capture
semantic information at different granularities from
these images. Our approach attempts to make
correspondences between the semantics of different
granularities and different image regions, which is
more effective for non-rigid objects.

Table 9 reports the performance of several methods
on the ISTA Food-200 dataset. In terms of average
accuracy, our method achieved the best 80.98%
accuracy, outperforming the state-of-the-art method
FGN with Swin Transformer by 0.65%. This result
shows that our method provides more significant
performance improvements in complex hierarchical
multi-granularity image classification problems.

4.8.6 ISIA Food-500
ISTA Food-500 is a more comprehensive food dataset

than ISTA Food-200, with more data and higher
diversity. We reorganized the ISIA Food-500 dataset

Table 8 Accuracy (%) achieved at each level by various methods, for the Stanford Cars dataset

Stanford C
Method Backbone antore Lars
[1: maker 12: model Average
LHT (Wang et al. ) 96.74 89.67 93.21
HSE (Ch t al. 96.89 91.32 94.11
(Chen et al.) ResNet-50 (He et al.)
FGN (Chang et al.) 95.58 89.66 92.62
MGSG (ours) 96.19 90.31 93.25
FGN (Ch t al. 96.42 91.05 93.74
(Chang et al.) PMG (Du et al.)
MGSG (ours) 96.77 91.92 94.35
MHP ] o 96.50 91.19 93.85
ViT (Dosovitskiy et al.)
MGSG (ours) 96.61 91.53 94.07
MHP 96.64 91.60 94.12
TransFG (He et al.)
MGSG (ours) 96.79 91.70 94.25
MHP 96.68 91.30 93.99
FGN (Chang et al.) Swin-T (Liu et al.) 97.06 91.62 94.44
MGSG (ours) 97.40 92.77 95.09
Table 9 Accuracy (%) achieved at each level by various methods, for the ISIA Food-200 dataset
ISTA Food-2
Method Backbone S 00d-200
[1: basic 12: ingredient 13: dish Average
LHT (Wang et al. ) 84.32 78.03 69.67 77.34
HSE (Ch t al. 84.15 77.98 69.43 77.19
(Chen et al.) ResNet-50 (He et al.)
FGN (Chang et al.) 82.97 75.62 65.13 74.57
MGSG (ours) 83.50 7717 67.61 76.09
FGN (Chang et al.) 83.56 77.39 68.15 76.37
PMG (Du et al.)
MGSG (ours) 84.43 78.78 69.10 77.44
MHP 84.92 79.94 71.65 78.84
ViT (Dosovitskiy et al.)
MGSG (ours) 85.22 81.80 73.11 80.04
MHP 85.10 81.33 72.89 79.77
TransFG (He et al.)
MGSG (ours) 85.38 82.00 73.90 80.43
MHP 85.37 80.19 73.30 79.62
FGN (Chang et al.) Swin-T (Liu et al.) 85.97 80.81 74.22 80.33
MGSG (ours) 86.54 81.29 75.12 80.98
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as for ISTA Food-200, giving 11 major food categories,
60 ingredient categories, and 500 dish categories. We
tested in the same way as for ISIA Food-200, with
results given in Table 10.

Due to the greater amount of data and complexity
of the ISIA Food-500 dataset compared to the ISTA
Food-200 dataset, a significant decrease in accuracy
was observed for all methods. The proposed method
exceeds the accuracy of the original baseline method
by 1.36% and the state-of-the-art method by 0.82%
for the dish level, showing that our method is
more effective at exploiting fine-grained semantic
information in local regions of images.

For the Stanford Cars dataset with fewer category
levels, the artificial product-centered FGVC-Aircraft
dataset, and the irregularly shaped food-oriented
datasets Food-200 and Food-500, our proposed
MGSG method is effective using various backbones.

4.4 Qualitative assessment

To more intuitively present the effectiveness of our
method, we show cross-modality attention maps from
our method’s decoder, for sample images from several
different datasets in Fig. 6. We can draw the following
conclusions.

(1) For all datasets, our method shows a clear
trend: as the label level becomes finer, the decoder
combines the content of more images for classification
and recognition. This trend demonstrates the ability
of the proposed method to model multi-granularity
label relationships from a visual perspective.

(2) For labels at different granularity levels, the
location of critical areas for image classification may

be different, as is particularly evident in the FGVC-
aircraft and Stanford Cars datasets. Therefore, it is
valuable to split images into sequences for processing
and use cross-modality attention to fuse the semantic
information of multi-granularity labels with the visual
information of image sequences.

(3) For the coarsest-grained labels, the decoder can
often determine the label from a small area. For
finer-grained labels, the decoder typically needs more
image information to assist judgment. In this way, the
logic of our decoder is consistent with the cognitive
logic of human beings.

(4) In Ref. [53], it is claimed that, for fine-
grained level image recognition, the diversity of
features is significant. Our method focuses on more
image regions, which is also crucial for fine-grained
classification.

5 Discussion

5.1 Is patch splitting necessary?

The use of patch splitting in the encoder is effective,
but whether it is necessary is a matter of debate. It
can be easily seen that the encoder and decoder in the
proposed method are loosely coupled, so the encoder
module can be easily replaced, as verified by our
experiments in Section 4.3. While splitting images
into patches is not necessary, it can improve accuracy.
We use this operation for three reasons: (i) several
previous works have shown that splitting images into
patches is an effective way of improving the accuracy
of fine-grained image recognition, (ii) converting the
image input into a sequence can be more readily

Table 10 Accuracy (%) achieved at each level by various methods, for the ISIA Food-500 dataset

Method Backbone

ISIA Food-500

[1: basic 12: ingredient 13: dish Average
LHT (Wang et al. ) 81.47 73.19 63.35 72.67
HSE (Chen et al.) 82.11 73.39 63.28 72.93
ResNet-50 (He et al.)
FGN (Chang et al.) 81.21 72.99 62.83 72.34
MGSG (ours) 82.30 74.01 64.39 73.57
FGN (Chang et al.) 81.83 73.61 63.76 73.07
PMG (Du et al.)
MGSG (ours) 82.44 74.91 65.75 74.37
MHP . o 83.68 76.49 67.98 76.05
ViT (Dosovitskiy et al.)
MGSG (ours) 84.13 77.52 69.02 76.89
MHP 84.02 77.28 68.30 76.53
TransFG (He et al.)
MGSG (ours) 84.48 77.93 69.27 77.23
MHP 85.12 78.14 69.58 77.61
FGN (Chang et al.) Swin-T (Liu et al.) 85.26 78.36 70.12 77.91
MGSG (ours) 85.33 78.84 70.94 78.37
if % £ £ it i
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Fig. 6 Cross modality attention weights of different granularity level labels. The yellow means high weights and the green means relatively
low weights. We adaptively remove the part smaller than the average value for a better display effect.

extended to other multi-modal inputs, such as a list of
food ingredients, and (iii) converting the image input
to sequence form allows use of existing pre-trained
vision transformer parameters, improving recognition
performance. Nevertheless, the experiments using
ResNet-50 and PMG as backbones show that splitting
images into patches is unnecessary. We could also use
other encodings, such as connecting several different
fully connected networks as encoders after the feature
maps. We intend to explore improvement of the
encoder in further work.

5.2 Are coarse-grained labels beneficial or
detrimental to the learning of fine-
grained features?

The impact of coarse-grained labels on fine-grained
feature learning is worth discussing. Chang et al. [6]

®
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claim that coarse-level label prediction is detrimental to
fine-grained feature learning. Other literature [63-65]
concludes that coarse-level
beneficial for fine-level learning. Zhao et al. [63] and
Fan et al. [65] propose using a tree classifier instead of
the traditional N-way flat softmax classifier. Wang et
al. [64] propose a coarse-to-fine diagnosis framework
to use the knowledge structure. Compared to these

information can be

works, our problem of multi-granularity labeling
is different, and therefore different conclusions are
drawn. Our experiments also found that the average
accuracy in parallel prediction without modeling
relationships is significantly lower than when using
sequential forward or reverse order prediction, modeling
relationships. Therefore, we conclude that using
relationships between different granularity labels is
critical in multi-granularity feature learning.
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6 Conclusions

In this paper, we have investigated hierarchical
multi-granularity image classification and analyzed
The first is that the
relationships between hierarchical multi-granularity

its particular problems.

image labels are challenging to construct, and the
second is that labels and visual content are difficult
to match. We introduce a sequence-to-sequence
mechanism to address these two issues, and propose
a multi-granularity sequence generation method for
hierarchical multi-granularity image classification
tasks. The proposed multi-granularity sequence
generation method builds a decoder that inputs a
sequence of visual representations and semantic label
embeddings and outputs a predicted sequence of
multi-granularity labels. The decoder solves the first
problem above by maintaining the dependencies and
correlations between multi-granularity labels through
a masked multi-head self-attention mechanism. The
decoder also addresses the second problem above
by associating visual information with semantic
information from hierarchical multi-granularity

labels through a cross-modal attention mechanism.

Quantitative experiments show that the proposed
method can provide results superior to those from
state-of-the-art methods. Qualitative experiments
show that the method effectively models label
relationships at different granularities and finds
distinct image regions for labels targeting different
levels. Phenomena of interest were found during the
experiment, e.g., the network may ignore labels at
intermediate levels, which deserve further study.

Acknowledgements

This work was supported by National Key
R&D Program of China (2019YFC1521102), the
National Natural Science Foundation of China
(61932003), and Beijing Science and Technology Plan
(7221100007722004).

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

References

[1] Niu, K.; Huang, Y.; Ouyang, W. L.; Wang, L.

Improving description-based person re-identification

2]

(8]

by multi-granularity image-text alignments. IEEFE
Transactions on Image Processing Vol. 29, 5542-5556,
2020.

Du, R. Y.; Chang, D. L.; Bhunia, A. K.; Xie, J. Y ;
Ma, Z. Y.; Song, Y. Z.; Guo, J. Fine-grained visual
classification via progressive multi-granularity training
of jigsaw patches. In: Computer Vision — ECCV
2020. Lecture Notes in Computer Science, Vol. 12365.
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.
Springer Cham, 153—-168, 2020.

Liu, D. Y.; Wu, L.; Zheng, F.; Liu, L. Q.; Wang,
M. Verbal-person nets: Pose-guided multi-granularity
language-to-person generation. IEEE Transactions
on Neural Networks and Learning Systems doi:
10.1109/TNNLS.2022.3151631, 2022.

Ren, Y. X.; Wu, J.; Xiao, X. F.; Yang, J. C. Online
multi-granularity distillation for GAN compression.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 6773-6783, 2021.
Chen, T. S.; Wu, W. X.; Gao, Y. F.; Dong, L;
Luo, X. N.;
learning and recognition by exploiting hierarchical
semantic embedding. In: Proceedings of the 26th ACM
International Conference on Multimedia, 2023-2031,
2018.

Chang, D. L.; Pang, K. Y.; Zheng, Y. X.; Ma,
Z. Y.; Song, Y. Z.; Guo, J. Your “flamingo” is
my “bird”: Fine-grained, or not. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11471-11480, 2021.

Wang, R. Z.; cai, D.; Xiao, K. W.; Jia, X. X.; Han, X.;
Meng, D. Y. Label hierarchy transition: Modeling class

Lin, L. Fine-grained representation

hierarchies to enhance deep classifiers. arXiv preprint
arXiv:2112.02353, 2021.

Silla, C. N.; Freitas, A. A. A survey of hierarchical
classification across different application domains. Data
Mining and Knowledge Discovery Vol. 22, Nos. 1-2, 31—
72, 2011.

Rousu, J.; Saunders, C.; Szedmak, S.; Shawe-Taylor,
J. Kernel-based learning of hierarchical multilabel
classification models. Journal of Machine Learning
Research Vol. 7, 1601-1626, 2006.

Cesa-Bianchi, N.; Gentile, C.; Zaniboni, L. Incremental
algorithms for hierarchical classification. Journal of
Machine Learning Research Vol. 7, 31-54, 2006.
Triguero, I.; Vens, C. Labelling strategies for
hierarchical multi-label classification techniques.
Pattern Recognition Vol. 56, 170-183, 2016.
Barutcuoglu, Z.; Schapire, R. E.; Troyanskaya, O. G.
Hierarchical multi-label prediction of gene function.
Bioinformatics Vol. 22, No. 7, 830-836, 2006.

@ i1 % £ % whiit

Tsinghua University Press

@ Springer



258

X. Liu, L. Wang

[13]

[14]

[15]

[16]

[17]

18]

[19]

[22]

[23]

®

Dimitrovski, I.; Kocev, D.; Loskovska, S.; Dzeroski,
S. Hierarchical annotation of medical images. Pattern
Recognition Vol. 44, Nos. 10-11, 2436-2449, 2011.
Chen, T. S.; Lin, L.; Chen, R. Q.; Hui, X. L.; Wu,
H. F. Knowledge-guided multi-label few-shot learning
for general image recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 44, No.
3, 1371-1384, 2022.

Li, L. L.; Zhou, T. F.; Wang, W. G.; Li, J. W
Yang, Y. Deep hierarchical semantic segmentation.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 1236-1247,
2022.

Chen, H. T.; Wang, Y.; Hu, Q. H. Multi-granularity
regularized re-balancing for class incremental
learning. IEEE Transactions on Knowledge and Data
Engineering Vol. 35, No. 7, 7263-7277, 2023.

Wang, Y.; Hu, Q. H.; Zhu, P. F.; Li, L. H.; Lu, B. X_;
Garibaldi, J. M.; Li, X. L. Deep fuzzy tree for large-scale
hierarchical visual classification. IEEE Transactions on
Fuzzy Systems Vol. 28, No. 7, 1395-1406, 2020.

Wang, Y.; Wang, Z.; Hu, Q. H.; Zhou, Y. C.; Su, H. L.
Hierarchical semantic risk minimization for large-scale
classification. IEEE Transactions on Cybernetics Vol.
52, No. 9, 9546-9558, 2022.

Wang, Y.; Hu, Q. H.; Chen, H.; Qian, Y. H. Uncertainty
instructed multi-granularity decision for large-scale
hierarchical classification. Information Sciences Vol.
586, 644-661, 2022.

Min, W. Q.; Jiang, S. Q.; Liu, L. H.; Rui, Y.; Jain, R.
A survey on food computing. ACM Computing Surveys
Vol. 52, No. 5, Article No. 92, 2019.

Ge, W. F.; Lin, X. R.; Yu, Y. Z. Weakly supervised
complementary parts models for fine-grained image
classification from the bottom up. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 3029-3038, 2019.

Jiang, S. Q.; Min, W. Q.; Liu, L. H.; Luo, Z. D.
Multi-scale multi-view deep feature aggregation for food
recognition. IEEE Transactions on Image Processing
Vol. 29, 265276, 2020.

Lin, T. Y.; RoyChowdhury, A.; Maji, S. Bilinear
convolutional neural networks for fine-grained visual
recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence Vol. 40, No. 6, 1309-1322,
2018.

Chen, Y.; Bai, Y. L;
Destruction and construction learning for

Zhang, W.; Mei, T.
fine-
grained image recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 5152-5161, 2019.

i1 % £ £tk

Tsinghua University Press

@ Springer

[25]

[27]

[31]

32]

[33]

[35]

[36]

Sun, G. L.; Cholakkal, H.; Khan, S.; Khan, F.; Shao,
L. Fine-grained recognition: Accounting for subtle
differences between similar classes. Proceedings of the
AAAI Conference on Artificial Intelligence Vol. 34, No.
7, 12047-12054, 2020.

Zhuang, P. Q.; Wang, Y. L.; Qiao, Y. Learning attentive
pairwise interaction for fine-grained classification.
Proceedings of the AAAI Conference on Artificial
Intelligence Vol. 34, No. 7, 13130-13137, 2020.

Zou, D. N.; Zhang, S. H.; Mu, T. J.; Zhang, M. A
new dataset of dog breed images and a benchmark for
finegrained classification. Computational Visual Media
Vol. 6, No. 4, 477-487, 2020.

Chen, L.
learning with label propagation for image classification.
Computational Visual Media Vol. 3, No. 1, 83-94, 2017.
Chen, K. X.; Wu, X. J. Component SPD matrices:
A low-dimensional discriminative data descriptor for

Yang, M. Semi-supervised dictionary

image set classification. Computational Visual Media
Vol. 4, No. 3, 245-252, 2018.

Ren, J. Y.; Wu, X. J. Vectorial approximations of
infinite-dimensional covariance descriptors for image
classification. Computational Visual Media Vol. 3, No.
4, 379-385, 2017.

Huang, S. L.; Xu, Z.; Tao, D. C.; Zhang, Y. Part-
stacked CNN for fine-grained visual categorization. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1173-1182, 2016.
Donahue, J.; Jia, Y. Q.; Vinyals, O.; Hoffman, J.;
Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A deep
convolutional activation feature for generic visual
recognition. In: Proceedings of the 31st International
Conference on Machine Learning, Vol. 32, 647-655,
2014.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.;
Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I.
Attention is all you need. In: Proceedings of the
31st International Conference on Neural Information
Processing Systems, 6000-6010, 2017.

Guo, M. H.; Xu, T. X.; Liu, J. J.; Liu, Z. N.; Jiang,
P. T.; Mu, T. J.; Zhang, S. H.; Martin, R. R.; Cheng,
M. M.; Hu, S. M. Attention mechanisms in computer
vision: A survey. Computational Visual Media Vol. 8,
No. 3, 331-368, 2022.

Devlin, J.; Chang, M. W.; Lee, K.; Toutanova, K.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In: Proceedings of the
Conference of the Association for Computational
Linguistics, 4171-4186, 2019.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.;
Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.;



Multi-granularity sequence generation for hierarchical image classification

259

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Sastry, G.; Askell, A.; et al. Language models are few-
shot learners. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems,
1877-1901, 2020.

Wang, X. L.; Girshick, R.; Gupta, A.; He, K.
M. Non-local neural networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7794-7803, 2018.

Cao, Y.; Xu, J. R.; Lin, S;; Wei, F. Y.; Hu, H.
GCNet: Non-local networks meet squeeze-excitation
networks and beyond. In: Proceedings of the
IEEE/CVF International Conference on Computer
Vision Workshop, 1971-1980, 2019.

Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. H.
Squeeze-and-excitation networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7132-7141, 2018.

Wang, Q. L.; Wu, B. G.; Zhu, P. F.; Li, P. H.; Zuo, W.
M.; Hu, Q. H. ECA-net: Efficient channel attention for
deep convolutional neural networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11531-11539, 2020.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X. H.; Unterthiner, T.; Dehghani, M.;
Minderer, M.; Heigold, G.; Gelly, S.; et al. An
image is worth 16x16 words: Transformers for
image recognition at scale. In: Proceedings of the
International Conference on Learning Representations,
1-9, 2021.

Xu, Y. F.; Wei, H. P.; Lin, M. X.; Deng, Y. Y.; Sheng,
K. K.; Zhang, M. D.; Tang, F.; Dong, W. M.; Huang,
F.Y.; Xu, C. S. Transformers in computational visual
media: A survey. Computational Visual Media Vol. 8,
No. 1, 33-62, 2022.

Touvron, H.; Cord, M.; Douze, M.; Massa, F.;
Sablayrolles, A.; Jégou, H. Training data-efficient
image transformers & distillation through attention.
In: Proceedings of the 38th International Conference
on Machine Learning, Vol. 139, 10347-10357, 2021.
Liu, Z.; Lin, Y. T.; Cao, Y.; Hu, H.; Wei, Y. X,;
Zhang, Z.; Lin, S.; Guo, B. N. Swin transformer:
Hierarchical vision transformer using shifted windows.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 9992-10002, 2021.
Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.;
Kirillov, A.; Zagoruyko, S. End-to-end object detection
with transformers. In: Computer Vision — ECCV
2020. Lecture Notes in Computer Science, Vol. 12346.
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.
Springer Cham, 213-229, 2020.

Zhu, X. Z.; Su, W. J.; Lu, L. W.; Li, B.; Wang, X. G.;

[47]

[48]

[49]

[50]

[51]

[52]

[56]

Dai, J. F. Deformable DETR: Deformable transformers
for end-to-end object detection. In: Proceedings of the
International Conference on Learning Representations,
1-9, 2021.

Ye, L. W.; Rochan, M.; Liu, Z.; Wang, Y. Cross-modal
self-attention network for referring image segmentation.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10494—
10503, 2019.

F. Z.; H.; Fu, J. L; Lu, H. T
Guo, B. N. Learning texture transformer network

Yang, Yang,
for image super-resolution. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5790-5799, 2020.

He, J.; Chen, J. N.; Liu, S.; Kortylewski, A.; Yang,
C.; Bai, Y. T.; Wang, C. H. TransFG: A transformer
architecture for fine-grained recognition. Proceedings
of the AAAI Conference on Artificial Intelligence Vol.
36, No. 1, 852-860, 2022.

Zhang, Y.; Cao, J.; Zhang, L.; Liu, X. C.; Wang, Z.
Y.; Ling, F.; Chen, W. Q. A free lunch from ViT:
Adaptive attention multi-scale fusion Transformer for
fine-grained visual recognition. In: Proceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing, 3234-3238, 2022.

Hu, Y. Q.; Jin, X.; Zhang, Y.; Hong, H. W.; Zhang,
J. F.; He, Y.; Xue, H. RAMS-trans:
attention multi-scale transformer for fine-grained

Recurrent

image recognition. In: Proceedings of the 29th ACM
International Conference on Multimedia, 4239-4248,
2021.

Wang, J.; Yu, X. H.; Gao, Y. S. Feature fusion vision
transformer for fine-grained visual categorization. In:
Proceedings of the British Machine Vision Conference,
2021.

Liu, X. D.; Wang, L. L.; Han, X. G. Transformer
with peak suppression and knowledge guidance for fine-
grained image recognition. Neurocomputing Vol. 492,
137-149, 2022.

Chou, P. Y.; Lin, C. H.; Kao, W. C. A novel plug-
in module for fine-grained visual classification. arXiv
preprint arXiv:2202.03822, 2022.

Liu, Z.; Shen, Y.; Lakshminarasimhan, V. B.; Liang,
P. P.; Bagher Zadeh, A.; Morency, L. P. Efficient low-
rank multimodal fusion with modality-specific factors.
In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), 22472256, 2018.

Wah, C.; Branson, S.; Welinder, P.; Perona,
P.; Belongie, S. The Caltech-UCSD Birds-200-
2011 Dataset. Technical Report CNS-TR-2011-001.
California Institute of Technology, 2011.

@ i1 % £ % whiit

Tsinghua University Press

@ Springer



260

X. Liu, L. Wang

[57] Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; Vedaldi,
A. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151, 2013.

[68] Krause, J.; Stark, M.; Jia, D.; Li, F. F. 3D object
representations for fine-grained categorization. In:
Proceedings of the IEEE International Conference on
Computer Vision Workshops, 554-561, 2013.

[59] Min, W. Q.; Liu, L. H.; Luo, Z. D.; Jiang, S. Q.
Ingredient-guided cascaded multi-attention network for
food recognition. In: Proceedings of the 27th ACM
International Conference on Multimedia, 1331-1339,
2019.

[60] Min, W. Q.; Liu, L. H.; Wang, Z. L.; Luo, Z. D
Wei, X. M.; Wei, X. L.; Jiang, S. Q. ISTA food-500:
A dataset for large-scale food recognition via stacked
global-local attention network. In: Proceedings of the
28th ACM International Conference on Multimedia,
393-401, 2020.

[61] He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep
residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, 770-778, 2016.

[62] Sheng, K. K.; Dong, W. M.; Huang, H. B.; Chai, M.
L.; Zhang, Y.; Ma, C. Y.; Hu, B. G. Learning to assess
visual aesthetics of food images. Computational Visual
Media Vol. 7, No. 1, 139-152, 2021.

[63] Zhao, T. Y.; Zhang, B. P.; He, M.; Wei, Z. G.; Zhou,
N.; Yu, J.; Fan, J. P. Embedding visual hierarchy with
deep networks for large-scale visual recognition. IEEE
Transactions on Image Processing Vol. 27, No. 10, 4740~
4755, 2018.

[64] Wang, Y.; Liu, R. N.; Lin, D.; Chen, D. Y
Li, P.; Hu, Q. H.; Philip Chen, C. L. Coarse-to-
fine: Progressive knowledge transfer-based multitask
convolutional neural network for intelligent large-scale
fault diagnosis. IEEE Transactions on Neural Networks
and Learning Systems Vol. 34, No. 2, 761-774, 2023.

[65] Fan, J.P.; Zhao, T.Y.; Kuang, Z. Z.; Zheng, Y.; Zhang, J.;

@ i 4 £ % s @ Springer

Tsinghua University Press

Yu, J.; Peng, J. Y. HD-MTL: Hierarchical deep multi-

task learning for large-scale visual recognition. IEEE

Transactions on Image Processing Vol. 26, No. 4, 1923~
1938, 2017.

Xinda Liu is currently working towards
a Ph.D. degree at Beihang University,
in the State
Laboratory of Virtual Reality
Technology and Systems. His research
interests include machine learning and

and is a researcher

Key

image processing.

Lili Wang is a professor in the School
of Computer Science and Engineering,
Beihang University, and a researcher in
the State Key Laboratory of Virtual
Reality Technology and Systems. Her
research interests include virtual reality,
augmented reality, and rendering.

This article is licensed under a Creative

Open Access
Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence,
creativecommons.org/licenses/by/4.0/.

visit http://

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Hierarchical multi-granularity image classification
	Fine-grained image recognition
	Vision transformers

	Method
	Overview
	Embedding methods
	Transformer encoder
	Sequence construction

	Multi-granularity sequence generation
	Relationships between labels
	Visual-semantic modality fusion


	Experiments
	Experimental setup
	Datasets
	Implementation details

	Ablation and related analyses
	Quantitative experiments
	Visual assessment

	Comparison to other methods
	CUB-200-2011
	Butterfly-200
	FGVC-Aircraft
	Stanford Cars
	ISIA Food-200
	ISIA Food-500

	Qualitative assessment

	Discussion
	Is patch splitting necessary?
	Are coarse-grained labels beneficial or detrimental to the learning of fine-grained features?

	Conclusions

