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Abstract Voronoi diagrams on triangulated surfaces
based on the geodesic metric play a key role in many
applications of computer graphics. Previous methods of
constructing such Voronoi diagrams generally depended
on having an exact geodesic metric. However, exact
geodesic computation is time-consuming and has high
memory usage, limiting wider application of geodesic
Voronoi diagrams (GVDs). In order to overcome this
issue, instead of using exact methods, we reformulate
a graph method based on Steiner point insertion, as
an effective way to obtain geodesic distances. Further,
since a bisector comprises hyperbolic and line segments,
we utilize Apollonius diagrams to encode complicated
structures, enabling Voronoi diagrams to encode a
medial-axis surface for a dense set of boundary samples.
Based on these strategies, we present an approximation
algorithm for efficient Voronoi diagram construction
on triangulated surfaces. We also suggest a measure
for evaluating similarity of our results to the exact
GVD. Although our GVD results are constructed
using approximate geodesic distances, we can get GVD
results similar to exact results by inserting Steiner
points on triangle edges. Experimental results on many
3D models indicate the improved speed and memory
requirements compared to previous leading methods.
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1 Introduction

Voronoi diagrams are fundamental data structures
that have been widely investigated in computational
geometry, and applied in various science and
engineering disciplines, e.g., molecular biology [1],
image processing [2, 3], computer graphics [4–6],
machining and manufacturing [7], and mobile
communication [8], etc. A Voronoi diagram can
be viewed as the minimization diagram of a finite
ensemble of continuous functions [9]. A Voronoi
diagram divides the embedding space into sub-regions,
each being the domain closer to a given seed point
than the others. We may define many variants of
Voronoi diagrams depending on the embedding space.
In Euclidean space, the Voronoi diagram is well
understood and studied for rasterization data [10,
11]. For spaces with non-Euclidean metrics, people
have developed Voronoi diagrams on parametric
surfaces [12], polyhedral surfaces [13, 14], spherical
spaces [15], hyperbolic spaces [16], etc. However,
there are distinct differences between Euclidean and
non-Euclidean metrics, so many established attributes
based on the Euclidean metric do not hold for non-
Euclidean metrics. For instance, a 2D Euclidean
Voronoi component is always convex, while a geodesic
Voronoi component is often non-convex. In this paper,
we specifically consider Voronoi diagrams embedded
in triangular meshes, based on the geodesic metric
(geodesic Voronoi diagrams, GVDs).

Owing to its simplicity and flexibility, the triangular
mesh is the most frequently used 3D representation
in computer graphics [17]. Voronoi diagrams on
triangular meshes have been used in a range of
applications, such as 3D mesh reconstruction [18, 19],
tree skeleton extraction [13], trajectory planning [20],
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shape segmentation [21], and so on. However, making
use of geodesic Voronoi diagrams on triangular
surfaces, rather than diagrams based on the Euclidean
metric, presents many unresolved challenges. Often,
in order to construct geodesic Voronoi diagrams,
exact geodesic algorithms are used, such as the
MMP algorithm [22] and the VTP algorithm [23],
to obtain the geodesic metric [13, 14, 24]. Due to
the excellent features of these algorithms, they can
supply adequate geodesic information about edges
for GVD construction. However, since these exact
algorithms are slow and memory hungry, they present
a stumbling block to constructing GVDs and further
practical applications. Furthermore, the boundaries
of GVD regions, bisectors, consist of hyperbolic
and line segments that are have particular, more
complex characteristics than those of Euclidean
Voronoi diagrams.

In this paper, we focus on avoiding superfluous
computation of geodesic distances to improve speed
and memory usage. As computing geodesic distances
using exact algorithms is expensive, we construct
graphs using Steiner points placed on mesh edges
to report distances. In the propagation process, we
regard each Steiner point as a simplified window
and adapt existing window filtering rules to remove
many redundant events. Theoretically, a bisector in
a Voronoi diagram on a mesh may include linear,
hyperbolic, and parabolic segments. We make use
of the Apollonius diagram, also called the additively
weighted Voronoi diagram, to depict these structures
locally defined in the plane of a single mesh triangle.

Based on these ideas, we present an efficient
method for constructing an approximate GVD for
point-source generators. Once distance propagation
terminates, geodesic distances and the GVD become
concurrently available. Thanks to the highly selective
filtering rules, our algorithm runs in O(mnlogn) time
and takes O(mn) space on an n-face mesh with t

generators, where m is the number of Steiner points
inserted on each edge. Figure 1 is a representative of
experimental results on a large number of 3D models,
indicating that our algorithm has improved speed and
memory efficiency compared over previous leading
methods.

In summary, our key ideas include the following:
(1) Unlike previous GVD construction methods, we

reformulate a Steiner point insertion method,

Fig. 1 GVD computed by (a) Qin et al.’s method and (b) our
method, for the Monster model (50k faces), for 30 generators. Qin
et al.’s method takes 1.27 s and 6.90 MB memory to get an exact
GVD; ours takes 0.41 s and 2.28 MB memory to construct a GVD
with 0.31% error.

instead of using exact methods, to obtain
geodesic distances, increasing speed and reducing
memory usage.

(2) We utilize local Apollonius diagrams with
weighted Steiner points to partition mesh triangles
and extract hyperbolic and linear segments, to
encode the complicated GVD bisector structures.

(3) We suggest a method of approximate GVD
evaluation based on discrete Fréchet distance,
and use it to show that our approximate GVD
results are close to the exact results.

Our work is presented in detail as follows. Section 2
briefly recalls related work. Section 3 provides
background on the Apollonius diagram and geodesic
distance computation based on Steiner points.
Section 4 explains how to construct a GVD using
point-source sites. We explain our algorithm for
building GVD on triangle meshes in detail in Section 5.
Section 6 experimentally compares our method to
previous methods. We give some applications of the
proposed GVD algorithm in Section 7.

2 Related work

2.1 Discrete geodesics

The discrete geodesic problem (DGP) focuses on
computing geodesic distances on triangle meshes [22].
There are three main kinds of methods for solving
it: discrete wavefront propagation methods, PDE
methods, and graph-based methods. We refer to
Refs. [25, 26] for a comprehensive survey. Discrete
wavefront propagation methods use a window to
encode geodesic paths sharing the same edge
sequence. They generally propagate wavefronts across
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triangle faces in a Dijkstra-like sweep. The MMP
algorithm [22, 27] and the CH algorithm [28] are
two representative methods. The MMP algorithm
maintains a partitioning scheme for each directed
edge while the CH algorithm uses a one angle
one split rule so that at most O(n) windows are
allowed to have two children. Many variants and
improvements [23, 29–32] propose different rules
to filter redundant windows in the propagation
process. Although discrete wavefront propagation
methods can provide exact geodesic information and
adequate information for bisectors, these methods
are computationally expensive.

PDE methods [33–36] compute geodesic distances
using partial differential equations (PDEs) on
a smooth manifold. In detail, they solve the
Eikonal equation ‖∇u(t)‖ = 1 with boundary
condition u(s) = 0 on discrete domains, where s

is the source. PDE methods are easy to implement
and efficient. However, they provide only a first-order
approximation, which is extremely sensitive to the
mesh tessellation.

Graph-based algorithms [37–44] are approximation
algorithms; they can balance accuracy and speed
very well. These algorithms are characterized by an
approximation ratio ε. A typical goal is to compute
a (1 + ε)-approximate geodesic path as quickly as
possible. Graph-based algorithms usually deal with
the discrete geodesic problem by constructing a
dense undirected graph G on the target manifold
mesh and use graph-based search techniques to
answer the distance-and-path query. In general,
approaches add Steiner points on mesh edges or even
on triangle faces. For example, Lanthier et al. [39, 40]
constructed a dense graph by inserting Steiner points
on each mesh edge to achieve accurate results.
Aleksandrov et al. [41, 45] proposed adding Steiner
points more densely near vertices than near mid-edges
to ensure that the length of the approximate path
is within a factor (1 + ε) of the shortest geodesic
path. Later, they [42] found that adding Steiner
points along the bisectors of triangles also works.
A survey on graph-based methods is presented in
Ref. [25]. Generally, the Steiner-point insertion
algorithms need to construct a graph G in which
the complexity of G grows quadratically with respect
to the number m of Steiner points inserted on
each mesh edge. Consequently, the computational

cost grows rapidly as m increases. Since efficiently
computing geodesic is crucial in GVD computation,
we reformulate a graph method [46] based on Steiner
point insertion; we regard each Steiner point as a
simplified window and use existing window filtering
rules for efficiently propagating geodesic distances.

2.2 Voronoi diagram

Mathematically, a Voronoi diagram is a partition
of the plane into regions, each closer to one of a
given set of objects. Using the same definition, the
construction of Voronoi diagrams can be extended to
metric spaces other than Euclidean spaces [47, 48].
For non-Euclidean spaces, there are many works
dedicated to Voronoi diagrams on smooth surfaces,
e.g., Riemannian manifolds M [49, 50], parametric
surfaces [12], spheres S2 [15, 51], and hyperbolic
spaces H2 [16]. The reader is referred to Refs. [10, 52]
for detailed surveys.

Owing to their simplicity and a high degree
of freedom, non-differentiable polyhedral surfaces,
especially triangular surfaces, are the most
popular representation for 3D objects. Therefore,
constructing a Voronoi diagram on triangle mesh
surfaces using the geodesic metric is an important
topic in computer graphics. Since many properties
of a smooth manifold no longer hold, transferring
Voronoi diagrams from Euclidean metric to geodesic
metric still presents many unresolved challenges.
Kimmel and Sethian [53] computed Voronoi diagrams
on triangle meshes using the fast marching method [33].
However, since that method computes only a
first-order approximation to geodesic distance, it
may produce bad results on poor triangulations.
Liu et al. [13] studied the analytic structure of
iso-contours, bisectors, and Voronoi diagrams on
a triangular mesh M . They proposed practical
algorithms for constructing GVDs using the MMP
algorithm for exact geodesic computation. Later,
they extended their work to construct intrinsic
Delaunay triangulations from dual geodesic Voronoi
diagrams [54, 55]. Xu et al. [24] proposed an algorithm
for constructing GVDs with polyline generators.
They introduced a new concept, the local Voronoi
diagram (LVD), to represent the GVD bisectors.
Recently, Qin et al. [14] proposed constructing
Voronoi diagrams using the window-VTP algorithm
which runs 3–8 times faster than Liu et al.’s
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method [13]. Although exact geodesic algorithms
like MMP and VTP can compute Voronoi diagrams
accurately, obtaining exact geodesic distances is
time-consuming, presenting a stumbling block to
constructing GVDs and further practical applications.
In this paper, we employ an improved Steiner-point
graph method to balance time and accuracy of GVD
construction.

3 Preliminaries

3.1 Steiner points

In computational geometry, a Steiner point is a point
that is not part of the input to a geometric problem
but is added during the solution of the problem.
It usually creates a better solution than using the
original points alone [56]. In geodesic computation,
Steiner points are regularly applied in graph-based
methods [39, 40, 42] to balance accuracy and time.
By inserting m Steiner points into each mesh edge,
and connecting any pair of Steiner points in the same
triangle, we can construct an augmented graph G.
In the original Steiner-point graph algorithms [39–
42], when a Steiner point p is assigned a shorter
distance, it must broadcast an update event to all
of the neighboring Steiner points and vertices: see
Fig. 2. This causes a rapid rise in the computational
cost since the complexity of G is O(m2) where m is
the number of Steiner points inserted per edge.

In order to seek a balance between accuracy and
speed in such graph algorithms, Meng et al. [46]
proposed an improved Steiner-point graph method.
In it, the inserted Steiner points play much like the
same role as windows in exact geodesic methods.
We can filter useless broadcast events by adapting
existing window pruning rules. In order to efficiently

Fig. 2 Steiner points and propagation.

construct Voronoi diagrams based on the geodesic
metric, we adopt filtering strategies and revise Meng
et al.’s original method for computation of the multi-
source geodesic distance field.

3.2 Apollonius diagram

The Voronoi diagram is a fundamental data structure
defined as the minimization diagram of a finite set of
continuous functions [10, 52, 57]. It subdivides the
embedding space Ω ⊂ Rd into certain regions based
on the Euclidean distance to a set of points {xi}t

i=1
belonging to Ω. Each point {xi}t

i=1, called a site or
generator, dominates the subregion:
V C(xi) = {x ∈ Ω | ‖ x−xi ‖6‖ x−xj ‖, i 6= j} (1)

This is called the Voronoi cell of the site xi. We
may define many variants of Voronoi diagrams using
different distance functions and embedding spaces.
Power diagrams and Apollonius diagrams are two
classical variants of Voronoi diagrams (see Fig. 3).

A power diagram is a type of weighted Voronoi
diagram. Instead of each region comprising the points
closest to a site, it comprises those points with
smallest power distance for a particular circle [58, 59].
Each site xi with weight wi dominates the subregion
or power cell:
PC(xi) = {x ∈ Ω | ‖ x− xi ‖2 −wi

6‖ x− xj ‖2 −wj , i 6= j} (2)
A power diagram degenerates to a Voronoi diagram
when the weights are identical.

The Apollonius diagram, or additively weighted
Voronoi diagram, is another variant [60–62]. Differing
from the power diagram which uses squared distance,
each site xi with weight wi dominates the subregion,
or Apollonius cell:
AC(xi) = {x ∈ Ω | ‖ x− xi ‖ −wi

6‖ x− xj ‖ −wj , i 6= j} (3)
The sets of points simultaneously belonging to two
Apollonius cells are called Apollonius edges. The

Fig. 3 Left to right: 2D Voronoi diagram, power diagram, and
Apollonius diagram for the same set of sites.
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Apollonius edges between two adjacent cells usually
contain linear and hyperbolic segments, and is the
motivation for applying Apollonius diagrams rather
than other Voronoi diagram variants to construct the
GVD.

4 GVD with point-source sites

Given a set of sites S = {s1, · · · , st} on mesh M, let
Gsi(p) denote the geodesic distance from site si to
point p on M. The geodesic Voronoi cell associated
with site si can be defined as

GC(si) = {p | Gsi(p) 6 Gsj (p), i 6= j, p ∈M} (4)

Furthermore [14], the boundaries of geodesic Voronoi
cells are given by the sets of points q satisfying:
∃ i, j, ∀k : Gsi(q) = Gsj (q) 6 Gsk

(q), i 6= j 6= k

(5)
The common boundary of sites si and sj can also be
regarded as their bisector.
4.1 Bisectors

A bisector B(si, sj) of two sites si, sj ∈ S is the locus
of points q on mesh M satisfying Gsi(q) = Gsj (q).
Property 4.1 states that boundaries, i.e., bisectors, in
GVDs, consist of hyperbolic and line segments. These
are distinctive and more complicated than those of
Euclidean Voronoi diagrams.

Property 4.1 Given a triangle mesh M = (V,E)
and distinct sites s1, s2, let p be a point on the bisector
B(s1, s2). Let each Steiner point qi be an intermediate
point on some path from site Si γ(si, p), i = 1, 2. We
assume each point qi has a known geodesic distance
Gsi(qi) from site si. The bisector B(s1, s2) on M
consists of hyperbolic and line segments.

Proof. The key is to analyze the bisectors as they
appear in a triangle F . In the Steiner-point insertion
method, m > 0, Steiner points are inserted into
each triangle edge. There are two cases to consider
according to whether the Steiner points used as relays
to compute distance to p have equal or unequal
distances to their respective sites:
• Case 1: when Gs1(q1) = Gs2(q2), point p lies on

the line segment bisecting sites s1 and s2.
• Case 2: when Gs1(q1) 6= Gs2(q2), point p satisfies

Gs1(q1) + ‖q1p‖ = Gs2(q2) + ‖q2p‖, which implies
that p is on a hyperbolic segment with foci q1
and q2.

If three or more Steiner points give the same distance
to point p, it is a branch point. This completes the
proof. Figure 4 illustrates the above situations.

In order to find the boundaries of GVDs, we employ
Apollonius diagrams to guide the capture of these
complicated structures, as we next explain.

4.2 Local Apollonius diagrams

Unlike traditional Voronoi diagrams, Apollonius
diagrams consist of linear and hyperbolic segments.
Let p ∈ B(s1, s2) be a point located in triangle F
while the Steiner point qi, inserted on an edge of
triangle F , is a relay point on path γ(si, p), i = 1, 2.
Let qi be provided with a geodesic distance Gsi(qi)
from site si to qi. We have

Gs1(q1) + ‖q1p‖ = Gs2(q2) + ‖q2p‖ (6)
Taking (q1,−Gs1(q1)) and (q2,−Gs2(q2)) as two
weighted points, their additively weighted distances
to p are respectively

‖q1p‖ − (−Gs1(q1)), ‖q2p‖ − (−Gs2(q2))
Thus, point p has an equal-weighted distance to sites
s1 and s2 via Steiner points q1 and q2, respectively.
More generally, bisectors B (may be with a tree-
like structure) can be reported by computing the
Apollonius diagram with respect to a set of Steiner
points on the boundary of triangle F .

We may represent a triangle by its vertices: F =
(v1, v2, v3). Let Q = {qk| ∀k, qk ∈ e(vi, vj), i, j =
1, 2, 3, i 6= j} represent the set of Steiner points
inserted into the edges of F . When the Steiner-point
graph method terminates, each Steiner point has a
geodesic distance Gsi(qk) measured from generator
si, i = 1, · · · , t. Taking the set of weighted points
{qk,−Gsi(qk)}M

k=1 to compute the local Apollonius
diagram on F , we can partition F into M regions,
where M cannot exceed the total number of inserted

Fig. 4 Bisectors of generators. (a) When Gs1 (q1) = Gs2 (q1), point p
is on the line segment bisecting sites s1 and s2. (b) When Gs2 (q2) 6=
Gs3 (q3), point p is on a hyperbolic segment with foci q2 and q3.
(c) Point p is a branch point when three or more Steiner points have
the same distance to it.
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Steiner points. The boundaries of regions are enclosed
by line segments and hyperbolic segments. Each
segment lies on the border of two distinct regions
belonging to different generators, and these form the
boundaries of the GVD. See Fig. 5 for an example.
Therefore, using the strategy above, by constructing
the local Apollonius diagram we can extract the GVD
structure triangle by triangle on mesh M.

4.3 Redundant primitives

While this approach to constructing the geodesic
Voronoi diagram on a mesh M could be used in a
direct way by first computing the Apollonius diagram
on each mesh face, and then finding diagram edges
that belong to the GVD, this is time-consuming, since
typically only a handful of mesh triangles include
GVD boundaries. To develop an efficient method
to construct the GVD of mesh M, it is critical to
distinguish those triangles which include the GVD
boundaries [14], instead of conducting a brute force
search over all triangles.

Figure 6 shows a point p which is the intersection
between a triangle edge and a GVD boundary. Point
p must satisfy the constraint in Eq. (5) and is
shared by two adjacent Steiner points connected to
two different sources. We call points like p critical
points; triangles including GVD boundaries always
contain such points. In other words, any triangle
incorporating GVD structures has Steiner points
propagated from different sources, giving criteria for
determining the redundant primitives on a mesh:

Given a triangle mesh M = (V,E) and distinct

Fig. 5 Local Apollonius diagram on a triangle F . Q = {q1, . . . , q11}
represents the set of Steiner points inserted into the edges of F while a
set of sites S = {s1, · · · , st} are the generators. The local Apollonius
diagram partitions F into M regions. The boundaries of regions
enclosed by line and hyperbolic segments are a part of the mesh GVD.

Fig. 6 Intersections between triangle edges and GVD boundaries.
Red curve: GVD boundary of sources s1 and s2. In the close-up
(right), the critical point p is the intersection between a triangle edge
and a GVD boundary satisfying Gs1 (q1) + ‖q1p‖ = Gs2 (q2) + ‖q2p‖.

Fig. 7 Redundant primitives include redundant triangles (blue,
green) and redundant edges (black). Regions enclosed by yellow edges
are those to consider when extracting the geodesic Voronoi diagram.

sources si, i = 1, · · · , t, when the Steiner-point graph
method terminates, each Steiner point has a geodesic
distance Gsi(q) originating from an associated source.
The redundant primitives on M are as follows:
• Redundant triangle. A triangle is redundant if all

Steiner points on its three edges have the same
source;

• Redundant edge. An edge is redundant if both
adjacent triangles are redundant.

• Redundant Steiner point. A Steiner point is
redundant if it belongs to a redundant edge.
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Fig. 8 Algorithm pipeline. (a) Compute multi-source geodesic distance field from 100 randomly sampling generators. (b) During distance
propagation, discard redundant primitives and collect the remainder (blue), allowing efficient GVD extraction. (c) Construct the local Apollonius
diagram and extract the GVD structure triangle by triangle on the remaining (blue) regions. (d) The output approximate GVD is quickly
constructed with high quality.

Using these definitions to discard redundant
primitives, we need only process a few remaining
triangles of meshM to efficiently extract the geodesic
Voronoi diagram.

5 Implementation

5.1 Basis

Based on the ideas in Section 4, we present an efficient
and practical algorithm to construct geodesic Voronoi
diagrams for point source sites. The input is a
triangular meshM and a set of sites S = {s1, · · · , st}.
The output is the approximate GVD (AGVD) forM.
To provide the multi-source geodesic distance field
used in constructing the GVD, we modify Meng et al.’s
method [46]. We use a priority queue Q to organize
the Steiner points, which represent wavefronts in the
propagation process.

5.2 GVD edge extraction

We discard redundant primitives during distance
propagation in the Steiner-point graph method.
During each distance iteration, the geodesic
computation method propagates the distances of
Steiner points using the least geodesic distance.
Therefore, the distance of the Steiner point at the
head of the priority queue Q does not decrease. If the
edges of a non-discarded triangle 4ABC have both
distances shorter than the distance of the point at
the head of the queue, we can conclude that 4ABC
is behind the geodesic wavefront; all Steiner points
behind the wavefront are no longer updated. We say
such triangles are inactive. Thus, we check whether
or not 4ABC contains GVD edges.

In exact geodesic algorithms, there are O(n)
windows on each edge of4ABC. Computation of the
exact distance from the source to each edge is time-

consuming. In our practical implementation, we use
an upper bound of the distance from the source s to
each edge e [24]. The upper bound distance d(s, e) is
(d(a)+d(b)+‖e‖)/2, where d(a), d(b) are the geodesic
distances from the source to the endpoints of edge e
and ‖e‖ is its length.

Frequently checking for inactive triangles can
extract GVD edges in early stages and consume lower
memory. However, it has a significant influence on
time. In order to balance memory use and time,
we check for inactive triangles every λn (an integer)
distance iterations, where n is the number of triangles
inM: smaller λ results in more frequent checks. After
every λn distance iterations, we construct the local
Apollonius diagram and extract GVD edges from
non-discarded triangles in the inactive region.

5.3 GVD construction

For the Steiner points on opposite edges of site
si in its 1-ring neighbourhood, we initially assign
distances and push them into a priority queue Q.
Then, our algorithm progressively computes geodesic
distances and extracts GVD structures by performing
the following steps in each distance iteration.
(1) Take the Steiner point p from the head of Q

and propagate from p to Steiner points on its
adjacent triangles.

(2) Find the adjacent Steiner points which have
shorter distances via p and insert them into the
priority queue Q.

(3) If the number of distance iterations is an integral
multiple of λn or the priority queue Q is empty,
find non-discarded triangles to construct the
local Apollonius diagram, and extract GVD
edges.

In order to robustly extract GVD edges, besides
Steiner points on each retained (non-discarded)
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triangle, the surrounding inserted Steiner points of
target triangles are also added into the construction
process to build joint local Apollonius diagrams, i.e.,
Steiner points in the 1-ring neighbourhood of retained
triangle F are employed as relay points to partition
and extract GVD edges from F .

Algorithm 1 gives further details of GVD con-
struction.

5.4 Complexity analysis

We now analyze the time and space complexity of our
algorithm to demonstrate its theoretical efficiency.

Property 5.1 For GVD construction on an n-face
triangle mesh M with t sites and m Steiner points
inserted on each edge, our algorithm has O(mn logn)
time complexity and O(mn) space complexity.

Proof. In Meng et al.’s Steiner-insertion method [46],
O(m) Steiner points are inserted into each triangle
edge. Therefore, at most O(mn) Steiner points
are pushed onto the priority queue Q for distance
propagation. Sorting them inQ takes O(mn log(mn))
time and O(mn) space. During GVD extraction,
we use the plane sweep algorithm [63], which

Algorithm 1 Construction of approximate geodesic voronoi
diagram for point sources
Input: A mesh M with n triangles;

A set of sites S = {s1, · · · , st} on M;
Time versus memory control λ;
Number of Steiner points to insert on each edge m.

Output: Approximate geodesic Voronoi diagram.
Create an empty priority queue Q to hold windows on the
wavefront.
for each site si in S do

Push the Steiner points on opposite edges of site si in
its 1-ring neighbourhood into Q.

end for
Set iteration counter i = 1
while Q is nonempty do

Pop the Steiner point p from the head of Q;
Propagate from p to Steiner points on its adjacent
triangles;
Find adjacent Steiner points which have shorter
distances via p and push them into Q.
if (i mod λn) = 0 or Q is empty then

Traverse inactive regions to find retained triangles
Construct the local Apollonius diagram and extract
GVD edges using these triangles.

end if
i++

end while

takes O(m logm) to construct a local Apollonius
diagram. Thus the total time for GVD extraction
is O(mn logm). Overall, the time complexity of our
algorithm is bounded by O(mn log(mn)+mn logm) =
O(mn logn), while the space complexity is bounded
by O(mn). This completes the proof.

Previous GVD methods [13, 14, 24] based on the
exact geodesic metric require O(n2 logn) time and
O(n2) space to construct the GVD. Our method
has an obvious theoretical advantage in both time
and space. Although our GVD is constructed using
approximate geodesic distances, we can get a result
close to the exact result by inserting Steiner points
into triangle edges. We evaluate our algorithm in
Section 6.

6 Experiments

6.1 Setting

We implemented our algorithm in Microsoft Visual
C++ 2015 without using additional numeric packages.
All experiments were conducted on a computer with a
3.60 GHz Intel i7-9700K CPU and 8 GB memory. We
evaluated our method on both 3D models widely used
in the graphics community, and the Thingi10k 3D
shape repository [64], which contains a large number
of man-made anisotropic meshes and some have an
extremely high degree of anisotropy.
6.2 Error evaluation

Our GVD results are based on approximate geodesic
distances, and we can balance accuracy and time
required by varying the number of Steiner points
inserted into triangle edges. Here, we employ Fréchet
distance to assess error in the constructed GVD; it is
widely used to measure the similarity of polylines [65,
66]. This distance is also known as dog-leash distance,
as it can be intuitively explained in terms of the
shortest leash needed when a person and their dog
walk at varying speeds along the respective curves.

Converting the curves into polylines is a typical
approach [67] for computing the Fréchet distance
between arbitrary curves. The method is based on
all pairings between the endpoints of line segments
on each of the polygonal curves, and uses the
paired distances to approximate Fréchet distance,
as follows. Let polygonal curve C in R3 be a
continuous function: [0, n]→R3. Let σ(C) denote the
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sequence (C(0), · · · , C(n)) of endpoints on polygonal
curve C. Let P and Q be polygonal curves, with
corresponding sequences σ(P ) = (u1, · · · , up) and
σ(Q) = (v1, · · · , vq) . A coupling L between P and
Q is a sequence (ua1, vb1), · · · , (uam, vbm) of distinct
pairs from σ(P ) × σ(Q). The length ‖L‖ of the
coupling L is the length of the longest link in L:

‖L‖ = max
i=1,··· ,m

d(uai , vbi) (7)

The discrete Fréchet distance between curves P and
Q is then defined as
F(P,Q) = min{‖L‖ |L is a coupling between

P and Q}
Let us consider the GVD on a genus-r (r > 0) mesh
M with sites S = {s1, · · · , st}, t > 2, and assume
each cell GC(si) consists of a set of closed curves
C = {c1, · · · , ck}, we define the Fréchet distance of

cell GC(si) to be
k∑

j=1
F(cj , c̃j) where cj is the curve

for the exact GVD Voronoi cell and c̃j is the curve of
our GVD Voronoi cell. We further define the Fréchet
distance between the exact GVD and our G̃V D on
mesh M with t sites as

F(GVD, G̃V D) =
t∑

i=1

k∑
j=1
F(ci

j , c̃
i
j) (8)

In order to evaluate the approximate GVD results more
intuitively, we define the error function δ(G̃V D) as

δ(G̃V D) = 1− exp
(
−F(GVD, G̃V D)

c2

)
(9)

This error measure depends on the choice of the
constant c. If it is chosen too small or too large, the
function poorly describes GVD error. Our extensive
experiments show that the best choice of c ≈ 10.
Obviously, δ(G̃V D) is in [0, 1] where 0 indicates that
our GVD and the exact GVD result are identical and
1 means they are completely different.

In order to construct GVD, we use the Steiner point
insertion method [46] to acquire the geodesic distance
field. Errors in geodesic distances are controlled
by inserted Steiner points on triangle edges which
indirectly influence the accuracy of the AGVD
construction. Intuitively, the more inserted Steiner
points on each edge, the higher expected accuracy of
the AGVD result. Our method can balance the time,
memory, and accuracy well by varying the number of
inserted Steiner points.

Taking the 50k-face Cow model as an example in
Fig. 9, we place 30 generators on the model and

Fig. 9 GVD construction on the Cow model with 30 generators,
inserting different numbers of Steiner points on each triangle edge.
Left to right: using 5, 8, and 12 Steiner leads to respective GVD errors
of 1.24%, 0.31%, and 0.07%.

insert 5, 8, and 12 Steiner points on each edge to
construct the AGVD. As Fig. 9 shows, the AGVD
errors rapidly decrease with increasing Steiner points.
With 12 Steiner points, our algorithm only takes
0.24 s and 1.32 MB memory to construct an AGVD
with 0.07% error, while the exact GVD method [14]
takes 0.59 s and 2.79 MB memory. Generally, we set
m = 8 as the default number of Steiner points on
each edge in our experimental tests.

Our algorithm uses relatively little time and
memory to construct an approximate GVD with
an extremely low error close to the exact GVD
result. This has an obvious advantage in error
insensitive applications, e.g., geodesic remeshing,
which we consider in Section 7. Without a doubt,
higher accuracy must require more computational
cost. However, our algorithm can achieve much higher
accuracy at the cost of a small extra computational
amount. As Fig. 10 shows, when m is set to 10, the

Fig. 10 Time and accuracy with respect to the number of Steiner
points inserted into each mesh edge. Inserting more points gives higher
accuracy, but takes more time.



452 W. Meng, P. Bo, X. Zhang, et al.

time for GVD construction is 0.51 s, and when m

increases to 30, the time used is only 2.26 s. Table 1
gives further experimental results to emphasize the
balance between time, memory, and accuracy.

6.3 Performance

6.3.1 Assessment
We use running time and peak memory to compare
performance between our method and other leading
methods. There are many factors which influence the
performance of GVD construction methods. Here, we
select the three most significant quantities: number
m of Steiner points per triangle edge, number t of
source sites, control parameter λ balancing time and
memory. Since choice of number m of Steiner points
was discussed in Section 6.2, we concentrate on the
other two factors here.
6.3.2 Number of source sites
We first consider the effect of increasing the number
of source sites, using various models. We used 2–

Fig. 11 GVD construction for the 30k-face Fertility model with
different numbers of generators. (a) Using 10 generators requires
0.186 s and 0.957 MB peak memory. (b) Using 100 generators takes
0.126 s and 0.659 MB peak memory. (c) Using 1000 generators uses
0.113 s and 0.521 MB peak memory.

2000 source sites and measured AVGD time and
memory consumption. Results are shown in Fig. 11
and Table 2.

As Table 2 shows, the time needed for GVD
construction drops with an increasing number of
generators, since each geodesic wavefront just covers a
small region of the model surface. Furthermore, more
time is needed because a relatively large t implies that

Table 1 Characterisation of various GVD construction methods, using 100 generators for various models. m is the number of Steiner points
per edge

Model

Method Assessment

Ours (m = 5)
Time (s) 0.095 0.282 0.455 2.293
Error (%) 1.570 1.393 1.407 1.126
Peak memory (MB) 0.423 1.032 1.724 3.483

Ours (m = 8)
Time (s) 0.126 0.438 0.797 3.432
Error (%) 0.517 0.431 0.489 0.332
Peak memory (MB) 0.659 1.643 2.959 4.137

Ours (m = 12)
Time (s) 0.176 0.669 1.147 6.084
Error (%) 0.073 0.066 0.069 0.051
Peak memory (MB) 1.062 2.413 4.160 7.126

Ref. [13]
Time (s) 0.775 3.297 9.425 74.640
Error (%) — — — —
Peak memory (MB) 29.130 148.383 371.589 1638.220

Ref. [24] (c = 1)
Time (s) 1.045 5.437 12.497 45.168
Error (%) — — — —
Peak memory (MB) 91.061 291.038 503.928 1901.827

Ref. [14]
Time (s) 0.361 1.474 2.511 13.385
Error (%) — — — —
Peak memory (MB) 1.912 4.541 7.072 12.827

Ref. [37]
Time (s) 0.294 1.218 1.911 10.774
Error (%) 8.334 7.460 7.861 6.482
Peak memory (MB) 1.307 3.135 5.440 11.623
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Table 2 Relationship between the number of generators, and time
and memory requirements. We use the default number of Steiner
points m = 8 on each edge

Generators
Fertility (30k) Lion head (120k)

Time (s) Memory (MB) Time (s) Memory (MB)

2 0.194 1.086 0.441 2.074
4 0.197 1.053 0.443 1.991
8 0.203 1.010 0.447 1.952

10 0.186 0.957 0.452 1.917
50 0.157 0.821 0.494 1.854

100 0.126 0.659 0.438 1.643
500 0.109 0.557 0.368 1.391

1000 0.113 0.521 0.355 1.325
1500 0.117 0.497 0.343 1.274
2000 0.124 0.481 0.336 1.213

the local Apollonius diagram is more complicated, so
takes longer to compute.
6.3.3 Balancing time and memory
Our algorithm considers inactive triangles after every
λn distance iterations where λ controls the balance
between time and memory. Smaller λ results in
more frequently checking the inactive triangles, so
extracting GVD edges earlier and consuming less
memory. However, this has a significant effect on
time taken. Using a larger λ results in less frequent
checking of the inactive triangles, which is faster but
consumes more memory. We verify these claims and
show the effect of changing λ in Fig. 12. We set
λ = 1.0 by default value in our experimental tests.

Fig. 12 Balancing time and memory, using λ. We employ the
28k-face Kids model to construct a GVD with 50 sites and vary λ to
control the balance between time taken and memory usage.

6.4 Qualitative comparison

In this section, we make a qualitative comparison
between our method and the four typical methods
most in common with our method.
6.4.1 Comparison to Ref. [13]
Liu et al. studied the analytic structure of bisectors
and Voronoi diagrams on triangulated surfaces, and
proposed a practical algorithm to construct the
Voronoi diagram on a triangulated mesh M. They
used the MMP method [22] to obtain geodesic
information for GVD construction. Since the distance
field on an edge e ofM can have O(n) extrema, they
partition e into sub-edges such that the distance
field value on each sub-edge is monotone and linear.
Compared to Liu et al.’s method, our method has two
significant advantages. On one hand, their method
needs to subdivide mesh triangles until the bisectors
cross each face at most once. As a result, the method
is sensitive to the mesh resolution while our method
is robust on meshes of the same shape with different
resolutions. See Section 6.5 for further details. On the
other hand, using the Steiner-point graph method, we
can get GVD results which are close to exact, using
less time and memory. See Table 1.
6.4.2 Comparison to Ref. [24]
Unlike most previous GVD algorithms, this approach
uses polyline generators. They revealed that a
typical GVD bisector contains linear, hyperbolic,
and parabolic segments. To overcome the challenge
this presents, a new concept called the local
Voronoi diagram (LVD) was introduced, which is a
combination of additively weighted Voronoi diagrams
and line-segment Voronoi diagrams defined locally
in the plane. Our algorithm extracts GVD edges in
a similar manner to this method. The noticeable
difference is that they use the MMP framework
to compute exact geodesic distances, while our
algorithm relies on approximate geodesics computed
by the Steiner point insertion method. Our relative
advantage is that we can flexibly balance the time,
memory, and error during GVD construction; this is
an obvious advantage in error insensitive applications,
as shown in Section 7.
6.4.3 Comparison to Ref. [14]
This paper proposed an efficient algorithm to
construct the GVD, aiming to reduce redundant
computation to save time and memory. A redundant
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window removal process is used during GVD
construction: in the window-VTP algorithm it
selectively retains windows on edges. The key issue
is how to detect and remove redundant windows
simultaneously with geodesic wavefront propagation.
Compared with this method, our method is easier to
implement and more computationally efficient. Using
the 50k-face Monster model in a test, our method is
about three times faster for an error of less than 0.3%
(see Fig. 1). Meanwhile, our peak memory usage is
about one third of that of Qin et al.’s method.
6.4.4 Comparison to Ref. [37]
In this paper, Xin et al. presented an approximate
algorithm to construct the GVD using point gene-
rators. They first computed multisource geodesic
distances using generators on the target mesh.
Upon termination of this phase, each vertex is
labelled with its nearest source. They then construct
bisectors by checking triangles containing at least two
intersection points. If there are two intersection points,
a segment is used to connect points. If there are three
intersection points, a point is found inside the triangle
and connected to all three intersections. Finally,
the GVD is constructed by tracing the bisectors.
The method is easy to implement and works well
for high quality and resolution meshes. However,
it may produce low quality results when the input
meshes are poor, e.g., have irregular triangulations
or sharp corners. The natural solution is to improve
the triangulation quality or increase mesh resolution.
However, remeshing and subdivision operations are
time-consuming and may have their own issues.
Compared to this method, our algorithm is robust
to mesh resolution and triangulation quality, as
well as providing an efficient way to construct an
approximate GVD. We next discuss robustness of our
method further.
6.5 Robustness

Our algorithm is robust to changes in mesh resolution
and triangulation quality. In order to demonstrate
robustness, we constructed the AGVD on a triangular
mesh with different resolutions and varying quality. The
Lo value [68] provides a general way to evaluate mesh
quality; higher quality meshes have values closer to 1.
AGVD results on the Lucy model at three different
resolutions and three different qualities are shown in
Fig. 13, indicating that our algorithm can construct
reliable and relatively consistent AGVD results.

Fig. 13 Our method is insensitive to input mesh quality and
resolution: (a) 5k-face, Lo = 0.14; (b) 50k-face, Lo = 0.38; (c) 500k-
face, Lo = 0.87.

We also examined our method under varying mesh
anisotropy. We use the anisotropy measure defined
in Xu et al. [31] for a triangular face f :

τ(f) = P ·H
2
√

3S
where P , H, and S are respectively its half-perimeter,
longest edge length, and area. The mesh anisotropy
measure is then computed as the average of τ(f) over
all faces of the mesh. Larger τ indicates a higher
degree of anisotropy. We selected two models from
the Thingi10k repository with average anisotropy
τavg of 31.1 and 9.9, and maximal anisotropy τmax of
1062.3 and 25,183.7, respectively. Figure 14 shows our
AGVD results for 50 sites on these highly anisotropic
meshes.

Fig. 14 Our algorithm produces accurate GVD results for meshes
with highly anisotropic triangles (average anisotropy τavg = 31.1, 9.9,
respectively). Using 12 Steiner points per edge, AGVD errors are
0.42% and 0.38%, demonstrating that our method copes well with
anisotropic triangles.
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7 Application to remeshing

That the Delaunay triangulation of a point set S is
the dual of its Voronoi diagram is well known. Leibon
and Letscher [49] showed that, if the sampling points
are sufficiently dense, the dual triangulation of the
Voronoi diagram on M exists. This observation has
an application to remeshing the compact triangular
models reconstructed from laser scanning data. In
detail, we first compute a geodesic Voronoi diagram
(GVD) by selecting sources as generators and then
find its dual graph as the remeshed model M̃. In
this process, we can save time and memory by
constructing an AGVD close to the exact result,
making a new mesh more efficiently than related
methods [13, 14]. As a demonstration, we remesh
the 200k-face Centaur model using 2000 randomly
selected sources. Liu et al.’s method [13] takes 19.72 s
and 549.51 MB memory while Qin et al.’s method [14]
takes 6.43 s and 24.01 MB memory. Our method runs
faster and uses less memory, taking 2.12 s and using
7.83 MB of memory. See Fig. 15.

8 Conclusions and future work

In this paper, we have presented an efficient and
practical algorithm to construct geodesic Voronoi
diagrams with point source sites. Unlike previous
methods that depend on the exact geodesic metric
to construct GVD, we reformulate a Steiner
point insertion method [46], to obtain geodesic
distances effectively. This substitution reduces GVD

computation time and memory usage. We utilize local
Apollonius diagrams with weighted Steiner points
to partition mesh triangles and extract hyperbolic
and linear segments for encoding the complicated
GVD bisector structures. In order to balance memory
and time requirements, we only process significant
triangles instead of using a brute force search over
all triangles. Every λn distance iterations, where n
is the number of triangles in M, we construct the
Apollonius diagram and extract GVD edges. We
also suggest an evaluation measure based on discrete
Fréchet distance to assess similarity between our
result and the exact GVD result. Although our GVD
results are based on approximate geodesic distances,
we get GVD results close to exact results by inserting
Steiner points on triangle edges.

In the future, we hope to enhance our algorithm
so that it iteratively inserts Steiner points until a
pre-specified error bound is reached. We also intend
to investigate other applications that would benefit
from approximate geodesic Voronoi diagrams, such
as tree skeleton extraction and classification, point
pattern analysis on a mesh [13], and so on.
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D. M.; Lu, L.; Yang, C. On centroidal Voronoi
tessellation—Energy smoothness and fast computation.
ACM Transactions on Graphics Vol. 28, No. 4, Article
No. 101, 2009.

[5] Liu, Y. J.; Xu, C. X.; Yi, R.; Fan, D.; He, Y. Manifold
differential evolution (MDE). ACM Transactions on
Graphics Vol. 35, No. 6, Article No. 243, 2016.

[6] Wang, X. N.; Ying, X.; Liu, Y. J.; Xin, S. Q.; Wang,
W. P.; Gu, X. F.; Mueller-Wittig, W.; He, Y. Intrinsic
computation of centroidal voronoi tessellation (CVT)
on meshes. Computer-Aided Design Vol. 58, 51–61,
2015.
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