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Abstract Visual localization and object detection
both play important roles in various tasks. In many
indoor application scenarios where some detected
objects have fixed positions, the two techniques work
closely together. However, few researchers consider
these two tasks simultaneously, because of a lack
of datasets and the little attention paid to such
environments. In this paper, we explore multi-task
network design and joint refinement of detection
and localization. To address the dataset problem,
we construct a medium indoor scene of an avia-
tion exhibition hall through a semi-automatic pro-
cess. The dataset provides localization and detection
information, and is publicly available at https://
drive.google.com/drive/folders/1U28zkON4_I0db
zkqyIAKlAl5k9oUK0jI?usp=sharing for benchmar-
king localization and object detection tasks. Targeting
this dataset, we have designed a multi-task network,
JLDNet, based on YOLO v3, that outputs a target
point cloud and object bounding boxes. For dynamic
environments, the detection branch also promotes
the perception of dynamics. JLDNet includes image
feature learning, point feature learning, feature fusion,
detection construction, and point cloud regression.
Moreover, object-level bundle adjustment is used to
further improve localization and detection accuracy.
To test JLDNet and compare it to other methods, we
have conducted experiments on 7 static scenes, our
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constructed dataset, and the dynamic TUM RGB-D
and Bonn datasets. Our results show state-of-the-art
accuracy for both tasks, and the benefit of jointly
working on both tasks is demonstrated.
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1 Introduction

Regarded as key research problems in computer
vision, visual localization and object detection both
play indispensable roles in augmented reality (AR),
mixed reality (MR), and robotics [1–6]. A localization
algorithm determines the 6-DoF (degrees of freedom)
camera pose within the target environment, which
is fundamental to rendering virtual elements within
the real environment. An object detection framework
classifies target objects, and provides a bounding box
for each.

In some application settings, such as museums,
shopping malls, scenic spots, and so on, some
detected objects have a unique character while always
staying at fixed positions. In such scenes, localization
and detection include the following characteristics
and difficulties. In terms of localization, various
virtual information, such as product introduction,
animation, and so on, is always closely related
to the pre-established 3D model. Thus, the
relocalization problem is particularly important.
Furthermore, certain specific circumstances (of
lighting or occlusion) may cause an AR library
such as ARCore to fail. In addition, medium to
large scenes require a long processing time, which
may lead to accumulation of errors in simultaneous
localization and mapping (SLAM) systems. In terms
of detection, the peculiarity of detected objects
leads to failures through deep networks trained on
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a universal dataset. Manual annotation of detection
results typically takes a long time and much human
effort. Furthermore, in such situations, detected
objects with fixed positions result in close relations
between detection and localization tasks, yet these
relations are not exploited by current methods. In
dynamic environments, detection of dynamics also
contributes to the relocalization process.

To address the above problems, we consider multi-
task learning and a joint refinement design for
camera localization and object detection. Current
localization approaches may be divided into methods
based on hand-crafted features, direct learning
and indirect learning. Hand-crafted feature based
approaches exploit feature matching to calibrate
camera pose and graph optimization to reduce the
accumulated error. Various SLAM systems use a
pipeline [7–9]. Furthermore, semantic information
learned by neural networks may be embedded into
the original SLAM process to enhance localization
accuracy and robustness [10–12], and this seems to
be a good solution for these tasks. However, the
problems of accumulated errors and image labeling
still exist.

As an alternative, deep networks have achieved
great success in various computer vision tasks,
such as segmentation, detection, and classification.
PoseNet [13] and subsequent works regressed the 6-
DoF camera pose by training deep networks [14–18].
Moreover, the multi-task network learns the inter-
task relationships and shares contextual information
between related tasks.

By using deep networks for localization, PoseNet
and subsequent works directly regressed the 6-DoF
camera pose. Going further, VLocNet++ [19]

learned inter-task relationships and shared contextual
information to determine 6-DoF global pose,
odometry, and semantics, and achieves state-of-the-
art results for a direct learning approach. Compared
to hand-crafted feature based methods, its strengths
are reflected in computational effectiveness, and
lack of scale drift and accumulated errors, while its
weakness is the imprecise localization result. Instead
of direct localization by learning features, indirect
learning based methods utilize a deep network to
establish dense coordinate correspondences. Then
the camera pose is evaluated by applying the
Kabsch or PnP algorithm with RANSAC to the
correspondences, aiming to reduce uncertainties in the
learning process [20–25]. For dynamic environments,
Dong et al. [26] bridged deep learning and a regression
forest through a novel outlier-aware neural tree.
Currently, this kind of approach has attracted much
research interest, achieving state-of-the-art results
[27–29].

In object detection, both accuracy and running
speed are critical considerations. YOLO and its
extensions [30–34] have superior calculation speed
without significant loss of accuracy. In this paper,
we design a joint learning network for camera
relocalization and object detection by combining
point learning, feature fusion, and a point cloud
decoder based on YOLO v3 [31]. On the one hand,
the detected objects having fixed positions are closely
related to the camera pose. On the other hand,
object detection also contributes to localization in
dynamic environments. We know of no previous work
designing a unified multi-task deep network for both
camera localization and object detection tasks.

As Fig. 1 shows, we investigate multi-task network

Fig. 1 Joint localization and detection. In the localization subfigure, green indicates the ground truth pose, red indicates the initial pose
result, and blue shows the refined pose.
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design and joint refinement of object detection
and camera relocalization. Firstly, we used a semi-
automated process to collect and construct a
detection and localization dataset showing an aviation
exhibition hall. Secondly, we have designed a multi-
task deep network, JLDNet (joint localization and
detection network), to regress both the target point
cloud and detection boxes. An object-level refinement
process operates on the results to further improve
accuracy.

In summary, our main technical contributions are
as follows.
(1) A semi-automated process to construct a

detection and localization dataset, using
structure from motion (SFM), multi-view stereo
(MVS), 3D manual annotation, and 2D label
generation; it takes less than an hour to label
a whole scene with thousands of images. The
procedure was used to gather and construct
a medium-sized indoor scene of an aviation
exhibition hall with 6-DoF camera poses and
object labels. The dataset is publicly available at
https://drive.google.com/drive/folders/
1U28zkON4_I0dbzkqyIAKlAl5k9oUK0jI?usp=
sharing as a benchmark for joint localization
and detection.

(2) A multi-task deep network, JLDNet, based on
YOLO v3, for joint relocalization and detection,
and a suitable mixed loss function. It outputs
target point clouds and object bounding boxes
by combining 2D image and 3D point features.

(3) A joint object-level bundle adjustment (BA)
process which operates on the detection and
localization results from JLDNet. Going beyond
traditional BA, object constraints are used to
leverage high-level semantic information, further
improving localization and detection accuracy.

To validate the approach and assess our method’s
capabilities, as well as comparing it to other methods,
we conducted experiments on the 7 Scenes [24], our
constructed aviation exhibition hall, TUM RGB-
D [35], and Bonn [36], for both both static and
dynamic scenes. The experiments demonstrate
competitive results on 7 Scenes and state-of-the-art
performance on our dataset, TUM RGB-D, and Bonn.
Furthermore, we show the positive effects of the
refinement stage and mutual promotion between the
two tasks.

In the following, related works are summarized in
Section 2. Section 3 considers construction of an
aviation exhibition hall scene with camera poses and
bounding boxes. Section 4 details the architecture
and loss function of JLDNet, as well as the joint
object-level refinement procedure. Section 5 reports
our experiments and Section 6 draws conclusions.

2 Related work

2.1 Relocalization

Current research covers three kinds of relocalization
algorithm: hand-crafted feature based methods,
direct learning and indirect learning based appro-
aches. Traditional hand-crafted feature based
processes include various SLAM systems that exploit
hand-crafted feature matching to obtain an initial
pose, and global optimization to reduce accumulated
errors [7–9, 37, 38]. Moreover, to improve results
in dynamic environments and obtain a semantic
map, semantic information is embedded in the
original process [12, 39, 40]. Using hand-crafted fea-
tures can achieve very precise results via complex
optimization procedures (like SFM). However, they
are slow and low-quality images are discarded. In
this paper, we exploit the SFM pipeline to establish a
dataset for an aviation exhibition hall. Alternatively,
SLAM systems provide real-time localization and
are widely applied in actual applications. In the
relocalization process, hand-crafted features are often
not robust to changing environmental conditions such
as illumination or weather. Furthermore, accuracy
is usually lower than for indirect learning based
approaches.

Direct learning feature based methods take
advantage of the deep network to preserve relations
between the image and camera pose. After the first
work, PoseNet, various researchers have focused on
the loss function and network architecture to improve
localization results [15, 19, 41, 42]. Absolute and
relative pose approaches exist, sharing a similar
process based on feature extraction and camera pose
regression. Absolute pose approaches directly output
the absolute camera pose [13–18, 43]. VLocNet [41]
utilized auxiliary learning to leverage relative pose
information during training. Based on it, VLocNet++
achieves state-of-the-art results by learning the
relationship between semantics, 6-DoF global pose

https://drive.google.com/drive/folders/1U28zkON4_I0dbzkqyIAKlAl5k9oUK0jI?usp=
https://drive.google.com/drive/folders/1U28zkON4_I0dbzkqyIAKlAl5k9oUK0jI?usp=
sharing
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and odometry. In contrast, relative pose methods
predict the relative transformation matrix between
the test image and one or more training images,
rather than the absolute pose [42, 44]. RelocaNet [42]
exploits camera frustum overlaps between pairs of
images to optimize the network. Because of the
insufficient learning linking image features with
thousands of dimensions and the 7D camera pose,
results are rather less precise than for the other two
kinds of approaches.

Indirect learning feature based techniques focus
on coordinate transformations instead of regressing
camera pose directly [26, 28, 45, 46]. The Kabsch
or PnP algorithm with an RANSAC pipeline is
then applied to the known source coordinate and
estimated target coordinate to obtain the final
pose. Currently, this kind of approach achieves
state-of-the-art localization performance and posse-
sses strong robustness in static and dynamic
environments [26, 27, 29]. To construct the target
coordinates, regression forests or deep networks may
be used. Using a regression forest, Cavallari et al. [20]
applied a pre-trained forest to a new scene on the fly,
overcoming the limitation of offline training. Cavallari
et al. [29] extended this work to obtain more accurate
relocalization performance in real time. By using deep
learning, DSAC [47], DSAC++ [45], and DSAC* [27]
achieved end-to-end training through a differentiable
RANSAC pipeline. KFNet [28] considered in addition
the time domain by means of Kalman filtering to
establish precise 2D–3D correspondences. Aiming
at dynamic environments, Dong et al. bridged deep
learning and regression forests through a novel outlier-
aware neural tree, obtaining state-of-the-art results.
Instead of coordinate regression, Wang et al. [46]
designed a novel pipeline composed of point cloud
generation and registration. In JLDNet, we also
adopt this pipeline with an object detection extension.

2.2 Object detection

The object detection task determines bounding boxes
and corresponding classes of single or multiple objects;
it is considered to be a much more challenging task
than image classification [48–50]. The Region-based
CNN (R-CNN) [48] provides a scalable detection
algorithm that achieved significant improvements
over previous approaches. Based on R-CNN, Fast
R-CNN [49] focused on training and testing speed
with increased detection accuracy, being more than

200 times faster at testing time. Faster R-CNN [51]
proposed a region proposal network to enable faster
region proposal, working at 5 frames/s on a GPU
while also achieving state-of-the-art object detection
accuracy. Going beyond bounding boxes for the
detected objects, Mask R-CNN [52] predicts a high-
quality object mask by means of an additional
segmentation branch.

Compared to region-based methods, an alternative
approach exploits a one-stage detector, extracting
the bounding box and classifying an object in a
unified network. In the single-shot multi-box detector
(SSD) [53], the output space of boundary boxes
is discretized into a set of default boxes; each
feature map has different aspect ratios and scales.
YOLO [30] and its variants [31, 33, 34, 54] regard
object detection as a regression problem to generate
spatially separate bounding boxes and associated
class probabilities. YOLO’s main benefit is its high
speed without significant loss of accuracy, which is
also a critical factor for relocalization.

In this paper, we employ the pipeline proposed by
Wang et al. Based on the YOLO v3 structure, we
learn additional 3D point features and regress the
target point cloud. The results later demonstrate the
mutual benefit of jointly performing these two tasks.

3 Dataset construction

Current popular indoor localization datasets include
7 Scenes, TUM RGB-D, and ScanNet [55]. For
one thing, 7 Scenes and TUM RGB-D do not
contain detection information. For another, all camera
trajectories in three datasets are limited to a small
area.

Thus, for the purposes of deep relocalization and
detection tasks for medium indoor scenes, a dataset
construction process is presented. Based on the
procedure, a dataset of an aviation exhibition hall
is gathered and generated, in total containing 9000
slices. In particular, to reduce the time needed
for labelling the objects, each 2D bounding box is
automatically marked by the camera pose and then
manually place 3D labels.

As Fig. 2 shows, the whole process takes the collected
images as the input and exports corresponding
camera poses and bounding boxes. Firstly, an
SFM algorithm is exploited to calibrate the camera
pose via suitable parameters. To obtain occlusion
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Fig. 2 Dataset construction pipeline. The process involves image collection, SFM, MVS, manual 3D object marking, and 2D label projection.

relationships between different detected objects, we
need to construct a dense point cloud and mesh via
MVS and a surface reconstruction algorithm. To
remove outliers, the original SFM pipeline can detect
samples that do not have sufficient feature matches
to the global model. After dataset generation, we
further check each sample with feature matching
distance and coordinate distance. For each sample,
we extract the feature and transform it into world
space based on predicted pose and depth. Then the
feature distance is calculated between the feature
point and its corresponding point (given by SFM) in
the dense point cloud. Meanwhile, the coordinate
distance is also measured. After calculating each
feature point, we obtain mean feature and coordinate
distances. According to both metrics, we sort all
frames in the dataset (more than 12,000 images), and
then select the best 9000 samples to construct the
final dataset.

After this, we label the 3D bounding box of all
detected objects manually in the constructed scene.
Then, using the 3D bounding boxes, camera poses,
and mesh, the 2D bounding box of each detected
object is determined in the source image, completing
generation of the dataset. The outcome is visualized
in Fig. 2. It is clear that the labelled images are
quite accurate, verifying the correctness of camera
poses.

It should be noted that our process leverages
the projection of marked 3D bounding boxes to
construct 2D detections instead of labelling the
image directly. Obviously, manually labelled images
are more accurate than if using 3D box projection.
However, manual labelling takes about 1 min per
image and thus 9000 min for all images. By contrast,
labelling a 3D scene only needs about 30 min,
improving efficiency by a large margin.

Table 1 gives detailed information about our
dataset, comparing it to 7 Scenes. Our dataset has
the following main characteristics.
• Medium extent. The extent of the aviation hall

(about 1000 m3) is much larger (about 100×)
than the scenes in 7 Scenes. The large extent
obviously increases localization difficulty.

• Occlusion. As can be seen, occlusion often occurs
between scene objects and walls. This occlusion
sometimes leads to large differences between
images with little localization changes, causing
difficulties for the two tasks.

• Strong lighting. The floor of the aviation exhi-
bition hall is tiled, with strong reflections, which
may lead to failure of the plane detection
algorithm. Various scenes, such as malls,
museums, and office buildings, have a similar
appearance. The commonly used AR library
ARCore fails for such scenes.
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Table 1 Comparison of our constructed dataset to 7 Scenes

Spatial extent Training / testing frames Method Scene character

Our dataset

Aviation hall 1000 m3 4000 / 5000 1. Medium extent
2000 / 7000 SFM + MVS 2. Occlusion

3. Strong light

7 Scenes

Chess 6 m3 4000 / 2000
Fire 2.5 m3 2000 / 2000
Heads 1 m3 1000 / 1000
Office 7.5 m3 6000 / 4000 Kinect fusion
Pumpkin 5 m3 4000 / 2000
Kitchen 18 m3 7000 / 5000
Stairs 7.5 m3 2000 / 1000

4 JLDNet

4.1 Localization process

Our framework is based on YOLO v3, which regresses
bounding boxes from input images. Wang et al.
proposed a localization process comprising a coarse
stage with learned features and a refinement stage
with hand-crafted features. In this paper, we exploit

the idea of the coarse stage as the localization
framework.

As Fig. 3(above) shows, we predict the camera pose
(as a 4 × 4 matrix Rc2w representing rotation and
translation) by applying the point cloud registration
algorithm SUPER 4PCS to the source and target
point clouds. In detail, the source point cloud Ps
in camera space is constructed by uniform sampling

Fig. 3 Localization process and example point clouds. Green: source point cloud. Blue: target.
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of the input color image which has known camera
intrinsics. Then the ground truth target Pt is obtained
by transforming the source into the world space: Pt =
Rc2wPs. In the localization process, the coordinates
in world space of the target point cloud are learned
by JLDNet. In particular, the source and target have
the same shape, but differ in coordinate space by the
transformation Rc2w, as shown in Fig. 3(below).

The detailed generation process for the source
target point clouds is as follows. With only RGB
input, Wang et al. sampled a set number of points
from the constructed world point cloud. Then, in
the training stage, the ground truth target point
cloud is obtained by transforming the sampled point
cloud, which results in the same output structure
with different input images. In our opinion, this
leads to few similarities between consecutive frames.
Meanwhile, the source point cloud is unknown to the
network. The above two points increase the learning
difficulty. Therefore, we adopt the grey value as the
depth to construct the target point cloud. In this
case, the source point cloud is directly generated from
the input image.

After obtaining the source and target point clouds,
we use SUPER 4PCS to obtain the camera pose.
SUPER 4PCS takes source and target point clouds
as inputs, and outputs the transformation (Rc2w)
from source to target using an optimal linear time
output-sensitive global alignment algorithm.

4.2 Architecture

The inputs to JLDNet include the color image and

outline scene point cloud. Based on YOLO v3,
our overall architecture consists of input processing,
feature extraction, feature fusion, point cloud decoder,
and object regressor. In particular, the novelty of
JLDNet mainly lies in the multi-level feature fusion
and loss function design. Its detailed structure is
shown in Fig. 4. Black solid lines indicate the original
YOLO v3 structure, while dashed lines represent our
additions.

We firstly introduce the input process. The scene
point cloud is constructed by uniform sampling of the
sparse point cloud. Target point cloud generation is
typically performed by transforming the depth image
from camera space to world space. However, most
mobile devices do not provide depth information.
Instead, we exploit the normalized grey value to
replace the depth value.

Corresponding to the inputs, feature extraction also
has three parts. As in YOLO v3, the image feature
is learned by DarkNet53, while the scene point cloud
is learned by PointNet [56] architecture. JLDNet
outputs three image features (W1 ×H1 × C1,W2 ×
H2 × C2,W3 × H3 × C3), and a scene point cloud
feature (C4).

After extraction, the feature fusion block combines
multi-level image features and point cloud features.
In the detection branch, the point cloud feature is
transformed to the same size as the corresponding
image feature through a tiling operation (C4 →W1×
H1×C4, C4 →W2×H2×C4, C4 →W3×H3×C4).
The final detection features are then obtained by
concatenating the point features and image features.

Fig. 4 Architecture of JLDNet, with phases for image feature extraction, point feature learning, feature fusion, point cloud processing, and
detection decoder. Solid black lines represent the original YOLO v3 detection branch; the dashed black lines represent our additional branches.
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In the point cloud regression branch, the image
feature W3 × H3 × C3 is converted to shape C3 by
average pooling and concatenated with the point
features, thus obtaining the final localization features
(C3 + C4). Because the image and point features are
learned by different networks, we use a weightα to balance
them; α is also determined by the training process.

In the localization part, we use the pipeline
proposed by Wang et al., which comprises point cloud
generation and registration. The decoder adopts
TopNet [57], which exploits a hierarchical rooted
tree structure to generate point clouds; this achieves
considerable performance.

In terms of network architecture, Wang et al. used
DenseNet to extract image features and LSTM layers
to learn pose features. In our paper, we obtain the
encoder feature by combining the image feature
learned by YOLO v3 with the point feature from
PointNet. The feature is transformed to the point
cloud decoder to regress the target point cloud.

4.3 Loss function

As explained, JLDNet outputs both detection and
localization results, necessitating the design of an
appropriate loss function. For detection loss, we adopt
the commonly used loss that combines bounding box
loss, classification loss, and object confidence loss:

Lossbox =
S2∑
i=0

B∑
j=0

1obj
i,j (2− wi − hi)IOU(bi, b̄i) (1)

Losscls =
S2∑
i=0

B∑
j=0

1obj
i,j

C∑
k=0

pi(k) log(p̄i(k)) (2)

Lossobj =
S2∑
i=0

B∑
j=0

(ᾱ ∗ ‖ci − c̄i‖γ̄)
[
ci log(c̄i)

+ (1− ci) log(1− c̄i)
]

(3)
Lossdetect = Lossbox + Losscls + Lossobj (4)

where wi and hi denote the ground truth weight and
height of the bounding box (in [0, 1]) respectively, and
bi and b̄i represent the ground truth and predicted
bounding box respectively. pi(k) and p̄i(k) express
the probability of class k respectively, and ci and c̄i
express confidence respectively.

To measure the distance between the target and
evaluated point cloud, we adopt chamfer distance
(CD) loss, producing a high-quality point cloud in
practice [57, 58]. To balance the two types of losses, a
learned weight loss function is used following Kendall

and Cipolla [15]. Overall, the loss function for JLDNet
is formulated as Eqs. (5) and (6):

Lossloc =
∑
x∈Sp

min
y∈Sg

‖x− y‖22 +
∑
x∈Sg

min
y∈Sp

‖x− y‖22

(5)
Loss = exp(−L)Lossloc + L

+ exp(−D)Lossdetect +D (6)
where Sp and Sg denote the prediction and ground
truth set of the target point cloud respectively, and
L and D are variables learned by JLDNet.

4.4 Joint refinement for localization and
detection

Various SLAM systems utilize a bundle adjustment
(BA) process to reduce accumulated errors [7–9, 39].
By means of JLDNet, the initial detection and
localization results are obtained. In this subsection,
we design an object-level BA process to further
promote relocalization and detection performance.
An object-level optimization process has proved
effective in many works [59–61]. Aiming at different
targets, various strategies cover data representation,
association, and optimization metric. Huang et al. [59]
introduced a semantic SDF tracker to calibrate the
camera pose by semantic TSDF representation and
build a global pose graph to reduce drift for globally
consistent 3D reconstruction. BuildingFusion [60]
regarded rooms as basic elements for global LCD to
reconstruct the whole building map based on detected
loop closure constraints. ObjectFusion [61] performed
joint optimization for object shape, object pose, and
camera pose in a sliding keyframe window.

Compared to these works, our novelty lies in two
aspects. Firstly, we pay more attention to the
object-level information. We mainly use a metric
for bounding box points as the optimization metric,
which is related to the detection task. Secondly, since
the model and 3D object are known, we can jointly
optimize bounding boxes and pose.

We now detail the whole BA process. Feature
points, camera poses, and objects are denoted P = Pi,
C = Ci, O = Oi respectively. BA is expressed as the
nonlinear optimization problem in Eq. (7):
C∗, P ∗, O∗ = argmin

∑
Ci,Pi,Oi

(‖E(Pi, Ci)‖

+‖E(Oi, Ci)‖) (7)
where E(Oi, Ci) and E(Pi, Ci) denote camera-object
and camera-point errors, respectively.
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The camera-point error has two parts. The first
concerns 3D known feature points and the current
image, while the second concerns the current and
previous images. Both errors are assessed as 3D
point projection error in ORB SLAM [9, 62, 63] with
the form in Eq. (8):

E(Pi, Ci) = π(Rw2cPi)− d (8)
where Rw2c is the transformation matrix from world
space to camera space (Rw2c = R−1

c2w), π represents
the matrix from camera space to pixel space, and d

denotes the pixel coordinate of the 3D point.
In addition to the camera-point error, the camera-

object error represents the relation between camera
poses, 3D world objects, and 2D detected objects.
Based on the obtained camera pose from JLDNet and
the known 3D object, we calculate the 2D bounding
box expressed as its top left and bottom right 2D pixel
coordinates. Then object-camera error is calculated
by comparing the projected 2D bounding box with
the detected 2D bounding box from JLDNet:
E(Oi, Ci) = ‖π(Rw2cOi(tl))−O(2d)(tl)‖

+ ‖π(Rw2cOi(br))−O(2d)(br)‖ (9)
where tl and br denote the top left and right bottom
points respectively, and O(2d) represents the 2D
bounding boxes predicted by JLDNet.

Through the above BA procedure, the camera pose
is optimized. Furthermore, we use the refined pose
and known 3D object, the optimized 2D bounding
box is obtained by Eqs. (10) and (11):
O∗(2d)(tl) = c̄iO(2d)(tl) + (1− c̄i)π(R′w2cOi(tl))

(10)
O∗(2d)(br) = c̄iO(2d)(br) + (1− c̄i)π(R′w2cOi(br))

(11)
where R′w2c denotes the refined camera pose, and c̄i
is the evaluated confidence value from JLDNet.

5 Experiments

5.1 Datasets

5.1.1 Approach
To evaluate the performance of JLDNet, we
conducted experiments on 7 Scenes, and our
constructed dataset for testing static performance,
and on TUM RGB-D and Bonn for evaluating
dynamic localization. We further labeled 3D objects
and reprojected 2D bounding boxes for testing
detection performance on 7 Scenes, TUM RGB-D,
and our dataset.
5.1.2 7 Scenes
7 Scenes was gathered using a Kinect RGB-D camera;
ground truth pose was obtained by KinectFusion [64].
It comprises seven indoor environments: Chess, Fire,
Heads, Pumpkin, Office, Red Kitchen, and Stairs.
Since the scenes do not contain detection information,
we labelled several 3D objects in each scene and
generated the 2D bounding boxes by projection.
5.1.3 TUM RGB-D
TUM RGB-D is a large dataset that contains RGB-
D and ground-truth data as a benchmark for the
evaluation of visual odometry and SLAM systems.
In our experiment, we selected all 9 sequences
(fr3w *, fr3s *, and fr2 desk with person) from the
dynamic object category. Due to a lack of detection
information in the TUM RGB-D dataset, we firstly
labelled the source images. As Fig. 5 shows, the
static parts that include table, chair, and screen were
automatically generated from labelled 3D bounding
boxes and known poses. For the dynamic factors
(persons walking in the scene), we combined manual
marking and a deep network. The 8 sequences (fr3w *
and fr3s *) from the dynamic object category contain
7477 images, so editing a ground truth annotation for

Fig. 5 Ground truth and predicted detection results for dynamic scenes from TUM RGB-D.
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each image would be a time-consuming task. Instead,
400 images were selected from all the images through
average sampling in the time domain, and labelled
manually. Then we trained YOLO v3 with labelled
images and tested on all images to obtain the results.
Manual and predicted results are illustrated in Fig. 5.
Because of small differences between frames, it is
clear that the predicted results are quite accurate.

We performed training for other 7 sequences except
for the target testing set in 8 sequences (fr3s * and
fr3s *). When testing on fr2 desk with person, we
used three scenes (fr2 desk, fr2 xyz, and fr2 rpy)
for training. Learning difficulty increases with no
dynamics in the training dataset.
5.1.4 Bonn
Bonn is a dataset for dynamic localization, containing
highly dynamic sequences. For convenience of
comparison to other work, we selected 20 sequences
from all 24 dynamic sequences. Dataset labelling
is similar to TUM RGB-D with manually labeled
dynamics for one image in every 20 frames for
convenience. We split the dataset into two parts.
One part contains balloon, balloon2, crowd, crowd2,
crowd3, moving-no-box, moving-no-box2, placing-no-
box, and removing-no-box. When testing on one part,
training is performed on the other part.
5.1.5 Our dataset
Our constructed dataset includes 9000 images in 9
sequences. To test localization and detection, we give
two train–test splits. In split 1, the training set has
4000 images, while the other 5000 images constitute
the testing set. Split 2 contains 2000 training samples
and 7000 testing samples. It is obvious that split 2 is
more challenging.

5.2 Implementation details

The implementation details are as follows. The input
color image is resized to 256×256 pixels with a range
from−1.0 to 1.0. Due to the lack of depth information
in our dataset, we use grey values to replace depth
values. Moreover, to ensure that the grey value is
consistent with the scene extent, we multiply the grey
value by 8. The output point cloud has shape 2048×3.
The image encoder exploits DarkNet53 as the base
encoder architecture. After DarkNet53, the multi-size
features with shapes 32×32×256, 16×16×512, and
8× 8× 1024 are obtained. Meanwhile, the shape of
3D bounding and outline point features is 64 through

PointNet. JLDNet is trained through the ADAM
optimizer [65] with a learning rate of 1 × 10−4 and
batch size 8. The whole training is on a Tesla P100
GPU.

The detailed implementation of SUPER 4PCS
is as follows. Following Wang et al., we run the
algorithm multiple times (10 times in the experiment)
to determine appropriate parameters. To accelerate
running time, the number of points in SUPER
4PCS is set to a fixed value, 300. In the joint
refinement stage, based on the obtained camera pose,
we establish correspondences between known world
points and current images, covering both feature points
and object bounding box points. Meanwhile, adjacent
frames are selected from previous frames and training
images. Then we perform object-level refinement to
calibrate the final pose and object detection.

5.3 Static localization results

Table 2 provides relocalization results on the 7
Scenes dataset, with a comparison to other hand-
crafted feature, direct learning and indirect learning
based methods. Position and orientation errors are
reported in meters and degrees. In detail, position
error is measured by Euclidean distance between
ground truth and prediction, while orientation error is
expressed by angle of intersection. The comparative
approaches cover Active Search [38], PoseNet [15],
MapNet [14], Xue et al. [17], AtLoc [66], VLocNet,
KFNet, InLoc [67], Wang et al., DSAC++, DSAC*,
SANet [68], Tang et al. [69], and Li et al. [70]. On 7
Scenes, JLDNet obtains comparable accuracy to the
state-of-the-art techniques, KFNet and DSAC*. In
detail, we achieve the best position result except for
the Head and Stairs scenes and the best orientation
in Red Kitchen. Although we use the coarse
stage of Wang et al., there are obvious accuracy
improvements in comparison to the method of
Wang et al., demonstrating the superiority of our
framework.

On the aviation exhibition hall, our JLDNet
achieves state-of-the-art performance for both mean
and median metrics, as illustrated in Table 3. We
provide the median and mean results under two
training–testing splits. Split 1 contains 5000 training
samples and 4000 testing images, while split 2 has
only 2000 training slices. Obviously, split 2 is more
challenging. Apart from our method, we can see
that KFNet achieves the best results, by establishing
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Table 2 Relocalization errors on 7 Scenes for our method and various state-of-the-art methods. Units of position and orientation are m and ◦,
respectively. In each case, the most accurate result is in bold

Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Hand-crafted feature

Active search 0.04/1.96 0.03/1.53 0.02/1.45 0.09/3.61 0.08/3.10 0.07/3.37 0.03/2.22 0.051/2.46

Direct learning

PoseNet 0.32/8.12 0.47/14.4 0.29/12.0 0.48/7.68 0.47/8.42 0.59/8.64 0.47/13.8 0.44/10.44
Xue et al. 0.09/3.25 0.26/10.92 0.17/12.7 0.18/5.45 0.20/3.66 0.23/4.92 0.23/11.3 0.194/7.46
MapNet 0.08/3.25 0.27/11.7 0.18/13.3 0.17/5.15 0.22/4.02 0.23/4.93 0.30/12.1 0.207/7.78
Atloc 0.10/3.18 0.26/10.8 0.14/11.4 0.17/5.16 0.20/3.94 0.16/4.90 0.29/10.20 0.189/7.08
VLocNet 0.036/1.71 0.039/5.34 0.046/6.64 0.039/1.95 0.037/2.28 0.039/2.20 0.097/6.48 0.048/3.80

Indirect learning

DSAC++ 0.02/0.5 0.02/0.9 0.01/0.8 0.03/0.7 0.04/1.1 0.04/1.1 0.09/2.6 0.036/1.0
DSAC* 0.019/1.11 0.019/1.24 0.011/1.82 0.026/1.18 0.042/1.41 0.03/1.70 0.041/1.42 0.027/1.41
KFNet 0.018/0.65 0.023/0.90 0.014/0.82 0.025/0.69 0.037/1.02 0.038/1.16 0.033/0.94 0.027/0.88
InLoc 0.03/1.05 0.03/1.07 0.02/1.16 0.03/1.05 0.05/1.55 0.04/1.31 0.09/2.47 0.041/1.38
SANet 0.03/0.88 0.03/1.08 0.02/1.48 0.03/1.00 0.05/1.32 0.04/1.40 0.16/4.59 0.051/1.68
Tang et al. 0.02/0.71 0.02/0.85 0.01/0.85 0.03/0.84 0.04/1.16 0.04/1.17 0.05/1.33 0.03/0.99
Li et al. 0.02/0.7 0.02/0.9 0.01/0.9 0.03/0.8 0.04/1.0 0.04/1.2 0.03/0.8 0.03/0.9
Wang et al. (coarse
stage)

0.021/0.85 0.028/1.42 0.028/1.45 0.043/1.37 0.045/1.17 0.042/1.65 0.048/1.21 0.036/1.30

Ours (no detection) 0.025/1.29 0.027/1.54 0.019/1.82 0.033/1.57 0.049/2.03 0.047/1.65 0.056/2.24 0.037/1.73
Ours (no fusion block) 0.016/0.87 0.018/1.22 0.013/1.42 0.024/1.06 0.039/1.32 0.036/1.01 0.037/1.44 0.026/1.19
Ours (no refinement) 0.017/0.91 0.020/1.38 0.014/1.67 0.029/1.46 0.045/1.73 0.041/1.45 0.046/1.79 0.030/1.48
Ours 0.014/0.76 0.018/1.05 0.012/1.17 0.021/0.91 0.036/1.11 0.035/0.95 0.032/1.25 0.024/1.03

Table 3 Median localization errors on our constructed dataset for our method and other state-of-the-art methods. Units of position and
orientation are m and ◦, respectively. In each case, the most accurate result is in bold

Split 1 (mean) Split 1 (median) Split 2 (mean) Split 2 (median)

PoseNet 0.28/4.62 0.14/2.98 0.36/5.77 0.17/3.98

VLocNet 0.25/4.26 0.11/2.65 0.32/6.08 0.16/3.37

DSAC* 0.17/2.72 0.09/1.99 0.21/3.76 0.14/2.65

KFNet 0.16/2.42 0.08/1.69 0.19/3.67 0.14/2.68

Ours (no detection) 0.18/3.27 0.11/2.42 0.24/4.13 0.15/3.12

Ours (no fusion block) 0.13/2.15 0.07/1.28 0.15/2.55 0.11/1.94

Ours (no refinement) 0.15/2.35 0.08/1.59 0.17/3.05 0.13/2.26

Ours 0.12/1.95 0.06/1.19 0.14/2.36 0.09/1.78

accurate correspondences by Kalman filtering, which
is a strong competitor. Compared to KFNet, the
median results are improved by 0.02 m, 0.5◦ on
split 1 and by 0.03 m, 0.9◦ on split 2, while mean
performance improves by 0.04 m, 0.47◦ and 0.05 m,
1.31◦ respectively. Figure 6 shows some results for
the testing sequence. It is clear that both position
and orientation have small errors, suitable for AR
applications.

In conclusion, the improvements over JLDNet
come from multi-task learning and joint refinement.
Because of the sharing of contextual information,

detection and relocalization promote each other.
Moreover, the object-level BA refinement combines
both low-level point features and high-level object
information, further improving accuracy.

For mobile applications, computational perfor-
mance is an important consideration. Our JLDNet
takes about 45 ms per image for the whole process on
a Tesla P100 GPU. In actual applications, JLDNet
runs on a server and provides real-time detection
and relocalization services. Figure 7 demonstrates
an AR guide program based on the results from
JLDNet.
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Fig. 6 Visualization of ground truth and prediction camera pose. Green and blue camera poses denote the ground truth and prediction
respectively.

Fig. 7 An AR guide program based on JLDNet. The center shows the 3D scene and camera poses. Other eight images show the actual effect
of the program. Each running result contains 3D position (top left), virtual guide, introduction UI, detected object, navigation information, and
3D virtual model (bottom left).

5.4 Dynamic localization results

Table 4 gives ATE RMSE and RPE RMSE results
for all 9 TUM RGB-D dynamic scenes, making a
comparison to ORB-SLAM2 [63], DS-SLAM [39],
DynaSLAM [12], MaskFusion [40], and LC-CRF
SLAM [71]. It is clear that our mean RMSE results

outperform other SLAM systems. In detail, we
achieve the best results in 7 Scenes on ATE and
7 Scenes on RPE, which shows state-of-the-art
performance. When testing on fr2 desk with person,
we use three scenes (fr2 desk, fr2 xyz, and fr2 rpy).
In particular, learning difficulty is increased by
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lack of dynamics in the training dataset. Again,
we obtain the most accurate result for this scene.
Moreover, the additional detection branch and joint
refinement enhance the localization accuracy in
dynamic environments, as demonstrated by the last
two rows of Table 4.

In Table 5, we report experiments on the Bonn
dataset and make a comparison to ReFusion [36],
MaskFusion, and LC-CRF SLAM. We split the
datasets into two parts. One part contains balloon,
balloon2, crowd, crowd2, crowd3, moving-no-box,
moving-no-box2, placing-no-box, and removing-no-

Table 4 ATE and RPE RMSE results compared to some SLAM systems for dynamic scenes in TUM RGB-D. In each scene, the top accurate
result is marked bold

fr3w fr3w fr3w fr3w fr3w fr3s fr3s fr3s fr2 desk
xyz static rpy half xyz static rpy half with person

ATE (m)
ORB-SLAM2 (RGB-D) 0.459 0.090 0.662 0.351 0.011 0.009 0.044 0.020 0.074
DynaSLAM 0.015 0.006 0.035 0.025 0.015 — — 0.017 —
DS-SLAM 0.025 0.008 0.444 0.030 — 0.007 — — —
MaskFusion 0.104 0.035 — 0.106 0.031 0.021 — 0.052
LC-CRF SLAM 0.016 0.011 0.046 0.028 0.009 — — — 0.069
Ours (no detection) 0.021 0.011 0.032 0.033 0.018 0.012 0.024 0.018 0.066
Ours 0.013 0.007 0.018 0.019 0.014 0.007 0.019 0.013 0.057

RPE (m/s)
ORB-SLAM2 (RGB-D) 0.412 0.216 0.424 0.355 0.016 0.011 0.039 0.024 0.104
DS-SLAM 0.033 0.010 0.150 0.030 — 0.008 — — —
MaskFusion 0.097 0.039 — 0.093 0.046 0.017 — 0.041
LC-CRF SLAM 0.021 0.014 0.050 0.035 0.012 — — — 0.086
Ours (no detection) 0.022 0.011 0.036 0.042 0.024 0.014 0.029 0.021 0.081
Ours 0.016 0.009 0.027 0.026 0.017 0.010 0.023 0.017 0.069

Table 5 ATE and RPE RMSE results compared to some SLAM systems on TUM RGB-D dynamic scenes. For each scene, the most accurate
result is marked bold. RF = ReFusion, MF = MaskFusion

ATE (m) RPE (m/s)

RF MF LC-CRF Ours RF MF LC-CRF Ours

balloon 0.175 0.165 0.027 0.021 0.576 0.509 0.612 0.322
balloon2 0.254 0.114 0.024 0.022 0.540 0.499 0.541 0.439
balloon-tracking 0.302 0.194 0.025 0.019 1.031 0.991 0.965 0.856
balloon-tracking2 0.322 0.238 0.045 0.029 1.059 0.937 0.935 0.821
crowd 0.204 0.473 0.019 0.022 0.198 0.633 0.238 0.326
crowd2 0.155 0.653 0.031 0.030 0.315 0.854 0.199 0.231
crowd3 0.137 0.341 0.023 0.019 0.223 0.503 0.194 0.258
kidnapping-box 0.148 0.200 0.023 0.017 0.886 0.840 1.001 0.792
kidnapping-box2 0.161 0.182 0.020 0.031 1.077 1.027 1.184 0.943
moving-no-box 0.071 0.120 0.018 0.024 0.939 0.947 0.936 0.879
moving-no-box2 0.179 0.193 0.038 0.025 1.287 1.252 1.399 1.132
moving-o-box 0.343 0.216 0.253 0.195 1.274 0.847 1.158 0.977
moving-o-box2 0.528 0.298 0.341 0.285 1.523 0.576 1.143 0.866
person-tracking 0.289 0.301 0.035 0.034 1.209 1.312 1.193 1.023
person-tracking2 0.463 0.220 0.040 0.046 1.165 1.267 1.297 0.971
placing-no-box 0.106 0.325 0.014 0.019 0.355 0.598 0.333 0.422
placing-no-box2 0.141 0.153 0.016 0.025 0.282 0.330 0.271 0.215
placing-no-box3 0.174 0.156 0.036 0.029 0.511 0.491 0.482 0.422
placing-o-box 0.571 0.424 0.320 0.264 1.180 0.791 0.505 0.740
removing-no-box 0.041 0.058 0.013 0.025 0.262 0.263 0.240 0.216

Mean 0.238 0.251 0.068 0.058 0.795 0.773 0.741 0.643
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box. When testing on one part, training is performed
on the other part. Our framework achieves the best
mean results on RPE and ATE metrics. Meanwhile,
we also obtain state-of-the-art results for most scenes.
The reason for accuracy improvement is located in
the joint learning and refinement between detection
and localization, which promotes pose estimation.

5.5 Detection results

To use the dataset for evaluation, our method
requires both localization and detection ground truth.
Moreover, the testing set should be the same scene
as the training set. There are few common detection
datasets satisfying the above requirements. MS
COCO does not contain localization information,
while the training and testing scenes of ScanNet are
different, so are not appropriate for our method.

To validate the detection performance of our
framework, we conducted experiments on 7 Scenes,
TUM RGB-D, and our aviation exhibition dataset.
The labelling process and train–test split are discussed
above. The results of mean average precision under
IoU threshold 0.5 (mAP@0.5) are presented in Table 6.
JLDNet achieves more accurate detection results in all
scenes than YOLO v3. The mean improvements are
3.8% on 7 Scenes, 3.9% on TUM RGB-D, and 1.7 %
on our dataset, demonstrating the state-of-the-art
detection results provided by our method. Moreover,
the positive roles of the fusion block and refinement
stage are also illustrated. On TUM RGB-D, we can
see that the mean results for the fr3s * four scenes
are more accurate than for the other four fr3w *
scenes. This is because the four highly dynamic

fr3w * scenes contain more dynamic persons than the
less dynamic four fr3s * scenes, which increases the
learning difficulty.

Leading to the accuracy improvement, for one
thing, the additional point cloud and feature fusion
parts make JLDNet learn more features. For another,
the localization branch that is also related to
detection promotes object regression. Moreover, joint
refinement of camera poses and object bounding boxes
further improves both branches.

5.6 Detailed studies

The above experiments demonstrate state-of-the-art
results on both static and dynamic environments.
In our opinion, the improvement is due to multi-
task learning of shared context information, the
fusion block for balancing two branches, and joint
refinement that combines point feature and object-
level information.

In this subsection, we discuss the effects of these
three parts, stated in last four columns of Tables 2
and 3 and last two rows of Table 4. Localization
accuracy clearly decreases when we remove the fusion,
refinement, or detection stage, which indicates the
positive effect of these three parts for both 7 Scenes
and the aviation exhibition hall. It is also noticeable
that accuracy suffers the biggest degradation without
the detection branch, as feature fusion and joint
refinement cannot work without the detection part.

Table 7 provides localization and detection results
using different YOLO networks, covering YOLO,
YOLO v2 [34], YOLO v3, YOLO v4 [33], and YOLO
v5 [54]. Compared to YOLO and YOLO v2, our

Table 6 mAP@0.5 results compared to YOLO v3 on 7 Scenes, TUM RGB-D, and our constructed dataset

7 Scenes

Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

YOLO v3 87.3% 82.4% 86.1% 85.4% 71.2% 78.3% 74.7% 80.8%
Ours 91.2% 86.9% 89.4% 90.4% 74.1% 82.3% 78.2% 84.6%

TUM RGB-D

fr3w xyz fr3w static fr3w rpy fr3w half fr3s xyz fr3s static fr3s rpy fr3s half Mean

YOLO v3 81.3% 83.2% 80.1% 81.1% 88.7% 87.6% 83.3% 85.1% 83.8%
Ours 85.4% 87.9% 84.2% 85.6% 91.1% 90.3% 87.4% 89.3% 87.7%

Our dataset

Split 1 Split 2

YOLO v3 90.6% 86.0%
Ours (no fusion block) 91.9% 88.2%
Ours (no refinement) 91.1% 86.8%
Ours 92.3% 88.7%
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Table 7 Localization and detection results using different Yolo
structures on 7 Scenes

Localization Detection (mAP)

YOLO 0.026/1.41 84.9%

YOLO v2 0.025/1.23 85.1%

YOLO v3 0.024/1.03 85.7%

YOLO v4 0.024/1.09 85.9%

YOLO v5 0.023/1.13 85.6%

method (YOLO v3) achieves a little improvement;
results are comparable to those of YOLO v4 and
YOLO v5. In our opinion, this is for two reasons.
Firstly, the training and testing datasets always
have many similar samples, which differ from those
in common detection datasets. Secondly, the post
refinement stage may reduce network errors.

5.7 Limitations and future work

The above experiments show superior results for
both localization and detection tasks. However,
the limitation of our framework lies in its scene
dependence. Before performing localization and
object detection, we need training samples with
pose and bounding box labels for the target scene.
In future, we intend to focus on scene-independent
localization, by considering relative pose estimation
and detection constraints between consecutive frames.

6 Conclusions

This paper addresses the challenges of joint
detection and localization. We also investigate dataset
construction, multi-task learning network design, and
joint refinement. First of all, we exploit a pipeline
based on SFM, MVS, 3D manual marking, and
2D label projection to construct a medium-sized
indoor scene of an aviation exhibition hall. The
dataset contains 9000 images in total. Each slice
provides a color image, camera pose, and detected
object information. Moreover, paying attention to
multi-task learning of detection and localization, we
propose a deep network called JLDNet, composed
of image feature extraction, point feature learning,
feature fusion, detection output, and point cloud
regression. To optimize JLDNet, we design a loss
function to balance the two branches with learned
coefficients. Based on the results of JLDNet, an
object-level refinement process further improves
the accuracy of both tasks. To test JLDNet, we

conducted experiments on 7 Scenes, our constructed
dataset, TUM RGB-D and Bonn datasets, making
comparisons to other methods, for both static and
dynamic scenes. The localization and detection
results demonstrate state-of-the-art accuracy and the
promotion effects of the two tasks.
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